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Chapter 1

The origins: Differential
equations

%s this book is about Dynamical Systems, let’s start by defining the
object of study. The concept of Dynamical System is a very general one
and it appears in many branches of mathematics from discrete mathematics,
number theory, probability, geometry and analysis and has wide applications
in physics, chemistry, biology, economy and social sciences.

Probably the most general formulation of such a concept is the action of a
monoid over an algebra. Given a monoid G and an algebra A, the (left)-action
of G on A is simply a map f: G x A — A such that!

1. f(gh,a) = f(g, f(h,a)) for each g,h € G and a € A;

2. f(e,a) = a for every a € A, where e is the identity element of G;
3. f(g,a+b)=f(g,a)+ f(g,b) for each g € G and a,b € A,

4. f(g,ab) = f(g,a)f(g,b) for each g € G and a,b € A;

In our discussion we will be mainly motivated by physics. In fact, we will
consider the cases in which G € {N,Z,R;,R}? is interpreted as time and

1In an alternative, one can consider the action on a vector space, if one wants to include,
e.g, stochastic processes.

2 Although even in physics other possibilities are very relevant, e.g. in the case of Statis-
tical Mechanics it is natural to consider the action of the space translations, i.e. the groups
{Z¢,R?} for some d €N, d > 1.
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A, interpreted as the observables of the system,® is a commutative algebra
consisting of functions over some set X. In addition, we will restrict ourselves
to situations where the action over the algebra is induced by an action over
the set X (this is a map f: G x X — X that satisfies condition 1, 2 above).*
Indeed, given an action f of G on X and an algebra A of functions on X such
that, for all a € A and g € G, b(-) := a(f(g,-)) € A, it is natural to define
f(g,a)(x) = a(f(g,z)) for all g € G, a € Aand x € X. It is then easy to
verify that f satisfies conditions 1-4 above.

We will call discrete time Dynamical System the ones in which G € {N, Z}
and continuous time Dynamical Systems the ones in which G € {R;,R}.
Note that, in the first case, f(n,z) = f(n—1+1,2) = f(1, f(n—1,2)), hence
defining T : X — X as T'(x) = f(1,x), holds f(n,z) = T™(x).> Thus in such a
case we can (and will) specify the Dynamical System by writing only (X, T).
In the case of continuos Dynamical Systems we will write ¢;(z) := f(¢, )
and call ¢; a flow (if the group is R) or a semi-flow (if the group is Ry)
and will specify the Dynamical System by writing (X, ¢;). In fact, in this
notes we will be interested only in Dynamical Systems with more structure
i.e. topological, measurable or smooth Dynamical Systems. By topological
Dynamical Systems we mean a triplet (X, 7,T), where T is a topology and T'
is continuos (if B € T, then T-'B € T). By smooth we consider the case in
which X has a differentiable structure and 7' is r-times differentiable for some
r € N. Finally, a measurable Dynamical Systems is a quadruple (X, 3, T, i)
where ¥ is a o-algebra, T is measurable (if B € ¥, then T~'B € ¥) and p is
an invariant measure (for all B € &, u(T~!'B) = u(B)).°

So far for general definitions that, to be honest, are not very inspiring.
Indeed, what characterizes the modern Dynamical Systems is not so much
the setting but rather the type of questions that are asked, first and foremost:

e Which behaviors are visible in nature? (stability and bifurcation
theory).

e What happens for very long times? (statistics and asymptotic
theory)

The rest of this book will deal in various ways with such questions.
The original motivation for the above setting and for these questions comes
from the study of the motion which, after Newton, typically appears as so-

3 Again other possibilities are relevant, e.g. the case of Quantum Mechanics (in the so
called Heisenberg picture) where the algebra of the observable is non commutative and
consists of the bounded operators over some Hilbert space.

4 Again relevant cases are not included, for example all Markov Process where the evo-
lution is given by the action of some semigroup.

50bviously T?(z) = ToT(z) = T(T(x)), T3(x) = ToT o T(x) = T(T(T(z))) and so on.

6The definitions for continuos Dynamical Systems are the same with {¢:} taking the
place of T.



1.1. FEW BASIC FACTS ABOUT ODE: A REMINDER 3

lution of an ordinary differential equation (ODE). It is then natural to start
with a brief reminder of basic ODE theory.”

In section 1.1 T will recall the theorem of existence and uniqueness of the
solutions of an ODE. In addition, I will state the Gronwall inequality, a very
useful inequality for estimating the growth rate of the solution of an ODE.
Finally, a theorem yielding the smooth dependence of the solutions of an ODE
from an external parameter or from the initial conditions is provided.

In section 1.2 is given a very brief account of linear equations with constant
coefficients (by discussing the exponential of a matrix) and of Floquet theory.
That is the study of the solutions of a linear equation with coefficients varying
periodically in time. The basic result being that the asymptotic properties of
the solutions can be understood by looking at the solutions after one period.

Finally, section 1.3 discusses the possibility of qualitative understanding
the behavior of the solutions of ODE that cannot be solved explicitly (essen-
tially all the ODEs). The arguments are very naive and are intended only to
convince the reader that a) something can be done; b) a more sophisticated
theory needs to be developed in order to have a satisfactory picture.

1.1 Few basic facts about ODE: a reminder

Our starting point is the initial Cauchy problem for ODE. That is, given a
separable Banach space B,® V € C? (B x R, B),” and zy € B, find an open

loc
interval 0 > I C R and = € C(I,B) such that
(D) = V(a(t), 1 .
x(0) = xo. o

Remark 1.1.1 I will be mainly interested in the case B = R?, for some d €
N. Thus, the reader uncomfortable with Banach spaces can safely substitute

"In fact, also the solutions of a partial differential equation (PDE) may give rise to a
Dynamical System, yet the corresponding theory is typically harder to investigate.

8 A Banach spaces is a complete normed vector spaces. This means that a Banach space
is a vector space V', over R or C, equipped with a norm ||- || such that every Cauchy sequence
in V has a limit in V. By separable we mean that there exists a countable dense set. Check

, ] for more details or | ] for a lot more details.

9Given two Banach spaces By, Bz, an open set U C By, and ¢ € N by C4(U, B2) we mean
the continuous functions from U to Ba that are g time (Fréchet) differentiable and the ¢-th
differentials are continuous (see Problem 1.18 for a very quick discussion of differentiation
in Banach spaces). Such a vector space can be equipped with the norm || - ||cqa given by
the sup of all its derivatives till the order ¢ included. If we then consider the subset for
which such a norm is finte, then we have again a vector space which is, in fact, a Banach
space. We will call such a Banach space C4(U,Ba,| - ||ca), yet, when no confusion can
arise, we will abuse of notation and call it simply C%(U, B2). By Clqoc(U7 B2) we mean the
vector space of the functions f : U — Bg such that, for each w € U and R > 0 such that
B(u,R)={veB: :|lv—u|| <R} CU, f€CiB(u,R),Ba,| - |lca). Note that, in general,

Clqoc is not a Banach space (in fact, it is a Fréchet space).
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R? to B in all the subsequent arguments. Yet, it is interesting that the theory
can be developed for general Banach spaces at no extra cost. For simplicity, in
the following we will always assume that all the Banach spaces are separable
even if not explicitly mentioned. In essence, this is just a fancy way of saying
that much of the following depends only on the Banach structure of R?, that is
on the fact that R? is a complete vector space with a norm (e.g. the euclidean
norm) and, for evample, nowhere is used the fact that R% has a finite basis.

I will also briefly consider ODE on (finite dimensional) manifolds. Not
much extra theory is needed in order to do this, since ODE on manifolds can
always be reduced to the case R? case, see section 1.1.5.

The first problem that comes to mind is

Question 1 Does the Chauchy problem (1.1.1) always admit a solution? If
there exists a solution is it unique?

To address such an issue it is convenient to consider the equation'®

x(t) = xo +/0 V(z(s),s)ds (1.1.2)

Problem 1.1 Show that for each finite open interval 0 € I C R, if x €
CY(I,B) is a solution of (1.1.1), then it is a solution of (1.1.2). Show that if
x € C°(I,B) is a solution of (1.1.2) then x € C*(I,B) and solves (1.1.1).

1.1.1 Existence and uniqueness

The issue of existence and uniqueness of the solutions of (1.1.1) can be solved
by applying the clasical Banach fixed point Theorem (see A.1.1), provided we
make a stronger assumption on V.

Theorem 1.1.2 (Existence and Uniqueness theorem for ODE) For each
V € CL.(BxR,B) and z¢ € B there exists § € Ry such that there exists a

loc

unique solution of (1.1.1) in C1((—6,9),B).**

PrROOF. Let § € (0,1). The reader can verify that the vector space
C%([=4,4], B), equipped with the norm |[ullos := sup,c_s 5 [lu(t)|5 is a Ba-
nach space.'? By definition there exist &y, Ry > 0 such that, for all § < § and

10The most convenient meaning of the integral of a function with values in a Banach space
is the Bochner sense, which reduces to the usual Lebesgue integral in the case B = R%, see
[ | for definition and properties. Yet, for our purposes the equivalent of the Riemannian
integral suffices and it is defined in the obvious manner. See Problem 1.20 for details.
1'We equip B x R with the norm ||(z,t)|| < sup{||z|/s, |t|}, where || - || is the norm of B.
12The uniform limit of continuous functions is a continuos function.
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R < Ry, V € CY(Dg, B), where Dy = {y € C°([-4, 4],
We can then define the operator K : Dg — C°([—46, d], B) by'?

K(u)(t) == xo +/0 V(u(s), s)ds.

Let Ms = supjy<s SuPyep, {1V (u,t)[| + |0,V (u, t)[|}, note that Ms is a de-
creasing function of §. Then, for each u € Dg and [t| < 4, (recall Problem
1.22)

I (u(t)) = @0l < 6Ms < R

provided we chose 6Ms < R. Thus K maps Dpg into Dg. In addition, for
each u,v € Dg,

1
1 (w) = K(v)loo < 6Msllu = vlleo < 5 flu = vlo,

provided we chose 26 Ms < 1. We can then apply Theorem A.1.1 and obtain
a unique solution of the equation Ku = u in Dg. This shows the existence
and uniqueness of the solution of (1.1.2). The Theorem follows then by re-
membering Problem 1.1. O

Remark 1.1.3 Note that in the proof of Theorem A.1.1 one can chose the
same § for an open set of initial condition.

Remark 1.1.4 The hypotheses of the above Theorem can be easily weakened
to the case of V locally Lipschitz in x and continuous in t, yet only continuity
does not suffice for uniqueness as shown by the example

b=V
z(0) = 0.

which has the infinitely many solutions x4(t) = 0 for t < a and x4(t) =
tt—a)? fort>a, acRM

Remark 1.1.5 The restriction to an interval of size § in Theorem A.1.1
cannot be avoided as shown by the example

Its solution x(t) = (1 —t)~! is not continuous, nor bounded, for t = 1.

13The meaning of CO(K, B2) where K is a closed set of B is the usual one.

141f B is finite dimensional, then V € C° suffices for the existence of a solution. This
follows by a direct application of Schauder fixed point Theorem to (1.1.2). For informations
on such a fixed point theorem and fixed point theorems in general see | ].
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We have seen a mechanism whereby the solution cannot be defined for all
times, the next Lemma shows that, for C! vector fields, the above is the only
mechanism.!?

Lemma 1.1.6 In the hypotheses of Theorem 1.1.2, if v € CL_((—4,6),B) is

loc

a solution of (1.1.1) for some §,6 > 0, and if there exists M > 0 such that
Supseo.g) [l2(t)|| < M, then there exists 6 > § and T € CY((-4,6),B) that
solves (1.1.1) (i.e. the solution can be extended for longer times).

PRrROOF. Let {t,} be any sequence that converges to ¢, then

t'rn
|2(tn) — z(tm) |l S/ [V (z(s),s)llds < [tn —tm| sup sup [[V(z,s)].
tn Izl <M s€[0,5)

Thus {z(t,)} is a Cauchy sequence and admits a limit =, € B such that

5
. = lim x(t,) = lim z(t) = g —l—/o V(z(s),s)ds.

n— 00 t—6

We can then consider the equation

y(t) =z +/0 V(y(s),s+ d)ds.

By Theorem 1.1.2 there exists §; and y € C*((—01,61), B) which satisfy the
above equation. Let then 6 = 0 + §; and define

() = x(t) fot all t € (=4, 9)
Tyt —0)  fotalltes0d).

Clearly = € C°((—4,4),B) and, for t € [§,5) holds true

Z(t) = xs + /; V(z(s),s)ds = zo + /0(S V(z(s),s)ds + /; V(z(s), s)ds
=1z + /Ot V(z(s), s)ds.
Thus, again remembering Problem 1.1, the Lemma follows. O
Remark 1.1.7 Applying repeatedly Lemma 1.1.6 it follows that there exists

a mazimal open interval J C R such that the Cauchy problem (1.1.1) has a
unique solution belonging to CL.(J,B).

151 state the result for positive times, for negative times it is the same.
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1.1.2 Growald inequality

We have seen that the escape (growth) to infinity is the only obstruction to
enlarging the domain of the solution.'® The question remains: how large the
maximal interval J in Remark 1.1.7 can be?

To understand better how the solution of an ODE can grow, we need a
technical but extremely useful Lemma.

Lemma 1.1.8 (Integral Gronwall inequality) Let L, T € Ry and &, f €
C°([0,T),R). If, for all t € [0,T],

)< L /O £(s)ds + 1(0)
then

§H < F)+L /0 eL=5) £(5) ds.

PROOF. Let us first consider the case in which f = 0. In this case the
Lemma asserts £(¢) < 0. Indeed, since £ is a continuos function there exists
t. €[0,(2L)~] N [0,T] =: I such that £(t.) = sup,c;, £(t). But then,

ft) <L / (s ds < E(t) It < SE(1)

which implies £(t.) < 0 and hence £(t) < 0 for each ¢t € I1. If I; = [0, T], then
we are done, otherwise letting ¢; := (2L)~! we have
¢

)<L t £(s)ds

and we can make the same argument as before in the interval [t1,2t1]. Iter-
ating we have £(t) < 0 for all ¢ € [0, 7.
To treat the general case we reduce it to the previous one. Let

Ct) =&t — f(t) — L / M=) £(5) ds.

Then

()<L /0 t £(s) ds — /0 t Le™(79) f(s) ds
) Otg(s) ds+L/t{f(s)ds+L/s eL<“>f(T)dT}

0 0
t
—/ Le™=9) f(s) ds.
0

160f course, this is the case only for regular vector fields. For other possibilities, think of
the case of collisions among planets.
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Next, notice that

t s t t
/ dsL / L f(r)dr = L / drf(7) / dsels=7)
0 0 0 T

= /Ot f(s){et®=%) —1}ds.
Thus,
<t [ s

We have then reduced the problem to the previous case which implies that it
must be ((t) < 0 from which the Lemma follows. O

Let us see the usefulness of the above Lemma in a concrete example. Let
L(B, B) be the Banach space of the linear bounded operators from B to B.'"

Lemma 1.1.9 For each A € C} (R, L(B,B)), consider the Cauchy problem

(t) = A(t)x(t)
z(0) = zo.

If||A(t)|| < L for allt € R, then ||z(t)|| < eLt||zo|| for allt € R. In particular,
the solution is defined on all R.

PROOF. If we write the equation in the equivalent integral form we have

[l < [loll +/0 [A(s)z(s)[| ds < [|lzol| +L/0 [z (s)]| ds.

Let £(t) == ||z(t)||, apply Lemma 1.1.8 for any T' € R, the Lemma follows.
O

Problem 1.2 Ezplain why Lemma 1.1.9 does not apply to the following set-
ting: B =CYR"™,R) and

&(t, z) = a(z,t)0,x(t, ),

for some o € CH(R™,R), a2, T +t) = a(z,t), T > 0. Compare with Problem
1.24.

"The norm of L € L(B,B) is given by ||L|| := sup ,ep ||Lv|. If B = R%, then L(B,B)
llvll=1
is just the vector space of the d X d matrices.
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1.1.3 Flows

In this section we analyze the case in which the vector field is time independent
and grows at most linearly.

Lemma 1.1.10 Given V € CL_(B,B), if there exists L, M > 0 such that
IV (2)|| < L||z|| + M, then the solution of (1.1.1) exists for all times and for
all initial conditions.

PROOF. We argue by contradiction. Choose any initial condition zy € B
and let I(zg) = (—0_(xg),0+(xp)) be the maximal interval on which the
solution is defined. If 04 (z¢) < oo, then for each t < 4 (xo)

t
l2(@®)] < lzoll + L / le(s)llds + M.

Thus Gronawall inequality implies
lz@)]l < e {llzoll + ML~}

for t € [0,04(xo)). Then, by Lemma 1.1.6, the solution can be extended,
contrary to the assumption that (—d_(xg), 0+ (xo)) was the maximal interval.
A similar argument holds for negative ¢. 0

For each oy € B and t € R let x(t, zo) be the solution of (1.1.1) at time ¢.

Lemma 1.1.11 For each V as in Lemma 1.1.10, setting ¢1(xo) := x(¢, x0),
by = ¢y fort >0, we have that (B, ¢;), t € R, is a Dynamical System.

ProOOF. All we need to prove is that ¢; is an action of R on B. First
of all note that ¢; is indeed invertible. If not then there would be x,z’ € B
such that ¢:(z) = ¢+(a’). But then the uniqueness of the solutions of the
ODE implies x = 2/. Moreover it is easy to check that ¢_¢(x9) = x(—t, x0).
Finally, ¢1(¢s(2)) = dr+s(). [

Remark 1.1.12 We have thus proved that a large class of vector fields gives
rise to flows.

1.1.4 Dependence on a parameter

Having established the existence and uniqueness of the solution, the next
natural questions present itself.

Question 2 How do the solutions depend on the initial condition? How do
the solutions depend on a change of the vector field?
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To discuss such issues it is convenient to analyze first the second question.
More precisely, given V € CZ_(BxRxR?, B) we consider the Chauchy problem

a(t) = V(x(t),t,A)

2(0) = zo. (1.1.3)

Clearly the solution will depend on the parameter A\. The question is then:
calling z(t, A) the solution of (1.1.3), for a given ¢ € R what can we say about
the function (¢, -)?

For simplicity let us consider the case V € C?(B x R x By, B), the more
general case V € C2 (B x R x By, B) is similar and is left to the reader.

Theorem 1.1.13 (Smooth dependence on a parameter) Given two Ba-
nach spaces B, By, let V € C*(B x R x By, B). Let X(t,z0,)\) be the unique
solution of (1.1.3), then X (t,zo,-) € CL.(B1,B).

PROOF. For each z € B consider the ODE for ¢ € CL (R x By, L(B1, B))

E(t,N) = 0, V(X (t, 20, M), 1, \) - E(t, ) 4+ OV (X (£, 20, N), T, \)

HO.N) =0 (1.1.4)

We claim that £(t) = O\ X (¢, 20, A).'® To verify the claim it suffices to prove
that there exists C' > 0 such that, for h € B; small enough, if {(¢,h,\) :=

X (t, 29, A\ +h)— X (t, 20, \)—&(t)h, then ||((¢, k)| < C||h||?. By Taylor formula

we have!?

((t,h) = V(X (t,m0, A+ h), t, A + h) — V(X (t, 20, \), £, \)
- 81‘/( (t .’Iio, )7t) ( )h - 8)\V(X(t7I07)‘)ata)‘)h (115)

where, in the last line, we have used

V(X(t,$07 A+ h)a t7 A) - V(X(t,]]o, A)atv A)

= 0,V (X (£, 20, \), £, A) - (X (£, 20, A+ ), £, \) — X (£, 20, \))

+O(||X(t,1’0,A+h),t, )‘) (t Zo, )” )
and
IR < C (Xt 20, A+ h) = X (¢, 20, )[|* + [[2]?)
< 20(I¢(t WP + L+ IEDIP)IA]P).
181f B =R% ¢ By = R™ then ¢ is just a d x m matrix.

9Note that we cannot Taylor expand X (¢, zo, A + h) with respect to h, since we do not
know yet that X is differentiable with respect to A.




1.1. FEW BASIC FACTS ABOUT ODE: A REMINDER 11

with C = ||V|c2. Note that ¢(0) = 0. We can then conclude by using Lemma
1.1.8. Indeed such a Lemma applied to (1.1.4) implies [|£(¢)]| < e“*t, for some
Cy > 0. Next, let T > 0 be the maximal time such that ||((¢,h)] < 1/2 and
e?¢1T < 2. Then, for t < T, (1.1.5) yields

t
ICCE; Rl S/O 2C||¢(s)llds + 3h]|?

and Lemma 1.1.8, again, implies the announced estimate. O

Problem 1.3 Prove the analogous of Theorem 1.1.13 when V € C}-

loc”

The above theorem allow to easily prove the following fundamental result on
the smooth dependence on parameters of an ODE.

