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chapter 1

General facts and definitions

efore entering in the hart of the matter it is necessary the knowl-
edge of some general facts concerning (measurable) Dynamical Systems. This
chapter is intended for readers with no previous knowledge of Dynamical Sys-
tems. The chapter contains few basic facts, some of which will be used in
the following while others are meant to provide a wider context to the mate-
rial actually discussed. For a much more complete discussion of the relevant
concepts the reader is referred to [65], [51].

1.1 Basic Definitions and examples

Definition 1.1.1 By Dynamical System1 with discrete time we mean a triplet
(X, T, µ) where X is a measurable space,2 µ is a measure and T is a measur-
able map from X to itself that preserves the measure (i.e., µ(T −1A) = µ(A)
for each measurable set A ⊂ X).

An equivalent characterization of invariant measure is µ(f ◦T ) = µ(f) for
each f ∈ L1(X, µ) since, for each measurable set A, µ(χA ◦T ) = µ(χT−1A) =
µ(T−1A), where χA is the characteristic function of the set A.

1To be really precise this is the definition of “Measurable Dynamical Systems,” hopefully
the reader will excuse this abuse of language. More generally a Dynamical System can be
defined as a set X together with a map T : X → X or, even more generally, an algebra
A (e.g., the algebra of the continuous functions on X) and an isomorphism τ : A → A
(e.g., τf := f ◦ T ). This last definition is so general as to include Stochastic Processes and
Quantum Systems. A further generalization consists in realizing that the above setting can
be view as the action of the semigroup N (or the group Z if T is invertible) on the algebra
A. One can then consider other groups (already in the next definition the group is R), for
example Zn or Rn, this goes in the direction of the Statistical Mechanics and it has receive
a lot of attention lately [1]. Of course, such a generality is excessive for the task at hand.

2By measurable space we simply mean a set X together with a σ-algebra that defines
the measurable sets.
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Remark 1.1.2 In this book we will always assume µ(X) < ∞ (and quite of-
ten µ(X) = 1, i.e. µ is a probability measure). Nevertheless, the reader should
be aware that there exists a very rich theory pertaining to the case µ(X) = ∞,
see [3].

Definition 1.1.3 By Dynamical System with continuous time we mean a
triplet (X, φt, µ) where X is a measurable space, µ is a measure and φt is a
measurable group (φt(x) is a measurable function for each t, φt(x) is a mea-
surable function of t for almost all x ∈ X; φ0 =identity and φt ◦ φs = φt+s

for each t, s ∈ R) or semigroup (t ∈ R+) from X to itself that preserves the
measure (i.e., µ((φt)−1A) = µ(A) for each measurable set A ⊂ X).

The above definitions are very general, this reflects the wideness of the
field of Dynamical Systems. In the present book we will be interested in
much more specialized situations.

In particular, X will always be a topological compact space. The measures
will alway belong to the class M1(X) of Borel probability measures on X .3

For future use, given a topological space X and a map T let us define MT as
the collection of all Borel measures that are T invariant.4

Often X will consist of finite unions of smooth manifolds (eventually with
boundaries). Analogously, the dynamics (the map or the flow) will be smooth
in the interior of X .

Let us see few examples to get a feeling of how a Dynamical System can
look like.

1.1.1 Examples

1.1.1.a Rotations

Let T be R mod 1. By this we mean R quotiented with respect to the equivalence
relations x ∼ y if and only if x − y ∈ Z. T can be though as the interval [0, 1]
with the points 0 and 1 identified. We put on it the topology induced by the
topology of R via the defined equivalence relation. Such a topology is the usual
one on [0, 1], apart from the fact that each open set containing 0 must contain
1 as well. Clearly, from the topological point of view, T is a circle. We choose
the Borel σ-algebra. By µ we choose the Lebesgue measure m, while T : T → T

is defined by
Tx = x + ω mod 1,

for some ω ∈ R. In essence, T translates, or rotates, each point by the same
quantity ω. It is easy to see that the measure µ is invariant (Problem 1.4).

3Remember that a Borel measure is a measure defined on the Borel σ-algebra, that is
the σ-algebra generated by the open sets.

4Obviously, for each µ ∈ MT , (X, T, µ) is a Dynamical System.
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1.1.1.b Bernoulli shift

A Dynamical System needs not live on some differentiable manifold, more abstract
possibilities are available.

Let Zn = {1, 2, ..., n}, then define the set of two sided (or one sided) se-

quences Σn = ZZ
n (Σ+

n = Z
Z+
n ). This means that the elements of Σn are se-

quences σ = {..., σ−1, σ0, σ1, ......} (σ = {σ0, σ1, ......} in the one sided case)
where σi ∈ Zn. To define the measure and the σ-algebra a bit of care is necessary.
To start with, consider the cylinder sets, that is the sets of the form

Aj
i = {σ ∈ Σn | σi = j}.

Such sets will be our basic objects and can be used to generate the algebra
A of the cylinder sets via unions and complements (or, equivalently, intersections
and complements). We can then define a topology on Σn (the product topology,
if {1, . . . , n} is endowed by the discrete topology) by declaring the above algebra
made of open sets and a basis for the topology. To define the σ-algebra we could
take the minimal σ-algebra containing A, yet this it is not a very constructive
definition, neither a particular useful one, it is better to invoke the Carathèodory
construction.

Let us start by defining a measure on Zn, that is n numbers pi > 0 such that∑n
i=1 pi = 1. Then, for each i ∈ Z and j ∈ Zn,

µ(Aj
i ) = pj .

Next, for each collection of sets {Ajl

il
}s

l=1, with il 6= ik for each l 6= k, we define

µ(Aj1
i1
∩ Aj2

i2
∩ ... ∩ Ajs

is
) =

s∏

l=1

pjl
.

We now know the measure of all finite intersection of the sets Aj
i . Obviously

µ(Ac) := 1 − µ(A) and the measure of the union of two sets A, B obviously
must satisfy µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B). We have so defined µ on
A. It is easy to check that such a µ is σ-additive on A; namely: if {Ai} ⊂ A
are pairwise disjoint sets and ∪∞

i=1Ai ∈ A, then µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai). The

next step is to define an outer measure5

µ∗(A) := inf
B∈A
B⊃A

µ(B) ∀A ⊂ Σn.

Finally, we can define the σ-algebra as the collection of all the sets that satisfy
the Carathèodory’s criterion, namely A is measurable (that is belongs to the σ-
algebra) iff

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) ∀E ⊂ Σn.

5An outer measure has the following properties: i) µ∗(∅) = 0; ii) µ∗(A) ≤ µ∗(B) if
A ⊂ B; iii)µ∗(∪∞

i=1Ai) ≤
P∞

i=1 µ∗(Ai). Note that µ∗ need not be additive on all sets.
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The reader can check that the sets in A are indeed measurable.
The Carathèodory Theorem then asserts that the measurable sets form a σ-

algebra and that on such a σ-algebra µ∗ is numerably additive, thus we have our
measure µ (simply the restriction of µ∗ to the σ-algebra).6 The σ-algebra so
obtained is nothing else than the completion with respect to µ of the minimal
σ-algebra containing A (all the sets with zero outer measure are measurable).

The map T : Σn → Σn (usually called shift) is defined by

(Tσ)i = σi+1.

We leave to the reader the task to show that the measure is invariant (see Problem
1.12).

To understand what’s going on, let us consider the function f : Σ → Zn

defined by f(σ) = σ0. If we consider T t, t ∈ N, as the time evolution and f as
an observation, then f(T tσ) = σt. This can be interpreted as the observation of
some phenomenon at various times. If we do not know anything concerning the
state of the system, then the probability to see the value j at the time t is simply
pj . If n = 2 and p1 = p2 = 1

2 , it could very well be that we are observing the
successive outcomes of tossing a fair coin where 1 means head and 2 tail (or vice
versa); if n = 6 it could be the outcome of throwing a dice and so on.

1.1.1.c Dilation

Again X = T and the measure is Lebesgue. T is defined by

Tx = 2x mod 1.

This map it is not invertible (similarly to the one sided shift). Note that, in
general, µ(TA) 6= µ(A) (e.g., A = [0, 1

2 ]).

1.1.1.d Toral automorphism (Arnold cat)

This is an automorphism of the torus and gets its name by a picture draw by
Arnold [10]. The space X is the two dimensional torus T2. The measure is again
Lebesgue measure and the map is

T

(
x
y

)
=

(
1 1
1 2

)(
x
y

)
mod 1 := L

(
x
y

)
mod 1.

Since the entries of L are integers numbers it is clear that T is well defined on the
torus; in fact, it is a linear toral automorphism. The invariance of the measure
follows from det L = 1.

6See [62] if you want a quick look at the details of the above Theorem or consult [74]
if you want a more in depth immersion in measure theory. If you think that the above
construction is too cumbersome see Problem 1.14.
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1.1.1.e Hamiltonian Systems

Up to now we have seen only examples with discrete time. Typical examples of
Dynamical Systems with continuous time are the solutions of an ODE or a PDE.
Let us consider the case of an Hamiltonian system. The simplest case is when
X = R2n, the σ-algebra is the Borel one and the measure µ is the Lebesgue
measure m. The dynamics is defined by a smooth function H : X → R via the
equations

dx

dt
= JgradH(x)

where grad(H)i = (∇H)i = ∂H
∂xi

and J is the block matrix

J =

(
0 1l
−1l 0

)
.

The fact that m is invariant with respect to the Hamiltonian flow is due to the
Liouville Theorem (see [5] or Problem 0.7).

Such a dynamical system has a natural decomposition. Since H is an integral
of the motion, for each h ∈ R we can consider Xh = {x ∈ X | H(x) = h}.
If Xh 6= ∅, then it will typically consist of a smooth manifold,7 let us restrict
ourselves to this case. Let σ be the surface measure on Xh, then µh = σ

‖gradH‖
is an invariant measure on Xh and (Xh, φt, µh) is a Dynamical System (see
Problem 1.6).

1.1.1.f Geodesic flow

Along the same lines any geodesic flow on a compact Riemannian manifold nat-
urally defines a dynamical system.

1.2 Return maps and Poincaré sections

Normally in Dynamical Systems there is a lot of emphasis on the discrete case.
One reason is that there is a general device that allows to reduce the study
of many properties of a continuous time Dynamical System to the study of
an appropriate discrete time Dynamical System: Poincaré sections (we have
already seen an instance of this in the introduction). Here we want to make
few comments on this precious tool that we will largely employ in the study
of billiards.

Let us consider a smooth Dynamical System (X, φt, µ) (that is a Dynam-
ical Systems in continuous time where X is a smooth manifold and φt is a

7By the implicit function theorem this is locally the case if ∇H 6= 0.
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smooth flow). Then we can define the vector field V (x) := dφt(x)
dt |t=0.

8

Consider a smooth compact submanifold (possibly with boundaries) Σ of
codimension one such that TxΣ (the tangent space of Σ at the point x) is
transversal to V (x).9 We can then define the return time τΣ : Σ → R+ ∪{∞}
by

τΣ = inf{t ∈ R+\{0} | φt(x) ∈ Σ},
where the inf is taken to be ∞ if the set is empty. Next we define the return

map TΣ : D(T ) ⊂ Σ → Σ, where D(T ) = {x ∈ Σ|τΣ(x) < ∞}, by

TΣ(x) = φτΣ(x)(x).

It is easy to check that there exists c > 0 such that τΣ ≥ c (Problem 1.9).
To define the measure, the natural idea is to project the invariant measure

along the flow direction: for all measurable sets A ⊂ Σ, define10

νΣ(A) := lim
δ→0

1

δ
µ(φ[0, δ](A)). (1.2.1)

See Problem 1.8 for the existence of the above limit; see Problem 1.9 for the
proof that τΣ is finite almost everywhere and Problem 1.10 for the proof that
(Σ, TΣ, νΣ) is a dynamical system. The reader is invited to meditate on the
relation between this Dynamical System and the original one.

1.3 Suspension flows

A natural question is if it is possible to construct a flow with a given Poincaré
section, the answer is that there are infinitely many flows with a given section.
Let us construct some of them. Given a dynamical system (Σ, T, ν) consider
X̃ := Σ × R+. Define the flow φt((x, s)) = (x, s + t). We then define in X̃
the equivalence relation (x, t) ∼ (y, s) iff s = t + n and y = T nx or t = s + n
and x = T ny for some n ∈ N. A moment of reflection shows that the set X
of equivalence classes is nothing else than the set Σ × [0, 1] with the points
(x, 1) and (Tx, 0) identified. Clearly the flow is naturally quotiented over the
equivalence classes and yields a quotient flow on X , such a flow is called a
suspension flow.

A more general construction can by obtained by applying a time change
to the above example. Alternatively, one can can choose any smooth function
τ : Σ → R+, that will be called a ceiling function and consider the set Xτ =
{(x, t) ∈ Σ×R+ | t ∈ [0, τ(x)]} with the points (x, τ(x)) and (Tx, 0) identified.

8Very often it is the other way around: the vector field is given first and then the flow–as
we saw in the introduction.

9That is TxΣ ⊕ V (x) form the full tangent space at x.
10We use the notation: φI(A) := ∪t∈Iφt(A) for each I ⊂ R.
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A moment of reflection should show that the topology of Xτ does not depend
on τ and is then the same than the suspension defined above. The flow is
again defined by φt(x, s) = (x, s + t) for t ≤ τ(x) − s. Such flows are called
special flows.

1.4 Invariant measures

A very natural question is: given a space X and a map T does there always
exists an invariant measure µ? A non exhaustive, but quite general, answer
exists: Krylov-Bogoluvov Theorem.

First of all we need a useful characterization of invariance.

Lemma 1.4.1 Given a compact metric space X and map T continuous apart
from a compact set K,11 a Borel measure µ, such that µ(K) = 0, is invariant
if and only if µ(f ◦ T ) = µ(f) for each f ∈ C(0)(X).

Proof. To prove that the invariance of the measure implies the invari-
ance for continuous functions is obvious since each such function can be ap-
proximate uniformly by simple functions–that is, sum of characteristic func-
tions of measurable sets–for which the invariance it is immediate.12 The
converse implication is not so obvious.

The first thing to remember is that the Borel measures, on a compact
metric space, are regular [75]. This means that for each measurable set A the
following holds13

µ(A) = inf
G⊃A

G=
◦

G

µ(G) = sup
C⊂A
C=C

µ(C). (1.4.1)

Next, remember that for each closed set A and open set G ⊃ A, there exists
f ∈ C(0)(X) such that f(X) ⊂ [0, 1], f |Gc = 0 and f |A = 1 (this is Urysohn
Lemma for Normal spaces [74]). Hence, setting BA := {f ∈ C(0)(X) | f ≥
χA},

µ(A) ≤ inf
f∈BA

µ(f) ≤ inf
G⊃A

G=
◦

G

µ(G) = µ(A). (1.4.2)

Accordingly, for each A closed, we have

µ(T−1A) ≤ inf
f∈BA

µ(f ◦ T ) = inf
f∈BA

µ(f) = µ(A).

11This means that, if C ⊂ X is closed, then T−1C ∪ K is closed as well.
12This is essentially the definition of integral.
13This is rather clear if one thinks of the Carathéodory construction starting from the

open sets.
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In addition, using again the regularity of the measure, for each A Borel holds14

µ(T−1A) = inf
U⊃K

U=
◦

U

µ(T−1A\U) ≤ inf
U⊃K

U=
◦

U

sup
C⊂T−1A\U

C=C

µ(T−1(TC))

≤ inf
U⊃K

U=
◦

U

sup
C⊂A\TU

C=C

µ(T−1C) ≤ sup
C⊂A
C=C

µ(T−1C) = sup
C⊂A
C=C

µ(C) = µ(A).

