PERSONAL NOTES FOR THE COIMBRA MINICOURSE
PROBABILITY AND UNIFORMLY HYPERBOLIC SYSTEMS

CARLANGELO LIVERANI

ABSTRACT. This are personal notes, they contain mistakes and the notation
is inconsistent. Read at your own risk.

1. FIRST LECTURE

1.1. Expanding maps. Let us start to investigate a particular, but very impor-
tant, type of dynamical systems: piecewise smooth expanding maps.
More precisely, let X := [0, 1]¢ together with a (possibly countable) collection of
disjoint open sets {A; };czcn such that
o UicrA; = X;
e For each orthogonal basis E := {e;} letLy(z, j, E) be the number of con-
nected components of {z + tek}te[—l,l] NA,;. Then we assume that L; =
inf g sup,ea, supy Li(z, j, E) < oo.

Next, let T': X — X be such that, for each i € Z, T|a; is a C? invertible map.
Finally we ask that the map be expanding and not too singular

(D) M <At <1 forallz € Ay

D) |V(D,T) ™| pa < .

Given such a system we ask ourselves the following questions

(1) can we investigate the behavior of the Birkhoff sums in some detail?

(2) are there invariant measures absolutely continuos with respect to the Lebesgue
measure?

(3) if such measures exist, do they describe the statistic of the orbits ?

(4) which measures converge, under the dynamics, to such measures, how fast?

(5) are such measures stable under perturbations (stochastic or deterministic)?

(6) can such measure be computed?

By Birkhoff sums we mean, given a measurable function f: X — R,

n—1
(1.2) Fula) = - 3 (T (@),
k=0

The importance of such sums is due to the fact that very often a measurement on a
real system (physical, biological, economic ...) described by the dynamical system
(X,T) is of the form f,, for some large n.

Birkhoff theorem assert that lim, .o, f o T™ exist p-almost surely for any in-
variant probability measure u. Let us recall that, calling M(X) the set of Borel
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measures on X, we can define the map 77" : M — M by T'u(f) := u(f o T) for
each measurable bounded f. The a measure is invariant if 7'y = p.

Invariant measures thus play a very important role, but they are too many (e.g.
if T is continuos, then any invariant set supports at least an invariant measure by
Krylov-Bogoliubov theorem). If we are interested in the behavior of (1.2) only for
almost every point with respect to Lebesgue, then it seems natural and necessary to
restrict our discussion to invariant measures absolutely continuos w.r.t. Lebesgue
(if they exist). To do this some measure theory is needed.

1.2. A bit of measure theory. Let us define the following two norms on M (X):

p(p)
| == sup —=

CO(X,R oo
(1.3) PECOE)

— (O, )
[pl == sup sup  ——
ke{l,...,d} peC(X,R) |00
Note that, for each ¢ € C°(X,R) and € > 0 one can find p. € C'(X,R) such that
|l — ¢:| < €lloo, hence

1
() < |plelplos + plpe) = |plel@los + p(0a, / pe) < (lule + [|ull(1 +€))|elo-
0
Taking the sup on ¢ and by the arbitrariness of ¢, follows

(1.4) lul < {lpll-

Lemma 1.1. Let B := {u € M(X) : ||p]| < oco}. If p € B then it is absolutely
continuos with respect to the Lebesgue measure m. Moreover

d d
# € LP(X,m) forallp < PR

Proof. Let ¢ € C°(X,R), then for each ¢ € (0,1) there exists p. € C*(R% R),
supported in [—¢,1 + €]%, such that |p — ¢-|co(x r) < & [Peloo < |@loo(1+€). In
addition, if we define

—3llell ifd=1
(1.5) L&) =~ In €] if d =2

1 .
W@ Dage=  Hd=3,

where «q is the d-dimensional volume of the unit ball in R%, we can define the
Newtonian potential we(z) = [paT'(z — 2)@c(2)dz. It is then well know from
potential theory that Aw. = ., thus

d

p(p) < p(oe) + lule = p(0r, 0nwe) + ple
k=1

d
<3 Ml sup [ 10,1 — 2)u(e)d] + e
h—1 rxeX

d P
| — 2]
<O nlleclen | [ dz| -+l
; : [—1,2]4 |z — =]l
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where g~' +p~! = 1. Since the integral in square brackets is finite for p < 5%, we
have, be the arbitrariness of ¢,

() < C(lull + [uDlelza-

This means that the linear functional p : C° — R can be extended to a bounded
functional on L?. Since the dual of L? is LP it follows that there exists h € LP such

that pu(e) = [y h(z)p(z)dz. O

Remark 1.2. In fact it follows from the Gagliardo-Nirenberg-Sobolev inequality
that the above Lemma holds also for p = d;dl.

Exercize 1. Show that, for all i € B, setting h = % holds |u| = |h|p: and
el = 1Al v

The following characterization will be useful in the following: given h € L'(X,m)
we define

1
h(z1, .. T "(2)d
Var® (h)(z) = sup fo (@1, e, 2, Thop 1, - - - a) P (2) z'

»eC1(]0,1],R) |<P|oo

Lemma 1.3. For each pu € B, setting h = du

am’
lpll = sup | Var®(h)|p:.
ke{l
Proof. First,
||l < sup sup /h@mkgo =sup sup Var® hsup || < sup | Var® ()| ..
k T k

[ploe <1 k Jplo<1

For the opposite inequality one need a bit of preparation.

For each n € N and function n € C3([—1,1]",Ry), [n =1, let us define n.(z) =
e "n(e~1z). Then, for each h € L*([0,1]",m) and ¢ € C§(R™,R) let h.(z) =
Jdz h(z) ne(z — 2),

Jonhe@) o) = [ 100~ 2) - (o)

- / h(2)0ey e (& — 2) - 9(2) < 1|5V ]@loo-

That is supy |0z, he|rr < |h|py. On the other hand, for each 6 > 0 and k €
{1,...,d} there exists ¢ € C', |¢|oc = 1, such that |h|py < [hd,¢ + §. Next,

consider a compact support extension ¢ € C} of ¢ on all R" such that |(;~5|OO <1494
and choose €y > 0 such that, for all € < &,

0.,0(0) ~ [ oo = )00, 3| < 3l

(1.6)

sup
z€[0,1]n

Hence,
iy < /hgam,cqbr 25 — —/am,chgqbr 26 < |0, helpr (14 ) + 26.