Theorem 1.1.14 (Smooth dependence on initial conditions) Let V €
C"(BxR,B), r>1. Forxzy € B let X(t,zq) be the unique solution of (1.1.1).
Then, for each t € R, X (t,-) € C[. (B, B). Moreover, { = 0,,X solves

loc

f(t) = (r“)xV(X(t, 1‘0), t) : g(t)
£0) = 1.

PROOF. Set z =z — z¢ and consider the resulting equation

(1.1.6)

2=V(z+x0,t) =: V(z,1,20)
z(0) = 0.

One can then consider z as an external parameter, applying Theorem 1.1.13
yields the result for r = 1. On the other hand, (1.1.6) is itself a differential
equation depending on a parameter with a C* vector field and a C* dependence
on the parameter x( , provided r > 2. So we can apply Theorem 1.1.13 again,
and so on for r times, which proves the theorem. O

1.1.5 ODE on Manifolds—few words

Let us remind that a topological manifold is a second countable Hausdorff
space which is locally homeomorphic to Euclidean space. A chart over a
topological manifold M is a pair (U, ¢) such that U C M is an open set and
¢ : U — R” for some n € N, is an homeomorphism between U and the
open set ®(U). An atlas on a topological manifold is a countable collection
of charts {(U,, ¢o)}. We say that an atlas is C* if ¢, o gbgl is C* when is
defined. We say that two C* atlas are equivalent if their union is a C* atlas.
A C* manifold is a topological manifold equipped with an equivalence class
of C* atlas (often called a differentiable structure).

Although most often we will be concerned with manifolds embedded in
some R?, also other possibilities will be relevant. Let us consider two exam-
ples.
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Problem 1.4 Show that R? is a C* manifold.?°

Problem 1.5 Let f € C¥(R% R), and consider M = {(z,y) ERI xR : y =
f(x)}. Consider the atlas consisting of the chart (M, $) where ¢(x,y) = x.
This is a C*° manifold.

Problem 1.6 Check that T? = R?/Z is a C> manifold.

Given two differentiable manifolds (C* manifolds with k > 1) My, My and
amap f: My — My we say that f € C"(My, M), r < k, if for each atlas
{(Us, ¢a)} of My and atlas {(Vz,v3)} of Ma, holds true ¢g0 fogp,! € C" on
their domains of definition.

Given a differentiable manifold M and = € M, we say that two curves
y1,72 € CY((—1,1), M), such that v,(0) = 71(0) = z, are equivalent at x if
for each chart (U, ¢) such that 2 € U holds true (¢ ov1)'(0) = (¢ o72)’(0). A
tangent vector at x is an equivalence class of curves.

Problem 1.7 Show that if M is localy homeorphic to R?, then the set of
tangent vectors at any x € M form canonically a d dimensional vector space.?!

We will use 7, M to designate the tangent space at x, that is the set of the
tangent vectors at x. The tangent bundle is the disjoint union of the tangent
spaces, i.e. TM = Uzep{z} X T, M. Finally, a vector field is a section of the
tangent bundle, i.e. V : M — T M such that V(z) = (z,V(z)), V(z) € T, M.
Form now on, with a slight abuse of notation, we will identify V with V. Also,
given f € CY(M;y, Ms), since the image of a C' curve is a C! curve, ve have

naturally defined a map f, : TM; — T M.

Problem 1.8 If f € CY(R? R"™) discuss the relation between f, and the
derwative D f.

We have finally the language to define O.D.E. on manifolds, in fact the Cauchy
problem is exactly given again by (1.1.1), only now V is a, possibly time
dependent, C! vector field.

Problem 1.9 Suppose that xo belongs to some chart (U, ), show that the
solution of

& =V(x,t)
z(0) = xg

for a sufficiently small time can be obtained by the solution of an appropriate
O.D.E. in ¢(U).

20Note that, contrary to C¥, C* is not a Banach space (there is no good norm). It is
possible to give to it the structure of a Fréchet space | |, but we will refrain from such
subtleties. We just consider C*° = N, cNC"™ as a vector space.

211f (U, ¢) is a chart containing x, and 71, 2 two curves, think of the curves v (t) = v1 (At)

and ¢~ (B(11(1) + d(2(t) — ¢(x)).
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Problem 1.10 Given a finite atlas {(Uq, o)}, show that there exists a smooth
partition of unity subordinated to the atlas, that is a collections {¢va} €
C>®(M,R) such that y_  ¢o =1 and supp @, C Uq.

Problem 1.11 Given a smooth vector field V' consider

z=V(x)

#(0) = 20 (1.1.7)

with o € Uy for some element of an atlas {(Uada)}. Let zo(t) be the solution
of

Zo = (¢a)V (2a)
Za(o) = (ba(xO)

and suppose that ¢ (z(1)) € Ug. Consider then the solution of
55 = (69).V (25)
25(1) = ¢p(¢5 ' (2a(1)))-
Show that there exists t1 > 1 such that
2(t) = ¢, (2a(t))  forte0,1]
z(t) = ¢ (2(t)) forte (1,t1)
is a solution of (1.1.7) in the time interval [0, ).

Remark 1.1.15 We have seen that the theory of ODE on manifolds can be
reduced locally to the case of RY. Yet, the reader should be aware that the
global properties of the solutions can be very different. We will comment at
length on this issue later on.

1.2 Linear ODE and Floquet theory

Let us briefly discuss the simplest possible differential equation: the affine
ones. For simplicity, we restrict ourselves to the case B = R for some d € N.

1.2.1 Linear equations

Consider

(1.2.8)



14 CHAPTER 1. THE ORIGINS: DIFFERENTIAL EQUATIONS

Problem 1.12 Show, by induction, that for each n € N the solution of
(1.2.8) satisfies

n—1

n 1 t t1 t
w(t) =Y =AMFwg+ [ dty [ dty-- dt, A"z (t,).
k! 0 0 0
k=0

Taking the limit for n — oo in the above expression one readily obtains
z(t) = >0 ) LA™t . That this is a solution can be verified directly insert-
ing this formula in (1.2.8) (and noticing that the series and the series obtained
by deviating term by term are uniformly convergent). By the standard ana-
lytic functional calculus for matrices (and operators, see Appendix C) we can

thus write
x(t) = ey, (1.2.9)

The above discussion provides a general solution for all equations of the type
(1.2.8).

In reality life it is not that simple: if one has a concrete matrix A and
wants to compute e, this may be quite unpleasant. A general strategy,
although not necessarily the simplest one, is to perform a linear change of
variables © = Uz. Then 2 = U AUz, and U is chosen so that A = U~LAU
is in Jordan normal form. Then

2(t) = Uz(t) = UeMzg = UeMU .

It suffices then to know how to take exponentials of Jordan blocks, and this
can be computed by using the defining series.

Problem 1.13 Compute e for

a 1 0

A:(B‘ 2) A:(B‘ i) A={0 a 1

0 0 a
Another, equivalent, point of view is to look for solutions of the type
x(t) = e**v, substituting in the first of (1.2.8) one obtains av = Av. Thus, as
we know already, each eigenvalue of A provides a solution of (1.2.8) (ignoring
the initial condition). If there exists real eigenvectors {v; }&; which span all
R? then one can write the general solution, depending on d parameters o, as
z(t) = Z?:I a;v;e®t, where a; is he eigenvalue associated to the eigenvector
v;. One can then satisfy the initial condition by solving zy = Zle Q5.
The same can be done is the eigenvectors are complex, by working in C?
instead then R?. If Jordan blocks are present one can look for solutions of
the form z(t) = >%_, ﬁtke“tvk, compare this formula with your solution

of Problem 1.13.
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Remark 1.2.1 Note that if the matriz A does not have eigenvalues with zero
real part, then (by spectral decomposition) one can write R* = V_ @V, , where
AVy = Vi and A restricted to V_ has eigenvalues with negative real part while
on Vi has eigenvalues with positive real part. Hence if xo € V_ it will hold
lim,, oo z(t) =0, and if xg € Vi it will hold lim,,_, o ||z (t)|| = c0. Ifzo & V_
we can write it as xg = x_ + x4, where xx € V. Hence lim, o ||2(t)|| = o0
and the trajectory will escape to infinity while getting exponentially close to
the subspace V.. This is our first long time result.

A slightly more complex situation is given by

= Az + b(t
& = Az +b{t) (1.2.10)
I(O) = Zo,
where b € C°(R, R?). The solution of (1.2.10) is given by*?
t
x(t) = e —|—/ eA(tfs)b(s)ds. (1.2.11)
0

1.2.2 Floquet theory

Let us consider the simplest case of a linear time dependent equation: there
exists a continuous function A € C) (R, L(R? R?)) and T € Ry such that,
for all t € R, A(t+T') = A(t). More precisely, let ®(xo,s,t) be the solution
of the Cauchy problem??

@(t) = A(t)a(t)

#() = 2o (1.2.12)

Problem 1.14 Verify the following facts for each xo,yo € B and for each
a,b,t,s, T €R

o O(axg + byo, s, t) = a®(xo, s,t) + bP(yo, s, 1),

o O(xg,s,t) = &(P(xg,s,7),7,t),

o O(xg,s+T,t+T)=P(xp,s,t).

By the first property of Problem 1.14 there exists K € CL(R?, L(R?,R?)) such
that ®(xg, s,t) = K(s,t)xo, the second property implies that K (7,t)K (s, 7) =
K(s,t), the third that K(s+ T,t +T) = K(s,t). The next step is the first

occurrence in this book of a very simply but very powerful idea to analyze

22Look for a solution of the form x(t) = e4*2(t) and find the differential equation for z.
23The solution is well defined for all times by Lemma, 1.1.10.
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dynamical systems: a Poincaré section. Essentially the idea consist in look-
ing at the system only at specially selected moments in time. In this case
it is convenient to look at ¢t € {nT},cz. That is, we want to investigate
®(x0,0,nT) =: F(zo,n).

Lemma 1.2.2 The couple (R, F) is a discrete Dynamical System.

PROOF. We have to show that F is an action of Z on R?. Let f(xg) :=
F(x0,1).
F(zg,n) = ®(x0,0,nT) = ®(P(x0,0,(n — 1)T), (n — 1)T,nT))
= ©(®(z0,0,(n —1)T),0,T)) = f(®(x0,0, (n — 1)T)) = f"(x0).
In addition, note that the uniqueness of the solutions of the ODE implies that

if f(xg) = 0, then 2o = 0. Now, by construction, f(z¢) = K(0,T)xg, thus
K (0,T) is an invertible matrix. Hence F'(xg,—n) = f~"(xo) foralln e N. O

By using the functional calculus (see Problem C.19) one can define B :=
T 'InK(0,T),s0eBT = K(0,T). Let us now consider P(t) := K(0,t)e~ 524
Pt+T)=K(0,t+T)e BT = K(T,t + T)K(0,T)K(0,T) te B

= K(0,t)e”B" = P(t).
We have just proven the following result.

Theorem 1.2.3 (Floquet theorem) The solutions of the equation (1.2.12)
can be written as x(t) = P(t)eP'K (s,0)xq where P(t+T) = P(t) is periodic.
Note that the matrix B can be complex valued. This can be avoided at a
little extra cost.

Problem 1.15 Prove that the solutions of the equation (1.2.12) can be writ-
ten as x(t) = P(t)ePlzy where B is real and P(t + 2T) = P(t) is periodic of
period 2T,

Note that Theorem 1.2.3 implies that the long time behavior is completely
contained in the eigenvalues of the matrix B often called floguet exponents.

Problem 1.16 Find the solutions of
& =a(t)Ax
where a € CO(R,R) is periodic of period T and A is a fivred matrix.

Problem 1.17 Given a fized matriz A and a function at matriz values B(t)
of period T, consider the equation & = (A + eB(t))x, ¢ € R. Show that, for
e small enough, calling v; the Floquet exponents and setting A; = i (often
called Floquet multiplier), the A; are e-close to the eigenvalues of A.

24Note that the kernel of K (0,T) must be {0}, otherwise it would violate the uniqueness
of the solutions of the differential equation. Hence, 0 ¢ o(K(0,T)).
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1.3 Qualitative study of ODE

The previous discussion has shed some light on the behavior of linear ODE,
unfortunately the interesting ODE are typically non linear. Although some
nonlinear ODE can be solved explicitly (see any ODE book for examples)
typically this is not possible, hence the need of a qualitative theory. As
for the qualitative study of functions this can be done quite naively in one
dimension, while higher dimensions requires some non trivial theory. Let us
see such a naive qualitative theory for ODE via few examples.

1.3.1 The one dimensional case

This situation is very similar to the study of the graph of a function of one
variable. Indeed to draw the graph one studies the first derivative and here
the first derivative is specified by the equation. Let us consider a couple of
simple examples. Consider

9'c:e_x2+x—2:V(x)
ZL'O:O.

One cannot integrate the function V(z)~! (which would yield an explicit
solution of the ODE), yet from the equation follows that there exists a close
to 2 such that & is negative if x < a and positive otherwise. This implies that
the solution starts to be decreasing and keeps decreasing forever.

Next, consider

T=1-2tx
o = a.

Such an equation cannot be solved by separation of variables, yet the above
arguments still apply. In particular for t > 0, we have @(t) < 0 iff z(t) > 5.
On the other hand if z(t) > 5 1t will be so forever. In fact, consider g(t )

z(t) — &, then ¢'(t) = @(t) + 5. So if g(t.) = 0, then ¢’(t.) > 0 hence for
t < t. one has ¢g(t) < 0. Thus the solution will increase until it will intersect

the curve % and then it will start decreasing but always staying above such

a curve. Accordingly, for ¢ > t, we can write x(t) = Ha(t) with @ > 0. Then
z(t) = —af(t), that is

ey = = /tta(s)ds (1.3.13)

moreover — 1;’2(” + O‘(t) —a(t)
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which means that either a(t) < 55— or it is decreasing. But if it is de-
creasing it must decrease to zero otherwise (1.3.13) would be false for large ¢.

Accordingly it must be lim;_,o a(t) = 0.

1.3.2 Autonomous equations in two dimensions

In this case the basic idea is to consider one component as a function of the
other and in this way reduce to the previous case. Let us see some examples.

Van Der Pol equation

Consider the equation

5=y (1.3.14)
g =(1-32%)y — . e

Clearly (0,0) is the unique zero of the vector field. If we linearise (1.3.14)

around zero we have
d (2,y) = 0 1\ [z
a1 1) \y)-

The matrix has eigenvalues AL = %\/‘g’z

the solutions spiral away from it.

The next question is if a similar motion takes place also far away from the
origin. To this end we want to forget the time dependence and concentrate
only on the shape of the trajectories. Thus we can represent trajectories on
the xy plane. Indeed, apart from the point (0,0), either & or g are different
from zero. In the first case one can locally invert z(t) and write y(z) = y(t(zx)).
When this is possible one obtains

hence the fixed point is repelling and

dy g T
—=1-3z" - —,
dx
which can be studied as in the previous examples. With a bit of work one can
see that the trajectory spirals around zero, but exactly how?
To better understand the behaviour of the solution we introduce a “Lya-
punov” like function.

L(z,y) = 2(z — 2 — y)* + (z — y)* + 32°.
If (x(t),y(t))is a solution of (1.3.14), then a direct computation yields

d

aL(z(t), y(t)) =2*[6 — 2 — 3(z — y)* — 3y°] .
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Accordingly, L is decreasing outside an ellipse. Since 2ab < a? + b2,%°

L(z,y) = 3(x —y)* — 4(x — y)z> + 22° 4 32% > (x — y)* + 322

1
=42% — 2zy + y? > 22% + §y2.

Hence, the level sets K, = {(z,y) € R? : L(x,y) < a} are contained in the
ellipses {(z,y) € R? : 2z + 1y? < o} and hence are compact.

Thus, far away from the origin the trajectory spirals inwardly. It follows,
by the continuity with respect to the initial data, that there exists an a, > 0
such that the corresponding solution is a periodic orbit.

Lotka-Volterra equation

& = ax — Az — \zy

y = —dy + Azxy.

This equation is meant to describe the evolution of two populations one feed-
ing on the other (predator-prey). It also has periodic solutions, try to prove
it using qualitative methods.

Second order in one dimension

Consider the equation

i i
T T
z(0)=0; #(0)=o.

Setting (z,w) = (x,4), we can write it as

Z=w
: 22
w = —yw + m
which is the type discussed above.
Clearly if we consider still higher dimensional cases the above naive ap-
proach cannot help us very much, hence the need of a more sophisticated
theory.

251t follows from (a — b)2 > 0.
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Problems

1.18.

1.19.

1.20.

1.21.

1.22.

1.23.

Given two Banach spaces Bi,Bs and a functionf : By — By we can
define the partial derivative at x € By in the direction v € B; (Géateaux
derivative) by
Oy f(x) = lim B~ [f(z + ho) — f(x)],
h—0

if the limit exists. On the other hand we say that f is Fréchet differ-
entiable at z if there exists A € L(By, Bz2) (the space of the continous
linear operators from By to By) such that

iy (@ +h) — f(z) — AR|| _
=0 |4

0,

and A is called the Fréchet differential at of f at « (often written D f(x)).
Show that if f is Fréchet differentiable at zero, then it is continuous and
Gateaux differentiable.

Let f € C%By,B;) and g € C°(By,B2) such that f is Fréchet dif-
ferentiable at @ € By and g is Fréchet differentaible at f(z) € Bj.
Show that g o f € C°(By,Bz) is Fréchet differentaible at z and that
D(go f)(z) = Dg(f(z)) - Df(x) € L(By, Bz). Of course, this is nothing
else than a glorified version of the chain rule.

Given a compact interval I C R, a Banach space B, and a continuous
function f € C°(I, B), shows that one can define the equivalent of the
Riemannian integral.

Prove the fundamental theorem of calculus in this setting. That is,
for f € C1(By,By) let Df(x) € L(By,Bz) be the Fréchet differential at
x € By, then for each z,y € By

f(y):f(I)Jr/O Df(z+t(y—z)) - (x — y)dt.

Show that, for all f € C%([a,b], B),

’ /al’f@dt

Study the solutions of the following equations for all possible initial
conditions and p € N

b
< / £t dt.

& =|zP

& = z(In |z|)P
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1.24. Let K € C}(R x [0,1]). Show that the equation

1
Owu(t,s) = | K(t+s,7)u(t,7)%dr
0

u(0, s) = s2.
has a unique continuos solution for ¢ small enough.

1.25. Under the same hypotheses of Problem 1.17 show that if foT B(s)ds =0
and the eigenvalues of A have all multiplicity one, then the Floquet
multiplier differ from the eigenvalues of e4” only of order 2.

1.26. Study the equation
(I+z)yg+ (z+y*) =0.

1.27. Study the equation (Bernoulli)

mn

g+ p(x)y = q(x)y".

1.28. Study the equation

&= —yi — 25

Hints to solving the Problems

In this section, and in the parallel sections in later chapters, I provide hints
for solving some of the Problems.

It is a very good idea to try very hard to solve the problems before looking
at the hints: it is impossible to appreciate the solution if one has no feeling
for the difficulties in the problem. The only way I know to get such a feeling
is to seriously try to solve it.

Also, keep in mind that I suggest one way to proceed, often other ways
are possible and maybe better.

1.1 The proof is the same as the standard proof for the case B = R?. How-
ever, to see this, you have to do Problems 1.18 and 1.20 to understand
exactly what the derivative and integral mean in this more general case.

1.12 For n = 0 it is just (1.1.2). To verify it for any n it suffices to show that

t t1 tn—1 tn
dt dtg - -- dt,1l = ——.
R A AN

This follows since the domain of integration is D = {z € [0,¢]"*!
tnt1 <t, <---<t}. On the other hand, for each permutation o of the
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set {1,...,n+ 1} the sets D, = {z € [0,¢]"* : t, ., <t,, <--- <t}
have the same measure, all the D, are disjoint and the union of all of

them gives [0, #]" .

First notice that if a matrix has no eigenvalues on the negative axis
(including the zero) then the contour v in C.3.3 can be taken symmetric
around the real axis and, by using C.3.3 with the standard definition
of In with a cut on the negative real axis, this defines In K(0,T") with
real entries (since the formula for his complex conjugate is the same).
In general, the spectrum of K(0,7) can be split in o(K(0,7) = a U
where o N[R_U{0}] = 0 and B C R_. Let P, and P3 = 1 — P,
be the associated spectral projectors, then we have the decomposition
K(0,T) = C + D where C = P,K(0,T)P,, D = P3K(0,T)Pg. Conse-
quently, CD = DC =0 and ¢(C) = aU{0} and (D) = U {0}. Since
we want to define a logarithm, we do not want zero in the spectrum, so
we define C = C + Pg and D = D + P,. The reader can check that
0(C) = aU{1} and o(D) = B U {1}. Note that D> = D? + P, hence
o(D?) C Ry. Hence B = L 1InC+ 5= In D? is real and, cince [C, D] = 0,

o2BT _ [eln 0]2 e D* _ G222
= [(C + P3)(D + P,))° = K(0,T)? = K(0,2T).
The rest of the argument remains the same.