Applying the same argument to the complement Ac of A it follow that it must
be µ(T−1A) = µ(A) for each Borel set. �

Proposition 1.4.2 (Krylov–Bogoluvov) If X is a metric compact space
and T : X → X is continuous, then there exists at least one invariant (Borel)
measure.

Proof. Consider any Borel probability measure ν and define the follow-
ing sequence of measures {νn}n∈N:15 for each Borel set A

νn(A) = ν(T−nA).

The reader can easily see that νn ∈ M1(X), the sets of the probability
measures. Indeed, since T−1X = X , νn(X) = 1 for each n ∈ N. Next, define

µn =
1

n

n−1∑

i=0

νi.

Again µn(X) = 1, so the sequence {µi}∞i=1 is contained in a weakly compact
set (the unit ball) and therefore admits a weakly convergent subsequence
{µni

}∞i=1; let µ be the weak limit.16 We claim that µ is T invariant. Since
µ is a Borel measure it suffices to verify that for each f ∈ C(0)(X) holds
µ(f ◦ T ) = µ(f) (see Lemma 1.4.1). Let f be a continuous function, then by
the weak convergence we have17

14Note that, by hypothesis, if C is compact and C ∩ K = ∅, then TC is compact.
15Intuitively, if we chose a point x ∈ X at random, according to the measure ν and we ask

what is the probability that T nx ∈ A, this is exactly ν(T−nA). Hence, our procedure to
produce the point T nx is equivalent to picking a point at random according to the evolved
measure νn.

16This depends on the Riesz-Markov Representation Theorem [75] that states that M(X)
is exactly the dual of the Banach space C(0)(X). Since the weak convergence of measures in
this case correspond exactly to the weak-* topology [75], the result follows from the Banach-
Alaoglu theorem stating that the unit ball of the dual of a Banach space is compact in the
weak-* topology. But see Problem 1.17 if you want a more elementary proof.

17Note that it is essential that we can check invariance only on continuous functions: if
we would have to check it with respect to all bounded measurable functions we would need
that µn converges in a stronger sense (strong convergence) and this may not be true. Note
as well that this is the only point where the continuity of T is used: to insure that f ◦ T is
continuous and hence that µnj (f ◦ T ) → µ(f ◦ T ).
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µ(f ◦ T ) = lim
j→∞

1

nj

nj−1∑

i=0

νi(f ◦ T ) = lim
j→∞

1

nj

nj−1∑

i=0

ν(f ◦ T i+1)

= lim
j→∞

1

nj

{nj−1∑

i=0

νi(f) + ν(f ◦ T nj ) − ν(f)

}
= µ(f).

�

The reason why the above theorem is not completely satisfactory is that
it is not constructive and, in particular, does not provide any information
on the nature of the invariant measure. On the contrary, in many instances
the interest is focused not just on any Borel measure but on special classes of
measures, for example measures connected to the Lebesgue measure which, in
some sense, can be thought as reasonably physical measures (if such measures
exists).

In the following examples we will see two main techniques to study such
problems: on the one hand it is possible to try to construct explicitly the mea-
sure and study its properties in the given situations (expanding maps, strange
attractors, solenoid, horseshoe); on the other hand one can try to conjugate18

the given problem with another, better understood, one (logistic map, circle
maps). In view of the second possibility the last example is very important
(Markov measures). Such an example gives just a hint to the possibility to
construct a multitude of invariant measures for the shift which, as we will see
briefly, is a standard system to which many other can be conjugated.

1.4.1 Examples

1.4.1.a Contracting maps

Let X ⊂ Rn be compact and connected, T : X → X differentiable with ‖DT‖ ≤
λ−1 < 1 and T0 = 0 ∈ X . In this case 0 is the unique fixed point and the delta
function at zero is the only invariant measure.19

1.4.1.b Expanding maps

The simplest possible case is X = T, T ∈ C(2)(T) with |DT | ≥ λ > 1, (see
Figure 1.1 for a pictorial example).20

18See Definition 1.8.2 for a precise definition and Problem 1.40 and 1.41 for some insight.
19The reader will hopefully excuse this physicist language, naturally we mean that the

invariant measure is defined by δ0(f) = f(0). The property that there exists only one
invariant measure is called unique ergodicity, we will see more of it in the sequel, e.g. see
example 1.5.1.a.

20Note that this generalizes Examples 1.1.1.c.
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1

1

Figure 1.1: Graph of an expanding map on T

We would like to have an invariant measure absolutely continuous with re-
spect to Lebesgue. Any such measure µ has, by definition, the Radon-Nikodym
derivative h = dµ

dm ∈ L1(T, m), [74]. In Proposition 1.4.2 we saw how a measure
evolves by defining the operator

T∗µ(f) = µ(f ◦ T ) (1.4.3)

for each f ∈ C(0) and µ ∈ M(X) (see also footnote 16 at page 30). If we want
to study a smaller class of measures we must first check that T∗ leaves such a
class invariant. Indeed, if µ is absolutely continuous with respect to Lebesgue
then T∗µ has the same property. Moreover, if h = dµ

dm and h1 = dT∗µ
dm then

(Problem 1.15)

h1(x) = Lh(x) :=
∑

y∈T−1(x)

|DyT |−1h(y).

The operator L : L1(T, m) → L1(T, m) is called Transfer operator or Ruelle-
Perron-Frobenius operator, and has an extremely important rôle in the study of
the statistical properties of the system. Notice that ‖Lh‖1 ≤ ‖h‖1. The key
property of L, in this context, is given by the following inequality (this type of
inequality is commonly called of Lasota-York type) (Problem 1.16)

‖ d

dx
Lh‖1 ≤ λ−1‖h′‖1 + C‖h‖1 (1.4.4)

where C = ‖D2T‖∞

‖DT‖2
∞

.
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The above inequality implies immediately ‖(Lnh)′‖1 ≤ C
1−λ−1 ‖h‖1 + ‖h′‖1,

for all n ∈ N. This, in turn, implies that the supn∈N ‖Lnh‖∞ < ∞. Consequently,

the sequence hn := 1
n

∑n−1
i=0 Lih is compact in L1 (this is a consequence of

standard embedding theorems [62] but see Problem 1.17 for an elementary proof).
In analogy with Lemma 1.4.2, we have that there exists h∗ ∈ L1 such that
Lh∗ = h∗. Thus dµ := h∗dm is an invariant measure of the type we are looking
for.21

1.4.1.c Logistic maps

Consider X = [0, 1] and

T (x) = 4x(1 − x).

This map is not an everywhere expanding map (D 1
2
T = 0), yet it can be conjugate

with one, [89].
To see this consider the continuous change of variables Ψ : [0, 1] → [0, 1]

defined by

Ψ(x) =
2

π
arcsin

√
x,

thus Ψ−1(x) =
(
sin π

2 x
)2

. Accordingly,

T̃ (x) := Ψ ◦ T ◦ Ψ−1(x) = Ψ(4 sin2 π
2 x cos2 π

2 x)

= Ψ([sin πx]2) = 2
π arcsin[sin πx]

which yields22

T̃ (x) =

{
2x for x ∈ [0, 1

2 ]

2 − 2x for x ∈ [ 12 , 1].

The map T̃ is called tent map for its characteristic shape, see figure 1.2. What
is more interesting is that the Lebesgue measure is invariant for T̃ , as the reader
can easily check. This means that, if we define µ(f) := m(f ◦Ψ−1), it holds true

µ(f ◦ T ) = m(f ◦ T ◦ Ψ−1) = m(f ◦ Ψ−1 ◦ T̃ ) = m(f ◦ Ψ−1) = µ(f).

Hence, ([0, 1], T, µ) is a Dynamical System. In addition, a trivial computation
shows

µ(dx) =
1

π
√

x(1 − x)
dx,

thus µ is absolutely continuous with respect to Lebesgue.

21In fact, there exists only one such measure, see Examples 4.3.1.c.
22Remember that the domain of arcsin is [− π

2
, π

2
] and sin πx = sinπ(1 − x).
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Figure 1.2: Graph of tent map

1.4.1.d Circle maps

A circle map is an order preserving continuous map of the circle. A simple way
to describe it is to start by considering its lift. Let T̂ : R → R, such that
T̂ (0) ∈ [0, 1], T̂ (x + 1) = T̂ (x) + 1 ad it is monotone increasing. The circle map
is then defined as T (x) = T̂ (x) mod 1. Circle maps have a very rich theory that
we do not intend to develop here, we confine ourselves to some facts (see [51] for
a detailed discussion of the properties below). The first fact is that the rotation

number

ρ(T ) = lim
n→∞

1

n
T̂ n(x).

is well defined and does not depend on x.
We have already seen a concrete example of circle maps: the rotation Rω by

ω. Clearly ρ(Rω) = ω. It is fairly easy to see that if ρ(T ) ∈ Q then the map has
a periodic orbit. We are more interested in the case in which the rotation number
is irrational. In this case, with the extra assumption that T is twice differentiable
(actually a bit less is needed) the Denjoy theorem holds stating that there exists
a continuous invertible function h such that Rρ(T ) ◦ h = h ◦ T , that is T is
topologically conjugated to a rigid rotation. Since we know that the Lebesgue
measure is invariant for the rotations, we can obtain an invariant measure for T
by pushing the Lebesgue measure by h, namely define

µ(f) = m(f ◦ h−1).

The natural question if the measure µ is absolutely continuous with respect to
Lebesgue is rather subtle and depends, once again, on KAM theory. In essence
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the answer is positive only if T has more regularity and the rotation number is not
very well approximated by rational numbers (in some sense it is ‘very irrational’)
[1].

1.4.1.e Strange Attractors

We have seen the case in which all the trajectories are attracted by a point. The
reader can probably imagine a case in which the attractor is a curve or some
other simple set. Yet, it has been a fairly recent discovery that an attractor may
have a very complex (strange) structure. The following is probably the simplest
example. Let X = Q = [0, 1]2 and

T (x, y) =

{
(2x, 1

8y + 1
4 ) if x ∈ [0, 1/2]

(2x − 1, 1
8y + 3

4 ) if x ∈]1/2, 1].

We have a map of the square that stretches in one direction by a factor 2 and
contract in the other by a factor 8.

Note that T it is not continuous with respect to the normal topology, so
Proposition 1.4.2 cannot be applied directly. This problem can be solved in at
least two ways: one is to code the system and we will discuss it later (see Examples
1.8.1), the other is to study more precisely what happens iterating a measure in
special cases.

In our situation, since T nQ consists of a multitude of thinner and thinner
strips, it is clear that there can be no invariant measure absolutely continuous
with respect to Lebesgue.23 Yet, it is very natural to ask what happens if we
iterate the Lebesgue measure by the operator T∗. It is easy to see that T∗m is
still absolutely continuous with respect to Lebesgue. In fact, T∗ maps absolutely
continuous measures into absolutely continuous measures. Once we note this, it
is very tempting to define the transfer operator. An easy computation yields

Lh(x) = χTQ(x)
∑

y∈T−1(x)

| det(DyT )|−1h(y) = 4χTQ(x)h(T−1(x)).

Since the map expands in the unstable direction, it is quite natural to inves-
tigate, in analogy with the expanding case, the unstable derivative Du, that is
the derivative in the x direction, of the iterate of the density.

‖DuLh‖1 ≤ 1

2
‖Duh‖1 ∀h ∈ C(1)(Q) (1.4.5)

23In fact, if µ is an invariant measure, T∗µ = µ, it follows

µ(χT nQ) = T n
∗ µ(χT nQ) = µ(χQ) = 1,

so µ must be supported on Λ = ∩∞
n=0T nQ.
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To see the consequences of the above estimate, consider f ∈ C (1)(Q) with
f(0, y) = f(1, y) = 0 for each y ∈ [0, 1], then if µ is a measure obtained by
the measure hdm (h ∈ C(1)) with the procedure of Proposition 1.4.2,24 we have

µ(Duf) = lim
j→∞

1

nj

nj−1∑

i=0

(T∗)
im(hDuf) = lim

j→∞

1

nj

nj−1∑

i=0

m(LihDuf)

= − lim
j→∞

1

nj

nj−1∑

i=0

m(fDuLih)

where we have integrated by part. Remembering (1.4.5) we have

µ(Duf) = 0,

for all f ∈ C(1)
per(Q) = {f ∈ C(1)(Q) | f(0, y) = f(1, y)}. The enlargement of the

class of functions is due to the obvious fact that, if f ∈ C(1)
per(Q), then f̃(x, y) =

f(x, y) − f(0, y) is zero on the vertical (stable) boundary and Duf̃ = Duf .

This means that the measure µ, when restricted to the horizontal direction, is
µ-a.e. constant (see Problem 1.32). Such a strong result is clearly a consequence
of the fact that the map is essentially linear, one can easily imagine a non linear
case (think of dilations and expanding maps) and in that case the same argument
would lead to conclude that the measure, when restricted to unstable manifolds,
is absolutely continuous with respect to the restriction of Lebesgue (these type
of measures are commonly called SRB from Sinai, Ruelle and Bowen).

We can now prove that indeed the measure µ is invariant. The discontinuity
line of T is {x = 1

2}. Points close to {x = 1
2} are mapped close to the boundary

of Q, so if f(0, y) = f(1, y) = 0, then f ◦ T is continuous. Hence, the argument
of Proposition 1.4.2 proves that µ(f ◦ T ) = µ(f) for all f that vanish at the
stable boundary. Yet, the characterization of µ proves that µ({(x, y) ∈ Q | x ∈
{0, 1}}) = 0, thus we can obtain µ(f ◦ T ) = µ(f) for all continuous functions
via the Lebesgue dominated convergence theorem and the invariance follows by
Lemma 1.4.1.

1.4.1.f Horseshoe

This very famous example consists of a map of the square Q = [0, 1]2, the map
is obtained by stretching the square in the horizontal direction, bending it in the
shape of an horseshoe and then superimposing it to the original square in such a

24As we noted in the proof of Proposition 1.4.2, the only part that uses the continuity
of T is the proof of the invariance. Thus, in general we can construct a measure by the
averaging procedure but its invariance is not automatic.
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way that the intersection consists of two horizontal strips.25 Such a description
is just topological, to make things clearer let us consider a very special case:

T (x, y) =

{
(5x mod 1, 1

4y) if x ∈ [1/5, 2/5]

(5x mod 1, 1
4y + 3

4 ) if x ∈ [3/5, 4/5].

Note that T is not explicitly defined for x ∈ [0, 1/5[∪[ 2
3 , 3

5 [∪]4/5, 1] since for
this values the horseshoe falls outside Q, so its actual shape is irrelevant. Since
the map from Q to Q is not defined on the full square, we can have a Dynamical
System only with respect to a measure for which the domain of definition of T ,
and all of its powers, has measure one. We will start by constructing such a
measure.

The first step is to notice that the set

Λ = ∩n∈ZT nQ (1.4.6)

of the points which trajectories are always in Q is 6= ∅. Second, note that
Λ = TΛ = T−1Λ, such an invariant set is called hyperbolic set as we will see in
???. We would like to construct an invariant measure on Λ. Since Λ is a compact
set and T is continuous on it we know that there exist invariant measures; yet, in
analogy with the previous examples, we would like to construct one coming from

Lebesgue.
As already mentioned we must start by constructing a measure on Λ− =

∩n∈N∪{0}T
−nQ since T kΛ− ⊂ Λ−. To do so it is quite natural to construct a

measure by subtracting the mass that leaks out of Q. namely, define the operator
T̃ : M(X) → M(X) by

T̃µ(A) := µ(TA ∩ Q).

Again we consider the evolution of measures of the type dµ = hdm. For each
continuous f with supp(f) ⊂ Q holds

T̃µ(f) = µ(f ◦ T−1χQ) =

∫

T−1Q

fh ◦ T | detDT |dm.

We can thus define the operator L that evolves the densities:

Lh(x) =
5

4
χT−1Q∩Q(x)h(Tx).

