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3. Points of view: Dynamical Systems

In the previous arguments the dynamics enters in a very limited way: just to say
that the measures considered are invariant. This may seem strange, at least one
should take into consideration the fact that measurements are not instantaneous
and hence what we see is the result of an action that last for some time, a time in
which, given the typical high velocities of the atoms, a lot of things can happen (for
example, an atom in the air can have 106 collisions in a millisecond). To explore
such a point of view let us consider an extremely simple dynamics that has no
pretense whatsoever of being physically meaningful: the translation on a circle.

3.1. Circle rotation. Let Tω : T1 → T1 be defined by

Tω(x) = x + ω mod 1,

where ω ∈ R. We are thus interested in the quantity

1

N

N−1
∑

n=0

f(T n
ω (x))

where, for simplicity, f ∈ C1(T1).1

Now if ω = p
q
∈ Q, it follows

T q
ωx = x + p mod 1 = x.

Thus, after a time q, the dynamics is exactly identity. Now, let N = Kq + r,
0 ≤ r < q, we have

1

N

N−1
∑

n=0

f(T n
ω (x)) =

1

N

K
∑

k=0

q−1
∑

j=0

f ◦ T kq+j
ω (x) +

1

N

r
∑

j=0

f ◦ T Kq+j
ω (x)

=
1

N

K
∑

k=0

q−1
∑

j=0

f ◦ T j
ω(x) +

1

N

r
∑

j=0

f ◦ T Kq+j
ω (x)

=
N − r

N

1

q

q−1
∑

j=0

f ◦ T j
ω(x) + O(

r

N
|f |∞)

This means that, if we define the measure δx(f) := f(x), then

(3.1) lim
N→∞

1

N

N−1
∑

n=0

f(T n
ω (x)) =

1

q

q−1
∑

j=0

f ◦ T j
ω(x) = µx(f),

where the measure µx := 1
q

∑q−1
j=0 δ

T
j
ωx

is simply the average of the delta functions

along the periodic trajectory starting at x.
We have thus a situation quite different from the one in the previous chapter:

the result of the measurement does depend on the initial point since to each point is
associated a different measure µx. Clearly such measure are all invariant. We have
thus a situation in which there are uncountably many invariant measures and the
result of the measurement is described by different invariant measures depending
on the initial configuration of the system.

1For analogy with the observable of the previous section one may want to consider the case
f = χ∆ for some interval ∆. I leave to the reader to check that the following holds also for
f ∈ BV , the space of functions of bounded variation.
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On the other hand, let us consider the case ω 6∈ Q. In this situation it is simple
to verify that {T n

ω x} are all different points.2 Hence, they must have accumulation
points. Let T nk

ω 0 be a converging subsequence, then for each ε > 0 there exists
n > m such that dist(T n

ω 0 − T m
ω 0) ≤ ε. That is there exists p ∈ N such that

ε ≥ |T n
ω 0 − T m

ω 0 + p| = |(n − m)ω + p|, that is, setting q = n − m,3
∣

∣

∣

∣

ω − p

q

∣

∣

∣

∣

≤ ε

q
.

In particular, this means T q
ω(x) = Tα(x), for some |α| ≤ ε. We can thus try to

argue similarly to the rational case:

1

N

N−1
∑

n=0

f(T n
ω (x)) =

1

N

K
∑

k=0

q−1
∑

j=0

f ◦ T kq+j
ω (x) +

1

N

r
∑

j=0

f ◦ T Kq+j
ω (x)

=
1

N

q−1
∑

j=0

K
∑

k=0

f ◦ T k
α(T j

ω(x)) + O(
r

N
|f |∞)

Now Tα is a rotation by a very small amount hence

f(x)α =

∫ Tαx

x

f(z)dz +

∫ Tαx

x

[f(x) − f(z)]dz =

∫ Tαx

x

f(z)dz + O(
1

2
|f |C1α2).

Introducing the above fact in the previous formula yields

1

N

N−1
∑

n=0

f(T n
ω (x)) =

1

N

q−1
∑

j=0

K
∑

k=0

α−1

∫ T k+1
α (T j

ω(x))

T k
α(T j

ω(x))

f(z)dz + O(
Kq

2N
|f |C1α +

r

N
|f |∞).