Show that the solution satisfies

t
x(t) = eay + 5/ A=) B(s)x(s)ds.
0

and apply the perturbation theory in Appendix C.

Let I = [a,b]. Since the function is continuos, it is uniformly con-
tinuous, hence for ¢ > 0 there exists § > 0 such that, for each par-
tition £ = {[zo,x1],.. ., [Tn-1,2Zn]}, To = a,zp, = b, Tpt1 — Ty < O,

holds sup,, ye(z. ., 2.1 1f(2) = f(y)|| < e. Accordingly, for each choice of
Zn, Yn € [Tnt1,Zn] we have

n—1 n—1
D FE) @ei =) = Y flu)(@ern — )| < e
k=0 =0

By similar arguments, one can compare the sum defined on one partition
with the sum defined on a finer partition. Finally, the sum over different
partitions can be compared with the sum over the coarser partition,
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1.24

which is finer than both. This shows that all sufficiently fine partitions
yield the same approximate value, hence one can consider the partitions
& ={la+i=%a+ (i +1)=2]}7" and define

n

n—1 h— h—
-/If(t)dt::nllrrgcgf(a+i na) na'

By the above discussion, this is equivalent to the same limit taken along
any other partition, the diameter of whose elements tends uniformly to
Z€ero.

Consider the Banach space B = C°([0,1],R). Then u(t,-) € B and one
can apply Theorem 1.1.2.

By Problem 1.17 we know that the solution at time T is given by the
matrix D(g) := A7 []l —|—5f0T e’ASB(s)eAsds] By the results in Ap-
pendix C it follows that, for € small enough, the eigenvalues of D(e) are
still simple and analytic on €. Thus, let A(¢) one of such eigenvalues
and TI(e) the associated eigenprojector. We have D(e)Il(e) = A(e)Il(g).
Differentiating yields D(e)Il(e)+ D(e)ll(e) = A(e)II(e)+A(e)II(g). Mul-
tiplying on the right by II(g), since II(¢)D(e) = D(e)II(e), we have

Since I(e)v = (a(e),v)b(e) for some vectors a, b analytic in ¢, Me) =
(a(e), D(e)b(e)). We can now apply such a general formula to our spe-
cific case:

. T
(a(0), D(O)b(0)) = (a(0), AT / ¢~ B(5)e1*b(0)ds)
AT r —A A
= (a(0),e /0 e *B(s)e”*b(0)ds)

_ A(O)/O (a(0), B(s)b(0))ds = 0.

Notes

This chapter is super condensed and has no pretension to exhaust the theory of
ODE. If one wants to have a better understanding of the field and some ideas of
how an ODE can be solved in special cases better consult | , , ]



Chapter 2

Local behavior

2%y local behavior we mean the study of the motion in a neighborhood of
a point. As we have seen in the linear case, the motion can leave the neighbor-
hood in a fixed time but it is also possible that it stays in the neighborhood
for an unlimited time. In the latter case we will have the first example of how
to tackle one of our stated goals: the study of the motion for long times. We
start with a trivial case.

2.1 Flow box theorem
Let us consider the differential equation
i=V(x) (2.1.1)

where V € C2_(R? R?). By the results of the previous chapter there exist
6,01 :RT 5 Ry and ¢: {(2,t) ERIXR : t € (=5_(2),64(2))} = D — R?
such that ¢(z,t) is the solution of (2.1.1) with initial condition z. We would

like to study the solution in a neighborhood of zg € R such that V' (xq) # 0.

Theorem 2.1.1 (Flow box Theorem) In the hypotheses above there exists
a neighborhood U of xo and a change of variables © € C'(U,R?) such that
O(¢(x,t)) = O(x) +t(0,...,0,1), for each x € U, (x,t) € D.

PROOF. Let S = {z € R : (x — 20,V (z0)) = 0} and {e;}¢=} C S the
an orthonormal base.! For r > 0 small enough let D, = {z € R? | || < r}.

1That is (ei,eﬁ = 51']'-

24
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Then define E : D, — U by E(&) = ¢(x0 + 0= &ei, £4). Note that Z is
invertible since if Z(§) = E(¢'), & < &q, it would be

d—1 d—1
Slwo+ Y &iew&a— &) = z0+ > e

i=1 i=1

That is there would be x € S and 7 = £g — &, € (0, 2r) such that ¢(z,7) € S.
But (V(z9),¢(x,0)) = (V(zg), ¢(x, 7)) = 0 by definition and, for ¢ € [0, 2r],

<V($0), ¢(x’ t)>

dt = (V(20), V(¢(z,1))) >0

provided that r is chosen small enough. Hence &; = &/ and, consequently,
&€ =¢'. We can then define © = Z~! and, for each z = Z(&),

d—1 d—1
O(p(x,1)) = O(d(d(wo + Y _ &ieir &a),t) = O(b(z0 + Y &iei, Ea+1))
i=1 i=1

O(E=(¢+(0,...,0,8)) =&+ (0,...,0,t)
=0(z) + (0,...,0,t).

2.2 Behavior close to a fixed point

Here we consider a more interesting situation: the study of the solutions of
(2.1.1) in a neighborhood of zy such that V(xg) = 0 and det(D,, V) # 0.

Problem 2.1 Note that the condition det(D,, V') # 0 can always be achieved
by a small C' change of the vector field. On the contrary, a zero of the vector
field cannot be eliminated by small C' changes of the vector field: prove that
if V(xg) = 0 and W is a vector field C' close enough to V, then there exists
a . close to xg such that W(x,) = 0, and D,, W is close to D, V. In this
sense we will say that the above conditions are generic (more on this concept
later).

Let us understand the behavior of the equation in the vicinity of xg. First
of all, by a translation, we can assume without loss of generality g = 0. Then
we can develop V' by the Taylor formula to obtain

& = Az + R(z) (2.2.2)

where ||R(z)|| < C||z||? and |D.R|| < C||z||, for all ||z| < 1.
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Problem 2.2 Show that, by a linear change of variable, one can transform
A in its Jordan canonical form. Show then that, by an arbitrary small C*
change of the vector field one can eliminate all the Jordan blocks and insure
that all the eigenvalues have real part different from zero: this is called the
hyperbolic case.

For now, in view of Problem 2.2, we limit ourselves to the hyperbolic case.
We will start by considering the case in which all the eigenvalues of A have
real part strictly smaller than zero.

Problem 2.3 Prove that if A is diagonal with eigenvalues with real part
strictly smaller than zero, then there exists o > 0 such that, for all x € C",?

Rz, Az)) < —o(z, x) (2.2.3)

Prove that, for a general diagonalizable matriz A with all the eigenvalues with
real part strictly smaller than zero, there exists a strictly positive matrixz B
such that, for all x € C™,

R((x, BAz)) < —o(zx, Bx).
That is, we have the same inequality for the scalar product (-,-)p := (-, B-).

Problem 2.4 Prove that, if R({(z, Az)) < —o(z,z), then the solutions of the
equation © = Az satisfy ||z(t)]| < e~7t|z(0)]].

Till the end of this section, we assume that all the eigenvalues of A are strictly
negative, hence we assume (2.2.3) (with respect to the appropriate scalar
product). In this case, it is well known that the linear part of (2.2.2) has
solutions that tend to zero exponentially fast, the question is: does the same
holds true for the solutions of the equation (2.2.2)7?
To see it, consider z := (z, z). Let 22 = ||z|| < 57, then, recalling Problem
2.3,
d
pri (x, Az + R(x)) + (Ax + R(z), z)
< {z, (A+ A")z) +2C||z||* = 2R({z, (A + A)z)) + 2C||z|]®
< 20z -+ 2072 < —0z
which, seeting z(t) = e~ ¢ (t), implies ¢ < 0, hence z(t) < e=7*¢(0) and
lz(B)]| < e 2l (0)]. (2.2.4)

That is, also the solutions of (2.2.2) tend exponentially fast to zero.

2As usual (z,y) := >.I*, %;y; where a is the complex conjugate of a. Moreover by A*
we mean the adjoint of A.
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Remark 2.2.1 What we have just seen is that, locally, F(x) = (x,z) is
a Lyapunov function for (2.2.2). Given a differential equation like (2.1.1),
where 0 is a fized point, a local Lyapunov function on an open set U > 0 is
any L € CY(U,R) such that L(0) = 0, L > 0 and (V.L,V(z)) < 0 for all
x € U\ {0}. Then, for each solution x(t) of (2.1.1) holds

dL(z(t))

dt

This readily implies that limg_, o z(t) = 0. (Prove it !).

= (Vuw L, V(2(t))) < 0.

Yet, the above result is far from being satisfactory: it is possible to tend
to zero in many different ways and it would be nice to understand better how
this happens.

Let us start with a very simple example: # € R, A = —1, R(z) = bx?.
Then the equation reads

&= —x+ b’ (2.2.5)
If we consider the change of variables
x
z=U(x) = T
we have
—x+bx?  br(—z + bx?) x
T 1t (1 — bx)2 Tl ¢

Thus, in a neighborhood of zero of size smaller than b~! there exists a smooth
diffeomorphism that conjugates the solution of (2.2.5) with its linear part.
One can then suspect that this is always the case. This is not so: consider

&= —2x + cy? (2.2.6)
Yy=-y
Let us consider a change of variables
2=+ az’ + fry +vy° + q(z,y)
n=y+py)

where ¢ is of third order and p of second. Substituting in (2.2.6) one can see
that it is always possible to choose p = 0, while the first of the (2.2.6) yields

5= =22+ cy® — 2x(20x + By) — y(Bx + 2yy) + O(3)
where by O(3) we designate third order terms. If we try to impose the right
hand side of the above equation equal to —2z (up to second order) we obtain
—2ax? — 2Bxy — 2yy? = —dax® — 3By — (27 + c)y?

that does not admit any solutions if ¢ # 0.
So there is no hope of finding a C3 conjugation with the linear part.
What can be salvaged?
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2.2.1 Grobman—Hartman

One can look for a less regular change of variables. This may not make sense
for the o.d.e. itself but it is meaningful for the associated flows.

Theorem 2.2.2 (Grobman—Hartman) If ¢; is the flow associated to the
vector filed V., V(x¢) = 0, and ¢? is the flow associated to the linearized vector
field D,,V, that we assume hyperbolic (see Problem 2.2), then for all t, > 0,
there exists a local homeomorphism Z such that Zo ¢, = ¢g* o=H.

PROOF. We do the proof in the case t, = 1, the other cases being similar.
Thus let us fix some small > 0 and consider a smooth non increasing function
g : Ry — [0,1] such that g(x) = 1 for < r and g(z) = 0 for z > 2r, with
—g' < C. We can then define the functions ¢ : R? — [0,1] Fy, F : R? — R4
as () := g(||z[|) and’

Fo(x) == e’z

F(2) = eta + (@) [61(x) — 2] = Fy(w) + Aa),
where ¢, is the time one flow associated to (2.2.2). We are considering first
the case in which all the eigenvalues of A have strictly negative real part.
Clearly, for ||z|| < r the two functions are simply the time one map of the
linear flow and the time one map of (2.2.2), moreover, they are globally Lip.
Since we will be interested only in z in the ball of radius r, the modification

outside such a ball is totally irrelevant, and it has been done only to facilitate
the exposition of the following argument.

Problem 2.5 Show that, for r small enough, F is a diffeomorphism. Prove
that || Al|s < 4072,

The idea is to consider the maps Fy, F': R? — R? and to show that they can
be conjugated, that is there exists an homeomorphism Z : R — R? such that
ZoF =FyoZ.

Let us look for a solution in the form Z(z) = 2 + ®(x), then we have

Fo(z + ®(z)) = F(z) + ®(F(z))
or, setting & = F(z),
(&) = Fo(FH(&) + o F1(€) — &
We define then the operator K : CO(R%) — CO(R) defined by

K(®)(€) = Fo(F~H(€) + o FTH(€)) — €

3Here and in the following of the proof, we use the norm determined by the scalar
product introduced in Problem 2.3.
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then our problem boils down to establishing the existence of a fixed point for
K. First of all, by Problem 2.5, for each |¢|| > 2r + 4Cr? we have |z| > 2r.
Hence, recalling Problem 2.4 and equation (2.2.4), it follows

I (@) = 1 Fo(Fy ' (€) + o Fy ' (€) —&ll < [|[Fo(@ o Fy ' (€)I] < e[| |oo-
On the other hand, if ||z < 2r, then [|£]| < 2r + 4C7r?, and
1K (@)@ < e [l + |@]loc] + 27 + 4072 < 4r +4CT? + 7| @ |

Thus the set {h € C° : ||A|loo < (47 +4r2C)(1 — e=°) 71} is invariant for the

operator K. Next, given two functions h, g € C°(R?), holds

b 1K () () — K(9)(©)I = sup [Fo(x + h(z)) = Fo(z + g(z))|

<e 7llh = glloo-
Thus, the contracting mapping theorem yields the wanted result.

Problem 2.6 What can be done if all the eigenvalues of A have strictly pos-
itive real part?

We have then, topologically, the behavior of a source, a node, or a stable
or unstable focus are the same as the ones of the linear part of the equation.
But the generic case is the one in which both eigenvalues with positive and
negative real parts are present; do the same conclusions hold for such a more
general situation? The answer is yes. To see it consider that in such a case
R? is naturally split into two spaces V @ W, invariant for A and such that A
restricted to V' has only eigenvalues with negative real part, while restricted
to W has eigenvalues with positive real part. Then the spaces are invariant for
Fy as well, on one Fj contracts, on the other expands. Call ds the dimension
of V and d,, the dimension of W. Clearly ds + d,, = d.

Then each e € R? has a unique splitting as e =v+w, v €V, w € W. It
is then convenient to define the projections p; : R — V and py : R — W
pi(e) = v, pa(e) = w. Moreover, we can split C°(R?,RY) as V@& W where
V= {f € CORL,RY) : pyof =0} and W:= {f € CO(RY,R?) : pyof =0}
We can then write canonically f as (fi, f2) := (p1 o f,p2 o f). Analogously,
we can write (z1,z2) = (p1(e), p2(e€)).

Accordingly our conjugation equation Fj o = = E o F', becomes

B
D

[ [1]

1oF
20F

1

[11 [1]

2

where Fy((z1,22)) =: (Bx1, Dxs). We transform the first equation as we did
for the contracting case, while on the second we act as you probably did if
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you solved Problem 2.6:

(1]

1=BE o F!

EQ = D7152 oF.

Again, we look for solutions of the form Z;(x) = x; + ®;(x), where ®; are
bounded. Substituting such a form for =, one can see that bounded functions
are mapped into bounded functions (thanks to Problem 2.5), hence the con-
tracting map argument applies, and the existence of a unique conjugation is
established. O

2.3 Dominated Splitting and center manifold

Let U C R? be an open set containing zero and let us consider a vector field
V € CK¥(U,RY), k > 1, such that V(0) = 0 and A := DoV has a spectrum
that splits into two disjoint parts. More precisely, assume there exists real
numbers a < B, such that o(A) = X1 U Xy where u € ¥q implies R(p) > 3
and p € ¥y implies R(pu) < a. Let Vi, Vs be the eigenspaces associated to
31, Yo, respectively.

We say that a manifold W is locally invariant at zero under the flow ¢,
generated by the vector field V if there exists § > 0 such that, for all ¢ € R,
there exists d; € (0, d] such that ¢(W N B(0,6;)) C W.

Note that, letting R(z) := V() — Az, we can then write the differential
equation as

i = Az + R(x). (2.3.7)

In the special case R= 0, the differential equation is linear and the subspaces
V; are invariant manifolds for the above differential equation. It is then nat-
ural to wonder if there exists invariant manifolds also for the non linear case.
Note that the nonlinearity is small only in a neighborhood of zero, it is then
natural to look for local invariant manifolds at zero.

We are thus interested in the solutions of (2.3.7) only in a neighborhood
of zero. It is then convenient to modify the equation outside the ball B(0,4)
so that the dynamics is linear outside such a ball. This will allow us to look
for a globally invariant manifold for the modified dynamics with the property
of bein locally invariant for the original one.

Namely, let ¢ € C*(R4, [0, 1]), be a decreasing function such that ¢(t) = 1
for t < § and @(t) = 0 for t > 25. We then define R(z) = R(z)¢(||z]|). Clearly,
if we construct an invariant manifold for the differential equation

&= Az + R(z),
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then it is a locally invariant manifold for (2.3.7) as well. By the variation of
constant formula we have

z(t) = ea teA(t_s) xz(s))ds.
(1) = e"a(0)+ [ A RGa(s)d

To put the problem into a more general context it is convenient to define, for
a given 7 small enough, the map F € C* such that F(z(0)) = x(7).

Problem 2.7 Prove that
1. F is invertible;
2. we can choose § > 0 such that F(B(0,3el4178)) 5 B(0,26);
3. F(0) =0, DoF = 4™ and D, F = e for ||z|| > 3el4lI76;
4. for each € >0 we can chose & such that | D, F — || < &;
5. for some B> ' >’ > a, e Ay, || < e P and [|eAT|v, || < e

Problem 2.8 Show that a manifold W is locally invariant at zero for (2.3.7)
if and only if it is so for F.

The above shows the relevance of the following theorem

Theorem 2.3.1 Let F € C*(R?, RY), k > 1, be an invertible map from R? to
itself such that it enjoys the properties of Problem 2.7 and, for a sufficiently
small €, |D.F — DoF|lso < €. Then, there exists a C*~1 locally invariant
manifold W. Also, W is dim(V1) dimensional and tangent to Vi at zero.

PROOF. By the hypotheses o(DoF’) splits in two parts 21, 3,. Let Vq,V,
be the associated eigenspaces. By a change of variable we can assume that
Vi ={(£,0)}ecrnr and Vo = {(0,7) }ecpaz- Also, let I (§,7) = (£,0), Il =
1 —1II;, II1DyFII; = A and IIyDoFII, = I'. In addition,* the hypotheses
imply that |[A~!]| < e ” and ||T']| < e* with o < 3.

The basic idea is to consider manifolds that can be described by a function
G:RM — R% via W = {(£, G(€) }¢eras - Obviously we need to limit the set
to which G might belong. To this end we define,

Q={G e CFRD R™) : G(0) =0, |DG|le < 1}.

Let
F(fﬂ?) = (A€+A(£’77)7F77 +B(§777))

4For convenience I am renaming the constants «, 8 and, possibly, substituting F" to
F in order to offsets the constants coming from the equivalence of the norms in the new
coordinates.
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If |Inll < ||&]l and e is small enough, we have that there exists 5’ > a such
that

IAE + A&, )| > e”||€]-

Thus, for each G € Q the map T (€) = AE+A(E, G(€)) is invertible. Moreover,
for ||€|| > C6 we have T (§) = A{. We can then describe the evolution of the
manifolds of interest:

F(¢,G() = (Ta(é),Sc o T5 (Ta(€)))

where S¢(€) = T'G(€) + B(£,G(€)). Again note that, for [[£|| > C'§ we have
Sa(€) =TG(€). It follows that the image manifold is described by the oper-
ator K : Q — CF(R4, R?)

K(G)(€) = Sa o T5 ' (6).
For G € Q, K(G)(0) = 0. Also
D[K(G)] = [(TDG + 0: A+ 0,ADG)(A + 9¢ B + 0,BDG) '] o T ".
Note that, if DG(0) = 0, then also D(K(G))(0) = 0.
From the above computations it follows that, for € small enough, there
exists o € [0, 1] such that
IDIK(G)]lloe < 0l|DGlloc + Ce < | DG oo (2.3.8)

Accordingly, K(2) C . A direct computation shows that, for G, G5 € €,

1Tey = T, lloo < Cyel|Gr = G2l
[1Sa, = Saslleo < (% + C3e)[[Gr = Galco

On the other hand, for all £ € R,
176, (€) = T, (Ol = ITg, © Ta, o Tg, (&) — Tg, (€)l]

< (e + Cue)| Ty o TG (&) — Ta, o T ()|l
< Cule™ + Cye)e||GLoTE (€) — Gao TG HE)

To conclude we introduce the norm®

IGII = sup G- lIgl™"

£eR

5This norm is necessary only because we do not assume a < 0. If we would do so, then
the usual sup norm would work perfectly.
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Remark that if G € Q, then ||G|| < 1. Next, note that

IK(G1)(&) = K(G2)(©)]l < 1Sa, 0 TgH(€) — Sa, o T (9]
+ IS¢, 0 TG} (€) — S, o T (Ol
< (e + CyoIT5HE) = T O + (¥ + Cype)|Gr o T (€) — Ga o TGO

Accordingly,
IK(G(E) ~ K@l < [Cple +e)ee™ + (¢ + Cye)e™ | 161 - Gall

Hence, provided ¢ is small enough, there exists o € (0, 1), such that for each
Gl, Go e
IK(G1) = K(G2)ll < o [|Gr — Gal-

The above implies that K has a unique fixed point G = lim,,_,, K™(0). In
addition, G is of the form G(€) = ||£||G(¢) with G e C°.

