
Chapter 7

Quantitative Statistical Properties,
a class of 1-d examples

Given a Dynamical System it is in general very hard to study its er-
godic properties, especially if the goal is to have a quantitative understanding.
To make clear what is meant by a quantitative understanding and which type
of obstacles may prevent it, I devote this chapter to the study of a simple,
but highly non-trivial, class of examples: one dimensional smooth expanding
maps.

7.1 The problem

Recall from Examples 6.4.1 that a one dimensional smooth expanding map is
a map T ∈ C2(T1,T1) such that |DT | ≥ λ > 1.

We know already that such maps have a unique absolutely continuous
invariant measure (see sections 6.4.1, 6.5.1 Expanding maps).

We would like first to understand other invariant measures in order to have
a clearer picture of which measurable Dynamical Systems can be associated to
the topological Dynamical System (T1, T ). This is still at the qualitative level.
In addition, we would like to have tools to actually compute such invariant
measures with a given precision, and this is a first quantitative issue.

Next, we would like to study statistical properties more in depth. To this
end we will restrict to the case (T1, T, µ), where µ is the measure absolutely
continuous with respect to Lebesgue. The type of questions we would like to
address are

If we make repeated finite time and precision measurements, what do we
observe?

Remember that a measurement is represented by the evaluation of a func-
tion. The fact that the measurement has a finite precision correspond to the
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148 CHAPTER 7. QUANTITATIVE STATISTICAL PROPERTIES

fact that the function has some uniform regularity (otherwise we could iden-
tify the point with an arbitrary precision). The fact that the measure is made
for finite time means that we are able only to measure finite times averages.
In other words we would like to understand the behavior of

N−1∑
k=0

f ◦ T k

for large, but finite, N .

7.2 Invariant measures

Let M be the set of probability (Borel) measures on T1. We can then con-
sider the new Dynamical System (M, T ′), where T ′µ(f) = µ ◦ T for all
f ∈ C0(T1,R). The invariant measures are the fixed points of T ′, let us call
them Fix(T ′). If µ ∈ Fix(T ′) then for each h ∈ L∞(T1, µ), h ≥ 0, µ(h) = 1,
we can consider the new probability measure defined by µh(f) = µ(hf), for
all f ∈ C0(T1,R). Note that

|T ′µh(f)| = |µ(hf ◦ T )| ≤ |h|L∞(µ)µ(|f | ◦ T ) = |h|L∞(µ)µ(|f |).

Hence T ′µh is absolutely continuous with respect to µ and dT ′µh
dµ ∈ L∞(µ). We

can then define the operator Lµ : L∞(T1, µ)→ L∞(T1, µ) by Lµh := dT ′µh
dµ .

Let {Ii} be a partition in interval of T1 such that T |Ii is invertible, T (Ii) =
T1 and ∪iIi = T1. Call Si the inverse of the i-th branch of T . Then, setting

ρi :=
dT ′µ1Ii
dµ

T ′µh(f) =
∑
i

µ(h1Iif ◦ T ) =
∑
i

µ(1Ii(h ◦ Sif) ◦ T )

= µ

([∑
i

ρih ◦ Si

]
f

)
.

Thus, setting ρ =
∑
i ρi ◦ T1Ii we have

dT ′µh
dµ

=
∑
i

(ρh) ◦ Si =: Lρ(h).

It follows that Lρ(1) = 1 and, for each h ∈ L∞(µ), µ(Lρ(h)) = T ′µh(1) =
µ(h).

Problem 7.1 Compute ρ and Lρ, in the case in which µ is the unique in-
variant measure absolutely continuous with respect to Lebesgue.



7.3. ABSOLUTELY CONTINUOUS INVARIANTMEASURE: REVISITED149

The relevant fact is that one has the following (partial) converse.

Lemma 7.2.1 For ρ ∈ C0, ρ ≥ 0, let Lρ(h)(x) :=
∑
y∈T−1x ρ(y)h(y). If

there exists λ ∈ R, h ∈ C0, h > 0, such that Lρh = λh, then there exists a
measure µ ∈ M such that µ(Lρf) = λµ(f) for all f ∈ C0 and there exists an
invariant measure absolutely continuous with respect to µ.

Proof. By continuity there exists γ > 0 such that h ≥ γ > 0. Thus

|Lnρf | ≤ γ−1|f |∞Lnρh = λnγ−1|f |∞.

Hence, calling m the Lebesgue measure 1
n

∑n−1
k=0 λ

−k(L′ρ)km is a weakly com-
pact sequence. Accordingly the same arguments used in Krylov-Bogoliubov
Theorem 6.4.2 imply that there exists a measure µ such that λ−1L′ρµ = µ.

Next, define ν(f) := µ(hf). Clearly ν is a measure absolutely continuous
with respect to µ, in addition

ν(f ◦ T ) = λ−1(L′ρµ)(hf ◦ T ) = λ−1µ(fLρh) = µ(fh) = ν(f).

�

7.3 Absolutely continuous invariant measure:
revisited

We have already seen that there exists a unique invariant measure with re-
spect to Lebesgue. Here we study this issue by a slightly different technique.
Although the main idea is always to study the spectrum of the transfer oper-
ator, it is interesting to see how this can be achieved in many different ways,
each way having its own advantages and disadvantages. Consider the transfer
operator

Lh(x) :=
∑

y∈T−1x

|DyT |−1h(y) (7.3.1)

Problem 7.2 Show that if dµ = hdm, where m is the Lebesgue measure,
then µ(f ◦ T ) = m(fLh).

Problem 7.3 Show that, for each n ∈ N,

Lnh(x) :=
∑

y∈T−nx

|DyT
n|−1h(y)

Notice that, since DT cannot be zero, then its sign is constant. We limit
ourselves, for simplicity, to the case DT ≥ λ.
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Problem 7.4 Show that

d

dx
Lnh(x) =

∑
y∈T−1x

(DyT )−2h′(y)−D2
yT (DyT )−3h(y)

= L((DT )−1h′)− L(D2T (DT )−2h)

7.3.1 A functional analytic setting

Let us consider first the Sobolev space W 1,1 and the space L1.1 Then, for
each h ∈ L1(T1,m),∫

T1

|Lh|dm ≤
∫
T1

1 · L|h|dm =

∫
T1

1 ◦ T |h|dm =

∫
T1

|h|dm (7.3.2)

that is L is a bounded operator on L1 and its norm is bounded by one.
In addition, remembering Exercise 7.2,∫

T1

| d
dx
Lh|dm ≤ λ−1|h′|L1 +D|h|L1 , (7.3.3)

where D := supD2T (DT )−2.

Problem 7.5 Iterate the (7.3.2), (7.3.3) and prove, for all n ∈ N,

|Lnh|L1 ≤ |h|L1

|Lnh|W 1,1 ≤ λ−n|h|W 1,1 +B|h|L1

where B = 1 + (1− λ−1)−1D.

Since W1,1 controls the L∞ norm,2 then we have that there exists C > 0 such
that |Ln1|∞ < C for each n ∈ N.

Using such a fact we can obtain similar inequalities in the Hilbert spaces
L2 and W 1,2. Indeed

‖Lnh‖2L2 =

∫
T1

h(Lnh) ◦ Tn ≤ ‖h‖L2

[∫
T1

(Lnh)2 ◦ Tn
] 1

2

= ‖h‖L2[∫
T1

(Lnh)2Ln1

] 1
2

≤ C 1
2 ‖h‖L2‖Lnh‖L2

1For an open set U ⊂ R, the spaces W p,q(U) are the completion of C∞(U,C) with respect

to the norms
[
|f |qLq + |f ′|qLq + · · ·+ |f (p)|qLq

] 1
q . Note that they are all Banach spaces by

construction but the W p,2 are also Hilbert spaces (Exercise: write the scalar product).
2If f ∈ C∞, then the mean value theorem asserts

∫
h = h(ξ) for some ξ. Then h(x) =

h(ξ) +
∫ x
ξ h
′(z)dz. Thus |h|∞ ≤ |h|L1 + |h′|L1 = |h|W1,1 . The result extends then to all

elements of W 1,1 by a standard approximation argument.
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Which implies ‖Lnh‖L2 ≤ C 1
2 ‖h‖L2 for each n ∈ N. Hence,

‖ d
dx
Lnh‖L2 ≤ λ−nC 1

2 ‖h′‖L2 +Dn‖h‖L2 .

Iterating as before we have, for all n ∈ N,

|Lnh|L2 ≤ C|h|L2

|Lnh|W 1,2 ≤ Aλ−n|h|W 1,2 +B|h|L2 ,
(7.3.4)

for some appropriate constants A,B,C depending only on the map T .
To prove the existence of an invariant measure absolutely continuous with

respect to Lebesgue we can try to mimic the Krylov-Bogolubov approach, but
to do so we need a compactness result to substitute the weak compactness of
the unit ball of the dual of a Banach space. This takes us in a very interesting
detour in some fact of functional analysis.

7.3.2 Deeper in Functional analysis

Since we are on a circle it is a good idea to use Fourier series. For each
function h ∈ C∞(T,C) let hk be its Fourier coefficients and define

(Anh)(x) =
∑
|k|≤m

hke
2πikx (7.3.5)

Clearly, for all m > 0,

|h− Am|2L2 =
∑
|k|>m

|hk|2 =
∑
|k|>m

|hk|2|k|−2|k|2 ≤ m−2
∑
|k|>m

|(h′)k|2

≤ m−2|h′|2L2 ≤ m−2|h|2W 1,2 .

(7.3.6)

Using the above fact we can prove.

Lemma 7.3.1 The unit ball of W 1,2 is (sequentially) compact in L2.

Proof. Consider a sequence {hm} ⊂ W 1,2, |hm|W 1,2 ≤ 1. Since Al are
all finite rank operators, {Alhm} for l fixed are contained in a bounded finite
dimensional (hence compact) set, thus there exists a converging subsequence
for all l while (7.3.6) shows that the sequences for fixed m are all conver-
gent. Using the usual diagonalization trick we can then extract a converging
subsequence. �

Consider now hn := 1
n

∑n−1
k=0 Lk1. By the above lemma {hn} is relatively

compact and thus we can extract a subsequence {hnj} converging in L2. Let
h∗ be the limit. Note that

∫
hn = 1 for all n ∈ N, thus h∗ 6≡ 0 and

∫
h∗ = 1.
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Problem 7.6 Show that Lh∗ = h∗, that is dµ := h∗dm is an invariant mea-
sure absolutely continuous with respect to Lebesgue and with L2 density.

Of course, at this point it is natural to ask if µ is the only measure with
such a property or there exist others. To answer such a question we need
some more facts.

7.3.3 Even deeper in Functional analysis

Since we have to do it, let us do in the following general setting.
Consider two Banach space (B, ‖ · ‖) and (B0, | · |) such that B ⊂ B0 and

i. |h| ≤ ‖h‖ for all h ∈ B,

ii. if h ∈ B and |h| = 0, then h = 0.

iii. There exists C > 0 : for each ε > 0 there exists a finite rank operator
Aε ∈ L(B,B) such that ‖Aε‖ ≤ C and |h−Aεh| ≤ ε‖h‖ for all h ∈ B.3

In addition consider a bounded operator L : B0 → B0, constants A,B,C ∈
R+, and λ > 1, such that

a. |Ln| ≤ C for all n ∈ N,

b. L(B) ⊂ B

c. ‖Lnh‖ ≤ Aλ−n‖h‖+B|h| for all h ∈ B and n ∈ N.

In particular L can be seen as a bounded operator on B.

Theorem 7.3.2 The spectral radius of the operator L ∈ L(B,B) is bounded
by 1 while the essential spectral radius is bounded by λ−1.4

We can now prove our main result.

Proof of Theorem 7.3.2. The first assertion is a trivial consequence
of (c), (a) and (i).

3In fact, this last property can be weakened to: The unit ball {h ∈ B : ‖h‖ ≤ 1} is
relatively compact in B0. We use the present stronger condition since, on the one hand, it
is true in all the applications we will be interested in and, on the other hand, drastically
simplifies the argument. Note also that, if one uses the Fredholm alternative for compact
operators rather than finite rank ones (Theorem D.0.1), then one can ask the Aε to be
compact instead than finite rank making easier their construction in concrete cases.