Since Kα = l + s, s < 1, it follows that the integral goes completely around the
circle l times, that is

1

N

N−1
∑

n=0

f(T n
ω (x)) =

1

N

q−1
∑

j=0

lα−1

∫

T1

f(z)dz + O(
Kq

2N
|f |C1α +

r + qs

N
|f |∞)

=
qlα−1

N

∫

T1

f(z)dz + O(
Kq

2N
|f |C1α +

r + qs

N
|f |∞)

=

∫

T1

f(z)dz + O(
Kq

2N
|f |C1α +

2r + qs + α−1sq

N
|f |∞).

Thus,

(3.2) lim
N→∞

1

N

N−1
∑

n=0

f(T n
ω (x)) =

∫

T1

f(z)dz,

and this time the limit does not depend on the initial condition!
Indeed, the measurement converges toward the average with respect to the

Lebesgue measure, which is easily seen to be invariant. In fact, we have gone
from an extreme to the other as the following lemma shows.

Lemma 3.1. The Lebesgue measure is the only invariant probability measure for

Tω, with ω 6∈ Q.

2Indeed T n

ω
x = T m

ω
x for some n 6= m readily implies ω ∈ Q.

3Notice that, in this manner we have obtained a weak, and yet non trivial, information on the
possibility to approximate irrational numbers. This is a pale example of the many connections
between ergodic theory and number theory.
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Proof. Suppose ν is an invariant measure, that is T ∗
ων(f) := ν(f ◦ Tω) = ν(f).

Next, let f ∈ C1,

ν(f) =
1

N

n−1
∑

n=0

T ∗n
ω ν(f) = lim

N→∞

1

N

n−1
∑

n=0

T ∗n
ω ν(f) = lim

N→∞
ν

(

1

N

N−1
∑

n=0

f ◦ T n
ω

)

.

Now, notice that the convergence in (3.2) is, in fact, in the uniform topology, hence

ν(f) = ν

(∫

T1

f

)

= ν(1)

∫

T1

f =

∫

T1

f.

The result follows since C1 is dense in C0. �

A system with a unique invariant measure is called uniquely ergodic. A moment
thought shows that any system with two periodic orbit cannot be uniquely ergodic,
this shows how unusual such systems are. Nevertheless, the above considerations
show that the existence of a unique “special” invariant measure may yield the
phenomenon we are looking for, that is the fact that result of a measurement is
given with overwhelming probability by the average computed with respect to such
a measure.

To understand a bit better let us look at a still simple but far less trivial example.

3.2. Circle doubling. Let us consider the map T : T1 → T1 defined by

(3.3) T (x) = 2x mod 1.

First of all let us see that the system is not uniquely ergodic, indeed T (0) = 0 and
T ( 1

3 ) = 2
3 and T ( 2

3 ) = 1
3 , thus we a fixed point and a period two orbit, hence δ0 and

1
2δ 1

3
+ 1

2δ 2
3

are both invariant measures for T . Of course, many other such measures

can be constructed. In addition,

(3.4)

∫

T1

ϕ ◦ T =

∫ 1
2

0

ϕ(2x)dx +

∫ 1

1
2

ϕ(2x − 1)dx =

∫ 1

0

ϕ.

That is the Lebesgue measure is another invariant measure. It seems reasonable
to think that the Lebesgue measure is more relevant, from the physical point of
view, than the above measures concentrated on periodic orbits. It is then natural
to wonder if it is the only one supported on sets of positive Lebesgue measure,
that is in the class of measures absolutely continuous with respect to the Lebesgue
measure. To answer such a question a considerable detour is needed.

A far reaching and very effective strategy to investigate invariant measures is
to lift the dynamics on the measures. Namely, one can first define a dynamics
on C0(T1, R) by T∗ϕ := ϕ ◦ T and then on the Borel measures4 C0(T1, R)′ by
T ∗µ(ϕ) := µ(T∗ϕ).5 In this language (3.4) reads T ∗m = m. Next, consider the

4The Borel measures can be identified with the dual of C0(T1, R) thanks to the Riesz repre-
sentation theorem.