We leave to the reader the task of checking that the contraction takes
place in C¥~! as well. In particular, if & > 2, it is trivial to check that
DG(0) = 0. O

From the above, we directly obtain the following very useful result.

Theorem 2.3.2 (Center Manifold Theorem) Let F' € C* be an invert-
ible map from R to itself such that it enjoys the properties (1-4) of Problem
2.7. Moreover assume that the spectrum of the matrix A now splits into three
disjoint parts X_ U 3o U X, such that p € X_ implies R(p) < a <0, p € X
implies o < R(pu) < B and p € X4 implies R(p) > S > 0. Let Vg be the
eigenspace associated to g and dy be its dimension. Then, there exists a
Ck=1 dy-dimensional locally invariant manifold W. In addition, W is tangent
to Vy at zero.

PRrROOF. Let V,V,,V_ be the eigenspaces associated with the splitting
of the spectrum and dy,dy,d_ be their dimensions. Simply apply Theorem
2.3.1 to F with the splittings ¥; = ¥, U ¥y, X9 = ¥_ and to F~1 with
the splitting ¥7 = ¥, Yo = X_ U¥y. In such a way, we obtain two invari-
ant manifolds: W7 (the weak unstable manifold) and W~ (the weak stable
manifold), respectively of dimension di + dy and d_ + dy. The reader can
easily check that the hypotheses of the implicit function theorem apply and
prove that W = W+NW ™ is a dy dimensional C*~! locally invariant manifold
tangent to Vg in zero.’ (]

6To show that the matrix at zero is invertible, remember (2.3.8) which says that the
manifolds are graphs of functions with derivative strictly less than one.
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2.4 Hadamard-Perron

Theorem 2.3.2 is quite general but it has a couple of disadvantages: a slightly
annoying loss of regularity (from C* to C*~1) and, most importantly, it does
not provides any information on the dynamics when restricted to the invariant
manifold which, in fact, can be pretty much anything. To eliminate such short-
coming it is necessary to consider situations in which there are no eighevalues
with zero real part. This gives rise to a sharper results: the Hadamard-Perron
theorem. We will discuss it in the simplest possible setting, also we will repeat
several arguments to make this section independent on the previous one.

Definition 2.4.1 Given a smooth map T : X — X, X being a Riemannian
manifold, and a fized point p € X (i.e. Tp = p) we call (local) stable manifold
(of size §) a manifold W*(p) such that”

We(p) ={x € Bs(z) C X | nh_{r(io d(T"z,p) = 0}.

Analogously, we will call (local) unstable manifold (of size ) a manifold
W(p) such that

W*(p) ={z € Bs(z) C X | nhﬁngo d(T"z,p) = 0}.

It is quite clear that TW?(p) C W*(p) and TW"(p) D W"*(p) (Problem
2.10). Less clear is that these sets deserve the name “manifold.” Yet, if one
thinks of a linear map it is obvious that the stable and unstable manifolds at
zero are just segments in the stable and unstable direction, the next Theorem
shows that this is a quite general situation.

Theorem 2.4.2 (Hadamard-Perron) Consider an invertible map T : U C
R? — R2, T € CY(U,R?), such that TO =0 and

DoT = (3 2) (2.4.9)

where 0 < u < 1 < A8 That is, the map T is hyperbolic at the fized point
0. Then there exists unique C' stable and unstable manifolds at 0. Moreover,
ToWsW) = B3 ywhere E* are the expanding and contracting subspaces of
DoT.?

7"Sometime we will write W§ (p) when the size really matters. By Bs(x) we will always
mean the open ball of radius § centered at z.

8Notice that if DoT has eigenvalues 0 < g < 1 < X then one can always perform a
change of variables such that (2.4.9) holds.

9By ToW*(¥) I mean the tangent space to the manifold (curve) W (or W*#) at the point
Z€ro.
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Remark 2.4.3 There is an issue not completely addresses in our formulation
of Hadamard-Perron theorem: the uniqueness of the manifolds.'® It is not
hard to prove that the W*®) are indeed the only sets satisfying Definition
2.4.1 (see Problem 2.13).

The proof of Theorem 2.4.2 will be done in two steps: first we will show
the existence of the invariant manifolds and then we will prove the regularity.

2.4.1 Invariant manifolds—existence

We will deal explicitly only with the unstable manifold since the stable one
can be treated exactly in the same way by considering T~ instead of T.

Proof of existence of the unstable manifold. Since the map is con-
tinuously differentiable for each ¢ > 0 we can choose § > 0 so that, in a
20-neighborhood of zero, we can write

T(x) = DoTx + R(x) (2.4.10)

where [|[R(x)|| < el|z||, | D2 Rl <e.

The first step is to decide how to represent manifolds. In the present case,
since we deal only with curves, it seems very reasonable to consider the set of
curves I'5 . passing through zero and “close” to being horizontal, that is the
differentiable functions v : [—6, 6] — R? of the form

10 = ()

and such that v(0) = 0; ||(1,0) — ¥/||cc < ¢. It is immediately clear that any
smooth curve passing through zero and with tangent vector, at each point,
in the cone C := {(a, b) € R? | || < ¢}, can be associated to a unique
element of I's ., just consider the part of the curve contained in the strip
{(z,y) € R? | |z| < 6}. Moreover, if v € T's. then v C Bas(0), provided
c<1/2.

Notice that it suffices to specify the function w in order to identify uniquely
an element in I'5 .. It is then natural to study the evolution of a curve through
the change in the associated function.

To this end let us investigate how the image of a curve in I's . under T’

looks like. (b, u(t)) 0
M+ Ry (¢, u(t > <aut)
T~(t) = = .
0= (o4 raiety) = (5100
At this point the problem is clearly that the image it is not expressed in
the way we have chosen to represent curves, yet this is easily fixed. First of

10Namely the doubt may remain that a less regular set satisfying Definition 2.4.1 exists.
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all, a,,(0) = 5,(0) = 0. Second, by choosing £ < A, we have o/ (t) > 0, that
is, ay, is invertible. In addition, o, ([—6, §]) D [-Ad + &6, Ad — €d] D [, I],
provided ¢ < A1, Hence, o, ! is a well defined function from [—6, 4] to itself.

Finally,
/ —1
26,0051 ()] = |2el0e ) ‘ <BTEo,
it ay(ant(0)| = A—e
where, again, we have chosen ¢ < ‘:(1)‘7;6”)

We can then consider the map T: I's . = I's,c defined by

TH(t) = (5u . ;1@)) (2.4.11)

u

which associates to a curve in I'; . its image under 7" written in the chosen
representation. It is now natural to consider the set of functions Bs,. = {u €
CY([-9,]) | u(0) = 0, |u'|oc < ¢} in the vector space Lip([—d, §]).!! As
we already noticed Bs . is in one-one correspondence with I's ., we can thus
consider the operator 7" : Lip([—d, 6]) — Lip([—6, 6]) defined by

Tu=B,oa;? (2.4.12)

From the above analysis follows that T (Bs,c) C Bs,c and that Tu deter-
mines uniquely the image curve.

The problem is then reduced to studying the map T. The easiest, although
probably not the most productive, point of view is to show that T is a con-
traction in the sup norm. Note that this creates a little problem since C! it
is not closed in the sup norm (and not even Lip([—d, d]) is closed). Yet, the

set By . = {u € Lip([—4, 6]) | u(0) = 0,sup, sc[_s, g % < ¢} is closed
(see Problem 2.11). Thus Bs,. C B; .. This means that, if we can prove that
the sup norm is contracting, then the fixed point will belong to B} . and we
will obtain only a Lipschitz curve. We will need a separate argument to prove
that the curve is indeed smooth.

Let us start to verify the contraction property. Notice that
ay (8) = AT+ AT Ra(ag (1), ulay (1)),
thus, given u;,ug € Bs,., by Lagrange Theorem

o (1) = g (O] < ATHVER, (o, (8) = 0 (1), w0 (1)) — wa () (0)))]
< S {lowt 0 = ) (O] + w03} () = ua(ay (1)} -

HThis are the Lipschitz functions on [—d, §], that is the functions such that

—u(t
supnse[_(;’ 3] % < o0.
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This implies immediately

_ _ A le
lag M (t) — ag,) (1)] < m”ul — Usg|[oo- (2.4.13)

On the other hand

|Buy () = Buy (0)] < plua (8) = uz(t)] 4+ [(VeRa, (0,un(t) — ua(t)))]
< (p+e)|lu — vzl (2.4.14)

Moreover,
1BL(B)] < pte. (2.4.15)

Collecting the estimates (2.4.13, 2.4.14, 2.4.15) readily yields

||Tu1 - Tu2||oo < Hﬁul © 0‘;11 — Bu, © O‘qzzllloo + HBM © az:; — Puy © O‘qzzluoo
A le
< {[N+E]1_)\_1€ + (N+5)} [ur — uzoo

< ollur — u2l|so,

for some o € (0, 1), provided ¢ is chosen small enough.

Clearly, the above inequality immediately implies that there exists a unique
element v, € I'y . such that T, = ., this is the local unstable manifold of
0. O

2.4.2 Invariant manifolds—regularity

As already mentioned, a separate argument is needed to prove that =, is
indeed a C! curve.

To prove this, one possibility could be to redo the previous fixed point
argument trying to prove contraction in Ciip (the C! functions with Lipschitz
derivative); yet this would require to increase the regularity requirements on
T. A more geometrical, more instructive and more inspiring approach is the

following.

Proof of the regularity of the unstable manifold. Let 6 > 0 such
that the arguments of section 2.4.1 apply. We want to define local cone fields
in the region {£ = (&;,&,) € R? : |, < §}. For each |u| < cdand 0 <0 < cd
we define the affine cone field Cg (€&, u) := {£+(a,b) € R? : |b—au| < 0 |a|}.?
As we need to perform a local argument we must localise the cones. To this
end we will intersect them with cylinders of the form Dy (¢) = {£ + (a,b) €

12A set C is a cone iff, for all y € C and « € R, ay € C. A set C is an affine cone if there
exists z such that {y — z : y € C} is a cone.
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R? : |a] < h}. We define thus a local affine cone field (that in the following
we will simply call cone field) by

Co,n(€ u) = Co(&,u) N Dy () = {€ + (a,0) € R? = |a| < h; |b— au| < 0lal}.

By the construction in Section 2.4.1, Dp (&) Ny« C Ces,1 (€, 0) for each & € ~,.
We will study the evolution of such a cone field on 7.
For all n € Cp p(&,u), if (a,b) =n — ¢ and (a, f) =T — TE, it holds

(o, B) = DoT'(a,b) + O(elal) = (Aa, ub) + O(elal).

and, at the same time, since T is C!, ||(a, ) — D¢T'(a,b)|| < €6la| provided
h < hgy for some hy small enough. Thus, setting (¢, 5') = D¢T(a,ua) and
r_ B

w=ar

(e, 8) = (', 8") = (0, (b — wa)) || < [[(DeT = DoT)(0,b — ua)|| + Oclal

one can compute

< Chelal.
Hence,
B _1B8 B |8 ol 0 (u+ Ce)Coe
Z_uwl<|E_ 28 <
R el PR + ! o _)\—Cs+ (A= Ce)?

Accordingly, if h < hg, then there exists o € (0, 1) such that
Dp(TE)NTCo (€ u) C Copn(TE u'). (2.4.16)
A similar, but rougher, computation yields
Dy (TE)NTCopp(§,u) C Con(TE,0). (2.4.17)

Finally, let & € 4, then, for each n € N, T"¢ € 7, and v, N Dy, (T7"¢) C
Ces.h, (T7"€,0). Thus, for all by, < hgnes, (2.4.16) implies'?
¥« 0 Dy, (§) T T"Ces,n,, (T7"E,0) N Dy, (€)
=T" ' (TCes,p,, (T~"€,0) N Dy, (T"1€)) N D, (€)
CT" Coesn, (T7" T v 1) N Dy, (€)
C CU"C&hn (57 Un)

(2.4.18)

where (a, avy, ;(€)) = Dr-n¢T"(1,0), for some a € Ry, and v,(£) = vy, (€).
The last relevant fact is that the limit

v, = lim v, (2.4.19)

n—oo

I3Remember that the map T expands in the first coordinate, hence T Dy, (€) D Dy (T€)
provided § € C5,5(0,0) and h is small enough.
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exists. The proof of this fact is left as an entertainment for the reader (see
Problem 2.12). Using (2.4.18), (2.4.19) and remembering that 7. admits the
parametrization v, (t) = (¢, u4(t)) we can compute the derivative. Indeed, let
7 50 that (7,u.(7)) = & € V4, then for each € > 0 let m so that 0™cé < § and
|Um — v4| < 5, then for each h < h,, holds

us(§4h) —ue(§) —vih| _ u(§+h) —ui(§) —vmh| €
< +=
h - h 2
< co™b+ < <e.
2
That is, 7, is differentiable and
vi (1) = (1,v4). (2.4.20)

O

Problem 2.9 Prove Theorem 2.4.2 in the hypotheses at the beginning of Sec-
tion 2.8 when a < 0 < f.

There is another point of view that can be adopted in the study of stable
and unstable manifolds: to “grow” the manifolds. This is done by starting
with a very short curve in I's., e.g. Yo(¢t) = (¢,0) for t € [A™"d, A"J], and
showing that the sequence 7, := T™7o converges to a curve in the strip [, J],
independent of 7. From a mathematical point of view, in the present case,
it corresponds to spell out explicitly the proof of the fixed point theorem.
Nevertheless, it is a more suggestive point of view and it is more convenient
when the hyperbolicity is non uniform. For example consider the map.'*

T <x) — (2:” TSt y) (2.4.21)
Y r—smnr+y
then 0 is a fixed point of the map but
1 1
DyT = (O 1)

is not hyperbolic, yet, due to the higher order terms, there exist stable and
unstable manifolds (see Problems 2.15, 2.16, 2.17).
Problems

2.10. Show that, if p is a fixed point, then TW*(p) C W*(p) and TW*(p) D
W (p).

Some times this is called Lewowicz map
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2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.
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Prove that the set Bj . in section 2.4.1 is closed with respect to the sup
norm [|ullee = sup,c_s 5 [u(t)]-

Prove that the limit in (2.4.20) is well defined and depend continuously
on £.

Prove that, in the setting of Theorem 2.4.2; the unstable manifold is
unique.

Show that Theorem 2.4.2 holds assuming only T € C(U,U).

Consider the Lewowicz map (2.4.21), show that, given the set of curves
Psc = {v : [=0,0] = R | 7(t) = (t, u(t)); v(0) = 0; [W/(t)] €

[c™1t, ct]}, it is possible to construct the map T : T's . — Ls(14c-16),c In
analogy with (2.4.11).

In the case of the previous problem show that for each v; € I's . holds
d(Ty1, Ty2) < (1 = cd)d(y1, 72)-

Show that for the Lewowicz map, zero has a unique unstable manifold.

Hints to solving the Problems

2.1.

2.3.

2.5.

2.12

Use the implicit function theorem on the one parameter vector fields
VIA) =V 4+ AW =V).

If A is diagonal, the claim is trivial. For a general diagonalizable matrix,
let U be such that U1 AU = A, diagonal. Set B = (UU*)~!, then

R((z, BAz)) = R(U 12, UTTAUU '2)) = R(U 'z, AU '2))
< —o(U 'z, U 2) = —o(z, Bx).

By the variation of the constants method it follows that
t
pi(x) = et +/ A=) R(py(x))ds.
0

Hence
[A()]| < sup |¢1(z) — ezl < 4Cr2

llzll<2r
By (2.4.17) and arguing as in (2.4.18) it follows
T"Cesn, (T7"€,0) N Dy, (§) € T" ' Cesp,, (T7"+1€,0) N D, (€)
C CU"’_lcé,hn (57 ’Unfl(g))'



NOTES 41

2.13.

2.16.

Since, for a small enough, T™(T~"¢ + (a,0)) = £ + aDp-neT"(1,0) +
o(a), it follows that (a,v,(§)a) € Con—1¢sp, (& vn—1(§)). Hence |v, (&) —
vn_1(&)| < 0" ted. From this the Problem easily follows.

This amounts to showing that the set of points that are attracted to
zero are exactly the manifolds constructed in Theorem 2.4.2. Use the
local hyperbolicity to show that.

Grow the manifolds, that is, for each n > 1 define ¢, := £. Show that
one can choose p such that 6,1 > 8,(1+c¢7168,). according to Problem
2.15 it follows that T': I's, . = I's . Moreover,

AT 1oy, T 1) < H(l —cd;)d(71, 72)-
i=1

Finally, show that, setting v, (t) = (0,t) € T';,, ., the sequence Tr 15,
is a Cauchy sequence that converges in C° to a curve in I'y . invariant
under 7.

Notes

The content of this section is quite standard and rather sketchy, it is intended
only to introduce the reader to some basic ideas and techniques. The treat-
ment of the Hadamard-Perron Theorem follows mostly [ ]



Chapter 3

Bifurcation Theory (the
minimum)

o

N
\k
on a more systematics ground: we worried only about hyperbolic fixed points;
are more complex situations relevant? To answer to such a question it is first
necessary to understand its meaning, that is:

what does it mean to be irrelevant?

3.1 Generic Vector fields

By relevant we mean situations which are typical. We would like to summarise
the content of Section 2 as follows:

Theorem 3.1.1 We understand the typical local behavior of the solutions of
the differential equations

T =V(x) (3.1.1)
where V € CL (R4, R?).

However, to make sense of Theorem 3.1.1 it is necessary to give a technical
meaning to the words behavior, local and typical.

3.1.1 Local behavior

We say that we understand the behavior of a vector field in an open set U if it
is equivalent to a vector field whose associated ODE can be explicitly solved.

42
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Definition 3.1.2 We say that two vector fields V,W are equivalent in the
open set U, if, for each t > 0, there exists a homeomorphism F : U — U such
that, calling ¢}, ¢}V the flows generated by the vector fields, hold ¢} o F =
Fogl.

Definition 3.1.3 We say that we have a local understanding of the ODE
(3.1.1) in a region K if, for each point x € K, there exists a neighborhood
of x in which the equation (3.1.1) is equivalent to an equation with an affine
vector field.!

If we could consider only neighborhoods U in which V(z) # 0 with, at most,
the exception of isolated points where the linear part is hyperbolic, then we
understand already the local behavior. In fact, either V(Z) # 0 and then the
flow box Theorem tells us that the field has the same local behavior than a
constant vector field; or, if V(Z) = 0, then Grobmann-Hartman Theorem tells
us that the field has the same local behavior than its linear part.

Of course, this is not always the case (think of the case V' = 0), our claim
is that the above situation is typical.

3.1.2 Typical

Definition 3.1.4 Given a topological space ), we say that a set A C Q) is
generic if it is open and dense. A set is typical if it is the countable intersection
of generic sets (this is also called a residual set).

Since C'(R%,R?) is a Banach space, its topology is determined by the norm.

Problem 3.1 Prove that the finite intersection of a generic set is generic.
Prove that, in a metric space, a residual set is dense.

Problem 3.2 Give an example of a typical set in [0,1] with zero Lebesgue
measure.

Next, for each K C R?, let us define?
Ag ={V € CL.(R",R") : Yz € K, V(x) =0 implies 9,V hyperbolic }

Remark 3.1.5 In the following we will prove that, for K compact, Ak is
generic, hence Apa is typical. Note that the same holds for

{(Vect . (R"R") : Vx € K, V(x) =0 implies det(d,V) # 0}.

INote that, if K is compact, then finitely many such neighborhoods will cover K. On
the other hand if, for example, K = R?, then countably many neighborhoods will do the
job.

2Since our analysis is local, the following can be trivially adapted to the case Clloc(U7 R™),
for some open set U. We avoid it to simplify notation.
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Yet, it is convenient to consider small generic sets (see Problems 3.25, 3.26).
This allows to obtain a generic understanding with the least effort.

Problem 3.3 Prove that, for each compact set K C R, if V. € Ak, then V
has only finitely many zeroes in K.

Problem 3.4 Prove that, for each compact set K C R?, Ay is open.

To prove that A is generic we need to establish the density, this is not
entirely obvious and we need a result of independent interest.

Theorem 3.1.6 (Sard—baby version) Let F € C1(R% R?), and A = {x €
R? : det(D,F) = 0}, then F(A) has zero Lebesque measure.