Clearly T̃µ(f) = m(fLh).
Note that T̃m(1) = 1

2 , thus T̃ does not map probability measures into prob-
ability measures; this is clearly due to the mass leaking out of Q. Calling Ds

25We have already seen something very similar in the introduction.
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(stable derivative) the derivative in the y direction, follows easily

‖DsLh‖1 ≤ 1

4
‖Dsh‖1

for each h differentiable in the stable direction.

On the other hand, if ‖Dsh‖1 ≤ c and ∆ = [0, 1/4] ∪ [3/4, 1],

|T̃µ(1)| =

∫

Q∩TQ

h =

∫

∆

dy

∫ 1

0

dxh(x, y)

=

∫

∆

dy

∫ 1

0

dx

∫ 1

0

dξh(x, ξ) + O(‖Dsh‖1)

=|∆|‖h‖1 + O(‖Dsh‖1) =
1

2
µ(1) + O(‖Dsh‖1).

It is then natural to define L̂h := 2Lh and T̂ = 2T̃ . Thus ‖DsL̂h‖1 ≤
1
2‖Dsh‖1. This means that { 1

n

∑n−1
i=0 T̂ iµ} are probability measures. Accord-

ingly, there exists an accumulation point µ∗ and µ∗(Dsf) = 0 for each f periodic
in the y direction. By the same type of arguments used in the previous examples,
this means that µ∗ is constant in the y direction, it is supported on Λ− by con-
struction and T̃µ∗ = 1

2µ∗ (conformal invariance) : just the measure we where
looking for.

We can now conclude the argument by evolving the measure as usual:

T∗µ∗(f) = µ∗(f ◦ T )

for all continuous f with the support in Q. Now the standard argument applies.
In such a way we have obtained the invariant measure supported on Λ.

1.4.1.g Markov Measures

Let us consider the shift (Σ+
n , T ). We would like to construct other invariant

measures bedside Bernoulli. As we have seen it suffices to specify the measure
on the algebra of the cylinders. Let us define

A(m; k1, . . . , kl) = {σ ∈ Σ+
n | σi+m = ki ∀ i ∈ {1, . . . , l}};

this are a basis for the algebra of the cylinders.

For each n × n matrix P , Pij ≥ 0,
∑

j Pij = 1 by the Perron-Frobenius
theorem (see Example (4.3.1.a)) there exists {pi} such that pP = p. Let us
define

µ(A(m; k1, . . . , kl)) = pk1Pk1k2Pk2k3 . . . Pkl−1kl
.
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The reader can easily verify that µ is invariant over the algebra A and thus extends
to an invariant measure. This is called Markov because it is nothing else than a
Markov chain together with its stationary measure [1].26

These last examples (strange attractor, solenoid, horseshoe) show only a
very dim glimpse of a much more general and extremely rich theory (the study
of SRB measures) while the last (Markov measures) points toward another
extremely rich theory: Gibbs (or equilibrium) measures. Although this it is
not the focus here, we will see a bit more of this in the future.

One of the main objectives in dynamical systems is the study of the long
time behavior (that is the study of the trajectories T nx for large n). There
are two main cases in which it is possible to study, in some detail, such a
long time behavior. The case in which the motion is rather regular27 or close
to it (the main examples of this possibility are given by the so called KAM
[6] theory and by situations in which the motions is attracted by a simple
set); and the case in which the motion is very irregular.28 This last case may
seem surprising since the irregularity of the motion should make its study very
difficult. The reason why such systems can be studied is, as usual, because
we ask the right questions,29 that is we ask questions not concerning the
fine details of the motion but only concerning its statistical or qualitative
properties.

The first example of such properties is the study of the invariant sets.

1.5 Ergodicity

Definition 1.5.1 A measurable set A is invariant for T if T−1A ⊂ A.
A dynamical system (X, T, µ) is ergodic if each invariant set has measure

zero or one.

The definition for continuous dynamical systems being exactly the same.
Note that if A is invariant then µ(A\T−1A) = µ(A) − µ(T−1A) = 0,

moreover Λ = ∩∞
n=0T

−nA ⊂ A is invariant as well. In addition, by definition,
Λ = TΛ, which implies Λ = T−1Λ and µ(A\Λ) = 0. This means that, if A
is invariant, then it always contains a set Λ invariant in the stronger (maybe
more natural) sense that TΛ = T−1Λ = Λ. Moreover, Λ is of full measure in
A. Our definition of invariance is motivated by its greater flexibility and the

26The probabilistic interpretation is that the probability of seeing the state k at time
one, given that we saw the state l at time zero, is given by Plk. So the process has a bit of
memory: it remembers its state one time step before. Of course it is possible to consider
processes that have a longer–possibly infinite–memory. Proceeding in this direction one
would define the so called Gibbs measures.

27Typically, quasi periodic motion, remember the small oscillation in the pendulum.
28Remember the example in the introduction.
29Of course, the “right questions” are the ones that can be answered.
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fact that, from a measure theoretical point of view, zero measure sets can be
discarded.

In essence, if a system is ergodic then most trajectories explore all the avail-
able space. In fact, for any A of positive measure, define Ab = ∪n∈N∪{0}T

−nA
(this are the points that eventually end up in A), since Ab ⊃ A, µ(Ab) > 0.
Since T−1Ab ⊂ Ab, by ergodicity follows µ(Ab) = 1. Thus, the points that
never enter in A (that is, the points in Ac

b) have zero measure. Actually, if
the system has more structure (topology) more is true (see Problem 1.21).

The reader should be aware that there are many equivalent definitions of
ergodicity, see Problems 1.25, 1.27, 1.28 and Theorem 1.6.6 for some possibil-
ities.

1.5.1 Examples

1.5.1.a Rotations

The ergodicity of a rotation depends on ω. If ω ∈ Q then the system is not
ergodic. In fact, let ω = p

q (p, q ∈ N), then, for each x ∈ T T qx = x + p
mod 1 = x, so T q is just the identity. An alternative way of saying this is to
notice that all the points have a periodic trajectory of period q. It is then easy
to exhibit an invariant set with measure strictly larger than 0 but strictly less
than 1. Consider [0, ε], then A = ∪q−1

i=1 T−i[0, ε] is an invariant set; clearly
ε ≤ µ(A) ≤ qε, so it suffices to choose ε < q−1.

The case ω 6∈ Q is much more interesting. First of all, for each point x ∈ T

we have that the closure of the set {T nx}∞i=0 is equal to T, which is to say that
the orbits are dense.30 The proof is based on the fact that there cannot be any
periodic orbit. To see this suppose that x ∈ T has a periodic orbit, that is there
exists q ∈ N such that T qx = x. As a consequence there must exist p ∈ Z

such that x + p = x + qω or ω ∈ Q contrary to the hypothesis. Hence, the set
{T k0}∞k=0 must contain infinitely many points and, by compactness, must contain
a convergent subsequence ki. Hence, for each ε > 0, there exists m > n ∈ N:

|T m0 − T n0| < ε.

Since T preserves the distances, calling q = m − n, holds

|T q0| < ε.

Accordingly, the trajectory of T jq0 is a translation by a quantity less than ε,
therefore it will get closer than ε to each point in T (i.e., the orbit is dense).
Again by the conservation of the distance, since zero has a dense orbit the same
will hold for every other point.

30A system with a dense orbit called Topologically Transitive.
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Intuitively, the fact that the orbits are dense implies that there cannot be a
non trivial invariant set, henceforth the system is ergodic. Yet, the proof it is
not trivial since it is based on the existence of Lebesgue density points [74] (see
Problem 1.43). It is a fact from general measure theory that each measurable set
A ⊂ R of positive Lebesgue measure contains, at least, one point x̄ such that for
each ε ∈ (0, 1) there exists δ > 0:

m(A ∩ [x̄ − δ, x̄ + δ])

2δ
> 1 − ε.

Hence, given an invariant set A of positive measure and ε > 0, first choose δ
such that the interval I := [x̄−δ, x̄+δ] has the property m(I∩A) > (1−ε)m(I).
Second, we know already that there exists q, M ∈ N such that {T −kqx}M

k=1

divides [0, 1] into intervals of length less that ε
2δ. Hence, given any point x ∈ T

choose k ∈ N such that m(T−kqI ∩ [x − δ, x + δ]) > m(I)(1 − ε) so,

m(A ∩ [x − δ, x + δ]) ≥ m(A ∩ T−kqI) − m(I)ε

≥ m(A ∩ I) − m(I)ε ≥ (1 − 2ε)2δ.

Thus, A has density everywhere larger than 1− 2ε, which implies µ(A) = 1 since
ε is arbitrary.

The above proof of ergodicity it is not so trivial but it has a definite dynamical
flavor (in the sense that it is obtained by studying the evolution of the system).
Its structure allows generalizations to contexts whit a less rich algebraic structure.
Nevertheless, we must notice that, by taking advantage of the algebraic struc-
ture (or rather the group structure) of T, a much simpler and powerful proof is
available.

Let ν ∈ M1
T , then define

Fn =

∫

T

e2πinxν(dx), n ∈ N.

A simple computation, using the invariance of ν, yields

Fn = e2πinωFn

and, if ω is irrational, this implies Fn = 0 for all n 6= 0, while F0 = 1. Next,
consider f ∈ C(2)(T1) (so that we are sure that the Fourier series converges
uniformly, see Problem 1.31), then

ν(f) =

∞∑

n=0

ν(fne2πin·) =

∞∑

n=0

fnFn = f0 =

∫

T

f(x)dx.

Hence m is the unique invariant measure (unique ergodicity). This is clearly
much stronger than ergodicity (see Problem 1.25)
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1.5.1.b Baker

This transformation gets its name from the activity of bread making, it bears
some resemblance with the horseshoe. The space X is the square [0, 1]2, µ is
again Lebesgue, and T is a transformation obtained by squashing down the square
into the rectangle [0, 2] × [0, 1

2 ] and then cutting the piece [1, 2] × [0, 1
2 ] and

putting it on top of the other one. In formulas

T (x, y) =





(2x,
1

2
y) mod 1 if x ∈ [0,

1

2
)

(2x,
1

2
(y + 1)) mod 1 if x ∈ [

1

2
, 1].

This transformation is ergodic as well, in fact much more. We will discuss it later.

1.5.1.c Translations (T1)

Let us consider the flow (T1, φt, m) where φt(x) = x + ωt mod 1, for some
ω ∈ R \ {0}. This is just a translation on the unit circle. The proof of ergodicity
is trivial and it is left to the reader.

We conclude the chapter with a theorem very helpful to establish the
ergodicity of a flow.

Theorem 1.5.2 Consider a flow (X, φt, µ) and a Poincarè section Σ such
that the set {x ∈ X | ∪t∈R φt(x) ∩ Σ = ∅} has zero measure. Then the
ergodicity of the flow (X, φt, µ) is equivalent to the ergodicity of the section
(Σ, TΣ, µΣ).

The proof, being straightforward, is left to the reader.

1.5.2 Examples

1.5.2.a Translations (T2)

Let us consider the flow (T2, φt, m) where φt(x) = x + ωt mod 1, for some
ω ∈ R2 \ {0}. This is a translation on the two dimensional torus. To investigate
we will use Theorem 1.5.2. Consider the set Σ := {(x, y) ∈ T2 | x = 0}, this
is clearly a Poincaré section, unless ω1 = 0 (in which case one can choose the
section y = 0). Obviously Σ is a circle and the Poincaré map is given by

T (y) = y +
ω2

ω1
mod 1.

The ergodicity of the flow is then reduced to the ergodicity of a circle rotation,
thus the flow is ergodic only if ω1 and ω2 have an irrational ratio.

The properties of the invariant sets of a dynamical systems have very
important reflections on the statistics of the system, in particular on its time
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averages. Before making this precise (see Theorem 1.6.6) we state few very
general and far reaching results.

1.6 Some basic Theorems

Theorem 1.6.1 (Birkhoff) Let (X, T, µ) be a dynamical system, then for
each f ∈ L1(X, µ)

lim
n→∞

1

n

n−1∑

j=0

f(T jx)

exists for almost every point x ∈ X. In addition, setting

f+(x) = lim
n→∞

1

n

n−1∑

j=0

f(T jx),

holds ∫

X

f+dµ =

∫

X

fdµ.

Proof
Since the task at hand is mainly didactic, we will consider explicitly only

the case of positive bounded functions, the completion of the proof is left to
the reader.

Let f ∈ L∞(X, dµ), f ≥ 0, and

Sn(x) ≡ 1

n

n−1∑

i=0

f(T ix).

For each x ∈ X , there exists

f
+
(x) = lim sup

n→∞
Sn(x)

f+(x) = lim inf
n→∞

Sn(x).

The first remark is that both f
+

and f+ are invariant functions. In fact,

Sn(Tx) = Sn(x) +
1

n
f(T nx) − 1

n
f(x)

so, tacking the limit the result follows.31

31Here we have used the boundedness, this is not necessary. If f ∈ L1(X, dµ) and

positive, then Sn(Tx) ≥ Sn(x) − f(x), so f
+

(Tx) ≥ f
+

(x) and it is and easy exercise to
check that any such function must be invariant.
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Next, for each n ∈ N and k, j ∈ Z we define

Dn,l,j =

{
x ∈ X

∣∣∣∣ f
+
(x) ∈

[
l

n
,

l + 1

n

)
; f+(x) ∈

[
j

n
,

j + 1

n

)}
,

by the invariance of the functions follows the invariance of the sets Dn,l,j .
Also, by the boundedness, follows that for each n exists n0 such as

⋃

j,l∈{−n0, ..., n0}
Dn,l,j = X.

The key observation is the following.

Lemma 1.6.2 For each n ∈ N and l, j ∈ Z, setting A = Dn,l,j , holds

l + 1

n
µ(A) <

∫

A

fdµ +
3

n
µ(A)

j

n
µ(A) >

∫

A

fdµ − 3

n
µ(A)

From the Lemma follows

0 ≤
∫

X

(f
+ − f+)dµ =

n0∑

l, j=−n0

∫

Dn,l,j

(f
+ − f+)dµ

≤
n0∑

l, j=−n0

[
l + 1

n
− j

n

]
µ(Dn,l,j) <

6

n

n0∑

l, j=−n0

µ(Dn,l,j) =
6

n
.

Since n is arbitrary we have

∫

X

(f
+ − f+)dµ = 0

which implies f
+

= f+ almost everywhere (since f
+ ≥ f+ by definition)

proving that the limit exists. Analogously, we can prove

∫

X

(f − f+)dµ = 0.

Proof of the Lemma 1.6.2 We will prove only the first inequality, the
second being proven in exactly the same way.

For each x ∈ A we will call k(x) the first m ∈ N such that

Sm(x) >
l − 1

n
,
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by construction k(x) must be finite for each x ∈ A. Hence, setting Xk = {x ∈
A | k(x) = k}, ∪kXk = A, and for each ε > 0 there exists N ∈ N such that

µ

(
N⋃

k=1

Xk

)
≥ µ(A)(1 − ε).

Let us call

Y = A\
N⋃

k=1

Xk.

Then µ(Y ) ≤ µ(A)ε, also set L = supx∈A |f(x)|. The basic idea is to follow,
for each point x ∈ A, the trajectory {T ix}M

i=0, where M > N will be chosen
sufficiently large. If the point would never visit the set Y , we could group the
sum SM (x) in pieces all, in average, larger than l−1

n , so the same would hold
for SM (x). The difficulties come from the visits to the set Y .

For each n ∈ {0, ..., M} define

f̃n(x) =





f(T nx) if T nx 6∈ Y

l

n
if T nx ∈ Y

and

S̃M (x) =
1

M

M−1∑

n=0

f̃n(x).