4The definition of essential spectrum varies a bit from book to book. Here we call essen-
tial spectrum the complement, in the spectrum, of the isolated eigenvalues with associated
finite dimensional eigenspaces (which is also called the Fredholm spectrum).
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The second part is much deeper. Let Ln,ε := LnAε, clearly such an oper-
ator is finite rank, in addition

‖Lnh−Ln,εh‖ ≤ Aλ−n‖(1−Aε)h‖+B|(1−Aε)h| ≤ A(1+C)λ−n‖h‖+Bε‖h‖.

By choosing ε = λ−n we have that there exists C1 > 0 such that

‖Ln − Ln,ε‖ ≤ C1λ
−n.

For each z ∈ C we can now write

1− zL = (1− z(L − Ln,ε))− zLn,ε.

Since

‖z(L − Ln,ε)‖ ≤ |z|C1λ
−n <

1

2
,

provided that |z| ≤ 1
2C1

λn. Thus, given any z in the disk Dn := {|z| < 1
2C1

λn}
the operator B(z) := 1− z(L − Ln,ε) is invertible.5 Hence

1− zL =
(
1− zLn,εB(z)−1

)
B(z) =: (1− F (z))B(z).

By applying Fredholm analytic alternative (see Theorem D.0.1 for the state-
ment and proof in a special case sufficient for the present purposes) to F (z)
we have that the operator is either never invertible or not invertible only in
finitely many points in the disk Dn. Since for |z| < 1 we have (1− zL)−1 =∑∞
n=0 z

nLn, the first alternative cannot hold hence the Theorem follows. �

7.3.4 The harvest

We are finally in the position to use all the above result to gain a deep un-
derstanding of the properties of the Dynamical Systems under consideration.

Problem 7.7 Show that Theorem 7.3.2 implies that there exists σ ∈ (0, 1),
{θk}pk=1 and L > 0 such that

L =

p∑
k=1

eiθkΠθk +R

where Πθk and R are operators on W 1,2 such that ΠθkΠθj = δjkΠθk and
RΠθk = ΠθkR = 0. Moreover |Rn| ≤ Lσn.(Hint: Read section 6 of the Third
Chapter of [Kat66] and recall that the operator is power bounded to exclude
Jordan blocks.)

5Clearly B(z)−1 =
∑∞
n=0 [z(L − Ln,ε)]n.



154 CHAPTER 7. QUANTITATIVE STATISTICAL PROPERTIES

The above implies that

Πθ := lim
n→∞

1

n

n−1∑
k=0

e−iθkLk =

{
Πθi iff θ = θj

0 otherwise.
(7.3.7)

Problem 7.8 Using equations (7.3.4) show that, for each h ∈ L2

‖Πθh‖W 1,2 ≤ C‖h‖L2 .

(Hint: prove it first for h ∈W 1,2 and then do a density argument).

Next, note that Exercise 7.6 implies that h∗ = Π01 6= 0, that is one is in
the spectrum on L, this means that the spectral radius of L is one.

Accordingly, if Πθh = h we have h ∈W 1,2 ⊂ C0 and6

|h| = |Πθh| ≤ lim
j→∞

1

nj

nj−1∑
k=0

Lk|h| = Π0|h| ≤ |h|∞h∗.

This means that all the eigenvectors of the peripheral spectrum are of the
form h = gh∗ with g ∈ C0. Thus, if hi is an W 1,2 orthonormal a base of the
eigenspace associated to an eigenvalue θ, then the eigenprojector must have
the form

Πθh =
∑
i

hi

∫
`i · h,

with `i ∈ L2 and
∫
`ihj = δij . Hence ΠθL = eiθΠθ implies

eiθ
∑
k

hk

∫
`k · h =

∑
k

hk

∫
`k · Lh =

∑
k

hk

∫
`k ◦ T · h.

That is eiθ`k = `k ◦ T . But then if we set fk := ¯̀
kh∗ ∈ L2, we have

Lfk = eiθL(¯̀
k ◦ Th∗) = eiθ ¯̀

kLh∗ = eiθ ¯̀
kh∗ = eiθfk

By the above facts, this implies Πθfk = fk ∈W 1,2, that is `k ∈ C0. But then
for each p ∈ N we can set hp := ¯̀p

kh∗ obtaining

Lhp = eipθhp.

Since the the peripheral spectrum consists of finitely many eigenvalues it
follows that there must exist p ∈ N such that p θ = θ mod 2π, that is the

6Remember that exercise 7.8 implies that the sequence in (7.3.7) converges in L2, ac-
cordingly there exists a subsequence that converges almost everywhere with respect to
Lebesgue.
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spectrum on the unit circle must be the union of finitely many cyclic groups.
In turn this implies that there exists p̄ ∈ N such that p̄ θ = 0 mod 2π, hence
`p̄k = `p̄k ◦ T . But this implies that if we define the sets AL := {x ∈ T : |`p̄k| ≤
L}, L ∈ R, they are all invariant. So if χL is the characteristic function of
the set AL, then χL ◦ T = χL and L(χLh∗) = χLh∗. We can thus produce
a lot of eigenvalues of L, but we know that such eigenvalues form a finite
dimensional space. The only possibility is that only finitely many of the AL
are different. This is like saying that `k takes only finitely many values. But
`p̄k is a continuous function, so it must be constant. Hence `k can assume only
p̄ different values, thus, again by continuity, must be constant. Finally this
implies θ = 0.

The conclusion is that one is the only eigenvalue on the unit circle and
that the associated eigenprojector has rank one. So one is a simple eigenvalue
and h∗ is the only invariant density for the map.

7.3.5 conclusions

If we have any probability measure ν absolutely continuous with respect to
Lebesgue and with density h ∈ W 1,2, then setting dµ = h∗dm, for each
ϕ ∈W 1,2 we have

|µ(ϕ ◦ Tn)− ν(ϕ ◦ Tn)| =
∣∣∣∣∫ ϕLn(h− h∗)

∣∣∣∣ ≤ ‖ϕ‖1,2Cσn‖h− h∗‖1,2
where σ is the largest eigenvalue of modulus smaller than one (or λ−1 is no
such eigenvalue exist).

Remark 7.3.3 The above means that the evolution of the present chaotic sys-
tem, if seen at the level of the absolutely continuous measures, becomes simply
a dynamics with an uniformly attracting fixed point, the simplest dynamics of
all!

7.4 General transfer operators

In the previous sections we have been very successful in studying the measure
absolutely continuous with respect to Lebesgue. We have seen in §7.2 (crf.
Lemma 7.2.1) that to study other invariant measures one has to analyze more
general transfer operators. Here we will restrict ourselves to studying

Lgh := L(egh)

where L is the usual transfer operator. This are called transfer operators with
weight and g is sometime called the potential. We will consider first the case
of g : T1 → C and specialize to real potential later on.
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For convenience, and also for didactical purposes, we will use the Banach
spaces C1 and C0. Hence, form now on, we will assume T ∈ C2(T1,T1) and
g ∈ C1(T1,C).

The first step is to compute the powers of Lg and study how they behave
with respect to derivation.

Problem 7.9 Show that, for each n ∈ N, holds true

Lngh = Ln [egnh] ,

where gn =
∑n−1
k=0 g ◦ T k.

Problem 7.10 Show that for each n ∈ N and h ∈ C1 holds true

d

dx
Lngh = Lng

[
h′

(Tn)′
− (Tn)′′

[(Tn)′]2
h+

(gn)′

(Tn)′
h

]
Note that |Lngh|∞ ≤ |h|∞Ln<(g)1. In addition,7∣∣∣∣ (Tn)′′(y)

[(Tn)′(y)]2

∣∣∣∣ =

∣∣∣∣∣
d
dy

∏n−1
k=0 T

′(T ky)

[(Tn)′(y)]2

∣∣∣∣∣
≤
n−1∑
k=0

∣∣∣∣ T ′′(T ky)

(Tn−k)′(T ky)

∣∣∣∣ ≤ n−1∑
k=0

|T ′′|∞λ−n+k+1 ≤ |T ′′|∞
1− λ−1

.

Analogously, ∣∣∣∣ (gn)′

(Tn)′

∣∣∣∣ ≤ |g′|∞
1− λ−1

.

The above inequalities imply∣∣∣∣ ddxLngh
∣∣∣∣ ≤ λ−nLn<(g)|h

′|+BLn<(g)|h|. (7.4.8)

Which, taking the sup over x, yields∣∣∣∣ ddxLngh
∣∣∣∣
∞
≤ λ−n|h′|∞Ln<(g)1 +B∗|h|∞Ln<(g)1,

Note that the above inequality implies that the spectral radius is bounded

by ρ = limn→∞ ‖Ln<(g)1‖
1
n

C0 while the essential spectral radius is bounded by

λ−1ρ. The reader should notice that for positive potentials the above bounds
are essentially sharp while for non positive, or complex, potential typically
there will be cancellations that induce a smaller spectral radius. To control
exactly such cancellations is, in general, a very hard problem.

7The quantity estimated here is usually called distortion. In fact, it measure how much
the maps distorts intervals.



7.5. LIMIT THEOREMS 157

7.4.1 Real potential

In this section we will restrict to the case of g ∈ C1(T1,R), i.e. real potentials.
If we define the cone Ca := {h ∈ C1 : h > 0 |h′(x)| ≤ ah(x)}, then

equation (7.4.8), for h > 0, implies that, for each σ ∈ (0, λ−1), LgCa ⊂ Cσa
provided a ≥ B(σ − λ−1)−1.8 We can then apply the theory of Appendix A
to conclude the following.

Lemma 7.4.1 For each real potential g ∈ C1(T1,R), the transfer operator Lg
has the Perron-Frobenius property, i.e. it has a simple strictly positive maxi-
mal eigenvalue and all the other eigenvalues are strictly smaller in modulus.
In particular, the maximal eigenvalue of Lτg, τ ∈ R, is analytic in τ .9

7.4.2 Variational principle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.5 Limit Theorems

Given f ∈ C1, n ∈ N and a ∈ R+ let

Aa,n(f) :=

{
x ∈ T1 :

∣∣∣∣∣ 1n
n−1∑
k=0

f ◦ T k(x)− µ(f)

∣∣∣∣∣ ≥ a
}
. (7.5.9)

By the ergodic theorem limn→∞ µ(Aa,n(f)) = 0. A natural question is:

Question 3 How large is m(Aa,n)?

Note that we can write 1
n

∑n−1
k=0 f ◦ T k(x)− µ(f) = 1

n

∑n−1
k=0 f̂ ◦ T k(x) where

f̂ := f − µ(f). So we can reduce the question to the study of zero average
function. A more refined question could be.

Question 4 Does it exists a sequence {cn} such that

1

cn

n−1∑
k=0

f̂ ◦ T k(x)

converges in some sense to a non zero finite object?

8Note that this cone is almost the same than the one in Example 6.5.1, more precisely
is its infinitesimal version.

9This follows from the fact that the maximal eigenvalue must always be simple and the
results in Appendix C.4.
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7.5.1 Large deviations. Upper bound

Note that it suffices to study the set

A+
a,n(f) :=

{
x ∈ T1 :

1

n

n−1∑
k=0

f ◦ T k(x)− µ(f + a) ≥ 0

}
.

since Aa,n(f) = A+
a,n(f)∩A+

a,n(−f). On the other hand, setting f̂ := f−µ(f),
for each λ ≥ 0 we have

m(A+
a,n(f)) = m({x : eλ

∑n−1
k=0 (f̂◦Tk(x)−a) ≥ 1}) ≤ e−nλam(eλ

∑n−1
k=0 f̂◦T

k

)

= e−nλam(eλ
∑n−1
k=0 f̂◦T

k

).

Accordingly,
m(A+

a,n(f)) ≤ e−nλam(Lnλ1) (7.5.10)

where we have defined the operator Lλg := L(eλf̂g), L being the Transfer
operator of the map T .

By Lemma 7.4.1 Lλ has a maximal eigenvalue αλ depending analytically
on λ. Hence by the same argument used in Lemma 7.2.1 there exists c ∈ R
such that

m(A+
a,n(f)) ≤ e−n(λa−lnαλ)+c.