PROOF. Let Qs(x) :={z € R? : |o; — 2| <6 Vi€ {l,...,d}}, clearly
it suffices to prove that for each z € R? the Lebesgue measure of F(ANQ1 (7))
is zero. Now, for each n € Nand k € {-n,...,0,...,n}? =: S, let z} := %
and Ay := Q1/2,(ZT + x1). Clearly Q1(%) C Upes, Ax. We will consider only
the Ay, such that Ax N A # 0. For each such Ay, let us chose &, € A N A.
Next, consider the function ¥ : Q;(Z)? — R defined by

||F(z)—F(y)—DyF(z—y)|| if © 7& y

V(z,y) = {0 llz=y1l oy

Since F' = C! we have ¥ € C°, hence for each € > 0 there exists n. € N such
that

sup  U(z,y) <e
le—yl|<n—?

for each n > n.. Since & € A, there exists vy € R?, |lug]| = 1, such that
(vg, Dg, Fw) = 0 for all w € R%. Hence, setting C = ||DF||» and for n large
enough,

F(Ap) C{F(&) +w+tvp €RY 2 (w,v) =0; |lw|| < Cn71; |t < %)}
Thus, calling A the Lebesgue measure,
AF(Ay)) < 4971041415 Z \(A,) - 49100 e,
n

Thus
AMFANQ1(x)) <4710 Y MAg)e = 4904 e,
keSn

as announced. O

Problem 3.5 Use Sard’s Theorem to show that, for each compact set K C
R?, Ag is dense in C1(R? R?). Prove that Aga is typical.
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3.2 Generic families of vector fields

Our next aim is to consider a situation in which the system has a control
parameter. That is, it is described by the equations of the type

&=V (x,\) (3.2.2)

where z € R? and A € [~2,2] is the parameter that, in principle, can be
varied. Now by local understanding in a region K we mean that for each
point (z,\) € K x [~1,1] =@ K' we can find a neighborhood of the form
U x (A—¢g,A\+¢) in which we are able to understand the behavior of the
solutions of (3.2.2).

Let us now try to understand the local picture for typical families of vector
fields. In analogy with the previous section, for any K C R?, let us consider

A ={Vec' :VY(z,\) € K V(z,\) =0 implies
0.V (x, \) hyperbolic }

Problem 3.6 Prove that if V € Ak, then for each (z,\) € K there exists
an open set of the form U x (—e+\, e+ ) =: U x I such that either V(x, \) # 0
or there exists X € C*(I, K) such that V(X(X),\) = 0 for each A € K and
there are no other zeroes in U x I. Then, prove that Ak is open.

Clearly the above situations can be treated exactly as we did in the previous
section and are therefore locally understandable. Unfortunately, the above
does not exhaust all the possibilities.

Lemma 3.2.1 For each K with non empty interior Ax is not generic.

PROOF. Since Ay is open, the problem must be the density. To see this
let us consider, for example, the case d = 1, a compact set K with interior
containing zero and the family

V(x,\) = Aa + Az + ba?. (3.2.3)

Now let us consider any W € CY(R x [—1,1],R) and look at V(z, A, u) =
V(z,A) + pW(x,\). The claim is that for each yu sufficiently small, then
V(z,A\,u) ¢ Ax. In fact, there exists (x(u), A(u)) € K such that both

V(z(p), M), ) = 0 and 9,V (x(p), Mp), ) = 0. To see this we define the
function F : R3 — R?

(ad b Wz N\ [V
F(xz,\p) = ( At 2bz + pdy W (2, ) =\o,7) (3.2.4)

clearly we are looking for (xz(u), A(¢)) such that F(x(u), A(1)) = 0. Since
F(0,0,0) = 0 we can apply the implicit function theorem provided

0 a
(0:F  O\F) T=0;A=0;u=0 <2b 1>
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is invertible, that is if ab # 0. We have thus seen that the family has an open
neighborhood disjoint from A, hence the latter set cannot be dense. O

Thus, to have a generic situation, we need to consider a larger set.

The above example sugegst to ask that 0\V # 0 if det(9, V) = 0. This is
a good idea, but it does not suffice to have a nice theory. As we have seen,’
and we will see later on, it is natural to have some condition on the second
derivative. It is then convenient to consider at least C” vector fields, r > 2.
Accordingly, from now on the genericity will be according to the C" topology.
This would not have changed the previous discussion, see Problem 3.32.

The above can be made precise in many ways. Here is a simple, but not
totally satisfactory, possibility. For K C R? let K! := K x [-1,1].

BK = {V S Clroc : V(JZ,/\) € K17 V(l‘,)\) =0= rank(@xV 8AV) = d}

Let us understand how the vector fields in Bx look like.

Lemma 3.2.2 If V € By and V(Z,\) = 0, then there exists € > 0 and a
neighborhood U > T such that the set of zeroes of the vector field V (x, \) in
U x (A—¢e,\+¢) consists of a smooth curve.

ProoF. First suppose, without loss of generality, that (z, A) = (0,0).

If det(09,V(0,0)) # 0, then we can argue as in Problem 3.4. The implicit
function theorem yields an € > 0, a neighborhood U of zero and a function
x € C"([~¢,¢],R9) such that V(z()\),\) = 0 are the only zeroes of the vector
fields V(-,A), A € [—¢,¢], in U.

On the contrary, if det(9,V (0,0)) = 0 then the approach based on a direct
application of the implicit function theorem fails. The problem is that the
curve of the fixed points it is not a graph over A so one need to change variables
before applying the implicit functions theorem, let us see how.

The null space of 9,V (0,0) must have dimension one, otherwise we would
have rank (9, V(0,0) 9\V(0,0)) < d, let v € RY, ||v|| = 1, be the unique vector
such that 0,V (0,0)v = 0. Consider the change of variables (A, z) = F(&, 1)
defined by

(3.2.5)

It is easy to check that F'~! is defined by

T=A—(z,v)
&= +zx— (z,0).

3In applying the implicit function theorem to (3.2.4).
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Then define the field V := Vo F. Since F(0,0) = 0, V(0,0) = 0. To apply the
implicit function theorem in the new variables, we need 65‘7 to be invertible,
but 9V (€,7) = 9,V (2, \) + 0V (x,\) ® v.* Tt follows that ¢V (0,0) must
be invertible, otherwise there would exists z € R? such that, for all n € R¢,

0= (2,9:V(0,0)n) = (2,0,V(0,0)n) + (z,0,V(0,0)) (v, 7).

Choosing 1 = v follows (z, 9,V (0,0)) = 0 and hence 9,V (0,0)7z = 0. This
would mean that all the columns of the rectangular matrix (9, V(0,0) 9,V (0,0))
are orthogonal to z, contradicting the definition of Bg.

So we can apply the implicit function theorem and obtain (for &, 7 in a
neighborhood of zero) a C!' function &(7) such that V(£(7),7) = 0. Then,
setting (z(7),\(1)) = F(£(7),7) we have a C! curve in R**! such that
V(z(7),A(7)) = 0 and no other zero is present in the neighborhood of zero.
To study such a curve, we need to compute some derivative. Differentiating
V(&(7),7) = 0 with respect to 7 yields

OV (E(1) — Tv.(&(7), v))(€'(7) — v)
FOVIED — o, 6. E R =0, OO
For 7 = 0 yields
(0,V(0,0) + 9,V (0,0) ® v) €'(0) = 0
which implies ¢'(0) = 0. Moreover,
N
o= (&'(),v), (3.2.7)
hence 92(0) = 0. While
(1) = dfi(:) =&(r) —w. (3.2.8)
hence 2/(0) = v. O

Problem 3.7 Show that Bra is typical.

We thus have a typical set, yet it contains behaviors that we have never
analyzed: equilibrium points with a derivative having a one-dimensional ker-
nel and equilibrium points with no kernel but a non-hyperbolic derivative. It
would be convenient if we could limit the appearance of such situations to
a bare minimum. To do this systematically would require the development
of a formalism beyond the present goals. Yet, for the case of one-parameter
families, it is still possible to do it naively, provided one is willing to put up
with some boring computations.

4Given two vectors v,w € R%, by v ® w is the matrix with elements (v ® w)ij = viw;.
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Definition 3.2.3 Given V € C" we call a point (Z,\) € R such that
V(Z,A\) = 0 and V(-,A) € Ag, for a neighborhood U of Z, a bifurcation
point.> Let (Z,\) be a bifurcation point, we call such point non degenerate,
if rank(DV(z,))) = d — 1, (w,D*V(v,v)) # 0 where v,w are such that
DVv = DVTw = 0. We call the the bifurcation point regular if it is non
degenerate or if det (DV(QE, 5\)) # 0 but there are two eigenvalues with zero
real part and Tr (HO [%A(A)] Ho) # 0 where Iy is the eigenprojector on
the eigenspace associated to the above eigenvalues and A(N\) = 0,V (z(N), N),
where x(\) is determined by V(x(X\), A) = 0.

The idea is then to define the new sets
By = {V € Bg : all the bifurcation points are regular}.
Let us show that the elements of Bx enjoy a nice characterization.
Lemma 3.2.4 In By the bifurcation points are isolated.

PROOF. Let us start analyzing the case of non-degenerate bifurcation
points. Suppose, without loss of generality, that the bifurcation point is at
(0,0). Note that, by continuity, the condition on the second derivative holds
in a neighborhood of zero. By Lemma 3.2.2 we know that the zeroes of V'
lie on a curve (x(7), (7)), with the derivative with respect to 7 given by
(3.2.8), (3.2.7). Also, there exists unique normalized vectors w,v such that
9,V (0,000 = [0,V(0,0)]" w = 0. By (3.2.7) it follows that if N'(r) = 0,
then (&'(7),v) = 0, and then (3.2.6) implies 9,V (¢'(7) —v) = 0. That is, if
N (1) = 0, then (x(7),A(7)) is a bifurcation point. Hence, to show that the
difurcation point is isolated, it suffices to prove that 7 = 0 is the only point
for which A’ = 0. To this end, we can compute

N'(0) = (€"(0), v).
Differentiating (3.2.6) at zero yields
92V (0,0)(v,v) + (8:V(0,0) + 3 V(0,0) @ v)£"(0) = 0.
If we multiply the above by w we have
(w,82V(0,0)(v,v)) + (w, 0V (0,0))A"(0) = 0

since the zero is a non degenrate bifurcagtion point (w, 9,V (0,0)) # 0, and
(w, 02V (0,0)(v,v)) # 0. It follows X”(0) # 0, hence zero is an isolated zero
of .

5That is the vector field V (-, X) is not generic.
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We are left with the case det(9,V (Z, \)) # 0 but with an eigenvalue which
has a zero real part. This means that we have two purely imaginary eigenval-
ues. Let Iy be the eigenprojection associated with such two eigenvalues. By
perturbation theory (see Appendix C) it follows that there exists a rank two
projector family II(x, \) such that 110,V = 9, VII and II(z, \) = M.

Problem 3.8 Show that a two-by-two real matrixz has purely imaginary eigen-
values iff its trace is zero and the determinant is positive.

Then we have Tr(Iyd,V (Z,\)Ily) = 0. Now, let x()\) be the curve of the
zeroes of V| then

d d
— Tr(I1I0, VII =Tr Iy |0,V | II
d\ r( ) N0 r < 0 |:d>\ :| 0)
since I1? = I implies IT (& IT) IT = 0. This concludes the argument. O

Problem 3.9 Show that By is still generic.

Thus, to achieve a typical local understanding of the behavior of one pa-
rameter families of vector fields we have to worry only about families with, at
most, one regular bifurcation point. Let us suppose, without loss of generality,
that the regular bifurcation point is at (0,0), then by Taylor expansion

V(z,\) =a(X) + ANz + %(m, B(A),x) + R(x, \), (3.2.9)

where B is a vector of d x d symmetric matrices and a(0) = 0, R(0,\) =
9. R(0,\) = 02R(0,\) = 0.
Due to the previous discussion we need to consider only the following cases

a) AT(0) has one, and only one, zero eigenvalue w and (w, a’(0)) # 0;

b) A(0) has two purely imaginary conjugated eigenvalues.

3.3 One dimension

In the one dimensional case (b) cannot take place. Then in (3.2.9) we have
a=da(0)#0, A(0) =0, c = B(0) # 0. Then V(z,\) = 0 has no solutions
if ac > 0, while for ac < 0 there are the two solutions z = %4/ —% + O(A).

We have therefore the generic picture: either two points collide and kill each
other or there is a creation of two zeroes of the vector field.

6Indeed, Tr(II'0,VI) = Tr(IIMI'0,VII) = Tr((I'TI0;V) = 0. Analogously,
Tr(118, VII') = 0.
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Problem 3.10 Study the solutions of

B
&= 51‘2 + g(x)

near zero when g(0) = ¢'(0) = ¢”(0) = 0.

Problem 3.11 Prove that the two equilibrium points of the vector field (3.2.9)
are one attractive and the other repulsive.

The above scenario is called a saddle-node bifurcation.

A natural question is if there exists a simpler standard form of the above
bifurcation. Indeed, we can try to kill some of the terms in 3.2.9 by a change
of variable.

Problem 3.12 Show that with a change of variables of the type v = aA+pz,
one can change the vector field (3.2.9) to the from V(z,\) = A+b2%2+O(\?) +
o(2?%).

The above is the normal form of the saddle node bifurcation. This type of
reduction can be made for each bifurcation and gives rise to the large field
of normal form theory which, unfortunately, goes beyond the scopes of the
present notes.

3.4 Two dimensions

3.4.1 A zero eigenvalue

In this case the vector field must have the form (possibly after a linear change
of variable to put 9V, (0,0) in diagonal form)

Viz,\) = <8 2) a:+b)\+% (Eigﬁi) FACT+0O(N2) +o(||z]2), (3.4.10)

with b1, B; # 0. It is straightforward to prove that the scenario is identical
to the one-dimensional case. We leave the details to the reader.

3.4.2 Two imaginary eigenvalues: Hopf bifurcation

In this case, the vector field must have the form (possibly after a translation
and a linear change of variable to put 9V, (0,0) in chosen form, see Problem
V(z,\) = Az + R(x, \), (3.4.11)
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with A = <£ _SJO> for some wy > 0, R(0,0) = 90,R(0,0) = 0 and
0

Tr (0,2 R(0,0)A710\ R(0,0) — 9,1 R(0,0)) # 0.
In the above situation, no new fixed point can appear, yet one expects
something to happen.

Theorem 3.4.1 (Hopf bifurcation) As A\ goes trhough zero, it appears a
periodic orbit circling the fixed point.

PROOF. To minimize the computations, we start by performing some
changes of variables that reduce the ODE to a simpler one.

Problem 3.13 Show that, with a change of coordinates of the type x = & +
a(A), the remainder R in (3.4.11) can be made to satisfy R(0,\) =0, for each
X small enough, 0¢R(0,0) = 0 and Tr(9:AR(0,0)) # 0.

Problem 3.14 Show that with a further change of variables x = D(u)z,
A= pup(p) one can put (3.4.11) in the form

z2=[w(p)J + pl]z+ R(z,p), where J = <(1) _01> , (3.4.12)

with w(0) = wo and R(0, u) = 0, R(0,u) = 0.
Problem 3.15 Find the solutions of (3.4.12) in the case R = 0.

Given that the solutions of the linear part of (3.4.12) rotate around zero
almost in circles, it may occur the idea to treat the problem in polar coordi-
nates. In fact this point of view is quite advantageous and we will adopt it.
The reader who wants to appreciate the advantages of this choice is invited
to try to do the following analysis in Euclidean coordinates.

The polar coordinates can be written as x = pv(6), where p € Ry, § € R
and v(0) := (cos6,sinf).

Remark 3.4.2 Note that such a change of coordinates is singular for p = 0.
In addition, it is not globally one-one. Yet, to consider 6 in the universal
cover of St rather than in S' will be very useful in the following.

If we substitute such coordinates in (3.4.12), we obtain
§0(8) + pr(8)8 = po(®) + w()pn(6) + R(pu(0), 1),
where n(6) := (—sin, cos ). That is

p = pp+ (), R(pv(0), 1) =: pp + a(b, p, p)

. i (3.4.13)
6= w(u) + p~ (n(8), R(pv(8), w)) = w(p) + b(6, p. ),
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where a(0,0, 1) = 0,a(6,0,1) = b(0, ) = 0. In addition, note for later use
that, 92a(0,0,0) and 9,b(6,0,0) are homogeneous trigonometric polynomials
of degree three, while 93a(6,0,0) and 92b(6,0,0) are of degree four. By Prob-
lem 3.35 it follows that we can write a(6, p, ) = ao (0, i) p? + a1 (0, p, 1) p® and
b(0, p, 1) = bo(0, 1)p + b1(6, p, ) p?. Finally, the reader can easily verify that
a€Cr, whilebe C™ 1.

Note that the equation (3.4.13) is well defined also for p = 0 but in such a
case, instead of a fixed point, it has the periodic orbit (p(t),0(t)) = (0,wot).
Thus in polar coordinates for p = 0 we have a rotation, this captures the
behavior of the system much better than the fixed point in Euclidean coordi-
nates.

Problem 3.16 Solve (3.4.13) in the case b = 0, a = p*>. Do it for b = 0,
a=pp*+p°.

Since for small p we have 6 > 0, it is convenient to use 6 rather than
t to parameterize the motion (here is now evident the advantage of using
the universal cover of S'). Calling again p the distance from the origin as a
function of # we have

dp _pp+al,p)  p
a9 w+b0,p) = wp

)p+5(9,u)pz +75(0, p, 1)p°, (3.4.14)

where

B0, 1) = w(p) ™ ag(8, i) — pw () ~2bo (6, 1)
(6,0, 1) = pe(p2) 7205 + aobow (1)~ = pbrw(p) "% + arw(p) .

Note, that 3(6,0) is a trigonometric homogeneous polynomial of third degree
while v(6,0,0) is the sum of two monomial, one of degree four and one of
degree six.

It is now convenient to perform a last change of variables: p = vr, y = +v?,
v > 0.7 Under such changes of variables (3.4.14) becomes

2

% = ﬁ:@r + B0, ) vr? 4+ 12 y(0, vr, 20213, (3.4.15)
Remark 3.4.3 The reader my wonder what is going on: if the coefficients
would not depend on 0, then the periodic orbit would be circular and would
correspond to a zero in the above vector field. Such a zero would occur for
r= 0w tpy7Y), thus it seems that I have just done the wrong scaling. The
point is that the above naive analysis is correct only if we consider the average
(with respect to 0) of the coefficients, but the average of B is zero! This is a
very simple instance of a general theory called averaging.

"In fact, we have two different changes of variable according to the sign of .
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Remark 3.4.4 In the following we will choose the case in which p > 0, hence
the change of variable with the plus is selected. The computations for p < 0
are completely analogous and are left to the reader.

Let us call 7(6,&,v) the solution of (3.4.15) with initial condition £ and
parameter v.

Problem 3.17 Prove that, for each 6 € [0, 27] the function r(0,-,-) are C"~1.

We are finally ready to prove the existence of a periodic orbit. Clearly,
an orbit is periodic if and only if 7(0,&,v) = (27, &, v). In other words, if we
look at the motion only when it crosses the {# = 0 mod 27} line, then we
see the orbit always at the same point. We have thus another instance of a
Poincaré section.

In concrete, if we consider the map S : ]Rf_ — R, defined by S(&,v) =
r(2m, €, v), then the periodic orbits of the flow correspond to the fixed points
of the maps S(-,v).%

Our last task is thus to study such a maps. The right idea is to develop
them in power series of v. Note that r(6,£,0) satisfies the Cauchy problem

dr
@—O

r(0,£,0) =&.

Thus S(£,0) = £. To compute the derivative we must compute 1 := 9,7(6, &, v).
Such a derivative satisfies the equation obtained by differentiating (3.4.15) (see
Theorem 1.1.13)

dp 2w Wl P
CTZ = ;Vr - %r + V;n + Br® + 2urnB + 20°1°0,2 8

20y 4 3022y 4 205138,y + 53 (1 4 )y (3.4.16)
n(0a§7 V) =0.

Setting v = 0 in the above equation yields 1(f,&,0) = &2 foe B(p,0)dp. Ac-
cordingly, 9,,5(£,0) = 0 (see Problem 3.36).

To conclude we need to compute the second derivative at v = 0. Setting
€(0,&) = 0,n(0,£,0) and differentiating (3.4.16), yields

¢ _ 2 3
@ = o€ HABEN(.£,0) +27(6,0,0)¢
¢(0,£,0) =0.

81 mean the non trivial ones, since zero is always a trivial fixed point by construction.
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which yields
B 29 0 5 9
(0,6) = 6+ ¢ /0 Blp,0)n(ip, £, 0)dip + 2¢ /0 +(9,0,0)dsp.

Next, note that %jo) = £2B(,0), hence

6
/Oﬁ(so,())n(%&ﬂ)dw— (GQEQO = (/ Ble,0 d@)

Thus, setting 4 = fo% v(p,0,0)dp, we have’

S(Ev) =1 +2—u €+ €2 + ET(E ) (3.4.17)

To study the solution of S(£,v) = £ for v # 0 and £ # 0 it is convenient to
introduce the function F(£,v) = v=2¢71(S(&,v) — €) = i—: + &2 + v (&, v).
If ¥ > 0, then F'(&,0) has no solutions different from zero and the same
must hold for small v.
If ¥ < 0, then & = wo"/

We can then apply the implicit function theorem since F'(&p,0) = 0 and

is the only positive solution of F(£,0) = 0.

