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1. Some questions

If we consider a portion of matter, we know that it consists of a large number,
say N , of atoms. Such atoms interact with each other and move according to
dynamical laws. For simplicity let us assume that they are classical, that is their
motion obeys Newtown’s law. This means that the equations of motion are the
Hamiltonian equations connected to some Hamiltonian of the type

(1.1) H(q, p) =
1

2

N
∑

i=1

‖pi‖
2 +

N
∑

i,j=1

V (qi − qj),

where V is the interaction potential among the atoms.
The Hamiltonian (1.1) yields the 2dN differential equations (d is the dimension

of the space, typically d = 3)

q̇i = pi

ṗi = −
∂H

∂qi

.
(1.2)

Clearly there is no hopes to solve them explicitly (typical N are of the order of 1024),
yet they show that the motion of the atoms should be expected to be very complex.
Nevertheless, our experience is that the behaviour of the matter is rather regular:
for example the pressure of a gas or the temperature of a solid do not change widely
from one moment to the next although the typical value of the velocity of the atoms
(say at room temperature) can be of almost one kilometer per second.

Question 1: How comes that all these atoms performing, at great speed, very

complex motions appear to us as essentially motionless ?

Although one cannot hope to solve the equations of motion, the simple fact that
the motion satisfies (1.1) does have some implications. For example, if (q(t), p(t))
is a solution of (1.1), with initial conditions (q(0), p(0), then it is easy to check that
(q(−t),−p(−t)) is also a solution with initial conditions (q(0),−p(0)). This is called
reversibility and says that if something happens and we record it on a camera, then
showing it backward we still have a motion governed by the (1.1). That is: looking
at the movie we cannot be sure if it is projected forward or backward. But in fact
we are!

Question 2: How comes that the motions of the atoms do not distinguish the

direction of time while to us such a direction is very clear?
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These questions have motivated more than hundred years of researches giving rise
to the field commonly known as Statistical Mechanics. In fact, we still do not have
a completely satisfactory answer, yet it is slowly emerging a setting in which such
questions can, at least in principle, be answered.

2. Points of view: Equilibrium Statistical Mechanics

In Equilibrium Statistical Mechanics one assumes that a systems in a box Λ and
with Hamiltonian (1.1) is in fact described by the Gibbs measures

(2.1) µβ(f) := Zβ

∫

dq dp e−βH(q,p)f(q, p); µ(1) = 1,

where β plays the rôle of the inverse of the temperature and the condition that µβ

be a probability measure determine Zβ.

Lemma 2.1. Calling Φt the Hamiltonian flow, Φ∗
t µβ = µβ, for all t ∈ R.

Proof. It is well known that H ◦ Φt = H and, by Liouville theorem, Φ∗
t m = m,

where m is the Lebesgue measure. Hence

Φ∗
t µβ(f) = µβ(f ◦ Φt) = Zβm(e−βHf ◦ Φt) = Zβm([e−βHf ] ◦ Φt) = µβ(f).

�

That is, one assumes that the system is described by a particular class of invariant
measures for the dynamics. But, of course, the system, at least in the present
framework of classical mechanics, must be in some precise state with definite values
for all the positions and velocities of the atoms.

Question 3: In which sense we can think that a system is described by a measure

rather than the list of position and velocities?

The are at least to possible way to answer to the above queston. On the one hand
one can take the statistical point of view: we many prepare many systems in, as
far as we can tell, a similar way (in this case all at inverse temperature β, note that
β can be determinded by measuring the expectation of p2) and then (2.1) would
describe their statistic. On the other hand we could simply measure p2 and then
consider (2.1) a prescription (for example it could be obtained by requiring that the
measure be the invariant measure with me smaller relative entropy with respect to
Lebesgue and the with the expectation of p2 in agreement with the measurement)
to determine the probabilities of the possible (unknown) configuration. It does not
matter so much which point of view one takes, in both cases one has a prescription

that allows to compute probabilites of given events and their validity must be
checked against the experiments.

At first site the above setting does not seem very interesting: we know that the
temperature in a given solid does not changes wildly from place to place and this
appears very different from the statement that if we have a bunch of solids then
their average temperature does not changes widely. Yet, let us take the above point
of view and explore more closely its consequences.