Since λ has been chosen arbitrarily we have obtained

m(A+
a,n(f)) ≤ e−nĨ(a)+c (7.5.11)

where Ĩ(a) := supλ∈R+{λa− lnαλ}. The problem is then reduced to studying

the function I(a) which is commonly called rate function. Note that Ĩ is not

necessarily finite. Indeed if a > ‖f̂‖∞, then clearly m(A+
a,n(f)) = 0.

To better understand the rate function it is helpful to make a little digres-
sion into convex analysis.

Recall that a function f : Rd → Rd is convex if for each x, y ∈ Rd and
t ∈ [0, 1] we have f(ty + (1 − t)x) ≤ tf(y) + (1 − t)f(x) (if the inequality is
everywhere strict, then the function is stricly convex.

Problem 7.11 Show that if f ∈ C2(Rd,R), then f is convex iff ∂2f
∂x2 is a

positive matrix.10 Give a condition for strict convexity.

Problem 7.12 If a function f : D ⊂ Rd → R, D convex,11 is convex and
bounded, then it is continuous.

10A matrix A ∈ GL(R, d) is called positive if AT = A and 〈v,Av〉 ≥ 0 for each v ∈ Rd.
11 A set D is convex if, for all x, y ∈ D and t ∈ [0, 1], olds true ty + (1− t)x ∈ D.
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Given a function f : Rd → R let us define its Legendre transform as

f∗(x) = sup
y∈Rd

{〈x, y〉 − f(y)} (7.5.12)

Remark that f∗ can take the value +∞.

Problem 7.13 Prove that f∗ is convex.

Problem 7.14 Prove that f∗∗ ≤ f .

Problem 7.15 Prove that is f ∈ C2(Rd,R) is strictly convex, then the func-
tion h(y) := ∂f

∂y (y) is invertible and f∗ is strictly convex. Moreover, calling g
the inverse function of h, we have

f∗(x) = 〈x, g(x)〉 − f ◦ g(x).

Problem 7.16 Show that if f ∈ C2 is strictly convex, then f∗∗ = f .

Problem 7.17 Show that, for each x, y ∈ Rd, 〈x, y〉 ≤ f∗(x) + f(y), (Young
inequality).

From the above discussion it follows that the rate function is defined
very similarly to the Legendre transform of the logarithm of the maximal
eigenvalue, which is commonly called pressure of f̂ . In fact, setting I(a) =
maxλ∈R(λa− lnαλ) we will se that, for a ≥ 0, I(a) = Ĩ(a). Unfortunately, to
see that the rate function is exactly a Legendre transform takes some work.
Let us start by studying the function αλ.

Lemma 7.5.1 There exists continuous functions Cλ > 0 and ρλ ∈ (0, 1) such
that, for λ ≤ 0, Lλ = αλΠλ + Qλ, ΠλQλ = QλΠλ = 0, ‖Qnλ‖C1 ≤ Cλρ

n
λα

n
λ.

Also Πλ(g) = hλ`λ(g), `λ(hλ) = 1, `λ(h′λ) = 0. In addition, µλ(·) := `λ(hλ ·)
is an invariant probability measure. Moreover everything is analytic in λ.

Proof. As we have seen, there exists hλ ∈ C1 and a measure `λ, both
analytic in λ, such that the projection on the maximal eigenvalue of Lλ reads
Πλ(h) = hλ`λ(h). Obviously

Lλhλ = αλhλ, (7.5.13)

and α0 = 1, h0 = h and `0 = m. Notice that hλ and `λ are not uniquely
defined: by Π2

λ = Πλ follows `λ(hλ) = 1 but one normalization can be chosen
freely.

Problem 7.18 Show that the normalization of `λ, hλ can be chosen so that
`λ(h′λ) = 0.
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�

Lemma 7.5.2 The functions αλ and lnαλ are convex. Moreover,∣∣∣∣ ddλ lnαλ

∣∣∣∣ ≤ |f̂ |∞.
Proof. Note that

d2

dλ2
lnαλ =

α′′λαλ − (α′λ)2

α2
λ

, (7.5.14)

thus the convexity of lnαλ implies the convexity of αλ.
In view of the above fact we can differentiate (7.5.13) obtaining

L′λhλ + Lλh′λ = α′λhλ + αλh
′
λ. (7.5.15)

Applying `λ yields

dαλ
dλ

= αλ`λ(f̂hλ)) = αλµλ(f̂). (7.5.16)

Thus α′0 = 0. Note that, as claimed,∣∣∣∣ ddλ lnαλ

∣∣∣∣ ≤ |µλ(f̂)| ≤ |f̂ |∞.

Differentiating again yields

d2αλ
dλ2

= αλµλ(f̂)2 + αλ`
′
λ(f̂ghλ) + αλ`λ(f̂h′λ). (7.5.17)

On the other hand, from (7.5.15) we have

(1αλ − Lλ)h′λ = Lλ(fλhλ),

where fλ = f̂ − µλ(f̂). Since, by construction, Πλh
′
λ = Πλ(fλhλ) = 0, the

above equation can be studied in the space Vλ = (1−Πλ)C1 in which 1αλ−Lλ
is invertible.

Setting L̂λ := α−1
λ Lλ, we have

h′λ = (1− L̂λ)−1L̂λ(fλhλ). (7.5.18)

Doing similar considerations on the equation `λ(Lλ) = αλ`λ(g), we obtain

α′′λ = αλµλ(f̂)2 + αλ`λ(fλ(1− L̂λ)−1(1+ L̂λ)(fλhλ))

= αλµλ(f̂)2 + αλ

∞∑
n=1

`λ(fλL̂nλ(1+ L̂λ)(fλhλ))

=
(α′λ)2

αλ
+

[
µλ(f2

λ) + 2

∞∑
n=1

`λ(fλL̂nλ(fλhλ))

]
αλ.

(7.5.19)
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Finally, notice that

`λ(fλL̂nλ(fλhλ)) = `λ(L̂nλ(fλ ◦ Tnfλhλ)) = µλ(fλ ◦ Tnfλ)

and

lim
n→∞

1

n
µλ

[n−1∑
k=0

fλ ◦ T k
]2
 = lim

n→∞

1

n

n−1∑
k,j=0

µλ(fλ ◦ T kfλ ◦ T j)

= µλ(f2
λ) + lim

n→∞

2

n

n−1∑
k=1

(n− k)µλ(fλ ◦ T kfλ)

= µλ(f2
λ) + 2

∞∑
k=1

µλ(fλ ◦ T kfλ).

(7.5.20)

The above two facts and equations (7.5.14), (7.5.19) yield

d2

dλ2
lnαλ = lim

n→∞

1

n
µλ

[n−1∑
k=0

fλ ◦ T k
]2
 ≥ 0. (7.5.21)

�

Note that equation (7.5.16) implies α′0 = 0, hence α′λ ≥ 0 for λ ≥ 0. Since
the maximum of λa − lnαλ is taken either at αλa = α′λ or at infinity (if

a > supλ>0
α′λ
αλ

), it follows that

Ĩ(a) = sup
λ≥0

(λa− lnαλ) = sup
λ

(λa− lnαλ) = I(a)

as announced. In fact, more can be said.

Lemma 7.5.3 Either the rate function I is strictly convex, or there exists
β ∈ R, φ ∈ C0 such that f − β = φ− φ ◦ T .

Proof. By Problem 7.15 it suffices to prove that lnαλ is strictly convex.
On the other hand equations (7.5.14) and (7.5.21) imply that if the second
derivative of lnαλ is zero for some λ, then

µλ

[n−1∑
k=0

fλ ◦ T k
]2
 = n

[
µλ(f̂2) + 2

n−1∑
k=1

n− k
n

µλ(fλ ◦ T k fλ)

]

= −2n

∞∑
k=n

`λ(fλL̂kλ(fλ hλ))− 2

n−1∑
k=1

k`λ(fλL̂kλ(fλ hλ))− αλµλ(f̂)2

≤ C(λ)

[
nρnλ +

∞∑
k=0

kρkλ

]
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Accordingly, the sequence
∑n−1
k=0 fλ ◦ T k is bounded in L2(T1, µλ) and hence

weakly compact. Let
∑nj−1
k=0 fλ ◦T k a weakly convergent subsequence,12 that

is there exists φλ ∈ L2 such that for each ϕ ∈ L2 holds

lim
j→∞

µλ(ϕ

nj−1∑
k=0

fλ ◦ T k) = µλ(ϕφλ).

It follows that, for each ϕ ∈ C1,

µλ(ϕ[fλ − φλ + φλ ◦ T ]) = µλ(ϕfλ) + lim
j→∞

nj−1∑
k=0

µλ(ϕfλ ◦ T k+1 − ϕfλ ◦ T k)

= lim
j→∞

µλ(ϕfλ ◦ Tnj ) = lim
j→∞

`λ(fλL̂
nj
λ (ϕhλ))

= µλ(ϕ)µλ(fλ) = 0.

thus, since C1 is dense in L2, it follows

fλ = φλ − φλ ◦ T , µλ − a.s. (7.5.22)

A function with the above property is called a coboundary, in this case an L2

coboundary since we know only that φλ ∈ L2(T, µλ). In fact, this it is not
not enough to conclude the Lemma: we need to show, at least, that φλ ∈ C0.

First of all notice that, since for each β ∈ R we have fλ = φλ + β − (φλ +
β) ◦ T , we can assume without loss of generality µλ(φλ) = 0. But then

L̂λ(fλ hλ) = L̂λ(φλ hλ)− φλ hλ = −(1− L̂λ)φλ hλ.

Hence

φλ = h−1
λ (1− L̂λ)−1L̂λ(fλ hλ) ∈ C1.

�

Remark 7.5.4 The above result is quite sharp. Indeed, it shows that if I is
not strictly convex, then for each invariant measure ν holds ν(f) = β = µ(f).
So it suffices to find two invariant measures for which the average of f differs
(for example the average on two periodic orbits) to infer that I is strictly
convex.

Problem 7.19 Set σ := α′′(0). Show that, for a small, I(a) = a2

2σ + O(a3).
Show that if a > |f |∞, then I(a) = +∞.

12Such a subsequence always exists [LL01].
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The above discussion allows to conclude

m(A+
a,n(f)) ≤ m(Lnλ−h) ≤ Ce−

a2

2σ2
n+O(a3n).

Since similar arguments hold for the set A+
a,n(−f), it follows that we have

an exponentially small probability to observe a deviation from the average.
Moreover, the expected size of a deviation is of order n−

1
2 , to see if this is

really the case we a lower bound.

7.5.2 Large deviations. Lower bound

Let I = (α, β), fix c ∈ (0, β−α2 ) and let us consider a λ ∈ R such that

µλ(f̂) ∈ (α + c, β − c) = Ic. Let Sn =
∑n−1
k=0 f̂ ◦ T k, then µλ(Sn) = nµλ(f̂)

and, by (7.5.20)

µλ

[n−1∑
k=0

f̂ ◦ T k − nµλ(f̂)

]2
 ≤ Cλn,

where Cλ depends continuously by λ. Thus, setting An,I = {x ∈ T1 :
1
nSn(x) ∈ I},

µλ(Acn,I) ≤ µλ

({∣∣∣∣∣
n−1∑
k=0

fλ ◦ T k
∣∣∣∣∣ ≥ cn

})

≤ c−2n−2µλ

∣∣∣∣∣
n−1∑
k=0

fλ ◦ T k
∣∣∣∣∣
2
 ≤ Cλc−2n−1.

It follows that there exists nλ ∈ N such that, for all n ≥ nλ, µλ(An,I) ≥ 1
2 .

We can then write

1

2
≤ `λ(An,Ihλ) ≤ C#e

−(n+m) lnαλ`λ
(
Ln+m
λ (1An,I )

)
. (7.5.23)

To conclude we must analyse a bit the characteristic function of An,I . First of
all, notice that if |T kx−T ky| ≤ ε for each k ≤ n, then |T kx−T ky| ≤ λ−n+kε
for all k ≤ n. Accordingly, for each z ∈ [x, y]

|DxT
n −DzT

n| ≤ |DxT
n| · (e

∑n−1
k=0 | lnDTkxT−lnD

Tkz
T | − 1)

≤ |DxT
n|(eC#

∑n−1
k=0 λ

−kε − 1) ≤ C#|DxT
n|.