5Another, more general, way to define a dynamics on measures is to define T ∗µ(A) := µ(T−1A)
for each measurable set A. It is an easy exercise to verify that the two definition coincide if T is
a continuous map.
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measure dµ = hdm, then

T ∗µ(ϕ) =

∫

T1

h(x)ϕ(T (x))dx =

∫ 1

0

1

2
h
(x

2

)

ϕ(x)dx +

∫ 1

0

1

2
h

(

x + 1

2

)

ϕ(x)dx

=:

∫

T1

Lhϕ.

That is dT∗µ
dm

= Lh, where

(3.5) Lh(x) =
1

2
h
(x

2

)

+
1

2
h

(

x + 1

2

)

.

The operator L, often called transfer operator or Ruelle-Perron-Frobenius operator

describes the evolution of the densities of the measures. In the above terms (3.4)
reads L1 = 1. More in general, if dµ = hdm and T ∗µ = µ, then Lh = h and vice
versa, if h ∈ L1(T1, m). Thus, not surprisingly, the answer to our questions on the
invariant measures absolutely continuous with respect to Lebesgue can be obtained
by studying the operator L. First of all,

(3.6)

∫

T1

|Lh| ≤
∫

T1

L|h| · 1 =

∫

T1

|h| · 1 ◦ T =

∫

T1

|h|.

In other words L is a contraction (but not a strict one) in L1(T1, m). Yet, the
experience has shown that studying L as a bounded operator on L1(T1, m) it is
not a very rewarding activity. It turns out to be much more helpful to restrict it
to smoother functions. In fact, let h ∈ C1(T1, R), then differentiating (3.5) yields

(Lh)′ =
1

2
L(h′)

But the above equality implies

(3.7) |(Lh)′|L1 ≤ 1

2
|h′|L1 .

It is then clear that it is convenient to study L as an operator on the Sobolev space
W1,1. In fact, let V0 := {h ∈ W1,1 :

∫

h = 0}, then LV0 ⊂ V0. Moreover, notice
that if h ∈ V0, then |h|L1 ≤ |h′|L1 . Accordingly, for each h ∈ V0, holds

|Lnh|L1 ≤ |(Lnh)′|L1 ≤ 2−n|h′|L1 .

That is

|Lnh|W1,1
≤ 2−n+1|h′|L1 ≤ 2−n+1|h|W1,1

.

Clearly this shows that there are no other absolutely continuous invariant measures.

Lemma 3.2. If an invariant measure is absolutely continuous with respect to

Lebesgue, then it is Lebesgue. That is, the dynamical system (T, T1, m) is ergodic.

Proof. Let h ∈ L1 be such that Lh = h,
∫

h = 1, then, for each ε > 0 there exists
hε ∈ W1,1,,

∫

hε = 1, such that |h − hε|L1 ≤ ε. But then

|Lnhε − hε|L1 ≤ |Ln(hε − h)|L1 + |hε − h|L1 ≤ 2ε,

and, since hε − 1 ∈ V0,

|h − 1|L1 ≤ ε + |hε − 1|L1 ≤ 3ε + |Ln(hε − 1)|L1 ≤ 3ε + 2−n+1|h′
ε|L1 ≤ 4ε,

where we have chosen n large enough. By the arbitrariness of ε it follows h = 1. �
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Since the spectral radius of L|V0
is 1

2 , the spectrum of L on W1,1 consists of the
simple eigenvalue one while the rest of the spectrum is contained in the disk of
radius 1

2 .
It will be interesting, for the following to notice that the system under consider-

ation enjoys a stronger property than ergodicity.

Lemma 3.3. For each h, f ∈ L2(T1, m),
∫

h = 0, holds

lim
n→∞

|Lnh|L1 = 0 and lim
n→∞

∫

hf ◦ T n = 0.