Thus, by the arbitrariness of 4,
(1.7) liminf sup |0y, kel = |h|BV.
e—0 k
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Finally, let 77 : R — Ry and n.(x) = e~ 1ij(e~tay), using first (1.7) for n = 1, then
Fatu and finally arguing as in (1.6),

| Var®(h)| 1 = /d:z:l coodap_ydzgg - dog Var® h(z)
= /d:z:l coedrg_1dxgy - dey, 1imi61f/d:ck|8mkh5(:1:)|
E—

< liminf |0y, he|pr < liminf sup /h(a:)(?mkgas(x) < |hlpv.
e—0 e—0 pect
“/"oogl

2. SECOND LECTURE
Lemma 2.1. The ball B ={p € B : ||u|| < 1} is relatively compact in (M(X),]-|).

Proof. For each t € N, let us consider a partition {A;} of [0, 1] in intervals of size
t~! and, for each k € {1,...,d}, define

P, pp(x) = tz 14, (2r) / dzp(T1, .oy Th—1y 2y Thot 1y« 5 Td)
(2.1) j A;

PtSDZPt,l"'Pt,dSD-
First of all note that
pki(p) = p(Prrp) = /hpt,ksﬁ = /Pt.,kh'<ﬂ-

Next, if j # k

Pl 1(0s, ) = / WP, 0,0 = / hos, Prp < |lul.
and
Tk
Pl ynlone) = [ hPt,kazksa—nun] / dszt,kamksa\ < 4.
0

o0
In addition,

Tk
W(Porp— ) = Il ] [ dentpuse - w)’
0

If o, € Aj = [t (j + 1)t then

Ty Tk
/ dxy (P e — @) :/ @ < Jploot ™"
0 jt=1

o0

Accordingly, ||P/u| < 49||u| and |P/p — p| < 4911¢71. In addition, notice that
Plu=t*y, i M(Lay, - L4, )ma,x..xa,,, where t~9my, x-x4,, is the Lebesgue
measure restricted to the set Ay x --- x A;,. In other words the range of P is a
finite dimensional space. This implies that if {y;} C B, then {P/u;} lives in a
finite dimensional bounded set, hence it is compact. Thus there exists p; and n;
such that lim; oo || P/pin; — p¢|| = 0. In addition, for ¢t > ¢,

e = pror| < Nppe = Pl | + e = Prpiny | + | P pimy — Plopan,| < CL1

provided one choses j large enough. It follows that there exists a sequence ¢; and
a measure u such that lim; o [ — Py, pin;| = 0. O
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2.1. Dynamical inequalities (Lasota-Yorke). There exists C' > 0 such that for
each o € (0,1), ¢ > 0 and ¢ € Z, there are smooth functions ¢$ supported in a
o'\ Lie-neighborhood of A; and such that |¢5]e = 1, [¢5|c1 < Cate N L
and ¢;(x) =1 for all z € A;. Let us define

> N,

i€l

o = lim
e—0

oo

Note that, in the simple case in which the partition {A;} is finite and can be chosen
(eventually by refining it), such that L; = 1, and if A = );, then ¢/ = CAA™! where
CA is the complexity of the partition:

Car=sup#{icT : v}
zeX

Lemma 2.2 (Lasota-Yorke inequality). For each o € (0',1) there exists a constant
B > 0 such that, for each p € B, holds

T'u < |u
|7l < ollpll + Blpul.

Proof. First of all notice that, if u € B, then (Remembering Lemma 1.1 and Exercise
1)
T'ul = sup p(poT) < |ul.

|S"|c0§1

Next, for all p € C!, |¢|oo <1 and k € {1,...,d} we have

T//'L(ailik(p) = ZN(]lAi (aﬂﬂk (P) °© T)

i€T
d d

= Z Z (1A, 0, ((DT);:jlga oT)) — Z Z p(la,poToy, ((DT);];))'
ieT j=1 €T j=1

Setting h = % and Yy, = (DT),;jlgp oT, note that 3 [{pjloc < A1, moreover we

can rotate the coordinates as is most convenient (by redefining ¢; as well)
1(1a, 0z, %k;) = (97 1A, 0, Vi)
< /h(x)azj [qﬁf /Of”j LA, O, Yrjl(w1, .21, 2, 2541, .. -, 2q)dz
+ A Lilullile:
Hence, remembering the hypotheses on 7',

Z Qbf)\i_lLi

i€l

+ 3 A Lilpllgiler + Cu(|V(DT) )

o i€T

T 1(Onyp) = /Varkh

< llulle + Blul + (0 = o)l
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2.2. Spectral properties. In this subsection we will study the spectral properties
of the operator 7" acting on B and relate them with the dynamical properties of
the system.

Remark 2.3. From now on we will assume o < 1. Note that, in some cases,
this can be achieved by considering a power of the map (e.g., in one dimension with
a finite partition).

Lemma 2.4. The operator T’ has spectral radius equal one and essential spectral
radius smaller than o.

Proof. The first assertion follows directly from Lemma 2.2. For the second we need
a well known result.

Theorem 2.5 (Analytic Fredholm theorem-finite rank'). Let D be an open con-
nected subset of C. Let F : C — L(B,B) be an analytic operator-valued function
such that F(z) is finite rank for each z € D. Then, one of the following two
alternatives holds true
o (1 —F(2)) " exists for noz € D
o (1 —F(2))7! exists for all 2 € D\S where S is a discrete subset of D (i.e.
S has no limit points in D). In addition, if z € S, then 1 is an eigenvalue
for F(2) and the associated eigenspace has finite multiplicity.

For completeness we well give later a fast proof of this result.
Let T}, , := (T')" P, clearly such an operator is finite rank, in addition

T =Ty gl < o™ |(1 = Po)pll + BI(L = P)p| < (1+4)o" A" ||l + Bt~ |l
By choosing t = ¢™ we have that there exists C7 > 0 such that
(T)" =Tyl < Cro™.

For each z € C we can now write

1—2(T" = (1 = 2((T)" = T,,4)) — 2T;, -
Since

(@) =T ) < 2lCro™ < 5
provided that |z| < ﬁo_". Given any z in the disk D,, := {|z] < 2—&0‘"} the
operator B(z) := 1 — z((T")" — T}, ,) is invertible.> Hence
1—2(T")" = (1 - 2T}, ,B(2)"") B(z) =: (1 — F(2))B(z).

By applying Theorem 2.5 to F'(z) we have that the operator is either never invertible
or not invertible only in finitely many points in the disk D,,. Since for |z| < 1 we
have (1 — z(T")")~! = Y322, 2F(T")"¥, the first alternative cannot hold hence the
Theorem follows. O

1The present proof is patterned after the proof of the Analytic Fredholm alternative for compact
operators (in Hilbert spaces) given in [46, Theorem VI.14]. There it is used the fact that compact
operators in Hilbert spaces can always be approximated by finite rank ones. In fact the theorem
holds also for compact operators in Banach spaces but the proof is a bit more involved.