By a similar estimate follows |DxT
n−DzT

n| ≥ C#|DxT
n| as well. Moreover,

|Sn(x)− Sn(y)| ≤
n−1∑
k=0

|f |C1C#λ
−kε ≤ C#ε.
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We can then write An,I ⊃ ∪lJl ⊃ An,Ic where Jl are disjoint intervals such
that |TnJl| ≤ ε. Choosing ε small enough it follow that the oscillation of Sn
on each Jl is smaller than c. Moreover

‖Ln1Jl‖BV = sup
|ϕ|∞≤1

∫
Jl

ϕ′ ◦ Tn ≤ sup
|ϕ|∞≤1

∫
Jl

d

dx

[
(DTn)−1ϕ ◦ Tn

]
+B|Jl|

≤ 2 sup
x∈Jl
|DxT

n|−1 +B|Jl| ≤ C#|Jl|.

We can then continue our estimate started in (7.5.23),

1

2
≤ C#e

−(n+m) lnαλ+nλβ+mC#

∑
l

`λ
(
Ln+m(1Jl)

)
= C#e

−(n+m) lnαλ+nλβ+mC#

∑
l

`λ (m(Jl)(1 +O(ρm))))

≤ C#e
−n(lnαλ−λβ)m(An,I),

where we have chosen m large but fixed. The above computations imply that,
for each L > 0,

m(An,I) ≥ CLe−JL(I)n

where JL(I) = max{λ≤L : µλ(f)∈Ic} λa−lnαλ. Note that, if f is not a cobound-
ary and hence lnαλ is strictly convex, the maximum of λβ−lnαλ is attained at
some finite value, hence, for L large enough, JL(I) = sup{λ∈R : µλ(f)∈Ic} λβ −
lnαλ. This implies thatThis must

be fixed a
bit

This must
be fixed a
bit m(A+

a,n) ≥ C#e
−J(a)n

where J(a) = sup{λ : µλ(f)>a} λa− lnαλ.
The surprising fact is that the upper and lower bound are essentially the

same. To see this a little argument is needed.

7.5.3 Large deviations. Conclusions

In fact, it is possible to give a variational characterization of the rate function
in the spirit of general Large deviation theory [Var84, Str84, DZ98].

Lemma 7.5.5 Let MT be the set of invariant probability measures invariant
with respect to T . Then

I(a) = − sup
{ν∈MT : ν(f)≥a}

hν(T ) = J(a).

Proof. By section 7.4.2 we have that, for each ν ∈MT , lnαλ = supν∈MT
{hν(T )+

λν(f)} = hµλ(T ) + λµλ(f). Thus for each ν ∈ MT such that ν(f) ≥ a, we
can write

I(a) ≤ max
λ≥0
{λ(a− ν(f))− hν(T )} = −hν(T ).
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On the other and

I(a) = sup
λ≥0
{λ(a− µλ(f))− hµλ(T )}.

If a > supµλ(f), then I(a) = +∞, otherwise let λ∗ be such that µλ∗(f) = a,13

then
I(a) ≥ −hµλ∗ (T ) ≥ − sup

{ν∈MT : ν(f)≥a}
hν(T ).

Finally, since µλ and hµλ depend smoothly from λ,

J(a) = sup
{λ : µλ(f)>a}

λa− λµλ(f)− hµλ(T ) = I(a).

�

7.5.4 The Central Limit Theorem

We can now address the second question we have posed. From the above
discussion is clear that we must chose cn =

√
n.

Let f ∈ BV and set f̂ := f − µ(f), then

lim
n→∞

1

n

n−1∑
k=0

f̂ ◦ T k(x) = 0 m− a.e.

Let us set Ψn := 1√
n

∑n−1
k=0 f̂ ◦ T k. We can consider Ψn a random variable

with distribution Fn(t) := µ({x : Ψn(x) ≤ t}). It is well known that, for
each continuous function g holds14

µ(g(Ψn)) =

∫
R
g(t)dFn(t)

where the integral is a Riemann-Stieltjes integral. It is thus clear that if we
can control the distribution Fn, we have a very sharp understanding of the
probability to have small deviations (of order

√
n) from the limit. From the

13Actually one must show that the sup is a max.
14If g ∈ C1

0 , then∫
R
gdFn = −

∫
R
Fn(t)g′(t)dt = −

∫
R
dt

∫
T1
dxχ{z : Ψn(z)≤t}(x)g′(t).

Applying Fubini yields∫
R
gdFn = −

∫
T1
dx

∫
R
dtχ{z : Ψn(z)≤t}(x)g′(t) = −

∫
T1
dx

∫ ∞
Ψn(x)

g′(t)dt =

∫
T1
dxg(Ψn(x)).



166 CHAPTER 7. QUANTITATIVE STATISTICAL PROPERTIES

work in the previous section it follows that there exists δ > 0 such that, for
each |λ| ≤ δ

√
n,

ϕn(λ) := µ(eiλΨn) = µ(Lniλ/√nh) = (1− σ2λ2

2n
+O(λ3n−

3
2 + ρn)‖f‖BV )n

= e−
σ2λ2

2 (1 +O(λ3n−
1
2 + nρn)‖f‖BV ).

(7.5.24)

The above quantity is called characteristic function of the random variable
and determines the distribution (at continuity points) via the formula

Fn(b)− Fn(a) = lim
Λ→∞

1

2π

∫ Λ

−Λ

e−iaλ − e−ibλ

iλ
ϕn(λ)dλ,

as can be seen in any basic book of probability theory.15

Formula (7.5.24) means in particular that

lim
n→∞

m(eλΨn) = e−
σ2λ2

2 =: ϕ(λ).

What can we infer from the above facts? First of all a simple computation
shows that

g(t) =
1

2π

∫
R
e−itλϕ(λ)dλ =

1√
πσ

e−
t2

2σ2

a random variable with such a density is called a Gaussian random variable
with zero average and variance σ. Accordingly, formula (7.5.24) can be inter-
preted by saying that there exists a Gaussian random variable G such that

1

n

n−1∑
k=0

f̂ ◦ T k ∼ 1√
n
G(1 +O(n−

1
2 ))

in distribution. But what does this means concretely. Actual estimates are
made difficult by the fact that the distribution under study not necessarily
have a density, thus we are Fourier transforming function that behave quite
badly at infinity. To overcome such a problem we can smoothen the quantities
involved.

15In the case when there exists a density, that is an L1 function fn such that Fn(b) −
Fn(a) =

∫ b
a fn(t)dt, then the formula above becomes simply

fn(t) =
1

2π

∫
R
e−itλϕn(λ)dλ,

and follows trivially by the inversion of the Fourier transform.
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Let j ∈ C∞(R,R+) such that
∫
R j(t)dt = 1, j(t) = j(−t), and j(t) = 0 for

all |t| > 1, for each ε > 0 defined then jε(t) := ε−1j(ε−1t) and

Fn,ε(t) :=

∫
R
jε(t− s)Fn(s)ds. (7.5.25)

A simple computation shows that, for each a, b ∈ R, holds

Fn(b+ ε)− Fn(a− ε) ≥ Fn,ε(b)− Fn,ε(a) ≥ Fn(b− ε)− Fn(a+ ε)

that is: if the measurements have a precision worst than 2ε, then Fn,ε is as
good as Fn to describe the resulting statistics. On the other hand calling ϕn,ε
the characteristic function associated to Fn,ε, holds ϕn,ε(λ) = ϕn(λ)ĵ(ελ),

where ĵ is the Fourier transform of j. Since now Fn,ε is the law of a smooth
random variable it has a density fn,ε and

fn,ε(t) =
1

2π

∫
R
e−iλtϕn(λ)ĵ(ελ)dλ

since j is smooth it follows that there exists C > 0 such that |ĵ(λ)| ≤ C(1 +
λ2)−2. We can finally use formula (7.5.24) to obtain a quantitative estimate

fn,ε(t) =
1

2π

∫ ε
√
n

−ε
√
n

e−iλtϕn(λ)ĵ(ελ)dλ+O(ε−5n−
3
2 )

=
1

2π

∫ ε
√
n

−ε
√
n

e−iλtϕ(λ)ĵ(ελ)dλ+O(ε−5n−
3
2 + n−

1
2 )

= g(t) +O(ε+ ε−5n−
3
2 + n−

1
2 ) = g(t) +O(n−

1
2 )

provided we choose n−
1
2 ≥ ε ≥ n−5. Which, as announced, means that, if the

precision of the instrument is compatible with the statistics, the typical fluc-
tuations in measurements are of order 1√

n
and Gaussian. This is well known

by sperimentalists who routinely assume that the result of a measurement is
distributed according to a Gaussian.16

7.6 Perturbation theory

To answer the questions posed at the beginning we need some perturbation
theorems. Few such results are available (e.g., see [Kif88], [BY93] or [Bal00]

16Note however that our proof holds in a very special case that has little to do with a
real experimental setting. To prove the analogous statement for a realistic experiment is a
completely different ball game.
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for a review), here we will follow mainly the theory developed in [KL99, GL06]
adapted to the special cases at hand.

For simplicity let us work directly with the densities and in the case d = 1.
Then L is the transfer operator for the densities. We will start by considering
an abstract family of operators Lε satisfying the following properties.

Condition 1 Consider a family of operators Lε with the following properties

1. A uniform Lasota-Yorke inequality:

‖Lnεh‖BV ≤ Aλ−n‖h‖BV +B|h|L1 , |Lnεh|L1 ≤ C|h|L1 ;

2.
∫
Lh(x)dx =

∫
h(x)dx ;

3. For L : BV → BV define the norm

|||L||| := sup
‖h‖BV ≤1

|Lf |L1 ,

that is the norm of L as an operator from BV → L1. Then we require
that there exists D > 0 such that

|||L − Lε||| ≤ Dε.

Condition 1-(3) specifies in which sense the family Lε can be considered
an approximation of the unperturbed operator L. Notice that the condition
is rather weak, in particular the distance between Lε and L as operators on
BV can be always larger than 1. Such a notion of closeness is completely
inadequate to apply standard perturbation theory, to get some perturbations
results it is then necessary to drastically restrict the type of perturbations
allowed, this is done by Conditions 1-(1,2) which state that all the approxi-
mating operators enjoys properties very similar to the limiting one.17

To state a precise result consider, for each operator L, the set

Vδ,r(L) := {z ∈ C | |z| ≤ r or dist(z, σ(L)) ≤ δ}.

Since the complement of Vδ,r(L) belongs to the resolvent of L it follows that

Hδ,r(L) := sup
{
‖(z − L)−1‖BV | z ∈ C \Vδ,r(L)

}
<∞.

By R(z) and Rε(z) we will mean respectively (z − L)−1 and (z − Lε)−1.

17Actually only Condition 1-(1) is needed in the following. Condition 1-(2) simply implies
that the eigenvalue one is common to all the operators. If 1-(2) is not assumed, then the
operator Lε will always have one eigenvalue close to one, but the spectral radius could vary
slightly, see [LMD03] for such a situation.
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Theorem 7.6.1 ([KL99]) Consider a family of operators Lε : BV → BV
satisfying Conditions 1. Let Hδ,r := Hδ,r(L); Vδ,r := Vδ,r(L), r > λ−1, δ > 0,
then, if ε ≤ ε1(L, r, δ), σ(Lε) ⊂ Vδ,r(L). In addition, if ε ≤ ε0(L, r, δ), there
exists a > 0 such that, for each z 6∈ Vδ,r, holds true

|||R(z)−Rε(z)||| ≤ Cεa.

Proof.18 To start with we collect some trivial, but very useful algebraic
identities.

For each operator L : BV → BV and n ∈ Z holds

1

z

n−1∑
i=0

(z−1L)i(z − L) + (z−1L)n = 1 (7.6.26)

R(z)(z − Lε) +
1

z

n−1∑
i=0

(z−1L)i(Lε − L) +R(z)(z−1L)n(Lε − L) = 1

(7.6.27)

(z − Lε)
[
Gn,ε + (z−1Lε)nR(z)

]
= 1− (z−1Lε)n(Lε − L)R(z) (7.6.28)[

Gn,ε + (z−1Lε)nR(z)
]

(z − Lε) = 1− (z−1Lε)nR(z)(Lε − L), (7.6.29)

where we have set Gn,ε := 1
z

∑n−1
i=0 (z−1Lε)i.