Proof. For each ε > 0 choose hε ∈ W1,1 such that
∫

hε = 0 and |h−hε|L2 ≤ ε, then

|Lnh|L1 ≤ |Lnhε|L1 + |h − hε|L1 ≤ |Lnhε|L1 + ε

and
∫

hf ◦ T n =

∫

Lnhεf + O(ε|f ◦ T n|L2) = O
(

2−n+1|hε|W1,1
|f |L2 + ε|f |L2

)

.

The result follows by choosing first ε small and then n large. �

We have finally collect enough knowledge on the statistical properties of the
map to be able to tackle the problem of the measure previously discussed for the
rotations. To start with, let f ∈ W1,1, m(f) > 0, and consider the set

(3.8) A+
δ :=

{

x ∈ T1 :
1

n

n−1
∑

k=0

f ◦ T k(x) ≥ (1 + δ)m(f)

}

.

As before we would like to estimate the measure (in this case the Lebesgue measure)
of the set. We use the same strategy already used: for λ > 0,

m(A+
δ ) = m({x : eλ

Pn−1

k=0
f◦T k(x)−(1+δ)m(f) ≥ 1}) ≤ m(eλ

Pn−1

k=0
f◦T k

−(1+δ)m(f)).

Now set g := f − (1 + δ)m(f), then

m(A+
δ ) ≤ m

(

n−1
∏

k=0

eλg ◦ T k

)

= m(Ln
λ1)

where we have defined the operator Lλh := L(eλgh). Since W1,1 is an algebra it is
easy to see that Lλ is a well defined operator on W1,1. The basic idea to accomplish
the wanted estimate is to show that the spectral radius of Lλ is strictly smaller than
one. To prove such a fact we will try to apply perturbation theory viewing Lλ as
a perturbation of L.

Lemma 3.4. For each 0 < λ ≤ |g|−1
∞ holds true

‖L − Lλ‖W1,1,
≤ 2eλ|g|W1,1,

.

Proof. Remembering (3.6) and (3.7), just compute

‖(L − Lλ)h‖W1,1,
≤ |(1 − eλg)h|L1 +

1

2
|(1 − eλg)′h + |(1 − eλg)h′|L1

≤ eλ|g|∞|h|L1 +
e

2
λ|g|∞|h′|L1 +

e

2
λ|g′|L1 |h|∞

≤ 2eλ|g|W1,1,
|h|W1,1,

.

�
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At this point let us recall a bit of perturbation theory. For each z ∈ C let
Rλ(z) := (zId − Lλ)−1, if the operator is defined, and set R(z) := R0(z). Also,
given any operator A let σ(A) be its spectrum.

Lemma 3.5. If z 6∈ σ(L) and ‖(L − Lλ)R(z)‖W1,1,
< 1, then z 6∈ σ(Lλ) and

Rλ(z) = R(z)(Id + (L − Lλ)R(z))−1.

Proof. Since ‖(L − Lλ)R(z)‖W1,1
< 1, the operator (Id + (L − Lλ)R(z))−1 is well

defined and, more precisely,

(Id + (L − Lλ)R(z))−1 =

∞
∑

n=0

[(Lλ −L)R(z)]
n

.

Moreover,

(zId−Lλ)R(z)(Id+(L−Lλ)R(z))−1 = (Id+(L−Lλ)R(z))(Id+(L−Lλ)R(z))−1 = Id.

�

In addition notice that, since Lλ is an analytic function of λ, so is Rλ(z). Now,
calling Π(h) := m(h) the projector on the eigenvalue 1 of L, the previous results
and an easy computation imply

R(z) = (z − 1)−1Π + Q(z)

where Q(z) = z−1
∑∞

n=0 z−nLn(Id − Π). Thus if Γ := {z ∈ C : |z − 1| = 1
4} then

there exists a constant c > 0 such that

sup
z∈Γ

‖(L − Lλ)R(z)‖W1,1
< Cλ|g|W1,1

.

This means that that, for λ small enough, Γ ∩ σ(Lλ) = ∅ and, calling Πλ the
eigenprojector associated at the portion of σ(Lλ) in the interior of Γ, holds

(3.9) Πλ =
1

2πi

∫

Γ

Rλ(z)dz.