By definition y ∈ Y implies y 6∈ X1, i.e. f(y) ≤ l−1
n . Accordingly, f̃(x) ≥

f(T nx) for each x ∈ A. Note that for each n we change the function f ◦ T n

only at some points belonging to the set Y and l
n can be taken less or equal

than L ( otherwise µ(A) = 0), consequently

∫

A

fdµ =

∫

A

SMdµ ≥
∫

A

S̃Mdµ − Lµ(Y ) ≥
∫

A

S̃Mdµ − Lµ(A)ε.

We are left with the problem of computing the sum. As already mentioned
the strategy consists in dividing the points according to their trajectory with
respect to the sets Xn. To be more precise, let x ∈ A, then by definition it
must belong to some Xn or to Y . We set k1(x) equal to j is x ∈ Xj and
k1(x) = 1 if x ∈ Y . Next, k2(x) will have value j if T k1(x)x ∈ Xj or value 1 if
T k1(x) ∈ Y . If k1(x) + k2(x) < M , then we go on and define similarly k3(x).
In this way, to each x ∈ A we can associate a number m(x) ∈ {1, ..., M} and

indices {ki(x)}m(x)
i=1 , ki(x) ∈ {1, ..., N}, such that M −N ≤∑m(x)−1

i=1 ki(x) <

M ,
∑m(x)

i=1 ki(x) ≥ M . Let us call Kp(x) =
∑p

j=1 kj(x). Using such a division
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of the orbit in segments of length ki(x) we can easily estimate

S̃M (x) =
1

M





m(x)−1∑

i=1

ki(x)



 1

ki(x)

Ki(x)−1∑

j=Ki−1(x)

f̃j(x)



 +
M−1∑

i=Km(x)−1(x)

f̃(T ix)





≥ 1

M

m(x)−1∑

i=1

ki(x)
l − 1

n
≥ M − N

M

l − 1

n
.

Putting together the above inequalities we get

∫

A

fdµ ≥
{

(M − N)(l − 1)

Mn
− Lε

}
µ(A)

≥ l + 1

n
µ(A) −

{
2

n
+

N(l − 1)

Mn
+ Lε

}
µ(A).

which, by choosing first ε sufficiently small and, after, M sufficiently large,
concludes the proof. �

To prove the result for all function in L1(X, µ) it is convenient to deal
at first only with positive functions (which suffice since any function is the
difference of two positive functions) and then use the usual trick to cut off
a function (that is, given f define fL by fL(x) = f(x) if f(x) ≤ L, and
fL(x) = L otherwise) and then remove the cut off. The reader can try it as
an exercise. �

Birkhoff theorem has some interesting consequences.

Corollary 1.6.3 For each f ∈ L1(X, µ) the following holds

1. f+ ∈ L1(X, µ);

2. f+(Tx) = f+(x) almost surely.

The proof is left to the reader as an easy exercise (see Problem 1.18).
Another interesting fact, that starts to show some connections between

averages and invariant sets, emerges by considering a measurable set A and
its characteristic function χA. A little thought shows that the ergodic average
χ+

A(x) is simply the average frequency of visit of the set A by the trajectory
{T nx} (Problem 1.28).

Birkhoff theorem implies also convergence in L1 and L2 (see also Problem
1.26). Yet, it is interesting to note that convergence in L2 can be proven in a
much more direct way.

Theorem 1.6.4 (Von Neumann) Let (X, T, µ) be a Dynamical System, then
for each f ∈ L2(X, µ) the ergodic average converges in L2(X, µ).
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Proof. We have already seen that it can be useful to lift the dynamics
at the level of the algebra of function or at the level of measures. This game
assumes different guises according to how one plays it, here is another very
interesting version.

Let us define U : L2(X, µ) → L2(X, µ) as

Uf := f ◦ T.

Then, by the invariance of the measure, it follows ‖Uf‖2 = ‖f‖2, so U is
an L2 contraction (actually, and L2-isometry). If T is invertible, the same
argument applied to the inverse shows that U is indeed unitary, otherwise we
must content ourselves with

‖U∗f‖2
2 = 〈UU∗f, f〉 ≤ ‖UU∗f‖2‖f‖2 = ‖U∗f‖2‖f‖2,

that is ‖U∗‖2 ≤ 1 (also U∗ is and L2 contraction).
Next, consider V1 = {f ∈ L2 | Uf = f} and V2 = Rank(1l − U). First of

all, note that if f ∈ V1, then

‖U∗f − f‖2
2 = ‖U∗f‖2

2 − 〈f, U∗f〉 − 〈U∗f, f〉 + ‖f‖2
2 ≤ 0.

Thus, f ∈ V ∗
1 := {f ∈ L2 | U∗f = f}. The same argument applied to f ∈ V ∗

1

shows that V1 = V ∗
1 . To continue, consider f ∈ V1 and h ∈ L2, then

〈f, h − Uh〉 = 〈f − U∗f, h〉 = 0.

This implies that V ⊥
1 = V2, hence V1 ⊕V2 = L2. Finally, if g ∈ V2, then there

exists h ∈ L2 such that g = h − Uh and

lim
n→∞

1

n

∞∑

i=0

U ig = lim
n→∞

1

n
(h − Unh) = 0.

On the other hand if f ∈ V1 then limn→∞
1
n

∑∞
i=0 U if = f . The only function

on which we do not still have control are the g belonging to the closure of V2

but not in V2. In such a case there exists {gk} ⊂ V2 with limk→∞ gk = g.
Thus,

‖ 1

n

∞∑

i=0

U ig‖2 ≤ ‖ 1

n

∞∑

i=0

U igk‖2 + ‖g − gk‖2 ≤ ‖ 1

n

∞∑

i=0

U igk‖2 +
ε

2
,

provided we choose k large enough. Then, by choosing n sufficiently large we
obtain

‖ 1

n

∞∑

i=0

U ig‖2 ≤ ε.
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We have just proven that

lim
n→∞

1

n

n−1∑

i=0

U i = P

where P is the orthogonal projection on V1. �

Another very general result, of a somewhat disturbing nature, is Poincaré
return theorem.

Theorem 1.6.5 (Poincaré) Given a dynamical systems (X, T, µ) and a
measurable set A, with µ(A) > 0, there exists infinitely many n ∈ N such
that

µ(T−nA ∩ A) 6= 0.

The proof is rather simple (by contradiction) and the reader can certainly find
it out by herself (see Problem 1.19).32

Let us go back to the relation between ergodicity and averages. From an
intuitive point of view a function from X to R can be thought as an “observ-
able,” since to each configuration it associates a value that can represent some
relevant property of the configuration (the property that we observe). So, if
we observe the system for a long time via the function f , what we see should
be well represented by the function f+. Furthermore, notice that there is
a simple relations between invariant functions and invariant sets. More pre-
cisely, if a measurable set A is invariant, then its characteristic function χA

is a measurable invariant function; if f is an invariant function then for each
measurable set I ∈ R the set f−1(I) is a measurable invariant set (if the
implications of the above discussions are not clear to you, see Problem 1.27).

As a byproduct of the previous discussion it follows that if a system is
ergodic then for each function f ∈ L1(X, µ) the function f+ is almost ev-
erywhere constant and equal to

∫
X f . We have just proven an interesting

characterization of the ergodic systems:

Theorem 1.6.6 A Dynamical System (X, T, µ) is ergodic if and only if for
each f ∈ L1(X, µ) the ergodic average f+ is constant; in fact, f+ = µ(f)
a.e..

32An unsettling aspect of the theorem is due to the following possibility. Consider a room
full of air, the motion of the molecules can be thought to happen accordingly to Newton
equations, i.e. it is an Hamiltonian systems, hence a dynamical system to which Poincaré
theorem applies. Let A be the set of configurations in which all the air is in the left side of
the room. Since we ignore, in general, the past history of the room, it could very well be that
at some point in the past the systems was in a configuration belonging to A–maybe some
silly experiment was performed. So there is a positive probability for the system to return
in the same state. Therefore the disturbing possibility of sudden death by decompression.
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In other words, if we observe the time average of some observable for a
sufficiently long time then we obtain a value close to its space average. The
previous observation is very important especially because the space average of
a function does not depend on the dynamics. This is exactly what we where
mentioning previously: the fact that the dynamics is sufficiently ‘complex’
allows us to ignore it completely, provided we are interested only in knowing
some average behavior. The relevance of ergodic theory for physical systems
is largely connected to this fact.

1.7 Mixing

We have argued the importance of ergodicity, yet from a physical point of
view ergodicity may be relevant only if it takes places at a sufficiently fast
rate (i.e., if the time average converges to the space average on a physically
meaningful time scale). This has prompted the study of stronger statistical
properties of which we will give a brief, and by no mean complete, account in
the following.

Definition 1.7.1 A Dynamical System (X, T, µ) is called mixing if for every
pairs of measurable sets A, B we have

lim
n→∞

µ(T−n(A) ∩ B) = µ(A)µ(B).

Obviously, if a system is mixing, then it is ergodic. In fact, if A is an
invariant set for T , then T−nA ⊂ A, so, calling Ac the complement of A, we
have

µ(A)µ(Ac) = lim
n→∞

µ(T−nA ∩ Ac) = 0,

and the measure of A is either one or zero.
An equivalent characterization of mixing is the following:

Proposition 1.7.2 A Dynamical System (X, T, µ) is mixing if and only if

lim
n→∞

∫

X

f ◦ T ngdµ =

∫

X

fdµ

∫

X

gdµ

for every f, g ∈ L2(X, µ) or for every f ∈ L∞(X, µ) and g ∈ L1(X, µ).33

The proof is rather straightforward and it is left as an exercise to the
reader (see Problem 1.29) together with the proof of the next statement.

33The quantity
R

X
f ◦Tg−

R

X
f

R

X
g is called “correlation,” and its tending to zero–which

takes places always in mixing systems–it is called “decay of correlation.”
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Proposition 1.7.3 A Dynamical System (X, T, µ), with X a compact metric
space, T continuous and µ Borel, is mixing if and only if for each probability
measure λ absolutely continuous with respect to µ

lim
n→∞

λ(f ◦ T n) = µ(f)

for each f ∈ C(0)(T2).

This last characterization is interesting from a mathematical point of view.
Define, as usual, the evolution of a measure via the equation

(T∗λ)(f) ≡ λ(f ◦ T )

for each continuous function f . If for each measure, absolutely continuous
with respect to the invariant one, the evolved measure converges weakly to the
invariant measure, then the system is mixing (and thus the evolved measures
converge strongly). This has also a very important physical meaning: if the
initial configuration is known only in probability, the probability distribution
is absolutely continuous with respect to the invariant measure, and the system
is mixing, then, after some time, the configurations are distributed according
to the invariant measure. Again the details of the evolution are not important
to describe relevant properties of the system.

1.7.1 Examples

1.7.1.a Rotations

We have seen that the translations by an irrational angle are ergodic. They are
not mixing. The reader can easily see why.

1.7.1.b Bernoulli shift

The key observation is that, given a measurable set A, for each ε > 0 there
exists a set Aε ∈ A, thus depending only on a finite subset of indices,34 with the
property35

µ(Aε\A) ≤ ε.

Then, given A, B measurable, and for each ε > 0, let Aε, Bε be such an approx-
imation, and IA, IB the defining sets of indices, then

∣∣µ(T−mA ∩ B) − µ(A)µ(B)
∣∣ ≤ 4ε +

∣∣µ(T−mAε ∩ Bε) − µ(Aε)µ(Bε)
∣∣.

34Remember, this means that there exists a finite set I ⊂ Z such that it is possible to
decide if σ ∈ Σn belongs or not to Aε only by looking at {σi}i∈I .

35This follows from our construction of the σ-algebra and by the definition of outer
measure, see Examples 1.1.1–Bernoulli shift.
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If we choose m so large that (IA +m)∩IB = ∅, then by the definition of Bernoulli
measure we have

µ(T−mAε ∩ Bε) = µ(T−mAε)µ(Bε) = µ(Aε)µ(Bε),

which proves
lim

m→∞
µ(T−mA ∩ B) = µ(A)µ(B).

1.7.1.c Dilation

This system is mixing. In fact, let f, g ∈ C(1)(T), then we can represent them
via their Fourier series f(x) =

∑
k∈Z

e2πikxfk, f−k = fk. It is well known that∑
k∈Z

|fk| < ∞ and |fk| ≤ c
|k| , for some constant c depending on f . Therefore,

f(T nx) =
∑

k∈Z

e2πi2nkxfk,

which implies that the only Fourier coefficients of f ◦ T n different from zero are
the {2nk}k∈Z. Hence,

∣∣∣∣
∫

T

f ◦ T ng −
∫

T

f

∫

T

g

∣∣∣∣ =
∣∣∣∣∣
∑

k∈Z

fkg2nk − f0g0

∣∣∣∣∣ ≤ c2−n
∑

k∈Z

|fk|.

The previous inequalities imply the exponential decay of correlations for each
smooth function. The proof is concluded by a standard approximation argument:
given f, g ∈ L2(X, dµ), for each ε > 0 exists fε, gε ∈ C(1)(X): ‖f − fε‖2 < ε
and ‖g − gε‖2 < ε. Thus,
∣∣∣∣
∫

T

f ◦ T ng −
∫

T

f

∫

T

g

∣∣∣∣ ≤
∣∣∣∣
∫

T

fε ◦ T ngε −
∫

T

fε

∫

T

gε

∣∣∣∣+ 2(‖f‖2 + ‖g‖2)ε,

which yields the result by choosing first ε small and then n sufficiently large.

1.8 Stronger statistical properties

One very fruitful idea in the realm of measurable dynamical systems is the
idea of entropy . In some sense the entropy measure the complexity of the
motions from a measure theoretical point of view.

To define it one starts by considering a partition of the space into measur-
able sets ξ := {A1, . . . An} and defines36

Hµ(ξ) −
∑

i

µ(Ai) log µ(Ai).

36The case of a countable partition, or even an uncountable partition, can be handled
and it is very relevant, but outside the aims of this book, see [73] for a complete treatment
of the subject.
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Given two partitions ξ = {Ai}, η = {Bj} we define ξ ∨ η := {Ai ∩ Bj}. Let
then be

ξT
−n := ξ ∨ T−1(ξ) ∨ · · · ∨ T−n+1(ξ).

It is then possible to prove that the sequence Hµ(ξT
−n is sub-additive, hence

the limit

hµ(T, ξ) := lim
n→∞

1

n
Hµ(ξT

−n

exists.

Definition 1.8.1 The entropy of T with respect to µ is defined as

hµ(T ) := sup{hµ(T, ξ) | H(ξ) < ∞}

Clearly if a system has positive metric entropy this means that the motion
has a high complexity and it is very far from regular. One of the main property
of entropy is that it is a metric invariant, that is if two systems are metrically
conjugate (see the following), then they have the same metric entropy.

Even more extreme form statistical behaviors are possible, to present them
we need to introduce the idea of equivalent systems. This is done via the
concept of conjugation that we have already seen informally in Example 1.4.1
(logistic map, circle map).

Definition 1.8.2 Two Dynamical Systems (X1, T1, µ1), (X2, T2, µ2) are (mea-
surably) conjugate if there exists a measurable map φ : X1 → X2 almost
everywhere invertible37 such that µ1(A) = µ(φ(A)) and T2 ◦ φ = φ ◦ T1.

Clearly, the conjugation is an equivalence relation. Its relevance for the
present discussion is that conjugate systems have the same ergodic properties
(Problem1.41).38

We can now introduce the most extreme form of stochasticity.

Definition 1.8.3 A dynamical system (X, T, µ) is called Bernoulli if there
exists a Bernoulli shift (M, ν, σ) and a measurable isomorphism φ : X → M
(i.e., a measurable map one one and onto apart from a set of zero measure
and with measurable inverse) such that, for each A ∈ X,

ν(φ(A)) = µ(A)

and
T = φ−1 ◦ σ ◦ φ.