2w _ 4n
9eF(&0,0) = wo +36%y = "o # 0.

As a conclusion we have a unique £(v) = {o+O(v) such that S(£(v),v) = £(v)
for v # 0.

Problem 3.18 Compute, in terms of the Tailor coefficients of V', what it
means ¥ = 0 and shows that it is not possible for V &€ Bge.

O

3.5 The Hamiltonian case

It is important to note that non-generic situations may appear due to sym-
metries or other types of constraints. To give an example of such a situation,
let us consider a Hamiltonian vector field, that is a vector field of the type
V(z,p) = (0p,H,—0,H) for some function H(x,p). In this case

_ [ OnpH OppH
by = (-amH _apo) '

9Since S(0,v) = 0, the coefficient of v must have the form £T.
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Note that the trace of DV is always zero. Hence, if V(z,p) = 0 and det DV #
0, either the fixed point is hyperbolic or has two purely imaginary eigenval-
ues. This means that having two purely imaginary eigenvalues is generic for
Hamiltonian vector fields, contrary to the general ones. Analogously, the sit-
uation for a one-parameter family, already when (z, p) € R?, is more complex.
For example, at a generic bifurcation point, the vector field will have two, not
one, zero eigenvalues.

In fact, for mechanical systems, the Hamiltonian often has the form H (z, p)
ip? + U(z), for some function U. Hence, V(z,p) = (p, —9,U), which means
that the zeroes of the vector field are the critical points of U. Let us discuss
Hamiltonian systems in which the Hamiltonian is of the above type.

We start with the so called one degree of freedom, i.e. x,p € R.

Problem 3.19 Show that if U has a minimum, then the fized point is a
center, while if U has a mazimum, then the corresponding fixed point is hy-
perbolic.

We thus have a new phenomenon: a center that is stable under small
perturbations!

Let us consider the case in which a one-parameter family of potentials
U(z, ) has a degenerate minimum at zero, i.e. U(0,\) = 0,0,U(0,\) =
0,02U(0,0) = 0. This means that U(z) = Az? + a(\, z)z> and

Viz,\) = (p,2\z + a1 (z, )\)xQ)

Problem 3.20 Show that in the above family, we have the collision of two
fized points (a center and a saddle) that collide and exchange type.

This means that the zeroes of the vector fields are p = 0, z(\) = 0 and
z(A) ~ —%. We then have a new phenomenon: two fixed points that
cross and exchange type.'’

Even more singular situations may happen if more constraints are present.
Consider, for example the above situation when, for some reason, the Hamil-
tonian is constrained to being symmetrical: H(z,p) = H(—z,p). Then it
would have the form U(z) = Az? + a(\, )zt

Problem 3.21 Show that in the above case one has one fixed point that
evolves into three fized points. Moreover, show that if only one fized point
is present, the fixed point is unstable, then of the three fized points, two are
unstable and one is stable. This is called a peach fork bifurcation.

10Hence, the set of fixed points no longer forms a smooth curve in the z, A space.



o6 CHAPTER 3. BIFURCATION THEORY (THE MINIMUM)

Next let us consider the case of two degree of freedom, i.e. z,p € R2. Lim-
ited to the case of a minimum. In such a situation, at the point of minimum,
we have

0 1
0.V (z,p) = (—E)gU O) . (3.5.18)
where 02U is a positive symmetric matrix, let w?,w? be its eigenvalues.

Problem 3.22 Show that the eigenvalues of 0,V , at the fized point, are +w;.

Another surprise: a stable situation with four imaginary eigenvalue (an
higher dimensional center).

Problem 3.23 Consider the linear equation (obtained by the matriz (3.5.18)
after a change of variables)

T=p
b= —w? 0 .
0 —wi

Show that p? + x2 are invariant of the motion, i.e. the motion takes place on
two-dimensional tori.

Remark 3.5.1 Contrary to the case of one degree of freedom, in which the
conservation of the Hamiltonian implies that the center is stable for the full
motion, in higher dimensions it is not clear if the center is stable or not for
the full dynamics. Indeed, this is a rather complex matter at present, and it is
not yet completely clarified. Part of the answer is the subject of the so called
KAM theory.'! We will discuss some aspects of KAM theory in the following.

Problems

3.24. Compute V =V o F where V is given by (3.2.3) and F by (3.2.5), i.e.
F&,1)=(£—T1,§). Show, by direct computation, that V(£,7) = 0 has
solution £(7) = —27'2 +O(73).

3.25. Prove that the set {A € GL(n,R) : det(A) # 0} is generic with respect
to the topology induced by the norm.

3.26. Prove that the set {A € GL(n,R) : A is hyperbolic} is generic.

3.27. Prove that {A € C°([-1,1],GL(n,R)) : rank(A(\)) > n—1V\ €
[—1,1]} is generic.

1KAM stands for Kolmogorov, Arnold, and Moser.
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3.28.

3.29.

3.30.

3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

Prove that the set {A € GL(n,R) : A is hyperbolic and has only
simple eigenvalues} is generic (i.e. Jordan blocks are atypical).

Show that if A € GL(2,R) and its eigenvalues have zero real part, then
Tr(A) = 0.

If AeC'(-1,1],GL(n,R)) and II € C*([-1,1], GL(n,R)) is an eigen-
projector, show that % Tr(ITA) =2 Tr(H%A).

Show that the set {4 € C1([-1,1], GL(n,R)) : at most two eigenvalues
have zero real part} is generic.

Prove that the set
Ag :={V € C"(R",R") : V(z) = 0 implies 9,V hyperbolic Vz € K}
is generic in the C" topology.

Show that any matrix A € GL(2,R) with two eigenvalue with zero trace
and positive determinant is conjugate to a matrix of the form

Wy

Let f € C"(R4*1) and write the elements of R4t as (&1,...,&4,t). If
f(€,0) = OFf(£,0) = 0 for all k < s < r, then there exists g € C"~*
such that f(&,t) =t%g(&, ).

for some w > 0.

Let f € C"(R%*1') and write the elements of R4t as (&1, ...,&4,t). Then,
for all s < r, there exists g € C"® such that f(&,t) = E}Z;(l) e 0tk +
t°g(&,1)."?

Show that if p(0) is a product of an odd number of functions equal either
to sin 6 or cos 6, then fo% p(0) = 0.

Hints to solving the Problems

3.1 The finite case is easy. The countable case follows from the Baire cate-

gory theorem.

12Essentially this is Taylor formula where one controls the smoothness of the remainder.
This issue is relevant in the applications, but often not investigated in standard textbooks.
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For each € € R let

P 3
Ue = Ugen Upeo,....q {x €0,1] : [z — a| < q3} .

Then the U, are generic in [0, 1]. Yet, their Lebesgue measure is bounded

by
) q )
2e de
D2 s ase
q=1p=0 g=1
for some fixed constant v. Accordingly, N, U/, is a typical set of zero
measure.

Let z € K such that V(z) = 0. Then, by assumption DzV is invertible,
so V(Z + &) = 0 can be written as

DV DaVE-V(z+8)) =¢.

Since DzV¢ — V(T + &) = o(J|€]]), it follows that the above equation
has the unique solution £ = 0 in a sufficiently small neighborhood of
zero. Hence, there exists a neighborhood of Z in which there are no
other zeroes. Next, for each point in K consider a neighborhood as
follows: if the V is different from zero at such a point, then consider
a neighborhood for which the vector field is different from zero. If the
vector field is zero at the point, then consider the above neighborhood
in which the point is the only zero. In such a way, we have a covering of
K, we can then extract a finite subcover, hence proving the statement.

Let V € Ag and {z;}M, be the zeroes of V. Then for each vector
field W € C1(R4,RY), |W]| < 1, consider the family V(z, u) := V(z) +
uW(x). For each i € {1,..., M}, use the implicit function theorem
to show that there exists ¢;,8; > 0 and X; € C!([—¢&;,&i], R") — R%,
Xi(z;) =0, such that V(X;(u), ) =0 and V(z,pu) =0, ||z — x| < 6,
|| < e; implies that © = X;(u). Verify (using perturbation theory) that,
for pu small enough 9,V (X (1), 1) is hyperbolic. Next, set § = min d; and
p = inf,_,. 55 |[V(2)]]. Clearly V(x,u) # 0 if [z —2;] > § and p < p.
Hence a neighborhood of V' of size min{e;, p} belongs to A, hence Ag
is open.

If Zg = {z € K : det(D,V) = 0}, then V(Zk) is a zero measure set by
Sard’s Theorem. Let Z C R? be a zero measure set and, for each v € R%,
define Z(v) = {z € R? : 2z —v € Z}. Show that for each ¢ > 0 there
exists v € R?, ||v|| < ¢, such that 0 ¢ Z(v). Given V € C}(R?, R?), use
this to show that for each € > 0 there exists v € RY, ||v|| = 1 such that
Ve(z) := V(z) + v has the property that det(D,V;) = det(D,V) =0
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implies V.(z) # 0. An application of the implicit function theorem
then shows that the zeroes of V. are isolated. Finally, construct Ve,
Ve — ‘75”61 < g, such that the zeroes are unchanged but the derivative
is hyperbolic, hence V. € Ag. This last step can be performed locally,
so it suffices to show how to perform it around one single point. First
of all, note that, by continuity, there exists a > 0 such that V.(z) =0
implies |(D,Vz)7!|| < a~!. Next, let 9 € K such that V.(z¢) = 0.
Then V.(z) = Dy, Ve(z — x0) + o(x — o). Thus, there exists 6 > 0 such
that, for all ||z — zo| < 6,

«
V@)l > Sl — ol

Finally, consider the vector field Vi(z) = V.(z) + t(x — z0)p(x — o).
Where ¢ € C! (R4, R) is some fixed function such that the support of ¢
is contained in the ball of radius 4, ¢(0) =1, V(0) = 0 and ||¢||cc < 1.
Then

~ a
IVe()ll = (5 = )|z — zoll
so if t < §, the filed Vi(x) has the same zeroes than V.. Moreover,

Dwofft = Dy, Ve + t1 which is hyperbolic and
IVe = Viller < 26+t pller
which can be made smaller than € by choosing ¢ sufficiently small.

It suffices to show that Bg is generic for each compact K C R<.
The openness comes from the fact that a small perturbations cannot
change the condition on the rank. For the density, consider the set
Q:={(z,)) € K : rank(d,V 9,V) < d}. Using the same strategy as
in Theorem 3.1.6 show that V(Q) has zero Lebesgue measure.'* This
means that, for each € > 0 there exists v € R?, ||v]| < ¢, such that for
each (x,\) € K! such that V(x,\) = —v holds rank(d,V 9,V) = d.
We can then consider the vector field V. = V + v and argue as in the
first part of Problem 3.5.

We know from the discussion Lemma 3.2.2 that there exists z(A) such
that V(z(A),A) = 0, we can then set a(\) = x(A). We get then the
wanted equation with the new remainder given by R(§ 4+ z(A),\) —
R(xz(A), A). The other properties of R are obtained by direct computa-
tion.

13Note that, by the uniform continuity of the derivative on K, § can be chosen indepen-
dent of the point.
MTn fact, this is nothing else than another special case of the general Sard Theorem.



60 CHAPTER 3. BIFURCATION THEORY (THE MINIMUM)

3.14 Remember that the change of variable must be performed on the equa-
tion & = V(x, \), so the vector field changes as D=1V (Dz). In addition,
since 0¢ R(0,0) = 0, Problem 3.35 implies that we can write d¢ R(0, \) =
C(M)A for some C"~1 matrix C. Choose D(X) = Do(A)(1 + D1(N)).
Since we do not want to change the form of 0,V at first order in A, we

impose [Dg, A] = 0. Show that this implies Do(\) = <a(1)\) —al()\))'

Show that one can choose a such that
Dy'0,V(0,\)Dg = A+ AH(N)

with Hy; = Hss > 0. Note then that H;;(0) # 0 since Tr H(0) # 0 by

0 0 ) . Show that b can be chosen

hypothesis. Next, choose D; = <O Ab(N)

so that
(1+ Dy) Dy ', V(0,\)Do(1 + Dy) = A+ NH())

with ﬁii = H;; and f{lg = fﬁzl. The problem is then solved by
choosing p.

3.30 Using a “dot” to mean differentiation holds & Tr(I1A) = Tr(IIA+1I1A).
If B is the portion of the spectrum associated with II(0) and v a curve
surrounding it and no other part of the spectrum, then

I1(0) = % L(z — A(0))"LA(0)(z — A(0))"tdz
Thus
Tr(ITA) = Tr(ITA) + gim /7 2T (2 = A®0)) P A(0)(= — A(0)7) dz
= Te(ITA) + 5 [y 2 (=~ A0) 7 A(0)) dz = Tr(114).

Notes

The present discussion is intended only to give a flavor of the subject and of
how it can be systematically developed. For a more complete (and advanced)
treatment of bifurcation theory, see | , ]. As a historical curiosity,
note that the bifurcation theory can be traced back to antiquity, notably to
the Floating bodies treatise by Archimed.



Chapter 4

Global Behavior—regular
motion

fortunately, such analysis is insufficient if one wants to understand the global
behavior of a Dynamical System. To make precise what we mean by global
behavior we need some definitions.

Definition 4.0.1 Given a Dynamical System (X,¢:), t € N or Ry, a set
A C X is called invariant if, for all t, ) # ¢; '(A) C A.

Essentially, the global understanding of a system entails a detailed knowl-
edge of its invariant sets and the dynamics in their neighborhoods. This is,
in general, very hard to achieve; essentially, the rest of this book is devoted
to the study of some special cases.

Remark 4.0.2 We start with some simple considerations in the case of con-
tinuous Dynamical Systems (this is part of a general theory called Topological
Dynamical Systems') and then we will address more subtle phenomena that
depend on the smoothness of the systems.

4.1 Long time behavior and invariant sets

We are interested in the long-time behavior of a system, and we look at it
locally (i.e., in the neighborhood of a point). Then, three cases are possible:

IRecall that a Topological Dynamical Systems is a couple (X, ¢:) where X is a topolog-
ical space and ¢; is a continuous action of R (or Ry,N,Z) on X.

61
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either the motion leaves the neighborhood and never returns, or leaves the
neighborhood but eventually comes back, or never leaves. Clearly, in the
first case, the neighborhood in question has little interest in the study of the
long-time behavior. This is made precise by the following.

Definition 4.1.1 Given a Dynamical System (X, ¢;), a point x € X is called
wandering if there exists a neighborhood U of x and a ty > 1 such that, for all
t > to, :(U)NU = 0. A point that is not wandering is called non-wandering.
The set of non-wandering points is called NW ({¢+}) or simply NW if no
confusion arises.

Problem 4.1 If ¢, € C°, then the set NW s closed and forward invariant
(i.e. or(NW) C NW for each t > 0). If the ¢ are open maps, then NW is

also invariant.

Problem 4.2 Construct an example of a topological dynamical systems in
which the non-wandering set is not invariant.

Problem 4.3 Show that if A is invariant, then the sets A = ﬁfiogb;lZ
and Q = U2 ¢ (A) are non-empty, invariant and, more, ¢;(A) = A and
6 () =0

The relevance for the long time behavior is emphasized by the following
lemma.

Lemma 4.1.2 If K C X is compact and K N NW = (), then for allx € K
there exists T such that ¢¢(x) & K for allt > T. In addition, if K is invariant,
then T can be chosen independent of x.

PROOF. If all the points in K are wandering, then for each x € K there
exists a neighborhood U(z) and a time t(z) such that ¢, U(z) NU(z) = 0
for all ¢ > t(x). Clearly {U(z)}zex is an open covering of K, hence we
can extract a finite subcover. Let {U;}¥ ; be such a subcover, let {t;} be the
corresponding associated times. If 2 € K then x € U, for some ¢ € {1,..., N},
and ¢ (x) € U; for t > t;. If ¢4(x) € K for all ¢t > ¢t;, then we are done. If
there exists ¢ > ¢; such that ¢(z) € K, then ¢;(z) must belong to another
Uj, that will leave forever for ¢ > ¢;. It is then clear that ¢;(z) cannot remain
in K for a time longer than ), ¢;, nor can the trajectory return for more than
N times.

If K is invariant then it follows that if © ¢ K then ¢;x ¢ K for all t > 0.
Thus, once a point exits K, it can never come back. The above argument
then shows that each point must exist forever in a time at most ), ¢;. O

Corollary 4.1.3 If K C X is compact and invariant, then either there exists
t € Ry such that ¢; 'K =0 or NW N K # 0.
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Proor. If NWNK = (), then Lemma 4.1.2 imply that there exists t € R
such that ¢, K N K = {), hence ¢; 'K = (). O

To see the connection to long time behavior and invariant sets, we need
an extra definition

Definition 4.1.4 Given a topological Dynamical System (X,¢¢), t € I €
{R,Z,Ry,N}, and x € X we call w(z) (the w-limit set of x) the accumulation
points of the set Uy>o{di(z)}. If t belongs to R or Z, then the a-limit set is
defined analogously with t < 0.

Problem 4.4 Show that the w-limit sets are closed sets such that ¢¢(w) = w
(hence if ¢y is invertible then the omega limits are invariant).

Theorem 4.1.5 For each © € X we have w(x) C NW. In addition, if X is
a proper metric space,” then for each z € X either holds limy_, » d(¢¢(z),2) =
00, or limy_,o d(¢¢(z), NW) = 0.

PrROOF. Let z € X. If z € w(z), then for each neighborhood U of z we
have {t,} C Ry such that ¢, (x) € U. Thus ¢y, . ,—+, UNU D {¢y, ., (z)} # 0.
Hence z € NW.

Let us come to the second part of the Theorem. If the two alternatives
do not hold, then there exists a compact set (a closed ball) that contains
infinitely many points of the orbit of = all at a finite distance from NW. This
implies that the orbit has an accumulation point (hence an element of w(z))
not in NW contradicting the first part of the Theorem. O

In particular the above Theorem shows that all the interesting long time
dynamical behavior happens in a neighborhood of the non-wandering set.

Problem 4.5 Given a discrete topological dynamical system (X, T), let A =
NW(T). Since A is forward invariant, one can consider the restriction S of
T to A. Find an example in which NW (S) is strictly smaller than A.

Definition 4.1.6 Given a Dynamical System (X, ¢1), a point x € X is called
recurrent if © € w(x). The set of recurrent points is called R({$+}), or simply
R if no confusions arises.

Problem 4.6 Consider a linear system & = Ax. Show that if A is hyperbolic,
then NW = {0}.

2That is, a distance d is defined and the base for the topology is made of the sets
B.(z) ={y € X : d(z,y) < r} (this is called a metric space). A proper metric space is
one in which all the closed balls {y € X : d(z,y) < r} are compact.
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Problem 4.7 Consider a saddle-node bifurcation in one dimension. Show
that in a small neighborhood of the bifurcation point, when two fized points
x1,x9 are present, NW = {x1,x2}. Show that this may not be the case in
higher dimensions.

Problem 4.8 Consider the ODE © = (o? _8]0> , wo >0, 27wy € Q. Show
0

that NW = R?, while for each x € R? holds w(z) = {z € R? : ||z|| = ||=|}.

Problem 4.9 In the case of the Hopf bifurcation in two dimensions when
the fixed point O is repelling, and hence the periodic orbit v is attracting,
show that (in a neighborhood of O for the bifurcation parameter small enough)
NW ={0} n~.

Remark 4.1.7 We have thus seen examples in which the w-limit sets can be
a point or a periodic orbit, do other possibilities exists?

This question is going to lead us on a long journey.

4.2 Poincaré-Bendixon

The first result is for surfaces.

Theorem 4.2.1 (Poincaré-Bendixon) Let ¥ be a surface on which the
Jordan Theorem applies and (X, ¢;) a flow generated by a C* wector field.
Assume that © € ¥ has a compact omega limit set which contains no fixed
points, then w(x) is a periodic orbit.

PROOF. Let = be a point with a compact omega limit set which does
not contain fixed points, then let £ € w(x). Note that w(§) C w(x) since if
z € w(€) then there exists {t,} such that d(z, ¢, (€)) < n~!. But then, since
the flow is C!, there are neighborood of U,, of £ such that d(z, ¢¢, (¢)) < 2n~!
for each ¢ € U,,. Since £ € w(x), there eists times {s,,} such that ¢, (x) € Uy,
hence d(z, ds, +1, (z)) < 2n~1, that is 2z € w(z).

Our first goal is to show that w(§) contains a closed orbit.