Let us start applying the above formulae. For each h ∈ BV and z 6∈ Vr,δ
holds

‖(z−1Lε)n(Lε − L)R(z)h‖BV ≤ (rλ)−nA‖(Lε − L)R(z)h‖BV +
B

rn
|(Lε − L)R(z)h|L1

≤ [(rλ)−nA2C1 +Br−nDε]Hr,δ‖h‖BV < ‖h‖BV

Thus ‖(z−1Lε)n(Lε − L)R(z)‖BV < 1 and the operator on the right hand
side of (7.6.28) can be inverted by the usual Neumann series. Accordingly,
(z − Lε) has a well defined right inverse. Analogously,

‖(z−1Lε)nR(z)(Lε−L)h‖BV ≤ (rλ)−nA‖R(z)(Lε−L)h‖BV +Br−n|R(z)(Lε−L)h|L1 .

This time to continue we need some informations on the L1 norm of the
resolvent. Let g ∈ BV , then equation (7.6.26) yields

|R(z)g|L1 ≤ 1

r

n−1∑
i=0

|(z−1L)ig|L1 + ‖R(z)(z−1L)ng‖BV

≤ 1

rn(1− r)
|g|L1 +Hδ,rA(rλ)−n‖g‖BV +Hδ,rBr

−n|g|L1

≤ r−n(Hδ,rB + (1− r)−1)|g|L1 +Hδ,rA(rλ)−n‖g‖BV
18This proof is simpler than the one in [KL99], yet it gives worst bounds, although

sufficient for the present purposes.
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Substituting, we have

‖(z−1Lε)nR(z)(Lε − L)h‖BV ≤ {(rλ)−nAHδ,r2C1[1 +Br−n]

+Br−2n[Hδ,rB + (1− r)−1]Dε}‖h‖BV < 1,

again, provided ε is small enough and choosing n appropriately. Hence the
operator on the right hand side of (7.6.29) can be inverted, thereby providing
a left inverse for (z−Lε). This implies that z does not belong to the spectrum
of Lε.

To investigate the second statement note that (7.6.27) implies

R(z)−Rε(z) =
1

z

n−1∑
i=0

(z−1L)i(Lε − L)Rε(z)−R(z)(z−1L)n(Lε − L)Rε(z).

Accordingly, for each ϕ ∈ BV holds

|R(z)ϕ−Rε(z)ϕ|L1 ≤ {r−n(1−r)−1ε+Hδ,r(λr)
−n2AC1+Hδ,rBε}‖Rε(z)ϕ‖BV .

�

7.6.1 Deterministic stability

The Lε are Perron-Frobenius (Transfer) operators of maps Tε which are C1–
close to T , that is dC1(Tε, T ) = ε and such that dC2(Tε, T ) ≤ M , for some
fixed M > 0. In this case the uniform Lasota-Yorke inequality is trivial. On
the other hand, for all ϕ ∈ C1 holds∫

(Lεf − Lf)ϕ =

∫
f(ϕ ◦ Tε − ϕ ◦ T ).

Now let Φ(x) := (DxT )−1
∫ Tεx
Tx

ϕ(z)dz, since

Φ′(x) = −(DxT )−1D2
xTΦ(x) +DxTε(DxT )−1ϕ(Tεx)− ϕ(Tx)

follows∫
(Lεf−Lf)ϕ =

∫
fΦ′+

∫
f(x)[(DxT )−1D2

xTΦ(x)+(1−DxTε(DxT )−1)ϕ(Tεx)].

Given that |Φ|∞ ≤ λ−1ε|ϕ|∞ and |1−DxTε(DxT )−1|∞ ≤ λ−1ε, we have∫
(Lεf −Lf)ϕ ≤ ‖f‖BV λ−1|ϕ|∞ε+ |f |L1λ−1(B+ 1)ε|ϕ|∞ ≤ D‖f‖BV ε|ϕ|∞.

By Lebesgue dominate convergence theorem we obtain the above inequality
for each ϕ ∈ L∞, and taking the sup on such ϕ yields the wanted inequality.

|Lεf − Lf |L1 ≤ D‖f‖BV ε.

We have thus seen that all the requirements in Condition 1 are satisfied. See
[Kel82] for a more general setting including piecewise smooth maps.



7.6. PERTURBATION THEORY 171

7.6.2 Stochastic stability

Next consider a set of maps {Tω} depending on a parameter ω ∈ Ω. In
addition assume that Ω is a probability space and consider a measure P on
Ω. Consider the process xn = Tωn ◦ · · · ◦ Tω1x0 where the ω are i.i.d. random
variables distributed accordingly to P and let Eµ be the expectation of such
process when x0 is distributed according to µ. Then, calling Lω the transfer
operator associated to Tω, we have

E(f(xn+1) | xn) = LP f(xn) :=

∫
Ω

Lωf(xn)P (dω).

Then if

|Lωh|BV ≤ λ−1
ω |h|BV +Bω|h|L1

integrating yields

|LPh|BV ≤ E(λ−1
ω )|h|BV + E(Bω)|h|L1

And the operator LP satisfy a Lasota-Yorke inequality provided that E(λ−1) <
1 and E(B) <∞.

In addition, if for some map T and associated transfer operator L,

E(|Lωh− Lh|) ≤ ε|h|BV

then we can apply perturbation theory and obtain stochastic stability.

7.6.3 Computability

If we want to compute the invariant measure and the rate of decay of correla-
tions, we can use the operator Pt defined in (7.3.6) and define Lt,m = PtLm.
By the estimates in Lemma ?? it follows

|Lt,mh|BV ≤ 4dσm|h|BV +B|h|L1 .

We can then chose the smallest m so that 4dσm = σ1 < 1. Moreover, we also
saw that

|Lt,mh− Lh| ≤ t−1|h|BV .

So we are again in the realm of our perturbation theory and we have that the
finite dimensional operator Lt,m has spectrum close to the one of the transfer
operator. We can then obtain all the info we want by diagonalizing a matrix.
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7.6.4 Linear response

Linear response is a theory widely used by physicists. In essence it says the
follow: consider a one parameter family of systems Ts and the associated
(e.g.) invariant measures µs, then, for a given observable f one want to study
the response of the system to a small change in s, and, not surprisingly, one
expects µs(f) = µ0(f) + sν(f) + o(s). That is one expects differentiability in
s. Yet differentiability is is not ensured by Theorem 7.6.1. Is it possible to
ensure conditions under which linear response holds? The answer is yes (for
example if holds if the maps are sufficiently smooth and the dependence on
the parameter is also smooth in an appropriate sense). To prove it one need
a sophistication of Theorem 7.6.1 that can be found in [GL06].

7.6.5 The hyperbolic case

One can wonder is the previous approach can be applied to uniformly hyper-
bolic systems and partially hyperbolic system. The answer is yes although
the work in this direction is still in progress and the price to pay is the need
to consider rather unusual functional spaces (space of anysotropic distribu-
tions). Just to give a vague idea let us look at a totally trivial example: toral
automorphisms.

Then one can consider the norms:

‖f‖p,q :=
∑

k∈Z2d\{0}

|fk|
|k|p

1 + |〈vs, k〉|p+q
+ |f0|,

where fk are the Fourier coefficients of f and vs is the unit vector in the stable
direction. Then

‖[Lf‖p,q ≤ C1‖f‖p,q,
‖[Lnf‖p,q ≤ C3µ

n‖f‖p,q +B‖f‖p−1,q+1.
(7.6.30)

we have thus the Lasota-Yorke inequality. Moreover on can easily check the
relative compactness of {‖f‖p,q ≤ 1} with respect to the topology induced by
the norm ‖ · ‖p−1,q+1, hence our previous theory applies almost verbatim.

To have a more precise idea of what can be done, see [GL06, BT07].

Hints to solving the Problems

7.18 Let `λ, hλ be analytic. Let us define zλ = e−
∫ λ
0
`ξ(h

′
ξ)dξ, define ĥλ = zλhλ

and ˆ̀
λ = z−1

λ `λ and check that they are normalized as required.
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Notes

Large deviations are taken from Lai-Sang article and Keller book.
The stochastic stability is reasonably well understood (Cowienson) but

what about the smooth dependence from a parameter (linear response)?
Counterexamples in d = 1 but unknown in higher dimensions. The uniformly
hyperbolic case is well understood but not much is know on how to apply the
present ideas to the partially hyperbolic case and to the case of systems with
discontinuities, although a concentrated effort is taking place to extend the
theory in such directions.



Appendix A

Fixed Points Theorems
(an idiosincratic selection)

In this appendinx I provide some standard and less standard Fixed poins
theorems. These constitute a very partial introduction to the subject. The
choice of the topics if motivated by the needs of the previous chapters.

A.1 Banach Fixed Point Theorem

Theorem A.1.1 (Fixed point contraction) Given a Banach space B, a
bounded closed set A ⊂ B and a map K : A→ B if

i) K(A) ⊂ A,

ii) there exists σ ∈ (0, 1) such that ‖K(v) − K(w)‖ ≤ σ‖v − w‖ for each
v, w ∈ A,

then there exists a unique v∗ ∈ A such that Kv∗ = v∗.

Proof. Since A is bounded supx,y∈A ‖x−y‖ = L <∞, i.e. it has a finite
diameter. Let a0 ∈ A and consider the sequence of points defined recursively
by an+1 = K(an) and the sequence of sets A0 = A and An+1 = K(An) ⊂ A.
Let dn := supx,y∈An ‖x − y‖ be the diameter of An. Then if x, y ∈ An, we
have

‖K(y)−K(x)‖ ≤ σ‖x− y‖ ≤ σdn.

That is dn+1 ≤ σdn ≤ σnL. This means that, for each n,m ∈ N, an, a0 ∈ A
and am, an+m ∈ Am, hence ‖an+m − am‖ ≤ σmL. That is {an} ⊂ A is a
Cauchy sequence and, being B a Banach space, it must have an accumulation
point v∗ ∈ B. Moreover since A is closed it must be v∗ ∈ A. Clearly

‖Kv∗ − v∗‖ = lim
n→∞

‖Kv∗ − an‖ = lim
n→∞

‖Kv∗ −Kan−1‖

≤ lim
n→∞

σ‖v∗ − an−1‖ = 0.

195
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Hence, v∗ is a fixed point. Next, suppose there exist u ∈ A, such that Ku = u.
Then

‖u− v∗‖ = ‖K(u− v∗)‖ ≤ σ‖u− v ∗ ‖
implies u = v∗. �

Corollary A.1.2 Given a Banach space B and a map K : B → B with the
property that there exists σ ∈ (0, 1) such that ‖K(v)−K(w)‖ ≤ σ‖v−w‖ for
each v, w ∈ B, then there exists a unique v∗ ∈ B such that Kv∗ = v∗.

Proof. To prove the theorem, for each L ∈ R+ consider the sets BL :=
{v ∈ B : ‖v‖ ≤ L}. Then ‖K(v)‖ ≤ ‖K(v) − K(0)‖ + ‖K(0)‖ ≤ σ‖v‖ +
‖K(0)‖ ≤ σL + ‖K(0)‖. Thus, for each L ≥ (1 − σ)−1‖K(0)‖ we have
that K(BL) ⊂ BL. The existence follows by applying Theorem A.1.1. The
uniqueness follows by the same argument used at end of the proof of Theorem
A.1.1. �

A.2 Hilbert metric and Birkhoff theorem

In this section we will see that the Banach fixed point theorem can produce
unexpected results if used with respect to an appropriate metric: projective
metric.

Projective metrics are widely used in geometry, not to mention the im-
portance of their generalizations (e.g. Kobayashi metrics) for the study of
complex manifolds [IK00]. It is quite surprising that they play a major rôle
also in our situation, [Liv95].

Here we limit ourselves to a few word on the Hilbert metric, a quite im-
portant tool in hyperbolic geometry.

A.2.1 Projective metrics

Let C ∈ Rn be a strictly convex compact set. For each two point x, y ∈ C
consider the line ` = {λx + (1 − λy) | λ ∈ R} passing through x and y. Let
{u, v} = ∂C ∩ ` and define1

Θ(x, y) =

∣∣∣∣ln ‖x− u‖‖y − v‖‖x− v‖‖y − v‖

∣∣∣∣
(the logarithm of the cross ratio). By remembering that the cross ratio is a
projective invariant and looking at Figure A.1 it is easy to check that Θ is
indeed a metric. Moreover the distance of an inner point from the boundary
is always infinite. One can also check that if the convex set is a disc then the
disc with the Hilbert metric is nothing else than the Poincaré disc.