2Clearly B()™" = Y32 [(1")" ~14,0)]
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Proof of Theorem 2.5. First of all notice that, for each 2y € D there exists r > 0
such that D,.(.,)(20) :={2 € C : [z — 20| <7(20)} C D, and

wp  F(G) - Pl < &
ZEDr(zO)(ZO)

Clearly if we can prove the theorem in each such disk we are done.® Note that
1-F(z) = (1 - F(20)(L - [F(2) = F(20)])7") (L = [F(2) = F(20)))-

Thus the invertibility of 1 — F(z) in D,(z9) depends on the invertibility of 1 —
F(z0)(1 — [F(2) — F(20)])!. Let us set Fy(2) := F(20)(1 — [F(2) — F(20)]) "
Let us start by looking at the equation

(2.2) (1 — Fo(2))h = 0.

Clearly if a solution exists, then h € Range(Fy(z)) = Range(F(z9)) := V. Since
Vo is finite dimensional there exists a basis {h;}~_, such that h = >; aih;. On the
other hand there exists an analytic matrix G(z) such that*

Fo(Z)h = Z G(z)ijajhi.

Thus (2.2) is equivalent to
(1 - G(z))a =0,
where « 1= ().
The above equation can be satisfied only if det(1—G(z)) = 0 but the determinant
is analytic hence it is either always zero or zero only at isolated points.”
Suppose the determinant different from zero, and consider the equation

(1 - Fo(z))h =g
Let us look for a solution of the type h =Y. a;h; + g. Substituting yields
a—Gz)a=p

where (3 := (8;) with Fy(2)g =: >, Bih;. Since the above equation admits a solu-
tion, we have Range(1 — Fy(z)) = B, Thus we have an everywhere defined inverse,
hence bounded by the open mapping theorem.

We are thus left with the analysis of the situation z € S in the second alternative.
In such a case, there exists h such that (1 — F(z))h = 0, thus one is an eigenvalue.
On the other hand, if we apply the above facts to the function ®(¢) := ("1 F(z)
analytic in the domain {¢ # 0} we note that the first alternative cannot take place

3In fact, consider any connected compact set K contained in D. Let us suppose that for each
20 € K we have a disk D, (,)(z0) in the theorem holds. Since the disks D,.(,;)/2(20) form a
covering for K we can extract a finite cover. If the first alternative holds in one such disk then, by
connectedness, it must hold on all K. Otherwise each SODT(ZO)/Q(ZO), and hence KNS, contains
only finitely many points. The Theorem follows by the arbitrariness of K.

4To see the analyticity notice that we can construct linear functionals {¢;} on Vy such that
2;(hj) = d;; and then extend them to all B by the Hahn-Banach theorem. Accordingly, G(z);; :=
2 (Fo(z)hs), which is obviously analytic.

5The attentive reader has certainly noticed that this is the turning point of the theorem: the
discreteness of S is reduced to the discreteness of the zeroes of an appropriate analytic function:
a determinant. A moment thought will immediately explain the effort made by many mathemati-
cians to extend the notion of determinant (that is to define an analytic function whose zeroes
coincide with the spectrum of the operator) beyond the realm of matrices (the so called Fredholm
determinants).
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since for |{| large enough 1 — ®({) is obviously invertible. Hence, the spectrum
of F(z) is discrete and can accumulate only at zero. This means that there is a
small neighborhood around one in which F(z) has no other eigenvalues, we can
thus surround one with a small circle v and consider the projector

=g €PN = o [ €= R - e
= [ P FE) e

By standard functional calculus it follows that P is a projector and it clearly
projects on the eigenspace of the eigenvector one. But the last formula shows
that P must project on a subspace of the range of F(z), hence it must be finite
dimensional. (]

2.3. Peripheral spectrum. It is then natural to start looking at the eigenvalues
of modulus one. By Lemma 2.4 and the usual fact about the spectral decomposition
of the operators [28], follows that there exists a finite set © C [0,27) such that we
can writeS
T — Z eié)He +R
0O

where Ily are finite rank operators and the spectral radius of R is strictly smaller
than one. Moreover, IlIglly: = dgg:Ily, IIgR = RIIy = 0. It follows that, for each
0 eR,

s My, if6eco
0 otherwise.

1 .
1' - —ik6 T/ k —
Jim -~ ,;:0 e (T

Also, by Lemma 2.2 follows |[IIgu|| < C|u|. Since IIp is a finite rank projector,
there must exist po; € B, £o,; € B’ such that IIg = >, po,1 ® £g,;, moreover T' g ; =
ey, and Lo (T'p) = e¥ly (u) for all p € B. Hence, it must be |[fg;(u)| <
Clu| = C [ |hyldm. Since L°°(X,m) is the dual of L', it follows that there exists
g1 € L(X,m) such that

loa(p) = /Ze,lhu = p(lyy).
Hence, for each u € B,
11(lo) = Coa(p) = e Lo s(T' ) = e T u(lo1) = e “pu(lyroT).
The above implies that 57971 ol = e’wfgyl Lebesgue a.s.. Let us set p, := lgm.

Lemma 2.6. For each ¢ € L>=(X,m) such that £ o T = ¢, m-a.s., if we define the
measure () := e (bp), then p is invariant and p € B.

Proof. First of all notice that T'u(¢) = ps(€-00T) = ps((€p)oT) = pi (L) = u(p),
that is p is an invariant measure. Next, for each € > 0 there exists ¢, € L™ such
that |4:|oo < 2|€|oo and px(|[€—£:|)+m(|€—£:|) < . Then, setting p. () := p.(lep)

[(T")" ulsp) — (T")" pe (p)] < €leploc

6Remark that there cannot be Jordan blocks with eigenvector of modulus one, since this would
imply that ||(T”)"|| grows polynomially, contrary to Lemma 2.2.



NOTES-COIMBRA 21/07/2008 9

implies
. 1 n—1 B
Mopte — p < limsup |= > e ™ (T")*(pe — p)| < e
n—o0 n k=0

Hence, for each ¢ € C!, |p|o < 1,
110z, p) = lim Hopie (Oz, ) < lim [[Hope|| < C'lim [pe| < C.
(Il

Thus, for each p € N and 6 € ©, the measure 1, 0(p) := p(fp ;) is in B and
T'upo = P, . But this implies that {pf},en C o5(T") N {|z| = 1} and since
the latter is finite it must be § = 273 for some s,z € N. We have just proven the
following

Lemma 2.7. The peripheral spectrum of T', og(T’) N {|z| = 1}, is the fine union
of cyclic groups.

3. THIRD LECTURE

3.1. Dynamical properties.

Lemma 3.1. If the map T is topologically transitive then 1 is a simple eigen-
value for T'. If all the powers of T are topologically transitive, then {1} is the all
peripheral spectrum.