Clearly Π0 = Π, in addition the dimension of the range of Πλ is an analytic function
and hence must be constant, that is Πλ is a rank one projector. Accordingly, there
exists hλ ∈ W1,1 and `λ ∈ W ′

1,1, both analytic in λ, such that Πλ(h) = hλ`λ(h).
Obviously

(3.10) Lλhλ = αλhλ,

and α0 = 1, h0 = 1. Notice that hλ and `λ are not uniquely defined: by Π2
λ =

Πλ follows `λ(hλ) = 1 but one normalization can be chosen freely, let us choose
m(hλ) = 1. All the above discussion is summarize by the following Lemma.

Lemma 3.6. There exists a constant C1, C2 > 0 and 0 < ρ < 3
4 such that, for

λ ≤ C1|g|−1
W1,1

, Lλ = αλΠλ +Qλ, ΠλQλ = QλΠλ = 0, ‖Qn
λ‖W1,1

≤ C2ρ
n. Moreover

everything is analytic in λ.

In view of the above fact we can differentiate (3.10) obtaining

(3.11) L′
λhλ + Lλh′

λ = α′
λhλ + αλh′

λ ; m(h′
λ) = 0.

Integrating with respect to m and setting λ = 0 yields

α′
0 = m(Lg) = m(g) = −δm(f) < 0.
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This means that we can choose λ such that the norm of Ln
λ is strictly smaller than

one, yet to know how small we can take it, it is necessary to investigate the second
derivative of αλ. Taking the derivative of (3.11), integrating with respect to m and
setting λ = 0 yields

α′′
0 = m(g2) + 2m(gh′

0).

On the other hand, (3.11) implies

(Id −L)h′
0 = L(g − m(g)) = L(Id − Π)g

and, setting L̂ := L(Id − Π),

(3.12) h′
0 = (Id − L̂)−1L̂g.

Hence

(3.13) α′′
0 = m(g2) + 2m(g(Id− L̂)−1L̂g).

Since αλ = 1 − α′
0λ + 1

2α′′
0λ2 + O(λ3), it follows that the situation is drastically

different if α′′
0 is positive or negative. Looking at (3.13) the sign is far from evident,

yet a careful analysis shows that the sign is often positive.

Lemma 3.7. Setting f̂ := f − m(f), either α′′
0 ≥ C > 0, with C independent on

δ, or, for each periodic orbit {xi = T ix0}n−1
i=0 , it holds true

∑n−1
i=0 f̂(xi) = 0.

Proof. First of all (Id − L̂)−1L̂g = (Id − L̂)−1L̂f̂ ∈ V0, thus

α′′
0 = m(f̂2) + δ2m(f)2 + 2m(f̂(Id − L̂)−1L̂f̂) ≥ m(f̂2) + 2m(f̂(Id − L̂)−1L̂f̂).

Next consider the following

0 ≤ m





[

1√
n

n−1
∑

k=0

f̂ ◦ T k

]2


 =
1

n

n−1
∑

k,j=0

m(f̂ ◦ T kf̂ ◦ T j)

= m(f̂2) +
2

n

n−1
∑

j=0

n−1
∑

k=j+1

m(f̂ f̂ ◦ T k−j) = m(f̂2) +
2

n

n−1
∑

k=1

k
∑

j=1

m(f̂L̂j f̂)

= m(f̂2) + 2

n−1
∑

j=1

n − j

n
m(f̂ L̂j f̂).

Accordingly,

0 ≤ σ2 := lim
n→∞

m





[

1√
n

n−1
∑

k=0

f̂ ◦ T k

]2


 = m(f̂2) + 2

∞
∑

j=1

m(f̂L̂j f̂)

= m(f̂2) + 2m(f̂(Id − L̂)−1L̂f̂).

Clearly, if σ > 0 the lemma is proven, thus we need only to analyze the case σ = 0.
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If σ = 0, we have

m





[

n−1
∑

k=0

f̂ ◦ T k

]2


 = n



m(f̂2) + 2

n−1
∑

j=1

n − j

n
m(f̂L̂j f̂)





= −2n

∞
∑

j=n

m(f̂ L̂j f̂) − 2
n−1
∑

j=1

jm(f̂ L̂j f̂)

≤ C3



n2−n +
∞
∑

j=0

j2−j



 |f̂ |L1‖f̂‖W1,1
≤ C4|f̂ |L1‖f̂‖W1,1

Accordingly, the sequence
∑n−1

k=0 f̂ ◦T k is bounded in L2 and hence weakly compact.