1Remark that u, v can also be ∞.
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Figure A.1: Hilbert metric

The object that we will use in our subsequent discussion are not convex
sets but rather convex cones, yet their projectivization is a convex set and one
can define the Hilbert metric on it (whereby obtaining a semi-metric for the
original cone). It turns out that there exists a more algebraic way of defining
such a metric, which is easier to use in our context. Moreover, there exists
a simple connection between vector spaces with a convex cone and vector
lattices (in a vector lattice one can always consider the positive cone). This
justifies the next digression in lattice theory.2

Consider a topological vector space V with a partial ordering “�,” that is
a vector lattice.3 We require the partial order to be “continuous,” i.e. given
{fn} ∈ V lim

n→∞
fn = f , if fn � g for each n, then f � g. We call such vector

lattices “integrally closed.” 4

2For more details see [Bir57], and [Nus88] for an overview of the field.
3We are assuming the partial order to be well behaved with respect to the algebraic

structure: for each f, g ∈ V f � g ⇐⇒ f − g � 0; for each f ∈ V, λ ∈ R+\{0} f � 0 =⇒
λf � 0; for each f ∈ V f � 0 and f � 0 imply f = 0 (antisymmetry of the order relation).

4To be precise, in the literature “integrally closed” is used in a weaker sense. First, V
does not need a topology. Second, it suffices that for {αn} ∈ R, αn → α; f, g ∈ V, if
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We define the closed convex cone 5 C = {f ∈ V | f 6= 0, f � 0} (hereafter,
the term “closed cone” C will mean that C∪{0} is closed), and the equivalence

relation “∼”: f ∼ g iff there exists λ ∈ R+\{0} such that f = λg. If we call C̃
the quotient of C with respect to ∼, then C̃ is a closed convex set. Conversely,
given a closed convex cone C ⊂ V, enjoying the property C ∩ −C = ∅, we can
define an order relation by

f � g ⇐⇒ g − f ∈ C ∪ {0}.

Henceforth, each time that we specify a convex cone we will assume the corre-
sponding order relation and vice versa. The reader must therefore be advised
that “�” will mean different things in different contexts.

It is then possible to define a projective metric Θ (Hilbert metric),6 in C,
by the construction:

α(f, g) = sup{λ ∈ R+ | λf � g}
β(f, g) = inf{µ ∈ R+ | g � µf}

Θ(f, g) = log

[
β(f, g)

α(f, g)

]
where we take α = 0 and β =∞ if the corresponding sets are empty.

The relevance of the above metric in our coontex is due to the following
Theorem by Garrett Birkhoff.

Theorem A.2.1 Let V1, and V2 be two integrally closed vector lattices; L :
V1 → V2 a linear map such that L(C1) ⊂ C2, for two closed convex cones
C1 ⊂ V1 and C2 ⊂ V2 with Ci ∩ −Ci = ∅. Let Θi be the Hilbert metric
corresponding to the cone Ci. Setting ∆ = sup

f, g∈T (C1)

Θ2(f, g) we have

Θ2(Lf, Lg) ≤ tanh

(
∆

4

)
Θ1(f, g) ∀f, g ∈ C1

(tanh(∞) ≡ 1).

Proof. The proof is provided for the reader convenience.
Let f, g ∈ C1, on the one hand if α = 0 or β = ∞, then the inequality is

obviously satisfied. On the other hand, if α 6= 0 and β 6=∞, then

Θ1(f, g) = ln
β

α

αnf � g, then αf � g. Here we will ignore these and other subtleties: our task is limited
to a brief account of the results relevant to the present context.

5Here, by “cone,” we mean any set such that, if f belongs to the set, then λf belongs
to it as well, for each λ > 0.

6In fact, we define a semi–metric, since f ∼ g ⇒ Θ(f, g) = 0. The metric that we

describe corresponds to the conventional Hilbert metric on C̃.
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where αf � g and βf � g, since V1 is integrally closed. Notice that α ≥ 0,
and β ≥ 0 since f � 0, g � 0. If ∆ = ∞, then the result follows from
αLf � Lg and βLf � Lg. If ∆ <∞, then, by hypothesis,

Θ2 (L(g − αf), L(βf − g)) ≤ ∆

which means that there exist λ, µ ≥ 0 such that

λL(g − αf) � L(βf − g)

µL(g − αf) � L(βf − g)

with ln µ
λ ≤ ∆. The previous inequalities imply

β + λα

1 + λ
Lf � Lg

µα+ β

1 + µ
Lf � Lg.

Accordingly,

Θ2(Lf, Lg) ≤ ln
(β + λα)(1 + µ)

(1 + λ)(µα+ β)
= ln

eΘ1(f, g) + λ

eΘ1(f, g) + µ
− ln

1 + λ

1 + µ

=

∫ Θ1(f, g)

0

(µ− λ)eξ

(eξ + λ)(eξ + µ)
dξ ≤ Θ1(f, g)

1− λ
µ(

1 +
√

λ
µ

)2

≤ tanh

(
∆

4

)
Θ1(f, g).

�

Remark A.2.2 If L(C1) ⊂ C2, then it follows that Θ2(Lf, Lg) ≤ Θ1(f, g).
However, a uniform rate of contraction depends on the diameter of the image
being finite.

In particular, if an operator maps a convex cone strictly inside itself (in
the sense that the diameter of the image is finite), then it is a contraction in
the Hilbert metric. This implies the existence of a “positive” eigenfunction
(provided the cone is complete with respect to the Hilbert metric), and, with
some additional work, the existence of a gap in the spectrum of L (see [Bir79]
for details). The relevance of this theorem for the study of invariant measures
and their ergodic properties is obvious.

It is natural to wonder about the strength of the Hilbert metric compared
to other, more usual, metrics. While, in general, the answer depends on the
cone, it is nevertheless possible to state an interesting result.
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Lemma A.2.3 Let ‖ · ‖ be a norm on the vector lattice V, and suppose that,
for each f, g ∈ V,

−f � g � f =⇒ ‖f‖ ≥ ‖g‖.

Then, given f, g ∈ C ⊂ V for which ‖f‖ = ‖g‖,

‖f − g‖ ≤
(
eΘ(f, g) − 1

)
‖f‖.

Proof. We know that Θ(f, g) = ln β
α , where αf � g, βf � g. This

implies that −g � 0 � αf � g, i.e. ‖g‖ ≥ α‖f‖, or α ≤ 1. In the same
manner it follows that β ≥ 1. Hence,

g − f �(β − 1)f � (β − α)f

g − f �(α− 1)f � −(β − α)f

which implies

‖g − f‖ ≤ (β − α)‖f‖ ≤ β − α
α
‖f‖ =

(
eΘ(f, g) − 1

)
‖f‖.

�

Many normed vector lattices satisfy the hypothesis of Lemma 1.3 (e.g.
Banach lattices7); nevertheless, we will see that some important examples
treated in this paper do not.

A.2.2 An application: Perron-Frobenius

Consider a matrix L : Rn → Rn of all strictly positive elements: Lij ≥ γ > 0.
The Perron-Frobenius theorem states that there exists a unique eigenvector
v+ such that v+

i > 0, in addition the corresponding eigenvalue λ is simple,
maximal and positive. There quite a few proofs of this theorem a possible
one is based on Birkhoff theorem. Consider the cone C+ = {v ∈ R2 | vi ≥ 0},
then obviously LC+ ⊂ C+. Moreover an explicit computation (see

Problem A.1 shows that

Θ(v, w) = ln sup
ij

viwj
vjwi

. (A.2.1)

7A Banach lattice V is a vector lattice equipped with a norm satisfying the property
‖ |f | ‖ = ‖f‖ for each f ∈ V, where |f | is the least upper bound of f and −f . For this
definition to make sense it is necessary to require that V is “directed,” i.e. any two elements
have an upper bound.
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Then, setting M = maxij Lij , it follows that

Θ(Lv,Lw) ≤ 2 ln
M

γ
:= ∆ <∞.

We have then a contraction in the Hilbert metric and the result follows from
usual fixed points theorems. Note that, since Θ(v, λv) = 0, for all λ ∈ R+,
the fixed point v+ ∈ Rn is only projective, that is Lv+ = λv+ for some λ ∈ R;
in other words, we have an eigenvalue.

Remark that L∗ satisfies the same conditions as L, thus there exists w+ ∈
C+, µ ∈ R+, such that L∗w+ = µw+. Next, define ρ1(v) = |〈w+, v〉| and
ρ2(v) = ‖v‖. It is easy to check that they are two homogeneous forms of
degree one adapted to the cone.

In addition, if ρ1(v) = ρ2(v), then ρ1(Lnv) = ρ1(Lnw). Hence, by Lemma
A.2.3

‖Lnv − Lnw‖ ≤
(
eΘ(Lnv,Lnw) − 1

)
min{‖Lnv‖, ‖Lnw‖}

≤ KΛn min{‖Lnv‖, ‖Lnw‖},
(A.2.2)

for some constant K depending only on v, w. The estimate A.2.2 means that
all the vectors in the cone grow at the same rate. In fact, for all v ∈ intC,

‖λ−nLnv − λ−nLnw‖ ≤ KΛn.

Hence, limn→∞ λ−nLnv = v+.
Finally, consider V1 = {v ∈ V | 〈w+, v〉 = 0}. Clearly LV1 ⊂ V1 and

V1 ⊕ span{v+} = V. Let w ∈ V1, clearly there exists α ∈ R+ such that
αv+ + w ∈ C,8 thus

‖Lnw‖ ≤ ‖Ln(αv+ + w)− αLnv+‖ ≤ LΛnλn.

This immediately implies that L restricted to the subspace V1 has spectral
radius less that λΛ. In other words, λ is the maximal eigenvalue, it is simple
and any other eigenvalue must be smaller than λΛ. We have thus obtained
an estimate of the spectral gap between the first and the second eigenvalue.

Notes

For more details on Hilbert metrics see [Bir79], and [Nus88] for an overview
of the field.

8this is a special case of the general fat that any vector can be written as the linear
combination of two vectors belonging to the cone.
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Perturbation Theory
(a super-fast introduction)

The following is really super condensate (although self-consistent). If you
want more details see [RS80, Kat66] in which you probably can find more
than you are looking for.

C.1 Bounded operators

In the following we will consider only separable Banach spaces, i.e. Banach
spaces that have a countable dense set.1

Given a Banch space B we can consider the set L(B,B) of the linear
bounded operators from B to itself. We can then introduce the norm ‖B‖ =
sup‖v‖≤1 ‖Bv‖.

Problem C.1 Show that (L(B,B), ‖ · ‖) is a Banach space. That is that ‖ · ‖
is really a norm and that the space is complete with respect to such a norm.

Problem C.2 Show that the n× n matrices form a Banach Algebra.2

Problem C.3 Show that L(B,B) form a Banach algebra.3

To each A ∈ L(B,B) are associated two important subspaces: the range
R(A) = {v ∈ B : ∃ w ∈ B such that v = Aw} and the kernel N(A) = {v ∈
B : Av = 0}.

1Recall that a Banach space is a complete normed vector space (in the following we will
consider vector spaces on the field of complex numbers), that is a normed vector space in
which all the Cauchy sequences have a limit in the space. Again, if you are uncomfortable
with Banach spaces, in the following read Rd instead of B and matrices instead of operators,
but be aware that we have to develop the theory without the use of the determinant that,
in general, is not defined for operators on Banach spaces.

2A Banach Algebra A is a Banach space where it is defined the multiplications between
element with the usual properties of an algebra and, in addition, for each a, b ∈ A holds
‖ab‖ ≤ ‖a‖ · ‖b‖.

3The multiplication is given by the composition.

205
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Problem C.4 Prove, for each A ∈ L(B,B), that N(A) is a closed linear
subspaces of B. Show that this is not necessarily the case for R(A) if B is not
finite dimensional.

An very special, but very important, class of operators are the projectors.

Definition C.1.1 An operator Π ∈ L(B,B) is called a projector iff Π2 = Π.

Note that if Π is a projector, so is 1 − Π. We have the following interesting
fact.