Proof. We do the proof only for d = 1, as in higher dimension it is more complex
(see footnote below). If one it is not simple, then there exists an invariant set A,
w«(A) € {0,1}. But then 14 € BV which implies that A contains an open set,
the same applies to A¢ (this is true only for d = 1).” But then, by topological
transitivity, there is an orbit that visits such opens sets, hence the sets are not
invariant. The same argument applied to T™ concludes the Lemma. (|

In conclusion, we have obtained conditions under which the system has a unique
invariant measure u, absolutely continuos w.r.t. Lebesgue. In addition, there exists
p > 0 such that for each pu € B we have

(T 1 — ]| < Clpalle™?™

3.2. Birkhoff averages. From now on we assume that one is simple and is the
only eigenvalue of modulus one. Let f € L>°(X,m), and let f = f — p.(f), then

n—1 n—1
m(f2) = | Som(f e +2 3 m(foTforh) | < Cnflu
k=0 i>k=0

By Chebyshev inequality, we have

m({z : |fal < L7} < 0%2.

"In higher dimensions one can have a Cantor like set with characteristic function in BV.
Hence one must either use a different functional space (a convenient one in this respect has been
introduced in [48]) or use explicitly the dynamics: for example note the one can easily bound the
€ neighborhood of the boundary of the partition and that, by a commonly used argument, implies
that there is a large measure of point with an open neighborhood whose preimages are all away
from singularities. One can then proceed to prove that on such open sets the density must be
continuos showing that any invariant set must contain an open set.
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The above, by Borel-Cantelli, implies®

n—1

1
lim — TH(2) = pa -almost surely.
nl_)n;onkzzofo () = p(f) m-almost surely

That is p. is a physical measure (also SRB) and the unique one. In fact one can
obtain much sharper results on the behavior of the f,.

3.3. Open problems. All the above has been obtained under some conditions on
the partition {A;}. Many results of this type can be found in [48, 11, 12]. The
necessity of some condition it is know ([52, 10]) yet no condition is necessary in the
analytic or piecewise linear case ([50, 51, 9]) and some progress has been made in
the general case [13]. Is it possible to weaken the known conditions? Almost no
results for partitions with countably many elements or with singular maps (while
we have just seen that some results are possible).

3.4. Limit Theorems. A first question may be the following: given f € C°, n € N
and a € Ry let

n—1
(3.1) Aan(f) = {xETl : ‘%ZfoTk(x)—u(f)
k=0

> au(|f|)}-

Question 1. How large is p(Aqn)?

Note that we can write %EZ;& foTkx) — u(f) = L3202 f o T*(x) where

—n
f = f—u(f). So we can reduce the question to the study of zero average function.
A more refined question could be.

Question 2. Does it exists a sequence {c,} such that
155
o kZ:O foTHa)
converges in some sense to a non zero object?

In the following we will use, for convenience, the operator £ : BV — BV defined
by Lh = 41 where 44 = p,

8Actually one must apply Borel-Cantelli with some care (but this is a quite standard an general
strategy):
Consider the set N := {4% 4 j2%F : k€ N j < 3-2F}, then

N co 3.2k o]
Som({z : ALY <02 > aTF<or?)y 3278 < o
leN k=0 j=0 k=0

Hence Borel-Cantelli imply that every infinite sequence in N converges. Next notice that

~ m
fn - n+m‘ S ‘f'oog

which readily imply the wanted result.
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3.5. Large deviations—well, half of it. Note that it suffices to study the set
n—1
1
AT = T! : = TF(z) — >0;.
an(f) {w S I;)f o T*(x) — u(f +alfl) >

since Ao n(f) = A, (f)NASL, (= f). On the other hand, setting f, := f—u(f+alf|)
holds

m(ALL(£) = pl{a © Zim 22T > 1)) < (A B o) = (e Yo o),
Then
(32) HALL(F)) < m(L3h)

where we have defined the operator Ly g := L(e*+g), £ being the Transfer operator
of the map T.

Since f, is bounded it is easy to see that Ly is a well defined operator on BV.

The basic idea to accomplish the wanted estimate is to show that the spectral
radius of Ly is strictly smaller than one. Since we are interested in A small we
will try to apply perturbation theory viewing L) as a perturbation of £. Since
Lrg=7"0 E(A Z!‘?g) it is clear that £, depends analytically from A and we can
thus apply the usual perturbation theory for operators (see [28]). Accordingly, for A
small enough, the maximal eigenvalue is close to one and the associated eigenspace
is one dimensional. Hence, there exists hy € BV and £, € BV’, both analytic in
A, such that the project on the maximal eigenvalue of £y reads IIx(h) = hxlx(h).
Obviously

(3.3) Lxhx = axhy,
and ag = 1, hg = h and ¢y = m. Notice that h) and ¢, are not uniquely defined:

by Hi = II, follows £5(hy) = 1 but one normalization can be chosen freely, let us
choose m(hy) = 1. All the above discussion is summarize by the following Lemma.

Lemma 3.2. There exists constants C1,Co > 0 and p > 0 such that, for A <
Cilfalsds £x = anlly 4+ Qy, IQx = QI = 0, [|QY|lsv < Cop™. Moreover
everything is analytic in A.
In view of the above fact we can differentiate (3.3) obtaining
(3.4) El)\h)\ + EAhS\ = a'Ah,\ + Oé)\hl)\ ; m(h&) =0.
Integrating with respect to m yields
a)y = m(Lx(faha)) + m(LARY).

Thus «f = p(fa) = —ap(]f]) < 0. This means that we can choose A such that the
norm of LY is strictly smaller than one, yet to know how small we can take it, it is
necessary to investigate the second derivative of ay. Taking the derivative of (3.4),
integrating with respect to m and setting A = 0 yields

ag = m(h £3) +2m(fa ho)-
On the other hand, setting Ilg := Ilpg = hm(g), (3.4) implies
(1 = L)ho = L(fah — p(fa)h) = L(1 = )(fah).
On the other hand, setting £ := L(1 —1I), Lemma 3.2 implies that the spectral
radius of £ is smaller than p, hence

(3.5) ho = (1 — L) L(fah),
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and
(3.6) af = pu(f2) + 2m(fa(1 — L) L(foh)).

Since ax = 1 — apA + LagA? + O(X?), it follows that the situation is drastically
different if o is positive or negative. Looking at (3.6) the sign is far from evident,
yet a careful analysis shows that the sign is often positive.

Lemma 3.3. Either oy > C > 0, with C independent on a, or there exists a
¢ € BV such that f =¢ — ¢poT.

Proof. First of all (1 — £)"*Lg= (1 —L)'Lf € {g € BV : m(g) = 0}, thus
ag = u(f*) +a’u(|f)* +2m(f(1 = L) L(f R) = p(f?) +2m(f (1= L) L(f h)).

Next consider the following
2

_1 Z foT*for)
n

n—1
0<n [%ZfoTk

n—1 n—1 n—1 k
L 2NN wfFom ) = () + 23 S m(FE ()
] 0k—;+1 k=1 j=1

+2Z—m I(fh)).