37This means that there exists a measurable function φ−1 : X2 → X1 such that φ◦φ−1 =
id µ2-a.e. and φ−1 ◦ φ = id µ1-a.e..

38Of course the reader can easily imagine other forms of conjugacy, e.g. topological or
differential conjugation.
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That is a system is Bernoulli if it is isomorphic to a Bernoulli shift. Since
we have seen that Bernoulli systems are very stochastic (remind that they
can be seen as describing a random event like coin tossing) this is certainly
a very strong condition on the systems. In particular it is immediate to see
that Bernoulli systems are mixing (Problem1.41).

1.8.1 Examples

1.8.1.a Dilation

We will show that such a system is indeed Bernoulli. The map φ is obtained by
dividing [0, 1) in [0, 1

2 ) and [ 12 , 1). Then, given x ∈ T, we define φ : T → Σ+
2 by

φ(x)i =





1 if T ix ∈ [0,
1

2
)

2 if T ix ∈ [
1

2
, 1)

the reader can check that the map is measurable and that it satisfy the required
properties. Note that the above shows that the Bernoulli measure with p1 =
p2 = 1

2 is nothing else than Lebesgue measure viewed on the numbers written in
basis two. This may explain why we had to be so careful in the construction of
the Bernoulli measure.

1.8.1.b Baker

Let us define φ−1; for each σ ∈ Σ2

x =

∞∑

i=0

σ−i

2i+1
,

y =

∞∑

i=1

σi

2i
.

Again the rest is left to the reader.

1.8.1.c Forced Pendulum

In the introduction we have seen that there exists a square Q with stable and
unstable sides such that, calling T the map introduced by the flow at a proper
time, TQ∩Q ⊃ Qu

0 ∪Qu
1 . Where Qu

i are rectangles that go from one stable side
of Q to the other and, in analogy, T−1Q ∩ Q ⊃ Qs

0 ∪ Qs
1.

We can use this fact to code the dynamics similarly to what we have done
for the Backer map. Namely, given the set Λ =

⋂
n∈Z

T nQ (this set it is non
empty–see Example 1.4.1–Horseshoe) and φ : Λ → Σ2 define by
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[φ(x)]k =

{
i ∈ {0, 1} if k ≥ 0 and T kx ∈ Qu

i

i ∈ {0, 1} if k < 0 and T kx ∈ Qs
i .

It is easy to verify that φ is onto and that it is a.e. invertible. It remains to specify
the measure on the Horseshoe, we can just pull back any invariant measure on
the shift and we will get an invariant measure on the set Λ.

Let us conclude with a final remark on the physical relevance of the concept
just introduced. As we mentioned, if f is an observable, then its ergodic
average represents the result of an observation over a very long time (the
time scale being determined by the mixing properties of the system). Yet, in
reality, it may happen that we look for too short a time or, after studying a
certain quantity, we can get a grant to buy the needed apparatus to perform
more precise measurements. What would we see in such a case? Clearly, we
would not see a constant, even for an ergodic system, and we would interpret
the non constant part as fluctuations. In many cases it may happen that this
fluctuations have a very special nature: they are Gaussian. In such a case
we say that the system satisfies the Central Limit Theorem (CLT). Let us be

more precise: define Snf := 1√
n

∑n−1
i=0 f ◦ T i.

Definition 1.8.4 Given a Dynamical System (X, T, µ) and a class of observ-
ables A ⊂ L2(X, µ) we say that the class A satisfies the CLT if ∀f ∈ A,
µ(f) = 0,

lim
n→∞

µ({x | Snf ≥ t}) =
1√
2π

∫ t

−∞
e−

x2

2σ2 dx,

where (the variance) σ is defined by σ2 = µ(f) + 2
∑∞

i=1 µ(f ◦ T if).39

The relevance of the above theorem is the following: if the system is ergodic
and satisfies the CLT, then 1

n

∑n−1
i=0 f ◦T i −µ(f) = O( 1√

n
), we have thus the

precise scale on which the fluctuations should appear.

In this book we will be mainly interested in the question of how to establish
if a given system is ergodic or not.

Unfortunately, neither ergodicity is a typical property of dynamical sys-
tems, nor is regular motion. It is a frustrating fact of life that generically
dynamical systems present some kind of mixed behavior. Nevertheless, there
are some class of systems that are known to be ergodic and among them the
hyperbolic systems are probably the most relevant. We will discuss them in
the next chapters.

39This definition is a bit stricter than usual because, in general, there may be cases in
which the fluctuations are Gaussian but the formula for the variance does not hold as
written.
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Problems

1.1 Given a measurable Dynamical Systems (X, T, µ) verify that, for each
measurable set A, if T (A) is measurable, then µ(TA) ≥ µ(A).

1.2 Set M1(X) = {µ ∈ M | µ(X) = 1} and M1
T (X) = M1(X) ∩MT (X).

Prove that M1
T (X) and M1(X) are convex sets in M(x).

1.3 Call Me(X) ⊂ M1(X) the set of ergodic probability measures. Show
that Me(X) consists of the extremal points of MT (X). (Hint: Krein-
Milman Theorem [37]).

1.4 Prove that the Lebesgue measure is invariant for the rotations on T.

1.5 Consider a rotation by ω ∈ Q, find invariant measures different from
Lebesgue.

1.6 Prove that the measure µh defined in Examples 1.1.1 (Hamiltonian sys-
tems) is invariant for the Hamiltonian flow. (Hint: Use the properties
of H to deduce 〈∇φtxH, dxφt∇xH〉 = ‖∇xH‖2, and thus dxφt∇xH =
‖∇xH‖2

‖∇φtxH‖2∇φtxH +v where 〈∇φtxH, v〉 = 0. Then study the evolution of

an arbitrarily small parallelepiped with one side parallel to ∇xH–or look
at the volume form if you are more mathematically incline–remembering
the invariance of the volume with respect to the flow.)

1.7 Given a Poincaré section prove that there exists c > 0 such that inf τΣ ≥
c > 0.

1.8 Show that νΣ, defined in (1.2.1) is well defined.(Hint: use the invariance
of µ and the fact that, by Problem 1.7, if A ⊂ Σ then µ(φ[0,δ](A) ∩
φ[nδ, (n+1)δ]A) = 0 provided (n + 1)δ ≤ c.)

1.9 Show that the return time τΣ is finite νΣ-a.e. .(Hint: let δ < c and
Σδ := φ[0,δ]Σ, apply Poincaré return theorem to Σδ.)

1.10 Show that νΣ is TΣ invariant. Verify that, collecting the results of the
last exercises, (Σ, TΣ, νΣ) is a Dynamical System.

1.11 something about holomorphic dynamics?

1.12 Prove that the Bernoulli measure is invariant with respect to the shift.
(Hint: check it on the algebra A first.)

1.13 Let Σp be the set of periodic configurations of Σ. If µ is the Bernoulli
measure prove that µ(Σp) = 0 (Hint: Σp is the countable union of zero
measure sets.)
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1.14 Consider the Bernoulli shift on Z and define the following equivalence
relation: σ ∼ σ′ iff there exists n ∈ Z such that T nσ = σ′ (this means
that two sequences are equivalent if they belong to the same orbit).
Consider now the equivalence classes (the space of orbits) and choose40

a representative from each class, call the set so obtained K. Show that
K cannot be a measurable set. (Hint: show that K∩T nK ⊂ Σp, then by
using Problem 1.13 show that if K is measurable

∑∞
i=−∞ µ(T nK) = 1

which, by the invariance of µ, is impossible).

1.15 Compute the transfer operator for maps of T. (Hint: Use the equivalent
definition

∫
gLfdm =

∫
fg ◦ Tdm.) Prove that ‖Lh‖1 ≤ ‖h‖1.

1.16 Prove the Lasota-York inequality (1.4.4).

1.17 Prove that for each sequence {hn} ⊂ C(1)(T), with the property supn∈N ‖h′
n‖1+

‖hn‖1 < ∞, it is possible to extract a subsequence converging in L1.
(Hint: Consider partitions Pn of T in intervals of size 1

n . Define the con-
ditional expectation E(h|Pn)(x) = 1

m(I(x)

∫
I(x)

hdm, where x ∈ I(x) ∈
Pn. Prove that ‖E(h|Pn) − h‖1 ≤ 1

n‖h′‖1. Notice that the functions
E(hn|Pm) have only m distinct values and, by using the standard di-
agonal trick, construct an subsequence hnj

such that all the E(hnj
|Pm)

are converging. Prove that hnj
converges in L1.)

1.18 Prove Corollary 1.6.3.(Hint: ??)

1.19 Prove Theorem 1.6.5 (Hint: Note that µ(T−nA ∩ T−mA) 6= 0 then,
supposing without loss of generality n < m, µ(A∩T−m+nA) 6= 0. Then
prove the theorem by absurd remembering that µ(X) < ∞.)

1.20 Let U ⊂ X of positive measure, consider

fU (x) = lim
1

n

n−1∑

i=0

χU (T ix).

Show that the limit exists and that the set A0 := {x ∈ U | fU (x) = 0}
has zero measure. (Hint: The existence follows from Birkhoff theorem,
it also follows that A0 is an invariant set, then

0 =

∫

A0

fU =

∫

A0

χU = µ(A0).

)

40Attention !!!: here we are using the Axiom of choice.
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1.21 A topological Dynamical System (X, T ) is called Topologically transi-

tive, if it has a dense orbit. Show that if (Td, T, m) is ergodic and T is
continuous, then the system is topologically transitive. (Hint: For each
n ∈ N, x ∈ Td consider B 1

m
(x)–the ball of radius 1

m centered at x. By

compactness, there are {xi} such that ∪iB 1
m

(xi) = Td. Let

Am,i = {y ∈ Td | T ky ∩ B 1
M

(XI) = ∅ ∀k ∈ N},

clearly Am,i = ∩k∈NT−kB 1
m

(xi)
c has the property T−1Am,i ⊃ Am,i.

It follows that Ãm,i = ∪n∈NT−nAm,i ⊃ Am,i is an invariant set and

it holds µ(Ãm,i\Am,i) = 0. Since Am,i it is not of full measure, Ãm,i,
and thus Am,i, must have zero measure. Hence, Ām = ∩iAm,i has zero
measure. This means that ∪m∈NĀm has zero measure. Prove now that,
for each y ∈ Td, the trajectories that never get closer than 2

m to y are
contained in Ām, and thus have measure zero. Hence, almost every
point has a dense orbit.)
Extend the result to the case in which X is a compact metric space and
µ charges the open sets (that is: if U ⊂ X is open, then µ(U) > 0).

1.22 Give an example of a system with a dense orbit which it is not ergodic.
(Hint: A system with two periodic orbits, and the measure supported
on them. Along such lines more complex examples can be readily con-
structed)

1.23 Give an example of an ergodic system with no dense orbit. (Hint: A
non transitive system with a measure supported on a periodic orbit.)

1.24 Give an example of a Dynamical Systems which does not have any
invariant probability measure. (Hint: X = Rd, Tx = x + v, v 6= 0.)

1.25 Show that a Dynamical Systems (X, T, µ) is ergodic if and only if there
does not exists any invariant probability measure absolutely continuous
with respect to µ, beside µ itself.

1.26 Prove that Birkhoff theorem implies Von Neumann theorem. (Hint:
Note that the ergodic average is a contraction in L∞, an isometry in L2

and that L1 ⊂ L2 (since the measure is finite). Use Lebesgue dominate
convergence theorem to prove convergence in L2 for bounded functions.
Use Fatou to show that if f ∈ L2 then f+ ∈ L2 and a 3 − ε argument
to conclude).

1.27 Prove that if (X, T, µ) is ergodic, then all f ∈ L1(X, µ) such that f ◦T =
f are a.e. constant. Prove also the converse.
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1.28 For each measurable set A, let

FA,n(x) =
1

n

n−1∑

i=0

χA(T ix).

be the average number of times x visits A in the time n. Show that
there exists FA = limn→∞ FA,n a.e. and prove that, if the system is
ergodic, FA = µ(A). (Hint: Birkhoff theorem and Theorem 1.6.6).

1.29 Prove Proposition 1.7.2 and Proposition 1.7.3. (Hint: Note that for each
measurable set A and ε > 0 there exists f ∈ C(0)(X) such that µ(|f −
χA|) < ε –by Uryshon Lemma and by the regularity of Borel measures.
To prove that µ(T−nA ∩ B) → µ(A)µ(B) choose dλ = µ(B)−1χBdµ
and use the invariance of µ to obtain the uniform estimate λ(|f ◦ T n −
χA ◦ T n|) ≤ µ(B)−1µ(|f − χA|).)

1.30 Show that the irrational rotations are not mixing.

1.31 Prove that if f ∈ C(2)(T), then its Fourier series converges uniformly.41

(Hint: Remember that fn = 1
2π

∫
T

e2πinxf(x)dx. Thus fn = 1
(2πin)22π

∫
T

e2πinxf (2)(x)dx.)

1.32 Let ν be a Borel measure on Q = [0, 1]2 such that ν(∂xf) = 0 for all

f ∈ C(1)
per(Q) = {f ∈ C(1)(Q) | f(0, y) = f(1, y) ∀ y ∈ [0, 1]}. Prove that

there exists a Borel measure ν1 on [0, 1] such that ν = m × ν1. (Hint:
The measure ν1 is nothing else then the marginal with respect to x,
that is: for each continuous function f : [0, 1] → R define f̃ : Q → R

by f̃(x, y) = f(y), then ν1(f) = ν(f̃). To prove the statement use

Fourier series. If f is smooth enough f(x, y) =
∑

k∈Z
f̂k(y)e2πikx where

the Fourier series for f and ∂xf converge uniformly. Then notice that
0 = ν(∂xe2πik·) = 2πikν(e2πik·) implies ν(f) = ν(f̂0) = m × ν1(f).)

1.33 Prove that is a flow is ergodic (mixing) so is each Poincarè section.
Prove that is a map is ergodic so is any suspension on the map. Give
an example of a mixing map with a non-mixing suspension (constant
ceiling).

1.34 Consider ([0, 1], T ) where

T (x) =
1

x
−
[

1

x

]

([a] is the integer part of a), and

µ(f) =
1

ln 2

∫ 1

0

f(x)
1

1 + x
dx.

41This result is far from optimal, see [1] if you want to get deeper in the theory of Fourier
series.



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

PROBLEMS 59

Prove that ([0, 1], T, µ) is a Dynamical System.42 (Hint: write µ(f ◦
T ) =

∑∞
i=1

∫ 1
i
1

i+1

f ◦ T (x)µ(dx), change variable and use the identity

1
a2+a = 1

a − 1
a+1 to obtain a series with alternating signs.)

1.35 Prove that for each x ∈ Q ∩ [0, 1] holds limn→∞ T n(x) = 0. (Hint: if
x = p0

q0
, p0 ≤ q0, then q0 = k1p0 + p1, with p1 < p0, and T (x) = p1

p0
. Let

q1 = p0 and go on noticing that pi+1 < pi.)
43

1.36 In view of the two previous exercises explain why it is problematic to
study the statistical properties of the Gauss map on a computer.(Hint:
The computer uses only rational numbers. It is quite amazing that these
type of pathologies arises rather rarely in the numerical studies carried
out by so many theoretical physicist.)

1.37 Prove that any infinite continuous fraction of the form

a0 +
1

a1 +
1

a2 +
1

a3 + ...

with ai ∈ N defines a real number. (Hint: Note that if you fix the first
n {ai}, this corresponds to specifying which elements of the partition
{[ 1

i+1 , 1
i ]} are visited by the trajectory of {T ix}. By the expansivity of

the map readily follows that x must belong to an interval of size λ−n

for some λ > 1.)

42The above map is often called Gauss map since to him is due the discovery of the above
invariant measure.