Lemma C.1.2 If Π ∈ L(B,B) is a projector, then N(Π)⊕R(Π) = B.

Proof. If v ∈ B, then v = Πv+ (1−Π)v. Notice that R(1−Π) = N(Π)
and R(Π) = N(1 − Π). Finally, if v ∈ N(Π) ∩ R(Π), then v = 0, which
concludes the proof. �

Another, more general, very important class of operators are the compact
ones.

Definition C.1.3 An operator K ∈ L(B,B) is called compact iff for any
bounded set B the closure of K(B) is compact.

Remark C.1.4 Note that not all the linear operator on a Banach space are
bounded. For example consider the derivative acting on C1((0, 1),R).

C.2 Functional calculus

First of all recall that all the Riemannian theory of integration works verbatim
for function f ∈ C0(R,B), where B is a Banach space. We can thus talk of

integrals of the type
∫ b
a
f(t)dt.4 Next, we can talk of analytic functions for

functions in C0(C,B): a function is analytic in an open region U ⊂ C iff at
each point z0 ∈ U there exists a neighborhood B 3 z0 and elements {an} ⊂ B
such that

f(z) =

∞∑
n=0

an(z − z0)n ∀z ∈ B. (C.2.1)

Problem C.5 Show that if f ∈ C0(C,B) is analytic in U ⊂ C, then given
any smooth closed curve γ, contained in a sufficiently small disk in U , holds5∫

γ

f(z)dz = 0 (C.2.2)

4This is special case of the so called Bochner integral [Yos95].
5Of course, by

∫
γ f(z)dz we mean that we have to consider any smooth parametrization

g : [a, b] → C of γ, g(a) = g(b), and then
∫
γ f(z)dz :=

∫ b
a f ◦ g(t)g

′(t)dt. Show that the

definition does not depend on the parametrization and that one can use piecewise smooth
parametrizations as well.
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Then show that the same hold for any piecewise smooth closed curve with
interior contained in U , provided U is simply connected.

Problem C.6 Show that if f ∈ C0(C,B) is analytic in a simply connected
U ⊂ C, then given any smooth closed curve γ, with interior contained con-
tained in U and having in its interior a point z, hods the formula

f(z) =
1

2πi

∫
γ

(ξ − z)−1f(ξ)dξ. (C.2.3)

Problem C.7 Show that if f ∈ C0(C,B) satisfies (C.2.3) for each smooth
closed curve in a simply connected open set U , then f is analytic in U .

C.3 Spectrum and resolvent

Given A ∈ L(B,B) we define the resolvent, called ρ(A), as the set of the
z ∈ C such that (z1−A) is invertible and the inverse belongs to L(B,B). The
spectrum of A, called σ(A) is the complement of ρ(A) in C.

Problem C.8 Prove that, for each Banach space B and operator A ∈ L(B,B),
if z ∈ ρ(A), then there exists a neighborhood U of z such that (z1 − A)−1 is
analytic in U .

From the above exercise follows that ρ(A) is open, hence σ(A) is closed.

Problem C.9 Show that, for each A ∈ L(B,B), σ(A) 6= ∅.

Problem C.10 Show that if Π ∈ L(B,B) is a projector, then σ(Π) = {0, 1}.

Up to now the theory for operators seems very similar to the one for
matrices. Yet, the spectrum for matrices is always given by a finite number
of points while the situation for operators can be very dfferenct.

Problem C.11 Consider the operator L : C0([0, 1],C)→ C0([0, 1],C) defined
by

(Lf)(x) =
1

2
f(x/2) +

1

2
f(x/2 + 1/2).

Show that σ(L) = {z ∈ C : |z| ≤ 1}.

Problem C.12 Show that, if A ∈ L(B,B) and p is any polynomial, then for
each n ∈ N and smooth curve γ ⊂ C, with σ(A) in its interior,

p(A) =
1

2πi

∫
γ

p(z)(z1−A)−1dz.
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Problem C.13 Show that, for each A ∈ L(B,B) the limit

r(A) = lim
n→∞

‖An‖ 1
n

exists.

The above limit is called the spectral radius of A.

Lemma C.3.1 For each A ∈ L(B,B) holds true supz∈σ(A) |z| = r(A).

Proof. Since we can write

(z1−A)−1 = z−1(1− z−1A)−1 = z−1
∞∑
n=0

z−nAn,

and since the series converges if it converges in norm, from the usual criteria
for the convergence of a series follows supz∈σ(A) |z| ≤ r(A). Suppose now
that the inequality is strict, then there exists 0 < η < r(A) and a curve
γ ⊂ {z ∈ C : |z| ≤ η} which contains σ(A) in its interior. Then applying
Problem C.12 yields ‖An‖ ≤ Cηn, which contradicts η < r(A). �

Note that if f(z) =
∑∞
n=0 fnz

n is an analytic function in all C (entire), then
we can define

f(A) =

∞∑
n=0

fnA
n.

Problem C.14 Show that, if A ∈ L(B,B) and f is an entire function, then
for each smooth curve γ ⊂ C, with σ(A) in its interior,

f(A) =
1

2πi

∫
γ

f(z)(z1−A)−1dz.

In view of the above fact, the following definition is natural:

Definition C.3.2 For each A ∈ L(B,B), f analytic in a region U containing
σ(A), then for each smooth curve γ ⊂ U , with σ(A) in its interior, define

f(A) =
1

2πi

∫
γ

f(z)(z1−A)−1dz. (C.3.4)

Problem C.15 Show that the above definition does not depend on the curve
γ.

Problem C.16 For each A ∈ L(B,B) and functions f, g analytic on a do-
main D ⊃ σ(A), show that f(A) + g(A) = (f + g)(A) and f(A)g(A) =
(f · g)(A).
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Problem C.17 In the hypotheses of the Definition C.3.2 show that f(σ(A)) =
σ(f(A)) and [f(A), A] = 0.

Problem C.18 Consider f : C → C entire and A ∈ L(B,B). Suppose that
{z ∈ C : f(z) = 0} ∩ σ(A) = ∅. Show that f(A) is invertible and f(A)−1 =
f−1(A).

Problem C.19 Let A ∈ L(B,B). Suppose there exists a semi-line `, starting
from the origin, such that ` ∩ σ(A) = ∅. Prove that it is possible to define an
operator lnA such that elnA = A.

Remark C.3.3 Note that not all the interesting functions can be constructed

in such a way. In fact, A =

(
0 1
−1 0

)
is such that A2 = −1, thus it can

be interpreted as a square rooth of −1 but it cannot be obtained directly by a
formula of the type (C.3.4).

Problem C.20 Suppose that A ∈ L(B,B) and σ(A) = B ∪ C, B ∩ C = ∅,
suppose that the smooth closed curve γ ⊂ ρ(A) contains B, but not C, in its
interior, prove that

PB :=
1

2πi

∫
γ

(z1−A)−1dz

is a projector that does not depend on γ.

Note that by Problem C.17 easily follows that PBA = APB . Hence,
AR(PB) ⊂ R(PB) and AN(PB) ⊂ N(PB). Thus B = R(PB) ⊕ N(PB) pro-
vides an invariant decomposition for A.

Problem C.21 In the hypotheses of Problem C.20, prove that A = PBAPB+
(1− PB)A(1− PB).

Problem C.22 In the hypotheses of Problem C.20, prove that σ(PBAPB) =
B ∪ {0}. Moreover, if dim(R(PB)) = D < ∞, then the cardinality of B is
≤ D.

C.4 Perturbations

Let us consider A,B ∈ L(B,B) and the family of operators Aν := A+ νB.

Lemma C.4.1 For each δ > 0 there exists νδ ∈ R such that, for all |ν| ≤ νδ,
ρ(Aν) ⊃ {z ∈ C : d(z, σ(A)) > δ}.
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Proof. Let d(z, σ(A)) > δ, then

(z1−Aν) = (z1−A)
[
1− ν(z1−A)−1B

]
(C.4.5)

Now ‖(z1 − A)−1B‖ is a continuous function in z outside σ(A), moreover it
is bounded outside a ball of large enough radius, hence there exists Mδ > 0
such that

∑
d(z,σ(A))>δ ‖(z1−A)−1B‖ ≤Mδ. Choosing νδ = (2Mδ)

−1 yields
the result. �

Suppose that z̄ ∈ C is an isolated point of σ(A), that is there exists δ > 0 such
that {z ∈ C : |z − z̄| ≤ δ} ∩ (σ(A) \ {z̄}) = ∅, then the above Lemma shows
that, for ν small enough, {z ∈ C : |z − z̄| ≤ δ} still contains an isolated part
of the spectrum of σ(Aν), let us call it Bν , clearly B0 = {z̄}.

Problem C.23 Let PBν be defined as in Problem C.20. Prove that, for ν
small enough, it is an analytic function of ν.

Problem C.24 If P,Q are two projectors and ‖P−Q‖ < 1, then dim(R(P )) =
dim(R(Q)).

The above two exercises imply that the dimension of the eigenspace R(PBν )
is constant.

Next, we consider the case in whichB0 consist of one point and dim(R(PB0
)) =

1, it follows that also Bν must consist of only one point, let us set Pν := PBν .

Lemma C.4.2 If dim(R(P0)) = 1, then Aν has a unique eigenvalue zν in a
neighborhood of z̄, z0 = z̄. In addition zν is an analytic function of ν.

Proof. From the previous exercises it follows that Pν is a rank one
operator which depend analytically on ν. In addition, since Pν is a rank
one projector it must have the form Pνw = vν`ν(w), where `ν ∈ B′.6 Then
zνPν = PνAνPν . Next, setting a(ν) := `0(Pνv0) = `ν(v0)`0(vν), we have
that a is analytic and a(0) = 1. Thus a 6= 0 in a neighborhood of zero and
zν = a(ν)−1`0(PνAνPνv0) is analytic in such a neighborhood. �

Problem C.25 If dim(R(P0)) = 1, then there exists hν ∈ B and `ν ∈ B′
such that Pνf = hν`ν(f) for each f ∈ B. Prove that hν , `ν can be chosen to
be analytic functions of ν.

Hence in the case of A ∈ L(B,B) with an isolated simple7 eigenvalue z̄
we have that the corresponding eigenvalue zν of Aν = A+ νB, B ∈ L(B,B),
for ν small enough, depend smoothly from ν. In addition, using the notation

6By B′, the dual space, we mean the set of bounded linear functionals on B. Verify that

is a Banach space with the norm ‖`‖ =
∑
w∈B

|`(w)|
‖w‖ .

7That is with the associated eigenprojector of rank one.
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of the previous Lemma, we can easily compute the derivative: differentiating
Aνvν = zνvν with respect to ν and then setting ν = 0, yields

Bv +Av′0 = z′0v + z̄v′0.

But, for all w ∈ B, Pw = v`(w), with `(Aw) = z̄`(w) and `(v) = 1, thus
applying ` to both sides of the above equation yields

z′0 = `(Bv).

Problem C.26 Compute v′0.

Problem C.27 What does it happen if the eigenspace associated to z̄ is finite
dimensional, but with dimension strictly larger than one?

Hints to solving the Problems

C.1. The triangle inequality follows trivially from the triangle inequality of
the norm of B. To verify the completeness suppose that {Bn} is a
Cauchy sequence in L(B,B). Then, for each v ∈ B, {Bnv} is a Cauchy
sequence in B, hence it has a limit, call it B(v). We have so defined
a function from B to teself. Show that such a function is linear and
bounded, hence it defines an element of L(B,B), which can easily be
verified to be the limit of {Bn}.

C.2. Use the norm ‖A‖ = supv∈Rn
‖Av‖
‖v‖ .

C.3. Use the same norm as in Problem C.2.

C.4. The first part is trivial. For the second one can consider the vector
space `2 = {x ∈ RN :

∑∞
i=0 x

2
i < ∞}. Equipped with the norm

‖x‖ =
√∑∞

i=0 x
2
i it is a Banach (actually Hilbert) space. Consider now

the vectors ei ∈ `2 defined by (ei) = δik and the operator (Ax)k = 1
kxk.

Then R(A) = {x ∈ `2 :
∑∞
k=0 k

2x2
k < ∞}, which is dense in `2 but

strictly smaller.

C.5. Check that the same argument used in the well known case B = C works
also here.

C.6. Check that the same argument used in the well known case B = C works
also here.