Accordingly,

n—1
1 .
00t lim g [%Zf””’“

= ulf?) +2m(f(X = L) L(f ).

Clearly, if o > 0 the lemma is proven, thus we need only to analyze the case o = 0.
If 0 =0, we have
2

n—1 n—1
i lZfoTk —n +2) = 1))
k=0 j=1
n—1
:—QnZ (FL(fh) =2 im(fL(f 1))
Jj=1

< Cj3 npn‘i‘Zjﬂj \fleefllsv < Calflee I fll sy
i=0

Accordingly, the sequence 22_5 f oT"* is bounded in L? and hence weakly compact.
Let an ! f oT* a weakly convergent subsequence, that is there exists ¢ € L? such
that for each ¢ € L? holds

njfl
lim /cpiOTk:/g0¢.
e k=0
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It follows that, for each ¢ € C*,

’ﬂj—l

f— oT] =m(pf im foTh+1 foTk
[eli-o+o0t) <<pf>+jgookz_0/<pf it [ofor

= lim [ ofoT™ =m(p)u(f) =0

j—o0

And, since C! is dense in L2, it follows

(3.7) f=¢—¢oT.

A function with the above property is called a coboundary, in this case an L?
coboundary since we know only that ¢ € L2. In fact, this it is not not enough to
conclude the Lemma: we need to show, at least, that ¢ € C°.

First of all notice that, since for each § € R we have f = ¢+ 3 — (p+B)oT, we
can assume without loss of generality u(¢) = 0. But them

Lfh=Lfh=Lph—¢h=Lph—¢h=—(1—L)ph.

Hence

¢=h"r(1—L)"*L(fh) e BV

O

Accordingly, of = 02 +a?3?, 3 := u(|f]). The minimum (of the quadratic part)

is thus achieved by choosing A_ = ﬁfwz which, remembering (3.2), allows to
conclude

m(AF () < m(Ly_h) < Ce™ aaz mHO@nlflov),

Since similar arguments hold for the set Af, (—f), it follows that we have an
exponentially small probability to observe a deviation from the average.

3.6. The Central Limit Theorem. We can now address the second question we
have posed. From the above discussion is clear that we must chose ¢, = \/n.

Let f € BV and set f := f — u(f), then
17171
lim =Y foT*(z) = — a.e.
nl—{gonkzzofo () =0 m—ae

Let us set ¥,, := % Zz;é f o Tk. We can consider ¥,, a random variable with
distribution F,(t) := mu({z : U,(z) < t}). It is well know that, for each

9Indeed7 for each ¢ € L1,
[ott =07 = Dyte) = [pon— tim_ [ pemho

= [won- tim [pormhs= [ o

where we have using the mixing of the system.
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continuous function g holds'®

n(g(W,) = / o()dF (1)

R

where the integral is a Riemann-Stieltjes integral. It is thus clear that if we can
control the distribution F;,, we have a very sharp understanding of the probability
to have small deviations (of order y/n) from the limit. From the work in the previous
section it follows that there exists § > 0 such that, for each |A| < §y/n,

. 22 3
) = (M) = (L ) = 1 ot ) )"

— (14 OV 4 np")||f||Bv)-

The above quantity is called characteristic function of the random variable and
determine the distribution via the formula

(3.8)

1 A e—w)\ _ e—zbt
FA0) = Fula) = Jim 5o [ ()i
as can be seen in any basic book of probability theory.'!
Formula (3.8) means in particular that
2,2

lim m(eM) =e "2 =: p()).

n—oo

What can we infer out of the above facts? First of all a simple computation shows

that
g(t) = L / e M p(N)d\ = ! 6_;0_22
21 Jr Jro
a random variable with such a density is called a Gaussian random variable with
zero average and variance o. Accordingly, formula (3.8) can be interpreted by

saying that there exists a Gaussian random variable G such that

LY foTEn %G(l +O(m )
k=0

in distribution. But what does this means concretely. Actual estimates are made
difficult by the fact that the distribution under study no not necessarily have a den-
sity, thus we are Fourier transforming function that behave quite badly at infinity.
To overcome such a problem we can smoothen the quantities involved.

101f g € €3, then

/ gdFy = — / Fu(t)g (t)dt = / dt / doxgs s v, (< @) (8).

Applying Fubini yields
Joarn == [ do [ atnie v, zo@o© == [ d (Ot = [ dag(wn (@),
T n(x) T!

1 the case when there exists a density, that is an L! function f,, such that Fy(b) — Fy,(a) =
f: fn(t)dt, then the formula above becomes simply

falt) = o / e~ o (A,

and follows trivially by the inversion of the Fourier transform.
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Let j € C*(R,Ry) such that [, j(t)dt = 1, j(t) = j(—t), and j(t) = 0 for all
[t| > 1, for each ¢ > 0 defined then j.(t) := ¢~ 1j(¢~'t) and

(3.9) Foe(t) := /jg(t — $)F,(s)ds.
R
A simple computation shows that, for each a,b € R, holds
F,(b+¢e)—Fy(a—¢g) > Fhe(b) — Fpcla) > Fp(b—¢) — Fy(a+¢)

that is: if the measurements have a precision worst than 2¢, then F), . is as good
as F), to describe the resulting statistics. On the other hand calling ¢, . the char-
acteristic function associated to Fj, ., holds ¢, () = ¢,(\)j(e)), where j is the
Fourier transform of j. Since now Fj, . is the law of a smooth random variable it
has a density f, . and

Fue(t) = o= / Mo (\)(EN)IA

:27r

since j is smooth it follows that there exists C' > 0 such that |j(\)| < C(1 4+ X2)~2.
We can finally use formula (3.8) to obtain a quantitative estimate

1 svin —q ~ — _3
fre(t) = 5 S Mon(Nj(N)dA + O n7?)
LY .
o e MpN)F(EN AN + O(e—n~% + %)
—e\/n

(VB

=g(t)+ O(c +e"n "2 +n"7) = g(t) + O(n"7)

provided we choose n"%>e>nb. Which, as announced, means that, if the pre-
cision of the instrument is compatible with the statistics, the typical fluctuations in
measurements are of order \/iﬁ and Gaussian. This is well known by sperimentalists
who routinely assume that the result of a measurement is distributed according to
a Gaussian.'?

3.7. Perturbation theory. To answer the questions posed at the beginning we
need some perturbation theorems. Few such results are available (e.g., see [39], [53]
for a review and [3] for some more recent results), here we will follow mainly the
theory developed in [34] adapted to the special cases at hand.

For simplicity let us work directly with the densities and in the case d = 1. Then
L is the transfer operator for the densities. We will start by considering an abstract
family of operators L. satisfying the following properties.