43This is nothing else that the Euclidean algorithm to find the greatest common divisor
of two integers [38] Elements, Book VII, Proposition 1 and 2. The greatest common divisor
is clearly the last non-zero pi. This provides also a remarkable way of writing rational
numbers: continuous fractions

p0

q0
=

1

k1 +
1

k2 + ...
+

1

kn

.
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1.38 Prove that, for each a ∈ N,

x =
1

a +
1

a +
1

a + ...

=
−a +

√
a2 + 4

2
.

(Hint: Note that T (x) = x.) Study periodic continuous fractions of
period two.

1.39 Choose a number in [0, 1] at random according to Lebesgue distribution.
Assuming that the Gauss map is mixing (which it is, see ???) compute
the average percentage of numbers larger than n in the associated con-
tinuous fraction. (Hint: Define f(x) = [x−1], then the entries of the
continuous fraction of x are {f ◦ T i}. The quantity one must compute

is then m(limk→∞
i
k

∑k−1
i=0 χ[n,∞) ◦ f ◦ T i) = µ([n,∞)).)

1.40 Let (X0, T0, µ0) be a Dynamical System and φ : X0 → X1 an homeo-
morphism. Define T1 := φ ◦ T0 ◦ φ−1 and µ1(f) = µ0(f ◦ φ−1). Prove
that (X1, T1, µ1) is a Dynamical System.

1.41 Let (X0, T0, µ0) be measurably conjugate to (X1, T1, µ1), then show that
one of the two is ergodic if and only if the other is ergodic. Prove the
same for mixing.

1.42 Show that the systems described in Examples ??–strange attractor and
horseshoe, are Bernoulli.

1.43 Prove Lebesgue density theorem: for each measurable set A, m(A) > 0,
there exists x ∈ A such that for each ε > 0 exists δ > 0 such that
m(A∩ [x−δ, x+δ]) > (1−ε)2δ. (Hint: we have seen in Examples 1.8.1-
Dilations that Lebesgue measure is equivalent to Bernoulli measure and
that the cylinder correspond to intervals. It then suffices to prove the
theorem for the latter. Let A ⊂ Σ+ such that µ(A) > 0, then, for each
ε > 0,there exists Aε ∈ A such that Aε ⊃ A and µ(Aε)−µ(A) < εµ(A).
Since Aε ∈ A, it exists nε ∈ N such that it is possible to decide if
σ ∈ Aε only by looking at {σ1, . . . , σnε

}. Consider all the cylinders
I{A(0; k1, . . . , knε

)}, clearly if I ∈ I then I ∩ Aε is either I or ∅. Let
I+ = {I ∈ I | I ∩Aε = I} and I+ = {I ∈ I | I ∩Aε = ∅}. Now suppose
that for each I ∈ I+ holds µ(I ∩ A) ≤ (1 − ε)µ(I) then

µ(A) =
∑

I∈I+

µ(A ∩ I) ≤ (1 − ε)µ(Aε) < µ(A),

which is absurd. Thus there must exists I ∈ I+: µ(A∩I) > (1−ε)µ(I).)
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Notes

Give references for SRB and Gibbs, mention entropy, K-systems. diffeo with
holes, strange attractors, history of the field

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Ergodicity and Mixing (Basic
ideas)

he concept of ergodicity is a very important one in dynamical sys-
tems, yet it turns out to be surprisingly difficult to establish if a system is or
not ergodic and very few examples have been fully analyzed. Nonetheless, in
this chapter we will see that a very simple idea introduced by Hopf [47, 48]
allows to discuss the ergodicity in some special cases. The relevance of Hopf’s
idea is that, properly generalized, it allows to prove ergodicity in a vast class of
systems. Much in the following chapters will deal with such a generalization.

2.1 A Basic Example

To explain the Hopf approach we will study a very simple case: a slight
generalization of Arnold’s cat, see Examples 1.1.1. Let T : T2 → T2 (here by
T2 we mean R2 mod 1) be defined by

T

(
x1

x2

)
=

(
1 a
a 1 + a2

)(
x1

x2

)
mod 1 (2.1.1)

It is obvious that if a ∈ Z, then T is well defined and it is a linear auto-
morphism of T2 . Moreover, for all x ∈ T2

DxT =

(
1 a
a 1 + a2

)
≡ L.

Since detL = 1, Lebesgue measure is preserved. It is immediate to see that
there exists λ > 1; v+, v− ∈ R2:

Lv+ =λv+

Lv− =λ−1v−.

62
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We will call v+ the unstable eigenvector (direction) and v− the stable eigen-
vector (direction). Remark that, since L∗ = L, 〈v+, v−〉 = 0.

The dynamical system just described is a basic model of hyperbolic sys-
tems (see next chapter) and will appear in various disguises in this book.

Proposition 2.1.1 The Arnold cat is ergodic.

Sections 2.1.1 and 2.2.1 contain two different proofs of the above proposi-
tion.

2.1.1 An algebraic proof

A first idea to studying the ergodic properties of this system is to imitate what
we have done for the Rotations (Examples 1.5.1) and the Dilations (Examples
1.7.1): use Fourier series. Let us see how such an approach would work.

Let f, g ∈ C(m)(T2), then1

f ◦ T n(x) =
∑

k∈Z2

e2πi〈k, Lnx〉fk =
∑

k∈Z2

e2πi〈k, x〉fL−nk,

so ∫

T2

f ◦ T 2ng =

∫

T2

f ◦ T ng ◦ T−n =
∑

k∈Z2

fL−nkgLnk

= f0g0 +
∑

k∈Z2\{0}
fL−nkgLnk.

It is well known [75] that f ∈ C(m)(T2) implies2

|fk| ≤
‖f (m)‖1

‖k‖m
for k 6= 0

hence ∣∣∣∣∣∣

∑

k∈Z2\{0}
fL−nkgLnk

∣∣∣∣∣∣
≤

∑

k∈Z2\{0}

‖f (m)‖1‖g(m)‖1

‖L−nk‖m‖Lnk‖m
.

For each k ∈ Z2 holds ‖k‖2 = 〈k, v+〉2 + 〈k, v−〉2 hence one of the two terms
must be larger than ‖k‖2/2.3 Moreover if k 6= 0 ‖Lnk‖ ≥ 1 for each n ∈ Z.
Using the above facts it yields

1Note that e2πi〈k,T nx〉 = e2πi〈k,Lnx〉.
2Here for ‖f (m)‖1 we mean sup

i+j=m
i,j≥0

1
(2π)m

R

T2 |∂i
x1

∂
j
x2

f |dx1dx2; and ‖k‖ =
q

k2
1 + k2

2 .

3Here we have normalized the eigenvalues so that ‖v±‖ = 1.
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∣∣∣∣∣∣

∑

k∈Z2\{0}
fL−nkgLnk

∣∣∣∣∣∣
≤

∑

k∈Z2\{0}

‖f (m)‖1‖g(m)‖12
m/2

λnm‖k‖m

≤ const.‖f (m)‖1‖g(m)‖1λ
−nm,

where the constant does not depend on f or g and we have assumed m ≥ 3
to insure the convergence of the series.

Accordingly, for each f, g ∈ C(3)(T2) we have

∣∣∣∣
∫

T2

f ◦ T ng −
∫

T2

f

∫

T2

g

∣∣∣∣ ≤ const.‖f (3)‖1‖g(3)‖1λ
−3n/2.

To obtain the final result we need an approximation argument. If f, g ∈
L2(T2) we can choose fn, gn ∈ C(3)(T2) such that they converge to f and g,
respectively, in L2.

Then, for each ε ≥ 0, choose m ∈ N such that

‖f − fm‖2 + ‖g − gm‖2 ≤ ε.

Accordingly,

∣∣∣∣
∫

T2

f ◦ T ng −
∫

T2

f

∫

T2

g

∣∣∣∣ ≤
∣∣∣∣
∫

T2

fm ◦ T ngm −
∫

T2

fm

∫

T2

gm

∣∣∣∣

+ 2‖f − fm‖2‖g‖2 + 2‖fm‖2‖g − gm‖2

≤2(‖g‖2 + ‖f‖2)ε + ε,

where we have chosen n large enough depending on m and ε. We have just
proven mixing.

The above result is certainly rather satisfactory: non only it proves the
mixing–hence the ergodicity–of the map but gives an explicit estimate on the
rate of decay and shows how such a rate depends on the regularity of the
functions.4 Therefore, an eventual critique can not concern the type of result
but only the method; indeed the method does have a shortcoming.

The use of Fourier series is strictly related to the group structure of T2

and the linearity of the map. Clearly in more general systems, where both
such properties may fail, such a technique has no hope whatsoever of being
applied.5 In some sense, much of the theory of hyperbolic systems may be

4In fact, the obtained estimate it is not optimal: using the Diofantine properties of the
stable and unstable directions a better estimate can be obtained (see Problem 2.1).

5In fact, there are very few cases in which this type of ideas has produced relevant
results, noticeably the case of geodesic flows on surfaces of constant negative curvature [1].
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view as an attempt to find an alternative proof of the above facts. Such a
proof must be dynamical meaning that it must use properties of the dynamics
and as little as possible of the structure of the space.

The best way to gain a real feeling of what is meant by dynamical is to
see such type of arguments in action.

2.2 An Idea by Hopf

The following argument, due to Hopf [47], [48] is exactly such a dynamical
proof of ergodicity. Let f : T2 → R be a continuous function. We want to
prove that for almost every x ∈ T2 the time averages converge as n → +∞ to
the average value of f , i.e.,

∫
T2 fdµ. Once this is established one can obtain

the same property for all integrable functions by an approximation argument,
this proves ergodicity due to the characterization provided by Theorem 1.6.6
(see also Problem 1.27). From Birkhoff Ergodic Theorem (BET) we know that
the time averages converge almost everywhere to a function f+ ∈ L1(T2, µ)
which is invariant on the orbits of T , i.e., f+ ◦ T = f+, and has the same
average value as f , i.e.,

∫
f+dµ =

∫
fdµ. Further, applying BET to f and

T−1 we obtain that the time averages in the past

f(x) + f(T−1x) + · · · + f(T−n+1x)

n

converge almost everywhere as n → +∞ to f− ∈ L1(T2, µ), f− ◦T = f− and∫
f−dµ =

∫
fdµ.

The next Lemma is part of the usual magic of the ergodic theory.

Lemma 2.2.1 The functions f+ and f− coincide almost everywhere.

Proof. Let

A+ = {x ∈ T2 | f+(x) > f−(x)};

by definition A+ is an invariant set, hence

∫

A+

[f+(x) − f−(x)] dµ(x) =

∫

A+

f(x)dµ(x) −
∫

A+

f(x)dµ(x) = 0

which implies µ(A+) = 0 and f+ ≤ f− µ-almost everywhere. The same
argument, this time applied to the set A− = {x ∈ T2 | f−(x) > f+(x)},
implies the converse inequality. �
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2.2.1 A dynamical proof

For x ∈ T2 let us denote by W u(x) (W s(x)) the line in T2 passing through x
and having the direction of the unstable eigenvector (the stable eigenvector),
i.e., the eigenvector with eigenvalue λ (λ−1). We call W u(x) (W s(x)) the
unstable (stable) leaf (or manifold) of x. The leaves of x have the following
property. If y ∈ W u(x) (y ∈ W s(x)) then the distance (computed along the
leaf)

d(T ny, T nx) = λ−|n|d(y, x) → 0 as n → −∞(+∞).

Hence for y, z ∈ W u(s)(x)

|f(T ny) − f(T nz)| → 0 as n → −∞(+∞).

It follows that for y, z ∈ W u)(x) either f−(y) and f−(z) are both defined and
equal or they are both undefined; the same can be said for f+(y) and f+(z)
if y, z ∈ W s(x).

It is interesting to notice that W u(x) is an infinitely long line in the di-
rection v+ that fills densely the torus (see Problem 2.6). This implies that
the collection (foliation) {W u(x)}x∈T2 of this global manifolds has a quite
complex structure (see Problem 2.7). For this reason it turns out to be much
more convenient to deal only with local manifolds.

A local manifold of size δ is simply a piece of W u(x) of size δ centered at
x. In the following by W u(x) and W s(x) we will always mean local manifolds
(lines) of some length. The exact length is, most of the times, irrelevant an
often will not be specified (in the following it will be frequently chosen so that
the lines do not wrap around the torus more than once).

Up to now we have seen that f+ is constant along a.e. stable lines while f−

is constant along a.e. unstable line, since they are equal a.e. it seems obvious
that they must be equal and constant. Yet, in the last sentence there are a
lot of almost everywhere and, being measure theory a rather subtle subject,
it is better to spell out the reasoning in full detail.6

Let us choose any point x ∈ T2 and prove that there is a neighborhood
of x in which f+ is a.e. constant. Since x is arbitrary this implies that f+

is a.e. constant.7 Chose a square Qδ of size 2δ < 1
4 centered at x with

sides parallel to v+ and v− respectively. Let φ : [−δ, δ]2 → Qδ be defined
by φ(α, β) = x + αv+ + βv−, where we have chosen ‖v±‖ = 1. It is then
convenient to transport the problem in [−δ, δ]2 by φ: doing so the Lebesgue
measure is sent in the Lebesgue measure and that f+◦φ is a.e. constant in the
vertical direction (α constant), while f− ◦ φ is a.e. constant in the horizontal

6We have already seen in Examples 1.5.1–Rotations that these type of arguments must
employ measure theory in a non trivial way.

7Please, note this apparently näıve idea to look at the problem first locally and then
globally, we will see much more of it in the following.
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direction. This corresponds simply to a change of variables and from now on
we will confuse Qδ and [−δ, δ]2 since this does not create any ambiguity.

There are three full measure sets to consider:
B̃+ = {ξ ∈ Qδ | f+(ξ) is defined} ; B̃− = {ξ ∈ Qδ | f−(ξ) is defined} and

G = {ξ ∈ B̃+ ∩ B̃− | f+(ξ) = f−(ξ)}.
Let us call W s

α := {(a, b) ∈ Qδ | a = α} the segment in Qδ parallel to the
stable direction passing through the point (α, 0), and W u

β := {(a, b) ∈ Qδ | b =
β} the segment in Qδ parallel to the unstable direction passing through the
point (0, β). The previous discussion proves that there exist B± ∈ [−δ, δ] such

that B̃+ = ∪α∈B+W s
α and B̃− = ∪β∈B−

W u
β .

Since m is the product of two one dimensional Lebesgue measures8 Fubini
theorem [74] implies that B± are measurable sets of full measure. Again by
Fubini Theorem, it follows

4δ2 = m(Qδ) = m(B̃+ ∩ G) =

∫

B+

dα

∫ δ

−δ

dβχW s
α∩G(α, β).

This implies immediately that there exists a set I ⊂ B+, of full measure, such
that, for each α ∈ I the set Jα = {β ∈ B− | (α, β) ∈ G} is measurable and
has full measure as well; the same holds for E = ∪α∈IW

s
α.

Finally, let z, y ∈ E, z = (a, b) and y = (c, d). If a = c, then z, y ∈ W s
a

and f+(z) = f+(y). On the other hand, if a 6= c then by choosing β ∈ Ja ∩Jc

it follows

f+(z) = f+(W s
a ) = f+(a, β) = f−(a, β)

= f−(W u
β ) = f−(c, β) = f+(c, β) = f+(y).

That is, f+ is constant on E, hence f+ (and f−) is a.e. constant on Qδ. By
the arbitrariness of Qδ follows that f+ = f− =constant a.e..

Up to now we have proved that f+ is a.e. constant only if f ∈ C(0)(T2),
to prove ergodicity we need the same result for each f ∈ L1(T2). This can
be easily obtained by an approximation argument; yet, it is probably more
interesting to prove directly that all invariant sets have measure zero or one.