Let V be the vector field generating the flow, and ¢ € w(§). By assumption
V(¢) # 0, let n be a vector normal to V' (¢). Let S be the line passing through
¢ and parallel to n. Let S C S be a segment containing ¢ and such that, at
each point z € S, V(2) # 0 and (V(2), V(¢)) > 3[|[V(2)|[|[V(¢)]|. Since ¢ is an
accumulation point of {¢;(§)}er, , the trajectory of ¢ intersects S infinitely
many times, let {¢, (§)}nen C S be the intersections of {¢;(§)}ier, with S.
We can then consider the close curve v, consisting of {¢:()}tet, b, and
the segment I,, C S connecting ¢y, (§) with ¢, (§). If I,, consists of just one
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point, then the trajectory is periodic. Otherwise, by Jordan’s Curve Theo-
rem, such a curve divides the plane into two open connected components.
Let us call A,, the component of the side of S toward which point V(¢), and
B,, the other. Note that a trajectory can cross the boundary of the two com-
ponents only through I. Therefore, a trajectory can change the connected
component only going from B, to A, through I. Consequently, trajectories
in A, stay in A,, forever. In addition, the trajectory ¢y, ., +4(§) for small s > 0
enters in A, thus A, 11 C A,. Moreover, if the trajectory is not periodic,
then the inclusion is strict as ¢y, (§) € A, +1. In addition, since the trajectory
accumulates to (, it follows that ( € A,, for all n.

Next, we follow the trajectory of ¢;(x). By assumpton there exists a sequence
of times {s,} such that ¢, (x) converges to ¢, (£). Thus ¢g, +t,—t,(£) con-
verges to ¢4, (€). But this means that, for ¢ large enough, ¢:(z) € As. Hence,
the trajectory will remain in As forever, and since ¢, (§) € Aa, it cannot
accumulate to it, contrary to the hypothesis.

It follows that it must be ¢y, (§) = ¢, (£), that £ belongs to a periodic trajec-
tory of period T =ty — t1.3

Next, we show that w(z) consists of exactly a periodic orbit. If ¢, () is close
enough to ¢, (£), then it will intersect again S, and, arguing as before, will
do so closer to ¢y, (§), hence it will intersect S, infinitely many time converg-
ing monotonically to ¢y, (£). Thus, for each € there exists 7 such that ¢:(x)
will be in an e-neighborhrood of the periodic trajectory for each ¢t > s;. To
conclude let ¢ € w(z) \ {¢}. Then ¢:(r) must accumulate to &', and the
previous argument shows that & must belong to an e-neighborhood of the pe-
riodic trajectory. Since € is arbitrary, it follows that &£ belongs to the periodic
trajectory, that is, w(z) is just one periodic trajectory. O

4.3 Equations on the Torus

The conclusion of our previous chapters is that a generic family of vector
fields in R? can have a very limited choice of bounded invariant sets: either a
fixed point and the associated stable and unstable manifolds, or (by Poincaré-
Bendixon) a periodic orbit. Yet, one can have a differential equation on
different manifolds, notably the torus T? = R?/Z2.

Problem 4.10 Consider the vector fields V(z) = w € R? on T? and show
that the orbit of the associated flow can be everywhere dense.

The above problem shows that on T? it is possible to have a new w-limit
set: T? itself! Can such a situation take place for an open set or a dense set
of vector fields? To understand the situation, it is useful to generalize the
setting of Problem 4.10.

3For a slighly more detailed argument, see [ ].
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Definition 4.3.1 A closed non self-intersecting curve v € C" (S, T?), r > 1,
is called a global (cross) section for the flow associated to V if

a) ' is always transversal to V.*
b) for each x € T? there exists t € Ry such that ¢,(z) € 7.

Given a cross section v we can define the return time 7 : v — R as the first
t > 0 such that ¢;(z) € v and the Poincaré map f : vy — v as f(z) = ¢r() ().

Problem 4.11 Show that if v € C"(S*,T?) is a global cross section and f is
the associate Poincaré map, then f € C" and (v, f) is a Dynamical Systems
that describe the dynamics of the flow when it returns to .

Lemma 4.3.2 (Siegel) Let V € C"(T? R?) be a nowhere zero vector field.
If the associated flow has no periodic orbits, then there exists a global section
v € C". In addition, if f :~v — 7 is the Poincaré map associated to the flow,
then f € C"(v,7).

PRrROOF. The (nice) idea is to construct a section close to an orbit. Let
¢: be the flow associated with the vector field V. Note that Corolalry 4.1.3
implies NW # (). Let x € NW and consider an open segment, of length less
than 1/2, ¥, « € ¥, transversal to the vector field (similar to the construc-
tion in the Flow Box Theorem 2.1.1). Since x is non-wandering and due to
Theorem 2.1.1, there exists z € X, z # x, and ¢ € R such that ¢:(z) € 3, this
being the first return to X. Since there are no periodic orbits z # ¢:(2).

We will construct a global section close to {¢s(2)}._, U X. Note that the
closed curve that one obtains joining z to ¢¢(z) along ¥ cannot be homotopic
to a point. Otherwise, the curve would have an interior homeomorphic to a
disk in R? from which the orbits cannot escape either in the future or the
past. By the Poincaré-Bendixon theorem, this would imply the existence of a
periodic orbit, contrary to the hypothesis. To properly explain the construc-
tion it is convenient to introduce a flow box type system of coordinates near
such an orbit.

For s € [-1/2,1/2] let ¢(s) = z + s(z — 2)||lz — 2|7 C . Clearly
©(0) = z, (]l — 2z||) = =, and holds ¢([-1/2,1/2]) D . Next, for each
y € ¥ let s € [-1/2,1/2] be the unique number such that y = ¢(s) and
7(s) = inf{t > 0 : ¢(y) € £} be the first return time to the section. By
Theorem 2.1.1 and Corollary 1.1.14 there exists 6 € (0,2||xz — z]||) such that
7 € C"([-6,6),Ry). For A := {(s,t) € R? : s € [-6,6],t €[0,7(s))} let us
define the map = : A — T? by Z(s,t) = ¢¢(¢(s)). Note that this map is C"
and invertible (provided 0 is chosen small enough), hence it can be used as a
change of coordinates. Note that this are essentially the coordinates used in

4That is, the vectors {7/ (t), V(7(t))} span R? for all t € S*.
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the flow box theorem, only now they are used in a long neighborhood of an
orbit.

The next step is to understand how the orbit comes back. Indeed, if
we use standard flow box coordiantes (s',¢') in a neighborhood of ¥, then
(s,t) = (s',t') for t > 0 but for ¢ close to 7(s) we are again in the neighborhood
of ¥ corresponding to t’ < 0. The change of coordinates can then be described
by the function 6 such that ¢.5)@(s) = ©(6(s)). Then (s,t) corresponds to

(0(s), t = 7(s))-
Problem 4.12 Let 79 = 7(0), then (z — z, %7, (0(5))[s=0) > 0.7

The above problem means simply that 6’ > 0.

To conclude we must analyze two possibilities: either ¢,z is closer to z
than z or vice versa. The two cases are treated exactly in the same way so
we discuss only the first, that is #(0) > 0. We can then chose € € (0,0)
such that 6(—¢) > 0. Consider a line (¢ — 2e7, 't,t), t € [0, 7], obviously it
is always transversal to the flow. If we look at it in the standard flow box
coordinates in a neighborhood of ¥ we see that it start as a decreasing curve
and, since 6" > 0, it reappears (for t’ < 0) as a still decreasing curve. It is then
easy to see that it can be smoothly deformed, in a neighborhood of ¥, into a
closed curve that is always transversal to the flow. We have thus constructed
a smooth transversal section it remains to show that it is global.

Problem 4.13 Consider a piecewise smooth closed curve I’ in T2. Show that
T2\ T is either disconnected (and one connected component is isomorphic to
an open set in R?) or it is isomorphic to a cylinder.

If the above section would not be global, then there would be trajectories
that stay forever in a set (either a piece of R? or a cylinder) to which Poincaré-
Bendixon applies. But this would imply the presence of a periodic orbit,
contrary to the asumption. U

Problem 4.14 Show that, in the setting of the above theorem, the sign of f’
cannot change and that the condition [’ # 0 is generic.

It is important to notice that, given a topological Dynamical System
(M, f) and a function 7 € C°(M, R \ {0}) (called roof function) one can
always see them as a Poincaré section and a return time of a flow. The re-
sulting object is called a suspension or standard flow and is constructed as
follows.

Consider the set Q = {(z,5) € M xR, : s € [0,7(z)]} with the topology
induced by M x Ry equipped with the product topology.

5This is really a consequence of the fact that the torus is orientable, yet it can be proven
directly in several ways.
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Problem 4.15 Consider the relation (x,s) ~ (y,t) iff x =y and s =t or
s=71(x), t=0andy= f(z) ort=7(y), s =0 and x = f(y). Prove that it
is an equivalence relation.

One can then consider the space of the equivalence classes Q = / ~ with the
induced topology, this is the space on which the flow is defined: let ¢t < inf 7,
define

,8) = (2,5 +1) ift <7(z)—s
91(, 5) {(f(x),t+s—7(w)) ift>7(x)—s

and extend ¢; by the group property.

Theorem 4.3.3 Let V € C%(T?,R?) be a nowhere zero generic vector field
with no periodic orbits. Then for each point y € T?, w(y) = T2.

PrOOF. By Lemma 4.3.2 we have a smooth global section vy with a
Poincaré map g. Let h : S' — ~ be a parametrization of +. If we set
f=h"1ogoh, we can consider the return map as C2 map on the unit circle
such that f’ # 0 at each point. Note that a periodic point for the map f
corresponds to a periodic orbit for the flow, hence f cannot have periodic
orbits. The claim follows then by Lemma 4.5.2 in which it is proven that a
smooth circle map with no periodic orbits has dense orbits. O

The final natural question is:
In the hypotheses of Theorem 4.5.3, is it possible to conjugate the flow to
a rigid rotation of the torus? if yes, to which one and how smooth is the
conjugation?

Motivated by the above question and results, we will now study orientation-
preserving circle maps. It turns out to be interesting and helpful to study their
properties in relation to their increasing smoothness.

4.4 Circle maps: topology

Here, and in the following, we study a Dynamical System (S!, f) where f
is an orientation-preserving homeomorphism of S! (i.e., f is invertible and
f(st) = 8.

To begin with, we assume continuity only.

First of all, note that one can lift the map f to the universal cover R of
the circle, that is defining 7 : R — S! as 7(z) = 2 mod 1, it is possible to
find F € C°(R,R) such that

fom=moF.
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Problem 4.16 Construct explicitly such an F. Show that
F(z+1)=F(z)+ 1.

Problem 4.17 If there exists L > 0 such that —L < amin < an + apm + L
for all n,m € N, then the limit lim,, , %> exists.

Lemma 4.4.1 Let f : S* — S* be an homeomorphism and F € C°(R,R) a
lift of f. Then the limit

mod 1

7(f) == lim F(z)

|n|—o00 n
exists and is independent both from the point and the lift.

PrOOF. Applying Problem 4.17 to the sequence F"(x) the existence of
the limit follows. The other assertions depend on the already mentioned
equality F(z+1) = F(z) + 1. O

Lemma 4.4.2 Show that 7(f) € Q if and only if f has a periodic orbit.

PROOF. If f9(x) = x and F is a lift then it must be F'9(x) = x+p for some
p € N. This immediately implies F*(z) = x + kp and hence 7(f) = % € Q.
On the other hand, if 7(f) = £ € Q, we have 7(f?) = p mod 1 = 0. It thus
suffices to prove that 7(f) = 0 implies f has a fixed point. Let us do a proof
by contradiction: we suppose that f has no fixed points. Note that this is
the same than saying that G(R) N Z = 0 where G(z) = F(z) — z. Since G
is continuous this implies maxG — minG < 1. Let « = minG, f = maxG.
Note that, by properly choosing the lift F', one can insure tat [, 8] C (0,1).
Then

F'(z) = G(F" Y2)) + F" Y (z) > a + F" " }(z) > na

hence 7(f) > «, analogously 7(f) < 8 which contradicts 7(f) = 0. O

Problem 4.18 Given f € C°(S',SY), for any interval I C S, if f(I) C I,
then f has a fixed point in I.

Problem 4.19 If 7(f) ¢ Q, then for each n € N\ {0} and z,y € S,
{5 ) ke 0 [z, f7(2)] # 0.

Problem 4.20 If 7(f) ¢ Q, then for each x € S* there exist infinitely many
n € Z such that { f*z}jgj<n N [z, 2] = 0.

Lemma 4.4.3 For any homomorpfism f : St — S' with 7(f) ¢ Q and any
z,y € St holds w(z) = w(y).
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PROOF. If z € w(z), then there exists {n;} such that lim;_,., f™ (z) = z.
But then Problem 4.19 implies that for each j € N there exists k; € N such
that f*(y) € [f™ (z), fr+1(z)]. Clearly lim; o0 f¥i(y) = 2, thus z € w(y).
Reversing the role of z and y the Lemma follows. O

Problem 4.21 Let f be a homeomorphism of S* with irrational rotation
number show that for each € > 0 there exists a homeomorphism f., ||f —

felloo <&, with 7(f.) € Q.

Problem 4.22 Note that 7 is a map from circle homomorphisms to [0, 1].
Show that it is a continuous map.

Problem 4.23 Let f) be a one parameter family of homeomorphisms such
that 7(fo) < 7(f1). Suppose that T(fx) is increasing, what can you say on the
possible intervals in which it is not strictly increasing?

4.5 Circle maps: differentiable theory

In this section we investigate the consequences of assuming that the map
enjoys some regularity.

Lemma 4.5.1 Assume f € C*(S1,5%) and Inf’ € C}(SY,R).C If r(f) ¢ Q

and xo € w(xg), then

> (") (o) < oo

n=0

PROOF. Let U(xg) > zo be the largest open interval not intersecting
w(xg), call K(xg) its closure. First of all, the invariance of the w-limit set im-
plies {f™ (0K (20))}52; C w(xp). This implies that either f"K (zo) NU(xo) =
0 or f"K(xo) D K(xzo) but the latter would imply the existence of a fixed
point for f™, which is impossible, hence all the sets {f"U(z¢)}necz must be
disjoint. We can now conclude thanks to a typical distortion estimate: let

K (70) == f*(K(z0)), then, setting D := | L.

f/
(/") (=)
1> Kp(zo)| = / x)dr = ™) (2 / dx

nze;\l‘ = 7126;1 nze;I( o) K(zo) (J™)(20)
> > (") (o) / e~ Zizo I £/ (F* @) =In £/ (F* @)l gy

neN K (zo)
> (Y ) [ e P 2 K ao)le Y () (o)

neN K(IO) neN

6These hypotheses can be slightly weakened, see [ ].
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Lemma 4.5.2 If 7(f) € Q, then, for all x € S*, w(z) = ST.

PROOF. We use the same notation as in Lemma 4.5.1. If the Lemma is
false then there exists x € S such that w(z) # S'. But by Lemma 4.4.3
all the omega limit sets are equal, hence there exists o € S' such that
xo € w(xp). Note that if there exists n € N, n # 0, such that f"(z¢) € K(x0)
then, by the invariance of w(xg), it must be f™(xg) # 0K (x9) C w(xg) and
then Problem 4.19 implies that there are infinitely many k such that f*(zo) €
[0, [™(z0)] C K(x0), but this is impossible since such an interval does not
contain accumulation points of the forward trajectory. Thus, for each n € 7Z,
n # 0, f"(x0) € K(z¢), accordingly there exist 6 > 0 such that each interval
[0, f™(x0)] has length at least ¢.

Next, choose L > 0, by Lemma 4.5.1 there exists m € N such that
(f™)(xo) < L1, for all n > m. We can then apply Problem 4.20 to find an
In| > m such that {f*z} k<, N[z, f"(z0)] = 0. Suppose n < 0 and let J_ =
[z0, ™ (z0)], then for each k € {1,...,—n — 1}, f*J_ = [fFzq, f*Fx0), since
the extreme of such an interval do not belong to .J it follows that f*J_NJ_ = ()
(otherwise the first would be contained in the second and there would be a
fixed point). Thus, setting J = [z, f"(x0)], for all k € {1,...,—n — 1},
holds f*J N J = (). The same result follows, setting J_ = [x¢, f~"(x¢)] , for
n > 0. Finally we conclude with another distortion argument

| (Y (=10 (19 ()
<f|n>'<xo>/J ey

|n|—1

1 k
>_——— [ e 2= PGy > Le PSS,
B (f"')’(:vo)/J -

I = /J (f 1 () de =

Then choosing L > e”6~! leads a length of |f~I"|.7| larger than one, which
contradicts the fact that f is an homeomorphism. O

The above fact can be used to prove the following result (due to Poincaré).

Theorem 4.5.3 If 7(f) = w € Q, then f is C°-conjugate to R, (r) = v + w
mod 1.

PROOF. See | ] Theorem 11.2.7. O

4.6 Circle maps: smooth theory

We have seen that the qualitative behavior of smooth circle maps with ir-
rational rotation number is similar to the behavior of the rigid rotation in
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Problem 4.10. What it is not clear is if the two dynamics can be smoothly
conjugated (i.e. in the spirit of the flow box theorem, but globally). This
latter problem turns out to be extremely subtle and to require much finer
number theoretical consideration than distinguishing between rational and
irrationals.

Since we have seen that more smoothness allows to obtain stronger results,
it is natural to start by considering analytic functions.

To make the following easier, we will limit ourselves to the case of a maps
close to the identity. That is maps with a covering F' : R — R of the form
F(z) =24 w+ f(z), where f(x + 1) = f(x) is “small”.

4.6.1 Analytic KAM theory

To define the sense in which f is small we assume first that f is an analytic
function. That is f is a restriction to the real axes of a function, that abusing
notation we will still call f, holomorphic in a strip. Let D, = {z € C
|S(2)] < 5=} and consider the function space

Bo = {g € C°(Dq,C) : g(z+1) = g(2) Vz € Dy, g holomorphic in Dy }.
This is a Banach space when equipped with the norm ||g||o = sup,cp_ 9(2)|.

Theorem 4.6.1 If 7(F) = w and there exist ap € (0,1), Co > 0 such that if
1f = [o1 fllao < Coag1071° and w > 0 satisfies

C
FE
q q
for each p,q € N, then there evists h € B, /o such that, setting H(x) =
1o
4+ h(x), |hlag/2 <3C, || fllé and, for all x € R,

H'oFoH(z)=x+w. (4.6.1)

A natural question is: do irrational numbers with the above properties exist?
The answer is yes (for example, all the quadratic irrationals satisfy such in-
equalities), but a bit of theory is needed to see it. For a quick introduction
to these problems solve the Problems 4.28, 4.29, 4.30, 4.31, 4.32, 4.33, 4.34.

Remark 4.6.2 Note that we can always reduce to the case [ f =0 by sub-
tracting the average to f and adding it to w. As an exercise, you can show
that given the map F(x) = x +w + £ + f(x), with f zero average and norm
small as in Theorem 4.6.1, there exists a € for which the map is conjugated
toxr+w.
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Remark 4.6.3 The unaware reader can be horrified by the 10710 in the state-
ment of the above theorem. Such a ridiculous number is partly due to my
prioritizing readability over optimality, but it is also inherent to the method.
It is well known among specialists that obtaining optimal estimates for KA M-
type theorems is a very challenging problem. Indeed, it is a field of research
currently active.

PROOF OF THEOREM 4.6.1. First of all remark that, setting fo = fsl 7
we have

w+ fo—If = follao <T(F) <w+ fo+ If = follas
thus, since 7(F) = w,

| fol <1f = Follao- (4.6.2)
Next, note that if H is invertible, then equation (4.6.1) is equivalent to, for
each 2z € Dy /2,
h(z4+w) — h(z) = f(z+ h(z)). (4.6.3)
In fact, we are interested to solving the above equation only for real z. In the
following to avoid confusion I will use z for a complex variable and z for a
real one.
It is natural to introduce the linear operator L,g(z) = g(z +w) — g(z). If
such an operator were invertible, then we could write

h=L,'"foH, (4.6.4)

that looks like a fixed point problem and hopefully can be studies with known
techniques.

We have thus to study the operator L,. The best is to compute it in
Fourier series:

ng(iL') _ Z eQwika:(e27riwk o ]-)gk
kEeZ

where g(z) = 3", oz €2 g),. Thus, provided go = 0,
-1 _ 2mik Jk
Llga)= Y &l
keZ\{0}

Thanks to the fact that w ¢ Q, the coefficients in the above formula are well
defined. Yet, it remains the issue of the convergence of the series. Indeed, the
coefficients can be very large since,”

|627riwk _ 1’ > 2 inf |U.}k3 —p| > 200|I€|_1.
peN

"Note that |e?® — 1| > |sinz| > 2?9”, provided z € [0,7/2]. On the other hand if
x € [r/2,7], then |e?” — 1| > |1 — cosz| > 1. Hence we can use the simple, but not very
sharp, estimate |e27%® — 1| > inf,cz 2|z — p|.
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This is the main difficulty of the present problem: the infamous small divisors.
Clearly, due to the small divisors L' is not a bounded operator. This makes
it very hard to study directly (4.6.4). To bypass this problem we need an
idea.