Let us consider a simplified situation: V ≡ 0 (no interactions) and d = 1: a
non interacting gas in an interval. Moreover, let us fix β = 1. Let us consider
the pressure against the right wall. If the measurement is done very fast then the
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pressure will simply be given by

P (q, p) :=

N
∑

i=1

χ∆(qi) max{0, pi},

where ∆ is some very small neighborhood of the wall containing the particles that
interact with the wall at the given time. Clearly the pressure will depend on the
configuration (p, q) yet we can compute the average pressure:

µ(P ) = zN |Λ|−N

N
∑

i=1

∫

e−Hχ∆(qi) max{0, pi} = N
|∆|

|Λ|
p̄,

where p̄ := z
∫

R+ e−
1
2 p2

p dp. At this point we ask ourselves: what is the probability

to see a different pressure?

Let us define the set

Aδ = {(q, p) ∈ ΛN × RN : |P (q, p) − µ(P )| ≥ δµ(P )}

Set xi = χ∆(qi) max{0, pi} =: χ∆(qi)p
+
i , then P =

∑N
i=1 xi, the xi are then inde-

pendently distributed random variables and E(xi) := µ(xi) = |∆|
|Λ| p̄ =: %p̄.

Let A+
δ = {(q, p) ∈ ΛN × RN : P (q, p) − µ(P ) ≥ δµ(P )} and A−

δ = {(q, p) ∈

ΛN × RN : P (q, p) − µ(P ) ≤ −δµ(P )}, clearly Aδ = A+
δ ∪ A−

δ . Then, for each
λ ≥ 0,

µ(A+
δ ) = µ

(

{eλ(P−(1+δ)µ(P )) ≥ 1}
)

≤ µ
(

eλ(P−(1+δ)µ(P ))χ{eλ(P−(1+δ)µ(P ))≥1}

)

≤ µ
(

eλ(P−(1+δ)µ(P ))
)

≤
[

E(eλ(x−(1+δ)E(x)))
]N

It is then natural to define the random variable y := x − (1 + δ)E(x).

Lemma 2.2. For each λ ∈ R, setting ϕ(λ) := E(eλy), holds ϕ ∈ C∞(R). Moreover

ϕ is strictly convex and ϕ′(0) < 0.

Proof. Just notice that ϕ(n)(λ) = E(yneλy), but, for n > 1,

E(yneλy) ≤
z

|Λ|

∫

Λ

∫

R

e−
1
2 p2+λ(p+χ∆(q)−(1+δ)%p̄)(p+χ∆(q) − (1 + δ)%p̄)n dp dq < ∞.

The convexity follows from

ϕ′′(λ) = E(y2eλy) > 0,

while ϕ′(0) = E(y) = −δE(x) < 0. �

From Lemma 2.2 it follows that the minimum of ϕ is in R+ and it is less than
one (since ϕ(0) = 1). A simple computation, expanding in powers of λ, show that

the minimum is close to λ∗ = δE(x)
E(x2)−(1+δ)E(x)2 =: δc, provided that δ is so small

that E(x2) − (1 + δ)E(x)2 > 0. Such a choice yields

E(eλ∗(x−(1+δ)E(x))) = 1 + δcE(y) +
c2

2
δ2E(y2) + O(δ3) ≤ e−ρ|∆|−2δ2

for some ρ > 0 independent of ∆. Thus,

µ(Aδ) ≤ 2e−ρN |∆|−2δ2

.

This means that, unless ∆ is incredibly small (microscopic), the probability to
see even a very small fluctuation is completely negligible. It is then possible, at
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least in principle, to obtain predictions in complete agreement with our experience
notwithstanding our naive feeling that this was a inadequate setting. Nevertheless,
one must consider that if the measure is thought to be instantaneous, then ∆ must
be microscopic, say of the order of an atomic radii (about 10−1) meters). In such
a case one could expect big fluctuations, contrary to our experience. Yet, the real
measures do last a finite time, actually normally a quite a long time from the
perspective of atomic motion given the high speed at which such a motion takes
place (one atom in the air at room temperature has about 109 collisions per second).
It is then clear that the length of the measurement must play a rôle, hence the need
to consider a bit more in depth the dynamics.
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