Condition 1. Consider a family of operators L. with the following properties
(1) A uniform Lasota-Yorke inequality:
L2y < AN [[hllBv + Blhlr,  [L2h|p < Clhlp
(2) [ Lh(z)dx = [ h(z)dz ;
12Note however that our proof holds in a very special case that has little to do with a real

experimental setting. To prove the analogous statement in for a realistic experiment is a completely
different ball game.
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(3) For L : BV — BV define the norm

L[|l == sap [Lf|p1,
IRl Bv<1
that is the norm of L as an operator from BV — L'. Then we require that
there exists D > 0 such that

£ = L[| < De.

Condition 1-(3) specifies in which sense the family £, can be considered an
approximation of the unperturbed operator £. Notice that the condition is rather
weak, in particular the distance between L. and L as operators on BV can be
always larger than 1. Such a notion of closeness is completely inadequate to apply
standard perturbation theory, to get some perturbations results it is then necessary
to drastically restrict the type of perturbations allowed, this is done by Conditions
1-(1,2) which state that all the approximating operators enjoys properties very
similar to the limiting one.'3

To state a precise result consider, for each operator L, the set

Vsp (L) :={z€ C||z| <rordist(z,0(L)) < }.
Since the complement of V(L) belongs to the resolvent of L it follows that
Hsr(L) :=sup{|(z— L) v | 2 € C\Vs,(L)} < c0.
—1

By R(z) and R.(z) we will mean respectively (z — £)~! and (2 — L.)

Theorem 3.4 ([34]). Consider a family of operators L. : BV — BV satisfying
Conditions 1. Let Hs, = Hs.(L); Vs, = Vs, (L), 7 > A7, 6 > 0, then, if
e <e1(L,r0), o(Le) C Vs, (L). In addition, if € < eo(L,r,0), there exists a > 0
such that, for each z & Vs, holds true

I1R(2) = Re(2)|I] < Ce®.

Proof!* To start with we collect some trivial, but very useful algebraic identities.
For each operator L : BV — BV and n € Z holds

(3.10) %i([lfz)i(z - L)+ (D) =1
=0
n—1
(3.11) R(2)(z — L) + % Z(z_lﬁ)i(ﬁa —~ L)+ R) (L) (Le—L)=1
i=0

(3.12) (2= Le) [Gne + (27 L)"R(2)] =1 = (27"L)" (L — L)R(2)
(3.13) [Gne+ (z7'L)"R(2)] (2 — L) =1 — (27 'L)"R(2)(Le — L),

where we have set G, := 1 37" H(z71L.)"

13 Actually only Condition 1-(1) is needed in the following. Condition 1-(2) simply implies that
the eigenvalue one is common to all the operators. If 1-(2) is not assumed, then the operator £
will always have one eigenvalue close to one, but the spectral radius could vary slightly, see [42]
for such a situation.

14This proof is simpler than the one in [34], yet it gives worst bounds, although sufficient for
the present purposes.
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Let us start applying the above formulae. For each h € BV and z ¢ V. 5 holds

- n -n B
IG71Le)" (e = L)R(2)h]| By < (PA) T All(Le = L)R(2)h]l By + (L2 = L)R(2)h| 1
< [(rA)"™A2Cy + Br™"De|H, 5||h||Bv < |||V

Thus ||(z71L.)"(Le — L)R(2)||py < 1 and the operator on the right hand side of
(3.12) can be inverted by the usual Neumann series. Accordingly, (z — £.) has a
well defined right inverse. Analogously,

1z Le)" R(2)(Le=L)hl| v < (rA) " AIIR(2)(Le—L)hl| v +Br~"|R(2)(Le=L)h] 1.

This time to continue we need some informations on the L! norm of the resolvent.
Let g € BV, then equation (3.10) yields

Rl < 162l + 1RGN gl
=0

[y

| H, TA A -n H TB -
< cpylelas + Hor AN lgllpv + Hy Br gl

1" (Hsp B+ (L—=1)7")|gler + Hsr A(r\) ™" ||g]l BV
Substituting, we have
[(z7'L)"R(2)(Le — L)l By < {(rA) " AH;,2C1[1+ Br™"]
+ Br~*"[Hs,B + (1 — ) '|De}||h| v < 1,

again, provided ¢ is small enough and choosing n appropriately. Hence the operator
on the right hand side of (3.13) can be inverted, thereby providing a left inverse
for (z — L.). This implies that z does not belong to the spectrum of L..

To investigate the second statement note that (3.11) implies

n—1

1 ,
R(z) = Re(2) = - > (L)L = L)R(2) — R(2)(z'L)"(Le — L)Re(2).
i=0
Accordingly, for each ¢ € BV holds
|R(2)p — Re(2)p|pr < {r ™(1 —r) ‘e + Hs . (A\r)""2AC, + Hs,Be}||R-(2)p| BV

O

3.8. Deterministic stability. The £. are Perron-Frobenius (Transfer) operators
of maps T which are C'-close to T, that is d¢1 (T., T') = ¢ and such that de= (1., T) <
M, for some fixed M > 0. In this case the uniform Lasota-Yorke inequality is trivial.
On the other hand, for all ¢ € C* holds

/(ﬁf the= [ flgoT.—poT)

Now let ®(z) := f 2)dz, since
' (z) = —(DxT)’lDinb(x) + D, T.(D,T) 'o(Tex) — o(Tx)

follows

/(Caf—ﬁf)SDZ /f<1>'+/f(w)[(DzT)_lchT@(w)Jr(l—DITE(DmT)_l)w(Ta:v)].
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Given that |®|. < A7e|p|oo and |1 — D, T (D, T) o < A7, we have

/(Csf —Lfp < flsvA~ eloce + £l AT (B + Delvloe < DI fllpvelolo

By Lebesgue dominate convergence theorem we obtain the above inequality for each
@ € L*°, and taking the sup on such ¢ yields the wanted inequality.

|Lof = Lflr < D||fllBve.

We have thus seen that all the requirements in Condition 1 are satisfied. See [29]
for a more general setting including piecewise smooth maps.

3.9. Stochastic stability. Next consider a set of maps {T,,} depending on a pa-
rameter w € 2. In addition assume that ) is a probability space and consider a
measure P on 2. Consider the process z,, = T, o---0T,, xo where the w are i.i.d.
random variables distributed accordingly to P and let F, be the expectation of
such process when z is distributed according to pu. Then, calling £, the transfer
operator associated to T,,, we have

E(f(xn1) | 2n) = Lpf(zn) = ; Lo f(@n)P(dw).

Then if
|Lwh|BV < /\;1|h|BV + Bw|h|L1
integrating yields
\Lphlpv < EQLYIR sy + E(Bu)[h|

And the operator £p satisfy a Lasota-Yorke inequality provided that E(A™!) < 1
and E(B) < co.
In addition, if for some map T and associated transfer operator L,

E(|Luh — L£h]) < elh|py

then we can apply perturbation theory and obtain stochastic stability.

