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3.3. The Central Limit Theorem. Let f ∈ W1,1 and set f̂ := f − m(f), then

lim
n→∞

1

n

n−1
∑

k=0

f̂ ◦ T k(x) = 0 m − a.e.

Let us set Ψn := 1√
n

∑n−1
k=0 f̂ ◦ T k. We can consider Ψn a random variable with

distribution Fn(t) := m({x : Ψn(x) ≤ t}). It is well know that, for each continuous
function g holds6

m(g(Ψn)) =

∫

R

g(t)dFn(t)

where the integral is a Riemann-Stieltjes integral. It is thus clear that if we can
control the distribution Fn, we have a very sharp understanding of the probability
to have small deviations (of order

√
n) from the limit. From the work in the previous

section it follows that there exists δ > 0 such that, for each |λ| ≤ δ
√

n,

ϕn(λ) := m(eiλΨn) = m(Ln
λ/

√
n1) = (1 − σλ2n−1 + O(λ3n− 3

2 ))n

= e−σλ2

(1 + O(λ3n− 1
2 )).

(3.15)

The above quantity is called characteristic function of the random variable and
determine the distribution via the formula

Fn(b) − Fn(a) = lim
Λ→∞

1

2π

∫ Λ

−Λ

e−iaλ − e−ibt

iλ
ϕn(λ)dλ,

as can be seen in any basic book of probability theory.7

Formula (3.15) means in particular that

lim
n→∞

m(eλΨn) = e−σλ2

=: ϕ(λ).

What can we infer out of the above facts? First of all a simple computation shows
that

g(t) =
1

2π

∫

R

e−itλϕ(λ)dλ =
1

2
√

πσ
e−

t2

4σ

a random variable with such a density is called a Gaussian random variable with
zero average and variance σ. Accordingly, formula (3.15) can be interpreted by
saying that there exists a Gaussian random variable G such that

1

n

n−1
∑

k=0

f̂ ◦ T k ∼ 1√
n

G(1 + O(n− 1
2 ))

6If g ∈ C1
0 , then

Z

R

gdFn = −

Z

R

Fn(t)g′(t)dt = −

Z

R

dt

Z

T1
dxχ{z : Ψn(z)≤t}(x)g′(t).

Applying Fubini yields
Z

R

gdFn = −

Z

T1
dx

Z

R

dtχ{z : Ψn(z)≤t}(x)g′(t) = −

Z

T1
dx

Z ∞

Ψn(x)
g′(t)dt =

Z

T1
dxg(Ψn(x)).

7In the case when there exists a density, that is an L1 function fn such that Fn(b) − Fn(a) =
R

b

a
fn(t)dt, then the formula above becomes simply

fn(t) =
1

2π

Z

R

e−itλϕn(λ)dλ,

and follows trivially by the inversion of the Fourier transform.
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in distribution. But what does this means concretely. Actual estimates are made
difficult by the fact that the distribution under study no not necessarily have a den-
sity, thus we are Fourier transforming function that behave quite badly at infinity.
To overcome such a problem we can smoothen the quantities involved.

Let j ∈ C∞(R, R+) such that
∫

R
j(t)dt = 1 and j(t) = 0 for all |t| > 1, for each

ε > 0 defined then jε(t) := ε−1j(ε−1t) and

(3.16) Fn,ε(t) :=

∫

R

jε(t − s)Fn(s)ds.

A simple computation shows that, for each a, b ∈ R, holds

Fn(b + ε) − Fn(a − ε) ≥ Fn,ε(b) − Fn,ε(a) ≥ Fn(b − ε) − Fn(a + ε)

that is: if the measurements have a precision smaller than 2ε, then Fn,ε is as
good as Fn to describe the resulting statistics. On the other hand calling ϕn,ε the

characteristic function associated to Fn,ε, holds ϕn,ε(λ) = ϕn(λ)ĵ(ελ), where ĵ is
the Fourier transform of j. Since now Fn,ε is a smooth random variable it has a
density fn,ε and

fn,ε(t) =
1

2π

∫

R

e−iλtϕn(λ)ĵ(ελ)dλ

since j is smooth it follows that there exists C > 0 such that |ĵ(λ)| ≤ C(1 + λ2)−2.
We can finally use formula (3.15) to obtain a quantitative estimate

fn,ε(t) =
1

2π

∫ ε
√

n

−ε
√

n

e−iλtϕn(λ)ĵ(ελ)dλ + O(ε−5n− 3
2 )

=
1

2π

∫ ε
√

n

−ε
√

n

e−iλtϕ(λ)ĵ(ελ)dλ + O(ε−5n− 3
2 + n− 1

2 )

= g(t) + O(ε + ε−5n− 3
2 + n− 1

2 ) = g(t) + O(n− 1
2 )

provided we choose n− 1
2 ≥ ε ≥ n−5. Which, as announced, means that, if the pre-

cision of the instrument is compatible with the statistics, the typical fluctuations in
measurements are of order 1√

n
and Gaussian. This is well known by sperimentalists

who routinely assume that the result of a measurement is distributed according to
a Gaussian.8

Dipartimento di Matematica, Università di Roma (Tor Vergata), Via della Ricerca
Scientifica, 00133 Roma, Italy, liverani@mat.uniroma2.it

8Note however that our proof holds in a very special case that has little to do with a real
experimental setting. To prove the analogous statement in for a realistic experiment is a completely
different ball game.