Let
∑nj−1

k=0 f̂ ◦T k a weakly convergent subsequence, that is there exists φ ∈ L2 such
that for each ϕ ∈ L2 holds

lim
j→∞

∫

ϕ

nj−1
∑

k=0

f̂ ◦ T k =

∫

ϕφ.

It follows that, for each ϕ ∈ W1,1,

∫

ϕ[f̂ − φ + φ ◦ T ] = ϕf̂ − lim
j→∞

nj−1
∑

k=0

∫

ϕf̂ ◦ T k +

∫

Lϕf̂ ◦ T k

= lim
j→∞

∫

Lnj [ϕ − m(ϕ)]f̂ = 0

And, since W1,1 is dense in L2, it follows

(3.14) f̂ = φ − φ ◦ T.

A function with the above property is called a coboundary, in this case an L2

coboundary since we know only that φ ∈ L2. In fact, this it is not not enough to
conclude the Lemma: we need to show, at least, that φ ∈ C0.

First of all notice that, since for each β ∈ R we have f̂ = φ + β − (φ + β) ◦T , we
can assume without loss of generality

∫

φ = 0. But them

L̂f̂ = Lf̂ = Lφ − φ = L̂φ − φ = −(Id − L̂)φ.

Hence

lim
n→∞

n−1
∑

k=0

L̂k(Id − L̂)φ = φ − lim
n→∞

Lnφ = φ,

where we have used Lemma 3.3. Accordingly

φ = (Id − L̂)−1L̂f̂ ∈ W1,1

That is f̂ is a continuous coboundary. From this the lemma follows immediately. �

Accordingly, unless f̂ it is not a continuous coboundary, the best we can do is

to choose λ = cδm(f), whereby obtaining αλ = e−cδ2

.
We can finally conclude

m(A+
δ ) ≤ m(Ln

cδm(f)1) ≤ Ce−cδ2n.
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Since similar arguments hold for the set A−

δ := {x ∈ T1 : 1
n

∑n−1
k=0 f ◦ T k −

(1 − δ)m(f) ≤ 0}, it follows that we have an exponentially small probability to
observe a deviation from the average larger than a δ percentage of the average. In
particular we have the following.

Lemma 3.8. For each f ∈ L1, holds

lim
n→∞

1

n

n−1
∑

k=0

f ◦ T k(x) = m(f), m − a.e.

Proof. Notice that, for each f ∈ W1,1, m(f) > 0, and for each m ∈ N, δ > 0, holds

m({x ∈ T1 : ∃n ≥ m : | 1
n

n−1
∑

k=0

f ◦ T k(x) − m(f)| ≥ δm(f)})

≤
∞
∑

n=m

m({x ∈ T1 : | 1
n

n−1
∑

k=0

f ◦ T k(x) − m(f)| ≥ δm(f)})

≤
∞
∑

n=m

Ce−cδ2n ≤ Cδ−2e−cδ2m

Next, if limn→∞
1
n

∑n−1
k=0 f ◦ T k(x) 6= m(f), then there exists δ(x) and an infinite

sequence {nj(x)} such that | 1
nj(x)

∑nj(x)−1
k=0 f ◦ T k(x) − m(f)| ≥ δ(x)m(f). It is

easy to see that δ(x) is a measurable function, thus, for each ε > 0 and m ∈ N,

m(δ ≥ ε) ≤ m({x : ∃n ≥ m : | 1
n

n−1
∑

k=0

f ◦T k(x)−m(f)| ≥ δm(f)}) ≤ Cε−2e−cε2m.

Since m and ε are arbitrary, it follows m(δ > 0) = 0, hence the lemma for such an
f . The result for general f follows by standard approximation arguments. �

At this point a natural question, of clear relevance for the applications, would be
to understand a bit better in which way the limit is achieved. This is the content
of the next subsection.