C.7. Check that the same argument used in the well known case B = C works
also here.
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C.8. Note that

(ζ1−A) = (z1−A− (z − ζ)1) = (z1−A)
[
1− (z − ζ)(z1−A)−1

]
and that if ‖(z− ζ)(z1−A)−1‖ < 1 then the inverse of 1− (z− ζ)(z1−
A)−1 is given by

∑∞
n=0(z− ζ)n[(z1−A)−1]n (the Von Neumann series–

which really is just the geometric series).

C.9. If σ(A) = ∅, then (z1 − A)−1 is an entire function, then the Von Neu-
mann series shows that (z1−A)−1 = z−1(1− z−1A)−1 goes to zero for
large z, and then (C.2.3) shows that (z1−A)−1 = 0 which is impossible.

C.10. Verify that (z1−Π)−1 = z−1
[
1− (z − 1)−1Π

]
.

C.11. The idea is to look for eigenvalues by using Fourier series. Let f =∑
k∈Z fke

2πikx and consider the equation Lf = zf ,∑
k∈Z

fk
1

2

{
eπikx + eπikx+πik

}
= z

∑
k∈Z

fke
2πikx.

Let us then restrict to the case in which f2k+1 = 0, then∑
k∈Z

f2ke
2πikx = z

∑
k∈Z

fke
2πikx.

Thus we have a solution provided f2k = zfk, such conditions are satisfied
by any sequence of the type

fk =

{
zj if k = 2jm, j ∈ N
0 otherwise

for m ∈ N. It remains to verify that
∑∞
j=0 z

je2πi2jx belong to C0. This is
the case if the series is uniformly convergent, which happens for |z| < 1.
Thus all the points in {z ∈ C : |z| < 1} are point spectrum of infinite
multiplicity. Since the spectrum is closed the statement of the Problem
follows.

C.12. Let p(z) = zn, then

1

2πi

∫
γ

zn(z1−A)−1dz = An +
1

2πi

∫
γ

(zn −An)(z1−A)−1dz

= An +

n−1∑
k=0

1

2πi

∫
γ

zkAn−kdz = An.

The statement for general polynomial follows trivially.



HINTS 213

C.14. Approximate by polynomials.

C.17. For z 6∈ f(σ(A)) it is well defined

K(z) :=
1

2πi

∫
γ

(z − f(ζ))−1(ζ1−A)−1 dζ,

with γ containing σ(A) in its interior. By direct computation, using def-
inition C.3.2, one can verify that (z1− f(A))K(z) = 1, thus σ(f(A)) ⊂
f(σ(A)). On the other hand if, if f is not constant, then for each z ∈ C
f(z)−f(ξ) = (z−ξ)g(ξ). Hence, applying Definition C.3.2 and Problem
C.16 it follows f(z)1−f(A) = (z−A)g(A) which shows that if z ∈ σ(A),
then f(z) ∈ σ(A) (otherwise (z −A)

[
g(A)(f(z)1− f(A))−1

]
= 1).

C.19. Since one can define the logarithm on C\`, one can use Definition C.3.2
to define lnA. It suffices to prove that if f : U → C and g : V → C, with
σ(A) ⊂ U , f(U) ⊂ V , then g(f(A)) = g ◦ f(A). Whereby showing that
the definition C.3.2 is a reasonable one. Indeed, rememebring Problems
C.17, C.18,

g(f(A)) =
1

2πi

∫
γ

g(z)(z1− f(A))−1dz

=
1

(2πi)2

∫
γ1

∫
γ

g(z)

z − f(ξ)
(ξ1−A)−1dzdξ

=
1

2πi

∫
γ1

g(f(ξ))(ξ1−A)−1dξ = f ◦ g(A).

From this imediately follows elnA = A.

C.20. The non dependence on γ is obvious. A projector is characterized by
the property P 2 = P . Thus

P 2
B :=

1

(2πi)2

∫
γ1

∫
γ2

(z1−A)−1(ζ1−A)−1dzdζ

=
1

(2πi)2

∫
γ1

dz

∫
γ2

dζ(z − ζ)−1
[
(z1−A)−1 − (ζ1−A)−1

]
.

If we have chosen γ1 in the interior of γ2, then (z − ζ)−1(ζ1 − A)−1

is analytic in the interior of γ1, hence the corresponding integral gives
zero. The other integral gives PB , as announced.

C.21. Use the above decomposition and the fact that (1− PB) is a projector.



214 APPENDIX C. PERTURBATION THEORY

C.22. The first part follows from the previous decomposition. Indeed, for z
large (by Neumann series)

(z1−A)−1 = (z1− PBAPB)−1 + (z1− (1− PB)A(1− PB))−1.

Since the above functions are analytic in the respective resolvent sets
it follows that σ(A) ⊂ σ(PBAPB) ∪ σ((1 − PB)A(1 − PB)). Next, for
z 6∈ B, define the operator

K(z) :=
1

2πi

∫
γ

(z − ξ)−1(ξ1−A)−1 dξ,

where γ contains B, but no other part of the spectrum, in its interior. By
direct computation (using Fubini and the standard facts about residues
and integration of analytic functions) verify that

(z1− PBAPB)K(z) = PB .

This implies that, for z 6= 0, (z1− PBAPB)(K(z) + z−1(1− PB)) = 1,
that is (z1 − PBAPB)−1 = K(z) + z−1(1 − PB). Hence σ(PBAPB) ⊂
B ∪ {0}. Since PB has a kernel, zero must be in the spectrum. On the
other hand the same argument applied to 1−PB yields σ((1−PB)A)1−
PB)) ⊂ C ∪ {0}, hence σ(PBAPB) = B ∪ {0}.
The second property follows from the fact that PBAPB , when restricted
to the space R(PB) is described by a D×D matrix AB and the equation
det(z1−AB) = 0 is a polynomial of degree D in z and hence has exactly
D solutions (counted with multiplicity).8

C.23. Use the representation in Problem C.20 and formula (C.4.5).

C.24. Note that Q(1 + P − Q) = QP , then Q = (1 − (Q − P ))−1QP , hence
dim(R(P )) ≥ dim(R(Q)), exchanging the role of P and Q the result
follows.

C.25. Note that `ν(hν) = 1 since Pν is a projector, hence they are unique
apart from a noralization factor. Then we can chose the normalization

8This is the real reason why spectral theory is done over the complex rather than the
real. You should be well aquatinted with the fact that a polynomial p of degree D has
D root over C but, in case you have forgotten, consider the following: first a polynomial
of degree larger than zero must have at least a root, otherwise 1

p(z)
would be an entire

function and hence
1

p(z)
= lim
r→∞

1

2π

∫ 2π

0
dθ

1

p(z + reiθ)
= 0.

Let z1 be a root. By the Taylor expansion in z1 follows the decomposition p(z) = (z −
z1)p1(z) where p1 has degree D − 1. The result follows by induction.
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`ν(h0) = 1 for all ν small enough. Thus Pνf = hν , that is hν is analytic.
Hence, for each g ∈ B and ν small, `ν(g)`0(hν) = `0(Pνg), which implies
`ν analytic for ν small.

C.27. Think hard.9

9 A good idea is to start by considering concrete examples, for instance(
1 0
0 1

)
+ µ

(
0 1
1 0

)
;

(
1 1
0 1

)
+ µ

(
0 1
1 0

)
.



Appendix D

Analytic Fredholm Theorem
(fine rank)

Here we give a proof of the Analytic Fredholm alternative in a special case.

Theorem D.0.1 (Analytic Fredholm theorem–finite rank)1 Let D be
an open connected subset of C. Let F : C→ L(B,B) be an analytic operator-
valued function such that F (z) is finite rank for each z ∈ D. Then, one of
the following two alternatives holds true

• (1− F (z))−1 exists for no z ∈ D

• (1 − F (z))−1 exists for all z ∈ D\S where S is a discrete subset of D
(i.e. S has no limit points in D). In addition, if z ∈ S, then 1 is an
eigenvalue for F (z) and the associated eigenspace has finite multiplicity.

Proof. First of all notice that, for each z0 ∈ D there exists r > 0 such
that Dr(z0)(z0) := {z ∈ C : |z − z0| < r(z0)} ⊂ D, and

sup
z∈Dr(z0)(z0)

‖F (z)− F (z0)‖ ≤ 1

2
.

Clearly if we can prove the theorem in each such disk we are done.2 Note that

1− F (z) =
(
1− F (z0)(1− [F (z)− F (z0)])−1

)
(1− [F (z)− F (z0)]).

1The present proof is patterned after the proof of the Analytic Fredholm alternative for
compact operators (in Hilbert spaces) given in [RS80, Theorem VI.14]. There it is used the
fact that compact operators in Hilbert spaces can always be approximated by finite rank
ones. In fact the theorem holds also for compact operators in Banach spaces but the proof
is a bit more involved.

2In fact, consider any connected compact set K contained in D. Let us suppose that for
each z0 ∈ K we have a disk Dr(z0)(z0) in the theorem holds. Since the disks Dr(z0)/2(z0)
form a covering for K we can extract a finite cover. If the first alternative holds in one such
disk then, by connectness, it must hold on all K. Otherwise each S ∩ Dr(z0)/2(z0), and
hence K ∩ S, contains only finitely many points. The Theorem follows by the arbitrariness
of K.

216
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Thus the invertibility of 1−F (z) in Dr(z0) depends on the invertibility of 1−
F (z0)(1− [F (z)−F (z0)])−1. Let us set F0(z) := F (z0)(1− [F (z)−F (z0)])−1.

Let us start by looking at the equation

(1− F0(z))h = 0. (D.0.1)

Clearly if a solution exists, then h ∈ Range(F0(z)) = Range(F (z0)) := V0.
Since V0 is finite dimensional there exists a basis {hi}Ni=1 such that h =∑
i αihi. On the other hand there exists an analytic matrix G(z) such that3

F0(z)h =
∑
ij

G(z)ijαjhi.

Thus (D.0.1) is equivalent to

(1−G(z))α = 0,

where α := (αi).
The above equation can be satisfied only if det(1 − G(z)) = 0 but the

determinant is analytic hence it is either always zero or zero only at isolated
points.4

Suppose the determinant different from zero, and consider the equation

(1− F0(z))h = g.

Let us look for a solution of the type h =
∑
i αihi + g. Substituting yields

α−G(z)α = β

where β := (βi) with F0(z)g =:
∑
i βihi. Since the above equation admits a

solution, we have Range(1−F0(z)) = B, Thus we have an everywhere defined
inverse, hence bounded by the open mapping theorem.

We are thus left with the analysis of the situation z ∈ S in the second
alternative. In such a case, there exists h such that (1 − F (z))h = 0, thus
one is an eigenvalue. On the other hand, if we apply the above facts to the
function Φ(ζ) := ζ−1F (z) analytic in the domain {ζ 6= 0} we note that the first
alternative cannot take place since for |ζ| large enough 1− Φ(ζ) is obviously

3To see the analyticity notice that we can construct linear functionals {`i} on V0 such
that `i(hj) = δij and then extend them to all B by the Hahn-Banach theorem. Accordingly,
G(z)ij := `j(F0(z)hi), which is obviously analytic.

4The attentive reader has certainly noticed that this is the turning point of the theorem:
the discreteness of S is reduced to the discreteness of the zeroes of an appropriate analytic
function: a determinant. A moment thought will immediately explain the effort made by
many mathematicians to extend the notion of determinant (that is to define an analytic
function whose zeroes coincide with the spectrum of the operator) beyond the realm of
matrices (the so called Fredholm determinants).



218 APPENDIX D. FREDHOLM ALTERNATIVE

invertible. Hence, the spectrum of F (z) is discrete and can accumulate only
at zero. This means that there is a small neighborhood around one in which
F (z) has no other eigenvalues, we can thus surround one with a small circle
γ and consider the projector

P :=
1

2πi

∫
γ

(ζ − F (z))−1dζ =
1

2πi

∫
γ

[
(ζ − F (z))−1 − ζ−1

]
dζ

=
1

2πi

∫
γ

F (z)ζ−1(ζ − F (z))−1dζ.

By standard functional calculus it follows that P is a projector and it clearly
projects on the eigenspace of the eigenvector one. But the last formula shows
that P must project on a subspace of the range of F (z), hence it must be
finite dimensional. �
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