Let us consider a T -invariant measurable subset A. Let

fn → χA in L1(T2, µ)

be a sequence of uniformly bounded continuous approximations to the indi-
cator function.9 We will use the fact that the time average is continuous with

8Here, to have an unambiguous notation, we should use mn for the Lebesgue measure
in Rn, then we just said m2 = m1 ×m1. For simplicity, I have suppressed all the subscript
hoping not to confuse the reader too much.

9If the existence of such a sequence {fn} it is not obvious, consider the following: for
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respect to the L1 norm to establish that the time average of χA must be
constant on T2. Indeed, if we denote by ‖ · ‖1 the L1(T2, m) norm, then

‖f+
n − χ+

A

∥∥
1

=

∥∥∥∥ lim
N→∞

1

N

N∑

i=1

(
fn ◦ T i − χA ◦ T i

)∥∥∥∥
1

= lim
N→∞

1

N

∥∥∥∥
N∑

i=1

(
fn ◦ T i − χA ◦ T i

)∥∥∥∥
1

by the Lebesgue Dominated Convergence Theorem.
Using the invariance of the measure we obtain

‖f+
n − χ+

A

∥∥
1
≤ lim

N→∞

1

N

N∑

i=1

∥∥fn − χA

∥∥
1

=
∥∥fn − χA

∥∥
1
.

Since the time averages f+
n = m(fn) a.e. in T2 and limn→∞ m(fn) = m(A),

the Lebesgue dominated convergence theorem implies ‖m(A)−χ+
A‖1 = 0, that

is χ+
A = m(A) a.e.. In addition, the invariance of A forces χ+

A = χA so that
either A or Ac has measure zero. In view of the arbitrariness of the invariant
set A it follows that T must be ergodic.

2.2.2 What have we done?

The question remains of how and if such an argument can be extended to
more general systems. The answer must lie in the possibility to generalize the
main ingredients of the previous proof. Such ingredients are essentially two:
a) the existence of two foliations on which f+ (f− respectively) are constant;
b) some regularity property of such foliations.

In general the foliations will be provided by the stable and unstable mani-
folds (the existence of which is the content of the next chapter). A careful look
at the previous proof should convince the reader that the needed regularity
is a property of the type: consider two manifolds W s

1 , W s
2 and define a map

φ : W s
1 → W s

2 by φ(x) = W u(x) ∩ W s
2 (this is often called holonomy map or

Poincaré transformation10, we will use the first name), then φ is measurable
and absolutely continuous that is : if A ⊂ W s

2 has positive measure so has
φ−1A. The absolutely continuity property of stable and unstable foliations
will be the topic of chapter 7.

each ε > 0, by the regularity of the Lebesgue measure, there exists Cε ⊂ A ⊂ Gε (Cε

closed and Gε open) such that m(Gε) − m(Cε) ≤ ε. Then Uryshon lemma implies that
there exists fε ∈ C(0)(T2) such that fε(T2) ⊂ [0, 1], fε|Cε = 1 and fε|Gc

ε
= 0. Thus

‖fε − χA‖1 ≤ m(Gε\Cε) ≤ ε.
10Note that if one could define a flow along the unstable direction–and in our case it is

possible–then the above map would indeed be a Poincaré map with respect to such a flow.
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Of course, the above comments are very imprecise, their only aim is to
give an idea of what is coming next. In the mean time, to start building
some feeling for the foliations and their properties, see Problems 2.12, 2.13
and 2.14.

2.3 About mixing

We continue our investigations with a discussion of an other dynamical proofs
in which we will see the role of hyperbolicity and some basic ideas associated
to it at work. The final goal will be to obtain a dynamical proof of the
following.

Proposition 2.3.1 The Arnold cat is mixing.

We will start by proving Topological Mixing.

Definition 2.3.2 A smooth Dynamical System is topologically mixing if for
each two open sets U and V there exists an integer n ∈ N such that

T−mU ∩ V 6= ∅ ∀m ≥ n.

Note that the all point in the above definition is that it holds for all n
large enough (see Problem 2.3).

Remark that it suffices to have the above property for any class of sets
that can be used as a basis for the topology. The most convenient choice is
given by the so called “rectangles.” Such sets are an extremely important tool
in hyperbolic theory and we have already met them several times–although I
will not insist on them in the present book–here they appear in the simplest
possible form.

Definition 2.3.3 By rectangle we mean a quadrilater (i.e. a region with
boundaries consisting of four segments) with sides parallel to the stable or
unstable directions.

Proposition 2.3.4 The Arnold cat is topologically mixing.

Proof. Let us consider two rectangles A and B. A first key observation
is that, for each m ∈ N, T mA and T mB are rectangles as well. The second
key observation is that they have a very special shape: in the stable direction
their size has contracted by a factor λm while in the unstable direction the size
has expanded by the same factor. Hence, provided m is chosen large enough,
T mA and T mB are very thin in the stable direction and very elongated in
the unstable direction. This property of stretching and squeezing, that we
are witnessing here, is the cornerstone of almost all arguments in hyperbolic
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theory. Of course, similar, but symmetrical, arguments hold for T−mA and
T−mB. We can then choose m ∈ N so large that the length of the unstable
sides of T mB is larger than 2 and, at the same time, the same is true for
the stable side of T−mA. It is then a trivial geometric observation, best
seen on the covering of T2, that T nA ∩ T−nB 6= ∅, for each n ≥ m, thus
T−2nA ∩ B 6= ∅, which suffices to prove the topological mixing. �

The reader who starts to appreciate the spirit of the game may be unhappy
about the previous proof. The problem is that we have used a bit too heavily
the structure of the foliation (straight lines) and of T2 (the covering).

It is then quite natural to wonder if a more flexible and dynamical proof
is available. Here it is.

Another proof of Proposition 2.3.4. Let us start by a preliminary
result.

Given any rectangle A let us call Ac a rectangle of half the size and situated
at its center.11

Lemma 2.3.5 If T−nAc ∩ Ac 6= ∅ for some n ∈ N such that λn > 4, then
T−mnA ∩ A 6= ∅ for all m ∈ N.

Proof. By construction T−nA intersects A completely from one unstable
side to the other (see figure 2.1)

This means that T−2nA ⊃ T−n(T−nA∩A), which is a very thin rectangle
contained in T−nA and that crosses it from one unstable side to the other.
Accordingly T−2nA will intersect A completely (from one unstable side to the
other). By induction the result follows. �

Note that the n ∈ N required by the above statement always exists (see
Problem 2.3).

Next, let A, B ⊂ T2 be two rectangles and let nB ∈ N such that Lemma
2.3.5 applies to B. We then consider the Dynamical Systems (T2, T nB , m),
this is ergodic as well (see Problem 2.2).12 Consequently, for each integer
i ∈ {1, . . . , nB − 1} there exists ki ∈ N such that

T−kinB (T−iAc) ∩ Bc 6= ∅,

and the unstable size of A times λ−kinB is smaller than one quarter of the
unstable size of B (see Problem 2.4). This implies immediately that

T−knB (T−iA) ∩ B 6= ∅ ∀k ≥ ki. (2.3.1)

11This may seem a silly construction but it is a rather general trick used to exploit
topological mixing and we will see it again under the name of core of a rectangle in chapter
8.

12This is the crucial property always needed to obtain mixing in hyperbolic systems:
ergodicity of all the powers of the map.
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Ac A

� T−nA

-T−nAc

Figure 2.1: Intersection between A and T−nA

In fact, T−kinB (T−iA) crosses B from one unstable side to the other and
touches Bc, thus (2.3.1) can be proved by the same type of arguments used
in Lemma 2.3.5.

Finally, set km := max{ki | i ∈ {1, . . . , nB}}. For each n > kmnB we can
write n = knB + i where 0 < i < nB , thus

T−nA ∩ B = T knB (T−iA) ∩ B 6= ∅,
by (2.3.1). �

By the same arguments one can prove the following (see Problem 2.5).

Lemma 2.3.6 Given any stable segment W s of length δ, and any unstable
segment W u of length L > λδ−1, then it holds W s ∩ W u 6= ∅.

To start discussing the problem of mixing we need to adopt a point of view
among the many possible. We will take the one that looks at the measures (see
Proposition 1.7.3 and Problem 1.29) which, by now, should be rather familiar
to the reader. Calling µ0 a measure absolutely continuous with respect to
Lebesgue we would like to study the asymptotic behavior of µn := T∗

nµ0.
Thanks to Proposition 1.7.3 we need to study only the weak convergence.
The first observation is that such a set of measures is compact hence we can
study the set of its limit points Γ (of course with the goal of showing that
it consists of only one point).13 Such a set is simply the set of limits of

13Note that such accumulation points are not necessarily invariant measures, this is why
we considered accumulation points of averages in section 1.4.
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convergent subsequences. Since the measure µ0 is absolutely continuous with
respect to m there exists a function h ∈ L1(T2), h ≥ 0, such that

µ0(f) = m(hf).

A lesson that we have learned from the computation in Fourier trans-
form and from the Hopf argument is that the regularity of the functions do
matter considerably and that it may be useful to consider, at first, regular
functions and then obtain the wanted result by an approximation argument.
Accordingly, we will restrict ourself to the case h ∈ C(1)(T2) and establish
two fundamental facts.14

Lemma 2.3.7 If µ̄ ∈ Γ then µ̄ is absolutely continuous with respect to Lebesgue.
In addition, h̄ = dµ̄

dm ∈ L∞(T2, m).

Proof. We notice that the sequence µn is uniformly absolutely continu-
ous with respect to Lebesgue, that is ∀f ∈ C(0)(T2) such that f ≥ 0

µn(f) =

∫

T2

h ◦ T−nf ≤ ‖h‖∞‖f‖1.

This implies µ̄(f) ≤ ‖h‖∞m(f) and

µ̄(A) = sup
C⊂A
C=C

µ̄(C) = sup
C⊂A
C=C

inf
{f∈C(0) | f>χC}

µ̄(f) ≤ ‖h‖∞m(A), (2.3.2)

where we have used (1.4.1) and (1.4.2). Clearly (2.3.2) implies the absolute
continuity. Hence, by the Radon-Nikodym theorem [74], there exists h̄ ∈
L1(T2, m) such that dµ̄ = h̄dm.

Next, let A = {x ∈ T2 | h̄(x) > ‖h‖∞}. If m(A) 6= 0, then

‖h‖∞m(A) <

∫

A

h̄dm = µ̄(A) ≤ ‖h‖∞m(A)

which is a contradiction, thus h̄ ≤ ‖h‖∞ a.e.. �

The next argument is very similar to what we have already seen in Ex-
amples 1.4.1–Strange Attractors. Let us call Du the derivative along the
unstable direction (if v+ is the normal vector in the unstable direction then
Duf := 〈∇f, v+〉).

Lemma 2.3.8 There exists c > 0 : for each f ∈ C(1)(T2)

|µn(Duf)| ≤ λ−nc‖f‖∞.

14Actually, this regularity condition on h will be needed only in Lemma 2.3.8.
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Proof.

µn(Duf) =

∫

T2

h(Duf) ◦ T n =

∫

T2

h〈(∇f) ◦ T n, v+〉

=

∫

T2

h〈L−n∇(f ◦ T n), v+〉 = λ−n
2∑

i=1

∫

T2

h∂xi
(f ◦ T n)v+

i

= −λ−n

∫

T2

Duhf ◦ T n,

where the last equality is obtained by integrating by parts with respect to
both coordinates. Accordingly,

|µn(Duf)| ≤ λ−n‖∇h‖1‖f‖∞.

�

From the above results it follows that if µ̄ ∈ Γ then there exists h̄ ∈ L∞(T2)
such that, for each f ∈ L1(T2, m),

µ̄(f) =

∫
fh̄dm

and for each f ∈ C(1)(T2), µ̄(Duf) = 0. This two facts together imply that h̄
is constant almost everywhere.

To see this we start by a local argument showing that h̄ is constant along
the unstable direction. We have already done a similar argument, in Exam-
ples 1.4.1–Strange Attractors, by using Fourier series, let us see here a more
measure theoretical argument to convince the reader that the global structure
of T2 has nothing to do with the result.

Let us consider an arbitrary rectangle R of size smaller than 1/4. Con-

sider an arbitrary f ∈ C(1)(T2) with support contained in
◦
R. Then consider

coordinates in R parallel to its sides (since this is achieved by rotations and
rigid translations it leaves invariant the Lebesgue measure). As before, the
unstable sides are horizontal. Let us call x the coordinate along the stable
direction and y the one along the unstable direction. In such coordinates
R = [0, a] × [0, b] (we have translates the origin at the bottom left corner of
R). Given f ∈ C(1), we define

f̃(x, y) = f(x, y) − 1

a

∫ a

0

f(ξ, y)dξ,

F (x, y) =

∫ x

0

f̃(ξ, y)dξ.

Then F |∂R = 0 so F can be extended to a function on T2 by setting F = 0
outside R. Note, that F is continuous and differentiable everywhere apart
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from the boundary ∂R where the derivative can be discontinuous. In the new
coordinates Du becomes simply the derivative with respect to x.

∫

T2

h̄f =

∫

R

h̄f =

∫ a

0

dx

∫ b

0

dyh̄f̃ +
1

a

∫ b

0

dy

∫ a

0

dxh̄(x, y)

∫ a

0

dξf(ξ, y),

and, setting h̃(y) = 1
a

∫ a

0 dξh̄(ξ, y), f̄(y) =
∫ a

0 dξf(ξ, y),

∫

T2

h̄f =

∫ a

0

dy

∫ b

0

dxh̄∂xF +

∫ b

0

dyh̃(y)f̄(y) =

∫

T2

h̄DuF +

∫ b

0

dyh̃(y)f̄(y).

At this point a small obstacle appears, due to the fact that F is not C(1). The
problem is easily solved by approximating F by C(1) functions Fε such that
‖DuF − DuFε‖1 ≤ ε. Then

∣∣∣∣
∫

T2

h̄DuF

∣∣∣∣ =
∣∣∣∣
∫

T2

h̄DuF −
∫

T2

h̄DuFε

∣∣∣∣ ≤ ‖h̄‖∞ε.

Hence,
∫

T2 h̄DuF = 0 also if the derivative is not continuous, consequently

∫

T2

h̄f =

∫

T2

h̃f. (2.3.3)

By the arbitrariness of f (2.3.3) implies that h̄ = h̃ almost everywhere in
◦
R. Since R is arbitrary it follows that h̄ is constant a.e. along the unstable
direction.

A global argument is now needed to show that h̄ must be constant.15

Proof of Proposition 2.3.1–a shortcut. Consider a line `a = {x =
a}. Clearly for each point p = (a, y) ∈ `a W u

p intersects again `a at the point
(a, y + ω+ mod 1) where (1, ω+) is the unstable direction. Then we can
consider the Dynamical Systems (`a, Rω+ , m), and the function ha = h̄(a, y).
By the previous discussion (and Fubini Theorem) it follows that, for almost
every a, the function ha is an L1(`a, m) invariant function for the rotation
Rω+ ; but we know that the irrational rotations are ergodic (see Examples
1.5.1), thus ha =constant which implies immediately h̄ constant. �

The above proof is simple but uses quite heavily the global properties of
the foliation and of T2 to reduce the problem to one already studied (the
irrational rotations). Clearly it is not clear how such a trick could work in
more general situations. Again we would like a more flexible and dynamical
argument.

15The fact that the argument is global, i.e. uses some properties of T
2, reflects the fact

that it is not as general has the Hopf argument which, instead, is of a completely local
nature, as we will see better later (section 8.3).
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Proof of Proposition 2.3.1–dynamical. We will use a strategy al-
ready employed to prove the ergodicity of irrational rotations based on the
existence of density points. Morally, this allows us to consider only rectangles.
By topological mixing we can ensure that any two rectangle are crossed by
the same unstable line (although it is more convenient to take preimmages of
the rectangle and show that they must intersect a given unstable segment),
so it is not possible that h̄ has values different in the two rectangles. This
very näıve argument can be made precise as follows.

