14 CARLANGELO LIVERANI

3.3. The Central Limit Theorem. Let f € W;; and set f = f—m(f), then
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Let us set ¥,, := ﬁ ZZ;S f o T*. We can consider ¥,, a random variable with

distribution anﬁ =m{z : U,(x) <t}). It is well know that, for each continuous
function g hold:

m(g(T,)) = / o()dF ()

where the integral is a Riemann-Stieltjes integral. It is thus clear that if we can
control the distribution F},, we have a very sharp understanding of the probability
to have small deviations (of order y/n) from the limit. From the work in the previous
section it follows that there exists ¢ > 0 such that, for each |A| < d+/n,

On(N) == m(e?Vn) = m(Ly) 1) = (1 - X0+ O(n )"
= e (14 O(X*n 7)),

The above quantity is called characteristic function of the random variable and
determine the distribution via the formula

(3.15)
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as can be seen in any basic book of probability theoryﬂ
Formula (BI0) means in particular that
nh_)rrgo m(eNn) = e N = ©(N).
What can we infer out of the above facts? First of all a simple computation shows

that ) )
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a random variable with such a density is called a Gaussian random variable with
zero average and variance o. Accordingly, formula (BIH) can be interpreted by
saying that there exists a Gaussian random variable G such that

1 «— 1 _1
Ekz:: N%G(l—&-(’)(n 7))

61f g € L, then

[oaFu = [ Fag@ar =~ [ at [ doxiz 0,020 @9 ©.
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Applying Fubini yields
/ngn = / dw/th{Z:W ()<t} (@)g'(t) = / dm/ t)dt = / dzg(Vn(x)).
T1 v, (z) T1

"In the case when there exists a density, that is an L! function f, such that F,(b) — Fy(a) =
ff fn(t)dt, then the formula above becomes simply

1 )
Falt) = 5 /R e o (N)dA,

and follows trivially by the inversion of the Fourier transform.
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in distribution. But what does this means concretely. Actual estimates are made
difficult by the fact that the distribution under study no not necessarily have a den-
sity, thus we are Fourier transforming function that behave quite badly at infinity.
To overcome such a problem we can smoothen the quantities involved.

Let j € C*(R,Ry) such that [, j(t)dt =1 and j(t) = 0 for all || > 1, for each
e > 0 defined then j.(t) := e~ 1j(e71t) and

(3.16) Fpe(t) := /jg(t — $)F,(s)ds.
R
A simple computation shows that, for each a,b € R, holds
F,(b+¢e)—Fy(a—¢g) > Fp:(b) — Fpe(a) > Fy(b—¢) — Fy(a+¢)

that is: if the measurements have a precision smaller than 2e, then F, . is as
good as Fj, to describe the resulting statistics. On the other hand calling ¢,, . the
characteristic function associated to Fj, o, holds ¢, c(A) = pn(N\)7(g)), where ] is
the Fourier transform of j. Since now Fj, . is a smooth random variable it has a

density f, . and

frelt) = % /R e, (M) (eN)dA

since j is smooth it follows that there exists C' > 0 such that |j(\)| < C(1 + X?)~2.
We can finally use formula ([BI0) to obtain a quantitative estimate

1 E\/ﬁ oy R 5
fue) = o [ o, 0NN+ O
2m —ey/n
I ; g ,
=— e Mo\ F(EN) AN+ O(e™Pn"2 +n73)
2m —e/n

=g(t)+O0(e+ eOn8 + nfé) =g(t) + O(nf%)

provided we choose n3 > ¢ > n~°. Which, as announced, means that, if the pre-
cision of the instrument is compatible with the statistics, the typical fluctuations in
measurements are of order in and Gaussian. This is well known by sperimentalists
who routinely assume that the result of a measurement is distributed according to
a Gaussian
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8Note however that our proof holds in a very special case that has little to do with a real
experimental setting. To prove the analogous statement in for a realistic experiment is a completely
different ball game.