3.10. Computability. If we want to compute the invariant measure and the rate
of decay of correlations, we can use the operator P, defined in (2.1) and define
Lim = P.L™. By the estimates in Lemma 2.1 it follows

|£t,mh|BV S 4d0'm|h|BV + B|h|L1.
We can then chose the smallest m so that 4%¢™ = o, < 1. Moreover, we also saw
that
|Lt.mh — Lh] <t h|py.

So we are again in the realm of our perturbation theory and we have that the finite
dimensional operator L; ,, has spectrum close to the one of the transfer operator.
We can then obtain all the info we want by diagonalizing a matrix.
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3.11. Linear response. Linear response is a theory widely used by physicists. In
essence it says the follow: consider a one parameter family of systems T and the
associated (e.g.) invariant measures ps, then, for a given observable f one want to
study the response of the system to a small change in s, and, not surprisingly, one
expects ps(f) = po(f)+ sv(f)+o(s). That is one expects differentiability in s. Yet
differentiability is is not ensured by Theorem 3.4. Is it possible to ensure conditions
under which linear response holds? The answer is yes (for example if holds if the
maps are sufficiently smooth and the dependence on the parameter is also smooth
in an appropriate sense). To prove it one need a sophistication of Theorem 3.4 that
can be found in [41].

3.12. The hyperbolic case. One can wonder is the previous approach can be
applied to uniformly hyperbolic systems and partially hyperbolic system. The
answer is yes although the work in this direction is still in progress and the price to
pay is the need to consider rather unusual functional spaces (space of anysotropic
distributions). Just to give a vague idea let us look at a totally trivial example:
toral automorphisms.

Then one can consider the norms:

o |k[|P
”f”l%q = Z |fk|1+|<vs,k>|p+q +|f0|7
kez2d\{0}

where fj are the Fourier coefficients of f and v® is the unit vector in the stable
direction. Then

H[‘Cﬂ p.q < Cl”f”p,qa
”[‘Cnﬂ pag = C3Nan| pg T BHpr—l,q-'rl'

we have thus the Lasota-Yorke inequality. Moreover on can easily check the relative
compactness of {||f||p,q < 1} with respect to the topology induced by the norm
Il llp=1,g+1, hence our previous theory applies almost verbatim.

To have a more precise idea of what can be done, see [41, 4].

(3.14)

3.13. Open problems. The stochastic stability is reasonably well understood
(Cowienson) but what about the smooth dependence from a parameter (linear
response)? Counterexamples in d = 1 but unknown in higher dimensions. The uni-
formly hyperbolic case is well understood but not much is know on how to apply
the present ideas to the partially hyperbolic case and to the case of systems with
discontinuities, although a concentrated effort is taking place to extend the theory
in such directions.

4. FOURTH LECTURE

4.1. The problem. We have seen during the first workshop many attempts to
bring the theory of dynamical systems to bear on the issue of non-equilibrium
statistical mechanics.

In Dolgopyat’s lectures we have seen some techniques allowing to show how
the complicate behavior of the nonlinearities can give rise to effective noise at the
macroscopic level.

The main gap to close the circle is to learn how to treat system with many (say
102°) components. This is very hard and, at the moment, can be done only in the
very simple case of coupled map lattices.
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4.2. CML. A couple map lattice is constructed a follows: given a dynamical system
(X,T) we consider the space Q) := Xz (but more general sets than Z¢ can be
also considered) and the product map Fy(x); = T'(x;). Next we consider a map
®. :  — Q that is e-close to the identity in a sense to be made precise. The CML
that we will consider are then given by F; := ®. o F;. Interesting cases are:

e T expanding map (either smooth or not)
e T uniformly hyperbolic (either smooth or not)
e T partially hyperbolic (either smooth or not)

The typical approach, going back to Bunimovich-Sinai, is to conjugate F. to Fp
and use Markov partitions (see the papers in the references for more details).

A more direct approach, and more dynamical in nature, is desirable (also because
in the non-smooth case conjugation fails).

4.3. Super-brief history of the transfer operator approach. The possibility
to investigate directly the transfer operator for a CML was first investigated by
Keller and Kiinzle [33]. They were able to prove spectral gap in finitely many di-
mensions and existence of a measure with absolutely continuos marginals in infinite
dimensions. Then Fischer, Rugh [15] and Rugh [47] managed to prove space-time
decay of correlations in infinite dimensions in the analytic case. Then in Baladi,
Degli Esposti, Jarvenpaé, Kupiainen [1] and Baladi, Rugh [2] the spectrum in the
analytic case is precisely investigated. Finally, in [37] it was proved the spectral
gap for piecewise expanding CML. The latter paper is what I will explain in the
following.

4.4. Expanding CML. Consider the case in which X = [0,1] and the map is
piecewise C? and |DT| > A\ > 2. While

O (z); =z +¢ Z o (7'2) (zirs — ),
|z|=1

with 7%(z); = zi1; and o, € C' with 9,,a. = 0 if |j| > 1. Moreover, we assume
e a, > 0. Which, for & small, insures z; > 0 = ®.(x); > 0.
e > .a; = 1. Which for € small, insures z; < 1= ®.(x); < 1.

The goal is show existence and uniqueness of the SRB measure for
small e. For large, but still less than one, ¢ uniqueness may fail [5].

4.5. Transfer operator and Lasota-Yorke inequality. As we want to deal with

infinite systems, it is convenient to first define the transfer operator on the set of

Borel measures M(f2): for each measurable set A, let Lu(A) := p(F-1(A)).
Obviously M () is too big to be useful, to restrict it we define two norms:

lul == sup p(yp)
“P‘cogl

ol :==sup sup (9, ).
i€2 ||l co <1
pect

Clearly | < [|ull. Let Bi={n € M(w) : ]l < oo}.
Theorem 4.1 (Keller et al.). For e small enough there exists 8 € (0,1) such that,

for alln e N,
L7 pl| < A0™ ||l + Blpl.
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That is nice but compactness is missing. In fact, compactness does not hold,
thus we need a way to establish directly the existence of a gap.

4.6. spectral gap. To deal with this fix a € [0,1] and given z € Q let (aP), =
for ¢ # p and (2P), = a. Then define ®. , to be the map

D (29 if
P, p(2)g = { o .)q . als
z, ifg=p
One can easily verify that
(£ = Lp)u| < Cellpl,

where L, is the operator associated to the coupling ®.,. Indeed, letting ®; :=
(1—-1t)®, —tD. p, holds

ppo®: —pod. ;) = / dt(p 0d;) = / Oz, - [Pe — Pepli)
0 l[i— p|<1
/ S l0no(@e — B2)) — s, (B2 — D))
0
li—p|<1

< Cellp]] - []oo-

Hence
n—1

(" = £3)ul < D 1E" L = L) Lypl < Cenllpl.
k=0
Next, suppose that u(y) = 0 for each function ¢ that does not depend on zp,
then

lE™ "l < O™l + BIL™ | < C(O" + me) | ull + BIL ul.