If h̄ it is not a.e. constant then there exists two sets A and B of positive
measure such that h̄|A > h̄|B a.e.. Let xA and xB be density points, of A and
B respectively, and choose two rectangle RA and RB of the same size, smaller
than 1

4 , and such that

m(A ∩ RA) ≥ αm(RA)

m(B ∩ RB) ≥ αm(RB) (2.3.4)

where α ∈ [0, 1) will be chosen later.
Let us consider h◦T n, clearly h◦T n|T−nA > h◦T n|T−nB and the relations

(2.3.4) hold for T−nA, T−nRA and T−nB, T−nRB .
Next, let R̂A ⊂ RA and R̂B ⊂ RB be two shorter rectangles obtained

by the original ones by chopping off a quarter of the length in the stable
direction from each side. Let n0 be so large that the stable length of the
rectangles time λn0 is larger than one. Now chose another rectangle R, of
size ρ ≤ 1

4 , as you please. By topological mixing it follows that there exists

n > n0 such that T−nR̂A ∩ R 6= ∅ and T−nR̂B ∩ R 6= ∅. In addition, by the
construction of R̂A and R̂B and the choice of n0, it follows that T−nRA and
T−nRB cross R̃ completely from one unstable side to the other, where R̃ is a
rectangle containing R at its center and of double size. Moreover, the same
quantitative argument of Lemma 2.3.6 shows that it is possible to choose n
such that the stable length of T−nRA, T−nRB is shorter than 8λ2.

Let LA, LB the two rectangles contained in T−nRA ∩ R̃ and T−nRB ∩ R̃,
respectively, that cross R̃ from an unstable side to the other. Chose

α = 1 − m(LB)

4m(RB)
= 1 − m(LA)

4m(RA)
.

The all point is that, on almost all the unstable lines in R̃, h̄ ◦T n is constant,
so if one of this unstable lines intersects both T−nA and T−nB we have a
contradiction. Thus, it must be

m

([
⋃

x∈T−nA

W u
x ∩ LB

]
⋂
[

⋃

x∈T−nB

W u
x ∩ LB

])
= 0.
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Fubini theorem implies

m

(
⋃

x∈T−nA

W u
x ∩ LB

)
= m

(
⋃

x∈T−nA

W u
x ∩ LA

)
≥ m(T−nA ∩ LA),

and

m

(
⋃

x∈T−nB

W u
x ∩ LB

)
≥ m(T−nB ∩ LB),

This yields:

m(LB) ≥ m(T−nA ∩ LA) + m(T−nB ∩ LB)

≥ m(T−nA ∩ T−nRA) − m(T−nRA\LA)

+ m(T−nB ∩ T−nRB) − m(T−nRB\LB)

≥ 2{αm(T−nRB) − m(T−nRB) + m(LB)}

≥ 3

2
m(LB)

which is a contradiction. This shows that is not possible that the unstable
manifolds starting at T−nA systematically avoid T−nB.

Hence, h̄ is constant, but then h̄ =
∫

T2 h̄ = µ̄(1) = µ0(1). We have just
proved that Γ consists of only one measure: the Lebesgue measure. Thus

lim
n→∞

∫

T2

hf ◦ T ndm =

∫

T2

hdm

∫

T2

fdm,

for each g, f ∈ C(1)(T2). The mixing follows by the same approximation
argument used in the Fourier series analyses. �

2.4 Shadowing

In this section we explore the topological complexity of the dynamics of our
model systems. I have already remarked that when such a strong instability
with respect to the initial condition is present it is impossible to follow exactly
an orbit of the system. In fact if we compute (e.g. with a computer) the orbit
of the initial point x ∈ T2, due to round off errors we do not get an orbit but
rather a pseudo-orbit.

Definition 2.4.1 Give an systems (X, T ), X Riemannian manifold, an infi-
nite sequence {xi}i∈Z ⊂ T2 is called an ε-pseudo orbit if, for all i ∈ Z,

d(xi+1, Txi) ≤ ε.
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Qδ(x0)

·
x0

ε δ

Qδ(x1)

·
x1

�
���

TQδ(x0)

Qδ(x2)

·
x2

�
���

TQδ(x1)

T 2Qδ(x0)
�
��

Figure 2.2: Intersection between T nQδ(x0) and Qδ(xn)

Which means exactly that at each step an error of order ε is allowed.
The following result, beside being very useful, is a partial replay to the

argument that it is not possible to follow orbits on a computer. Although the
result is quite general, we state, and prove, it in our special context.

Proposition 2.4.2 For each δ > 0 there exists and ε > 0 such that, if {xi}
is a ε-pseudo-orbit for the Arnold cat, then there exists ξ ∈ T2 such that

d(xi, T
iξ) ≤ δ ∀i ∈ Z.

That is, there exists an orbit that δ-shadows the pseudo-orbit, moreover such
an orbit is unique.

Proof. As usual we consider rectangular (better yet: square) neighbor-
hood of points. So, let Qε(x) be a square of size ε centered at x with sides
parallel to the stable and unstable direction, respectively.

Next, let us consider TQδ(x0), since d(Tx0, x) ≤ ε, if δ
2λ + ε < δ

2 and
λδ
2 − ε > δ

2 , then TQδ(x0) crosses Qδ(x1) completely from the stable side to

the other stable side. Thus, provided we choose δ ≥ 2λ
λ−1ε, we have the picture

of the intersection between rectangle that we have already learned to like.
Of course the same transversal intersection takes place for each TQδ(xi)

and Qδ(xi+1). This immediately implies that T nQδ(x0) crosses Qδ(xn) from
one stable side to the other (see figure 2.2)

Thus Kn = T−n(T nQδ(x0)∩Qδ(xn)) is a sequence of nested (Kn+1 ⊂ Kn)
vertical rectangles. The unstable side of Kn is of size λ−nδ while the stable
side is of size δ.

Clearly, if ξ ∈ Kn, then

d(T iξ, xi) < δ ∀i ∈ {0, . . . , n}.
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We can then consider the vertical line K∞ = ∩n∈NKn, by construction K∞
consists of points whose orbit δ shadows {xi}i∈N. By doing the same exact
construction in the past we obtain an horizontal line K̃∞ of points that δ
shadows {x−i}i∈N. The theorem is then proven by choosing {ξ} = K̃∞∩K∞.

the uniqueness should be obvious from the construction. In alternative
the reader can prove it by contradiction. �

The above theorem is not so helpful from the measure theoretical point of
view, since it could happen that the set of trajectories that shadow pseudo-
orbits are of measure zero. (say more)

Nevertheless, it is very useful from the topological point of view (see Prob-
lem 2.15 for a dim glimpse to such possibilities).

2.5 Markov partitions

In all the above constructions the concept of rectangle has played a key rôle.
In this section we present a construction that is the glorification of such a
point of view.

Consider the stable and unstable manifolds of zero and prolong them until
they meet (of course when they meet we meet an old friend: an homoclinic
intersection) few times.

Clearly in such a way we have obtained a partition of T2. Such a partition
consists of rectangles with sides that are either stable or unstable manifolds.
We call them respectively the stable and the unstable sides of the rectangles.
A partition is Markov if the preimage of each unstable side of a rectangle is
contained in the unstable side of a rectangle and the image of every stable
side is contained in the stable side of a rectangle. The reader can check that
it is possible to use the above construction to have a Markov partition with
(for example) three rectangles (see Figure 2.3 where the case a = 1 is drown).

Problems

2.1 Use the Diofantine properties of the stable and unstable direction to
obtain better estimates of the decay of correlations. The Diofantine
property refers to the following fact: if we normalize the eigenvectors in
such a way that v± = (1, ω±), then ω± are irrational numbers that are
badly approximated by rationals: there exists c ≥ 0 such that |ω±− p

q | ≥
c
q2 for each p, q ∈ N, [1]. (Hint: ???)

2.2 Prove that the dynamical System (T2, T n, m) (where T is the Arnold
cat map) is ergodic for each n ∈ N. (Hint: the same proof as for n = 1.)
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R1

R1

R2

R2
R3

Figure 2.3: Markov partition

2.3 Let (X, T, µ) be a Dynamical Systems where X is a compact metric
space, T is continuous, and µ charges the open sets (i.e. if U ⊂ X
is open, then µ(U) > 0). Prove that for each U ⊂ X open, there
exist infinitely many n ∈ N such that T−nU ∩ U 6= ∅. (Hint: Poincaré
Theorem.)

2.4 Let (X, T, µ) be an ergodic Dynamical Systems where X is a compact
metric space, T is continuous, and µ charges the open sets. Prove that
for each U, V ⊂ X open, there exist infinitely many n ∈ N such that
T−nU ∩ V 6= ∅. (Hint:For each k ∈ N, A = ∪n≤kT−nU is an invariant
open set, if it does not intersect V , then m(A) < 1, thus, by ergodicity,
m(A) = 0 which implies U = ∅.)

2.5 Prove Lemma 2.3.6. (Hint: As in the proof of Topologically mixing
consider T−nW s, T nW u and chose n so large that λδ > 2 while the
length L of W u must satisfy λ−nL > 2.)

2.6 Show that for each x ∈ T2 the global unstable manifold W u(x) is dense
in T2. (Hint: An algebraic proof–Let us normalize v+ = (1, ω), then ω
is irrational. Clearly W u(x) = {x + tv+ mod 1}t∈R. Consider a point
y = (y1, y2) and chose t0 = y1 − x1, then, for each n ∈ Z, x + (t0 +
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n)v+
1 mod 1 = (y1, R

n
ωξ mod 1) where ξ = x2 + (y1 − x1)ω mod 1. Now,

we know that Rω has dense orbits (see Examples 1.5.1–Rotations), thus
the result.
A dynamical proof–It follows Lemma 2.3.6 plus the fact that T−nW u is
shorter than W u.)

2.7 Consider the global unstable foliation {W u(x)} and choose an interval
of length (in the horizontal direction) one from each fiber.16 Let K be
the set obtained by the union of all such segments. Prove that K it
is not measurable. (Hint: Define R : T2 → T2 by R(x, y) = (x, Rωy).
Then, remember Problem 1.14.)

2.8 Let W u(x), W s(x) ⊂ U ⊂ R2, U =
◦
U and Ū compact, smooth mani-

folds (C(1) curves) such that, the {W u(s)(x)}x∈U are pairwise disjoint,
∂W u(s)(x) ⊂ ∂U , if z ∈ W u(x)∩W s(y), then the angle between W u(x)
and W s(y) at z is larger than some θ > 0. In addition, assume that,
calling vu(s)(x) the unit tangent vector to W u(s)(x) at x, vu(s) ∈ C(1).
We will call such two foliation “ C(1) uniformly transversal foliations.”
Show that to each such a foliation it is associated a change of variable
(a diffeomorphism Ψ : U → U) and that to each change of variables is
associated such a foliation. (Hint: . . . )

2.9 Consider two C(1) uniformly transversal foliations (as in Problem 2.8).
Prove that if f ∈ L∞ is constant along almost every fiber of the two fo-
liations, then it is constant almost everywhere. (Hint: Do the argument
locally and change variables so that the foliations becomes straight.)

2.10 Consider the Bernoulli measures µB
p defined on Σ+

2 (the one sided se-
quences with two symbols) by choosing p0 = p and p1 = 1 − p (see
Examples 1.1.1–Bernoulli shift). Show that, if p 6= p′ then µB

p and µB
p′

are mutually singular. (Hint: All the dynamical systems (Σ+
2 , τ, µB

p ) are
ergodic–See Examples ?? and ??.)

2.11 Let µp be the measure on [0, 1] obtained from µB
p by the binary repre-

sentation of the real numbers (see Examples ), let

Fp(x) := µp([0, x]).

Show that, for each p ∈ (0, 1), Fp : [0, 1] → [0, 1] is one one, onto,
continuous. In addition, show that there exists c ∈ R+ such that, for
each p, q ∈ [ 14 , 3

4 ], holds

|Fp(x) − Fq(x)| ≤ c|p − q|.
16The Axiom of choice again.
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(Hint: Note that the cylinder correspond to intervals with end points
made of binary rationals. It is then immediately clear that all the mea-
sures µp give positive measures to the open sets. To prove the last
inequality prove the representation

Fp(x) =

∞∑

n=0

σn

n∏

i=0

pσi(1 − p)1−σi

where σ is the binary representation of x.)

2.12 Construct φ : [0, 1] → [0, 1], invertible and continuous, such that there
exists A ⊂ [0, 1] with m(A) = 0 while m(φ(A)) = 1. (Hint: Any of the
above Fp will do.)

2.13 Construct a continuous foliation Ψ in [0, 1]2made of C∞ leaves (that
is Ψ is a isomomorphism of [0, 1]2 and Ψ(·, y) ∈ C∞). In addition,
the foliation must be made of straight lines in {(x, y) ∈ [0, 1]2 | x ∈
[0, 1

4 ] ∪ [ 34 , 1]} but is should not be absolutely continuous in the region

{(x, y) ∈ [0, 1]2 | x ∈ [ 14 , 3
4 ]}. (Hint: Let ϕ ∈ C(∞)(R), ϕ(R) = [0, 1],

ϕ(x) = 0 for x < 0 and ϕ(x) = 1 for x > 1
2 . Then, using φ from Problem

2.12, define

Ψ(x, y) =





(x, y) if x ∈ [0, 1
4 ]

(x, [1 − ϕ(x − 1
4 )]y + ϕ(x − 1

4 )φ(y)) if x ∈ [ 14 , 3
4 ]

(x, φ(y)) if x ∈ [ 34 , 1].

Clearly the leaves Ψ(·, y) are C(∞), yet the foliation it is not absolutely
continuous.)

2.14 Find two C(0) uniformly transversal foliations in [0, 1]2, with C(∞) leaves,
such that the Hopf argument does not apply. (Hint: Call Ψp, p ∈ [ 14 , 3

4 ]
the foliation constructed in the Problem 13 starting from the function
Fp defined in the Problem 11. Choose a sequence pn converging to one
quarter, e.g. pn = 1

4 + 1
4n , then let xn = 1

2 − 1
2n . Finally define the

foliation

Ψ(x, y) =

{
Ψpn

(xn + (xn+1 − xn)x, y) for x ∈ [xn, xn+1]
(x, F 1

4
(y)) for x ∈ [ 12 , 1]

Further define the function g : [0, 1] → [0, 1] to be one on a set of full
measure for µ 1

4
and of zero measure for µpn

and zero otherwise. The

functions f+, f− defined by

f−(x, y) =

{
0 for x ∈ [0, 1

2 )
1 for x ∈ [ 12 , 1]
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and
f+(x, Ψ(x, y)) = g(x),

are then constant on the vertical and the Ψ foliation respectively. More-
over they clearly are equal Lebesgue almost everywhere, nevertheless
they are certainly not constant.)

2.15 Show (first without using Markov Partitions and then by using Markov
partitions) that the Arnold cat has at least ecn periodic orbits of pe-
riod n, for some c > 0. (Hint: If we have a rectangle R of size ε, then
T−nR ∩ R 6= ∅ for some n ≤ c ln ε−1. Then, if x ∈ T−nR ∩ R we con-
sider the pseudo orbit xk = T ix where i = k mod n. Then Proposition
2.4.2 implies the existence of a periodic orbit in an ε-neighborhood Rε

of R. On the other hand the boxed T−kRε, k ∈ {0, . . . , n} invade a
part of T2 of measure cε2 ln ε−1. The argument is then concluded tak-
ing boxes in the remaining space and continuing until all the available
space is exhausted. On the other hand, if one takes in account Markov
partions, then the number of periodic orbits is given–appart from the
non-invertibility of the coding–by the number of periodic simbolic se-
quences of period n.)

Notes

Hopf history and ref
Mention Young-Robinson example

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