Then, if A is the invariant density of the single site map,
Ly () = p( o (Pep o Fo)™)

-/ [so«@g,p o F)" (@) - [ g h(ay)p((®e o Fo>m<x>>] u(d)
= Lo, [ as, [ol(@e0 Fma) - | drgh(ay)p((®e o Fo)" (o) ()
< Iulsup/o1 dyl o) (y) [w(w¢p7Tmy) - /01 dzh(Z)@(ﬂC;&p,Z)]

T#p

SOVl - [ lo

where v is the rate of decay for the single site map. Putting the above estimates
together yields

1LmHm )| < C0™ + me + v™)||ul| < o™ ull,

for some o € (0,1), provided we choose n, m, e appropriately.
So, let B, = {u € B : u(p) =0 for all ¢ independent of p}. The situation looks
good but there are two problem

(1) in general p € B does not belong to B, for any p.
(2) pe B, #= Lu <€ B,.
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No problem: first show that each p € B can be decomposed as

p=cm+ Y

pEeZ?

where m € B is a fixed probability measure and p, € B,. Then, for each p, € B,
write

Lpp = Lppp + Z Laqphp
lg—p|<1

where £,B, C B, and LB, C B, and the operators have all uniformly bounded
norm. Only a seemingly catastrophic problem is left: the decomposition sum does
not converge in the | - | topology (let alone the || - || one).

No problem: let us associate to each measure p the vector (c, i) given by the
terms of its decomposition (this means that one introduces the new super-abstract
Banach space B = C X (X ezaBp) with norm [|(c, pp) || := max{|c|,sup,cza [|1llp})
and the operator

L(c,pp) = (¢, Lppp +¢ Z Lypatig + Cp) = (¢, Lu(p1p) + C),

lg—p|<1

where (, is the decomposition of Lm —m. By applying the previous estimates one
has that ||£.]| < 1. Is that good for something?

Well, (1,7) = (1, L.ji + ¢) has the unique solution i* := (1 — £,)~'(. Let ¢ be
a local function that depends only the variables in the finite set A C Z? and pu € B
a probability measure with decomposition (1, i), then

p(po FM) = +Z<£”u+2£’“ ) = () + O(ALIL™).

pEA P pEA

By weak compactness and the Lasota-Yorke inequality we know that % Z;é o
has accumulation points in B, let u, be one such accumulation point, then

©) =Y us(p)

pEA

Invariance, uniqueness and spatio-temporal decay of correlation for u, readily fol-
low.

4.7. Partially hyperbolic systems. Let X = [0,1]?, and T be a piecewise ex-
panding map, then

Tw;+e 32 (1 (2, B)) (Tit — 24)
(4.1) F.(z,E); = <E7, _i_&_z‘z“‘:l Wz(Ti(SC,E))(Ei.:Z _ Ez))

where a, 7, are smooth and a,, 7. > 0and >, a. =) 7 = 1. As explained by
Dolgopyat this is a very hard case even if one has only two maps. So we need some
simplifying assumptions. Let us start with a very drastic one that has recently been
treated in [14].
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4.8. Cocycles and random walks. Assume that a, = 0 (in fact, the case dpa, =
0 can be treated in the same way) and g7, = 0. Then the above system can be
treated as a random walk in random environment. Indeed the if we take an initial
condition such that ), F; = 1, such a condition will be preserved by the dynamics.
But then we can interpret the F; as the probability of an imaginary particle (a
ghost particle) to be at site ¢. Looking at the dynamics we see that if we interpret
the 7, as environment dependent transition probability, then the dynamics specify
exactly the evolution of the probability distribution of the ghost particle if such a
particle performs a random walk with transition probabilities 7.. Let X,, € Z% be
the position of the ghost particle at time n.

4.9. The egocentric point of view. Consider the process w =: (W")neny € QY
described by the action of the Markov operator S : L>(Q) — L*°() defined by

(4.2) Sf(w) ::sz(w) foF(r*w) ZS’f

zEA zEA

Remark 4.2. It is easy to verify that the process w, w’ = x, has the same distri-
bution as the process (75" T"Z)pen-

We can use the same techniques used to study CML to study the operator S
and prove that it has a unique invariant measure p, € B. We can then consider
the measure P on O of the associated Markov process started with a measure p..

4.10. Annealed statistical properties.

Lemma 4.3. There ezists a vector v € R* and a matriz Var > 0 such that, for

each probability measure v € B we have
1

NE(XN) — v

XN—’UN
VN

Note that if v = 0 (which can be insured by a symmetry assumption) and ¢ €
CO(R9), then we have (essentially)

lim > p(p(N"2q)By(ND)) = lim )" E(p(N~*Xn)) = /R Wy, t)p(a)dy

qezd qezd

= N (0,Var) under P,.

OV =" Var}; 0y, V.

ij
In other words, the local average of the E is described by the function ¥ which
satisfy the heat equation. Since

E (e\/Lﬁ“"A’rU) ’ fk) ZW Xka e v (2 =v)
zeEN
it is natural to introduce the operators, for all t € C,

(4.3) = m(0)e I R(r*F(0) = Y el*T S, b,

zeA zEA
Then,

(4.4) E (e 5) = vml, ).
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The operator M} acting on the space B is an analytic perturbation of the operator
S’ = Mj. Unfortunately, S’ does not have a nice spectrum on B, but if we lift it
to our covering space B then it has a simple maximal eigenvalue and we can apply
standard perturbation theory to prove that the maximal eigenvalue is of the form
1 — N~'(t, Var®t) which implies the result.

4.11. Kinetic limit. The idea is to consider the system described by (4.1) and
look at E(¢72t) in the limit ¢ — 0. This is very similar to the work of Gaspard-
Gilbert and Bricmont-Kupiainen that we heard in the previous weeks. The goal is
to show that, in the limit, we have a limiting stochastic process e(t) that satisfy
the SDE

(4.5) de; = Z a(e;, er)dt + Z oy(ei,ex)dByi iy
li—k|=1 limk|=1
with By ry = — By, independent standard Brownian motions. This is an open

problem at the moment but similar results have been obtained for different model
by Liverani-Olla (in preparation).

The above equation looks very similar to the non-gradient Ginzburg-Landau
equation studied by Varadhan in [54]. So it is conceivable that it may be possible
to take diffusive scaling limit (like in the previous example) and obtain a non-linear
heat-equation.

This is the current research plan of several people.
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