The idea that we will use if due to Kolomogorov and goes as follows:
instead of solving (4.6.4) consider the change of variables Ho(z) =  + ho(x)
where hg = L3 (f — fo). Of course such a change of variable it is not the
right one since

ho(z + w) — ho(z) = f(2) — fo, (4.6.5)

yet one can try to write
Hi'oFoHy(x) =z +w+ fi(z) (4.6.6)

and hope that f; is much smaller that f. If this is the case one can iterate the
procedure and hope that it converges to a limiting change of variables that is
the one we are looking for.

To implement the above idea the first thing we need is to connect the
analysis via Fourier series to the analytic properties of the functions.

Consider the norm
gla = 3 elH[ .
kEZ

Let us call B, the Banach space of the periodic functions (of period one) on
R equipped with the above norm.
Note that, for 8 < a,®

- k| . gl o
Lol < ST EL o, < 9l g e ammin
| gmkaZQOO 196 < S sup Ik
€ (4.6.7)
9o
~ 2eCo(a — f)

Thus L' : B, — Bg is a bounded operator for each o > 3.

8Here we use that, for each n € N and o > 0,
n\n
sup ke 7F < sup z"e 7% = <7) e <e loT"nl
kEN z€R o

The last inequality is an application of Stirling formula. If you do not remember it, here is
the baby version used above,

ne—n+1‘

nl = 62;;:1111]@ > efln Inzdzr _ enlnn—n+1 -n
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The point is that there is a connection between the above Banach spaces,
namely we can define = : Bg — By, by Zg(z) = g(x), for all z € R.” To see
the relation between the norms, let us compute the Fourier coefficients

_ 1 ! )
gl = ~ / T g (z)dx
0

7

Problem 4.24 Show that |[Zg]x| < e=**||g||a-

Hence, for a > 8, ||Zlg. -8, < 2(1 —e?~*)~1. Note also that we can easily
define the inverse: if g € B, then define

Eflg(z) — ZBQW’ikzgk
keZ

Problem 4.25 Verify that the above is really the inverse of =.

If g € B,, then

IE7"glla <D e™*(gu] = [gla-
keZ

Thus |27}, 58, < 1.

Problem 4.26 Show that, for each o > B, a—f < 2, setting hg = 2 ' L;'E(f—
fo), holds

4||f - fOHa
= Co(a — j3)?

64m A
m”f — folla-

1holls

[holls <

The point of the spaces B, is that the equation (4.6.6) for f; reads
fi(z) = ho(x) — ho(z + w + f1(z)) + f(z + ho(x)). (4.6.8)

To study such equation in B, is highly non trivial, while B, is much better
suited to estimate the norms of composition of functions.

To study (4.6.8) in B, the first step is to verify that it makes sense.
Obviously one can see it as the restriction to the real axes of an equation
involving functions defined on the complex plane, yet it is necessary to check
that the composition is well defined, that is we have to carefully analyze
domains and ranges of the various functions. For later use we carry out all
the needed estimates in the following Lemma.

91n other words we simply take the restriction of the function to the real axis.
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Lemma 4.6.4 Given functions f € B, and h € Bg, a > 8 > «/2 such that,
setting F(z) = z 4+ w + f(2), we have 7(F) = w, ||f — folla < QQ—;*B and h
satisfies (4.6.5), it follows that ||h||g < %, [ ]|lg < 15, H(2) = z + h(2) is
invertible, H=' € B.,, v < 28 — «, and there exists a function fi € B, with

||f1 - fsl le’Y < %Hf - fsl f”a satisfying
H 'oFoH(z2)=z+w+ fi(2) =: Fi(2).

ProoOF. First of all H is invertible when restricted to the real axis since
H' > 1. Let H™!(2) = z + ¢(2), clearly

P(2) = —h(z + ¥ (2)).

So the inverse is the fixed point of the operator K(¢)(z) = —h(z + ¥(z))
which is well defined on the set A = {y € B, : [[¢|, < %} It is easy to
verify that such a fixed point exists and is unique.

Note that the function f; must satisfy equation (4.6.8). To solve (4.6.8)
we must look for a fixed point for the operator

K(p)(z) = h(z) = h(z + v+ ¢(2)) + f(z + h(2))

on the set A = {p € B, : |p— fOHw < Y- folla}. Note that the
composition of functions is well defined, hence so is K.
Let us check that K(A4) C A.

K(©)(2) = fo = h(2) = h(z +w) + h(z +w) — h(z +w + ¢(2)) + f(z + h(2)) — fo
= f(z+h(z)) — f(2) + h(z + w) — h(z + w + ¢(2)).

Thus, using the estimate in Problem 4.35 and recalling (4.6.2),
. ) ) 1 1 N T |
1Co)=folly < 1F slinll+IR slielly < glfllatgellio=folly+31 ol < Zl fla-

In addition, if ¢, ® € A, then

- - 1 -
1K) = K@)l < IWllslle = 2l < 15lle = Al

Thus, by the usual contraction argument, there exists f; € A such that
K(f1) = fi. On the other hand Fj is conjugated to F' and hence it has
rotation number w. Thus (4.6.3) implies | [, f1] < [[f1 — [1 f1lly and

fl_/slfl fl—/slfo /Slfo—f1

< L= ol

S ‘
:

+
ol
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Since we need to restrict the domain several time it is convenient to do
it in a systematic fashion. Let py := e *7a, and apply Lemma 4.6.4 with
B = p2 and v = py. A simple computation shows that the condition on 3, ~

are satisfied if e™" > % Then, setting ¢ = ||f — fon Lemma 4.6.4 applies
3.3 —1
provided ¢ < min{Z2, $oT0"} 10 We then choose o = a~'Cy *5. Hence
3.3 3 .3
min{Ze, $ore ) — S0 provided e < 10%e®y/Co.

me’ 128e3w
We now implement an iterative procedure by setting: fo = f,

hn(z+w)7hn(z):fn(z) ’ Hn(Z)ZZ+hn(Z) ) Fn(z):ererfn(z),
Hyto FyoHy(2) = 2+ w+ fara(2).

_1 1
In addition, we set ap = @, a1 = e Yy, Entl = %" and 7,, = a;lCO Sen.

Note that this choices imply that Lemma 4.6.4 can be applied at each stage

of the iteration. Now, if a,, > %040, holds e,, =27 "¢, 7, < 2010712*”/300_%5%.
This implies a,, = age™* Tiio > 6*400‘0_1007%5%a0 which is always larger
than «ag/2 provided ¢ < Cj [‘X‘)Tlé‘ﬂg. Note that all our condition on € are
satisfied if € < %Coa810_5.

We have thus a sequence of changes of variables H,,(z) = z + hy, (%), the
next question is if it exists H(z) = lim, o Ho o Hy o -+ 0 H,(z). It suffices

to prove that the sequence is uniformly bounded on D, /2

n n 2
€ EL
|H00[7[10"'017[71(»’5)*Z|Skz;)nhknmc S;OCOT?%%

oo
1 —1 1
< ZZ_k/35§e2CO 5 <e3be’Cy
k=0

wl=

Similarly it follows that the H,, form a Chauchy sequence, hence they have

alimit H € By, /2 with [[id — H||4,/2 < 5%56205%. From this it follows also
(see Problem 4.35)

40me2es 1
I H|lags < —— < =, (4.6.9)
Qp 0E 2

provided ¢ < 10719Cya?. Hence H is invertible and this concludes the proof.
O

10 Just use Problem 4.26 and the fact that 1 —e~% = Jo e ¥dy > e 1z, for z € (0,1), to
check the hypotheses of the Lemma.
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4.6.2 Smooth KAM theory

The final question is: do similar results hold assuming less smoothness? The
answer is yes, yet to explore optimal results it is not an easy task. Here we
content ourselves with a partial, but enlightening, result.

Theorem 4.6.5 For eachr > 4,"" if 7(F) = w, || f — foller < 10717 Cy(r—4)°
and w > 0 satisfies

for each p,q € N, then there exists h € C! such that, setting H(x) = x + h(x),
H is invertible and
H ' oFoH(z) =2+ w.

PROOF. The basic idea is to write f = fo +3 7 fy, where

fm (Z‘) — Z fk e?‘n’ikm

eam§|k|<ea(7n+1)

and a > 1 is a parameter to be chosen later.'> Then one can apply Theorem
4.6.1 one f,, at a time. Indeed, let a,,, = b(m + 1)e=*"™+1)  for some a,b > 0
to be chosen later, where then

I fmllo, < Z | fi|e@m Ikl < Z | fler (2m) 7 ||~ eom Il

eam < |k|<ea(m+1) eam <|k|<ea(m+1)
< Y 2ffle@m et
eam§k<ea(m+1)

<2|f

cr ef(arfafb)m+a

If | fler is small enough, we can apply Theorem 4.6.1 to fo . Indeed, let Fo(z) =
z+w+E& + fo(2), then & — || folloo < 7(Fp) —w < &o + || folloos SO there exists
0] < ||f0||oo~such that 7(Fy) = w. Hence, there exist ho such that, setting
Hy(z) = z+ ho(z) and Fy(z) = z + & + fo(2),

ffgl oFyoHy(2) =24 w=: R, (2).
The obvious next step is to compute f; such that, for each n € N,

1
Hy'o <Rw —l—ka) o Hy(z) = z 4+ w + 1 (2).

k=0

n fact, by a more sophisticated proof, r > 3 suffices | ].
12This choice (a la Panley Wiener) for the decomposition of f is not optimal, yet it makes
the latter computations simpler.
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This is possible if |f|cr is small enough. We can then try to iterate the above
procedure by applying Theorem 4.6.1 to f; and so on. R
To this end we set up the following iterative scheme: fy = fo, H_1 = id.

For k € Ny let Fj.(z) = 24w + s + fo +Z§=O fi(2), 7(Fy) = w, o =0

Fr(z) =z+w+ & +1k(z); 7(F) =w (4.6.10)
H ' oFpoHy(2) =z2+w; Hi(2) =2+ hi(2) (4.6.11)
My, = Hy_1 o Hy, (4.6.12)
Hi' o Fyy1oHi = Frya. (4.6.13)
Note that, for each k € Ny,
H; b o FloHy(2) = Hy b o Mt o Fi o Hi—y o Hy(2) (4.6.14)

=H;'oFyoH, =R,.

The rest of the proof consists in a rather tedious verification that the induction
is well posed and in estimating the norms of the objects involved.

Let us assume by induction that there exists B > 1 such that, for each
k€ Nand j <k, [[fj[la;/2 < Bl|fjlla, - In addition, we write Hy.(z) = z+bx(2)
and, setting 39 := a(r — 4) — b, assume that

k—1
[Bk—1llar_r/a <1073 e Vay; = 1072454
§=0
1 1
||b;§—1Hak/8 < Z - %+ 1

Note that this is obviously true for £ = 0. Remark that Theorem 4.6.1 implies
that there exists a solution hy, € By, /4 to (4.6.11) provided [|fy][q, 2 < Ciai,
with C, = Cy10~!!. Under the above hypotheses,

£xllar /2 < Bllfellay < 2B|flere=(@rmomtire
< QB|f|Crb_3(k‘ + 1)—36—3(5k+4aaz < 0*666_36]60&2 < 0*566_36k04i

provided 6 > 0 and |f

cr <20, B71b%e7146°. Thus, by Theorem 4.6.1,
ikl s < 3Cy *|lfx]13,» < 3Cy ¥CF 6%~ ay, < 107362~ %y,
Moreover (see Problem 4.35)
1Bl /s < 167 ||kl sacy " < 4-10726%e%F < 1/4.
By (4.6.12) it follows
be(2) = hi(2) + br—1(2 + hi(2)),
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which is well posed in B,,, /4 provided a > 2, since this implies that ap(l+4-
107362e79%) < ap—1. Moreover [|by a4 < 10734,

1

1 1
’ < |z _
1]l /8 < {4 ST

} (14+4-10726%7%) +4.10725% % < = —

— 4 2k+2
Equation (4.6.13), also recalling (4.6.14), is equivalent to

fir1(2) = frr1(2) + &
Fr1(2) = Gh1 — ok + h(z +w) — br(z +w + Frp1(2)) (4.6.15)
+ frpa (@ + b ().

Since Hy, is invertible this implies that 1"~fk+1 is well defined on the real line.
This implies that

Fri1(2) =2 + w + sep1 — sk + be(@ + w) — bi(@ + w + Fip1(2)) + frr1(z + be(x))
=z +w+ g(x).

By induction it follows that, for all ¢ € N,

Fii1(2) —z—l—nw—l—z o (2

As usual remark that F} 4+1(2) — 2 cannot be an integer since otherwise we
would have a periodic point and we would have 7(Fj41) = § € Q, contrary
to the hypothesis. It follows that for each g € N there exists p € N such that,
for all x € R,
q—1
p-1<z+q+)> g, () <p
j=0

Since, 7(F) = w it follows

—_
—_

q—
- E k+1 -

7=0

>Q
s}

hence, by the arbitrariness of g,
1 . _
k41 = Skl < 7 rtilloo + 1 firalloo
Using the above estimate in equation (4.6.15) yields [|[fxy1]lco < 4[| frs1llo0,

hence R
lsk+1 — S| < 2] frt1 oo (4.6.16)



PROBLEMS 81

norm of 41 from equation (4.6.15) we
where

To obtain an estimate of the || - [|a,,,

consider the operator K : D — B,, . /2,

1. .
D= {<»0 € IB%C't}wrl/Q : H(pHakJrl/Q < §B||fk'+1||ak+1}7
defined by

K(9) = Shi1 — S + bz + w) = bz + w + 9(2)) + for1( + bi(z)).

The operator is well defined if e=® < 1 and |fler < e72?k. Moreover

K(D) C D provided B > 8. By the usual contraction theorem it follows
|‘ﬁ‘k+1Hak+l/2 < %B“fk+1||ak+1’ Thus ||fk+1||ak+1/2 < ||fk+1_fsl fk+1||ak+1/2 <
Bl fri1llon +.» whereby concluding the induction.

The last thing we must prove is that the change of coordinate H,, is con-
vergent. Note that

n n
|H! (z)| < H Hﬁlffn%C < H A0 - 410%
k=0 k=0

It is then easy to see that the A, form a Chauchy sequence in C'. The
theorem follows by collecting all the above inequalities and setting B = 8,
a=2,b=(r—4)/3 and recalling the condition | f|cr < 3C.B~b*e™**¢%. O

Problems

4.27. If M is a C" manifold, f € C"(M, M) is a diffecomorphism and 7 €
C"(M, (0,00)), show that the associated suspension flow is defined on a
C" manifold and is C".

4.28. Consider the Dynamical System ([0,1],T") where

1

SRS I IR

(la] is the integer part of a). This is called the Gauss map. Prove that
for each z € QN [0, 1] holds lim,, o T"(x) = 0.

4.29. Prove that any infinite continuous fraction of the form

1
CLO+

a1+
a2+

1
az + .

with a; € N defines a real number.
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4.30. Prove that, for each a € N,

1 —a++a?+4

€r= =

1 2

4.31. Prove that, for all s > 2, for Lebesgue almost all numbers = € [0, 1]
there exists C' > 0 such that'?

x— p‘ > Q
q q°
for all p,q € N.
4.32. Let f,(x) = a_%ﬁ Given a sequence [ag,ay, ..., a,] show that
1 P+ Pn1
O---0 ) = — s
fao fan( ) 1 Qn+qn—lx
ao +
ap + .
1
a, +x

where Pnt+1 = Gnt1Pn + Pn—1 and gpy1 = On41Gn + qn-1, P—1 = 0,
g1 =1, po = 1, gq¢ = ag. In addition, show that, for all n € N,
PnGn-1 — Gnpn—1 = (—1)" and decude that p,,¢q, have no common
divisor different from one. Finally, verify that

(=) a2 + aprx — 1]
(Qn + qnflm)(anrl + Qnm) '

f(lo O"'Ofan,(x) _fao O"'Of(ln,+1(x) =

4.33. Let w € [0,1). Show that there exists infinitely many p, ¢ € N such that
1

’p
q2

w‘g
q

4.34. Let w € [0, 1) have the continuous fraction expansion given by [ag, a1 . . .].
Suppose that inf, a,, > 0 and sup,, a,, < o0.'* Show that there exists a
constant ¢ > 0 such that for all p,q € N

P C
w—"| > .

q q

13The composition below is often called iterated function system, it can be naturally
viewed as a time dependent dynamical system.

Such numbers w are called of constant type.
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4.35. For each ¢ € B, and 8 < a show that ||¢/||s < 7272\_@‘!3

4.36. Let us consider an holomorphic function f : U C C — C where U is an
open set containing zero. Assume that f(0) = 0, f’(0) = e?™. Prove
that, if w is Diophantine, then it is possible to find an open set D C U
on which f is conjugated to the map f,(z) = €™ 2.

Hints to solving the Problems

4.2 Consider a system ([0,1],T") such that T is piecewise linear, it has an
unstable fixed point at z¢ and an attracting fixed point at z € (0, zg) so
that the set [z, z¢] is forward invariant. Finally arrange so that T'(0) =
xo and T'(x) < xg for z near zero.

4.10 The equation & = w = (wy,ws) on T2 has the solution x(t) = (z1(t), z2(t)) =
2o +wt mod 1. If one looks at the flow only at the times 7, = nw; *,
then z(n7) = 29+ (0,an) mod 1 where o := 22. One can then consider
the circle map f : S1 — S! defined by f(2) = 2 + @ mod 1. Clearly,
if the orbits of such a map are dense in S! the original flow will be
dense in T2. The density follows in the case o € Q. In fact this implies
that f has no periodic orbits. Then {f™(0)} is made of distinct points
and contains a converging subsequence (by compactness) hence for each
e > 0 exists i € N such that |z — f(2)| < ¢, that is f™ is a rotation by
less than e. Hence the orbit {f**(z)} enters in the e-neighborhood of
each point of S?.

4.11 By assumption the return time 7 is well defined for all x € v. We want
thus to solve the equation ¢;(y(s)) = v(r) with s,7 € S, t € R. Thus, if
we set F'(s,r,7) = ¢r(7y(s)) —v(r), we are reduced to solve the equation
F = 0. To do so we can apply the implicit function theorem B.1.1.
Note that, by Theorem 1.1.14 and the assumptions, F' € C". Since, by
hypothesis, there exists 7 such that ¢, (4 (v(5)) = v(7), where v(5) = =,
we have F'(5,7(z),7) = 0. To apply Theorem B.1.1 we need that 0, sF
be invertible, thi is true since

OrsF = (=7'(r) V(6-(7(s)))

and the section is transversal to the flow. Hence, the result follows from
Problem B.2.

4.13 Suppose that there exists ¢(r, s), p € C°([0,1] x T*, R), such that ¢(1,-)
is a parametrization of I' and (0, s) = y for some fixed y € T? (i.e. T
is homotopic to y).
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4.12

4.17

4.18

4.19

4.20

4.26

4.28
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First of all notice that if £(¢) is the derivative with respect to the initial
condition and £(0) = AV(x(0)), for some A, then £(t) = AV (z(t)) for
all . Define then w(x,y) = z1y2 — x2y1 and verify that z,y # 0 and
w(z,y) = 0 imply that there exists A € R such that x = \y.'> This
means that w(£(t), V(x(t))) cannot change sign. Hence the result.

Let liminf,, o %> = a > —oo0, then for each ¢,m > 0 exists n € N,
7 > m, such that |ap —an| < en. Let I € N, | > 7, and write [ = kn+r,
r < n, then

a; _ kan + kL + ay < kn(a+¢) + kL + a,
l l - l

From which the claim follows.
Stetting I = [a, b] note that g(x) = f(z) — « has a zero in I.

This is the same than saying .y f ™"z, f"(x)] = S*. Argue by con-
tradiction. Consider f~*"[x, f*(z)], this are contiguous intervals. If
they do not cover all S!, then their length must go to zero. Choose a
subsequence f~ %"z which has a limit, call it z. Then

2= lim f~0"(z) = lim f~0"(f"(2)) = lim, Frhm (@) = ().

Jj—o0 j—o0
Hence f must have a periodic point contradicting 7(f) € Q.
Since 7(f) € Q, for each = € S, f*(z) # f/(x) for all k # j € Z.

By compactness {f*(x)}ren has accomulation points, let z be one such
point. Consider the subseguence {fy;(z)};en, such that |f" (z) — 2| <
|f¥(x) — 2| for all k < mjy1 and |f+1(z) — 2| < [f" (z) — 2|. Then
fE(x) & [z, frat17mi(x)] for all k < njyq — nj, otherwise there would
exists | < njyq such that fi(z) € [fmi(x), fr+1(x)], but this would
imply that f'(z) is closer to z than f™i(z) which is not possible by the
defintion of n;.

For the second inequality use Problem 4.35.

1

If 2 = B2 pyg < qo, then go = kipo + p1, with p1 < po, and T'(z) = EL.

gs]
=]

Let g1 = po and go on noticing that p; 11 < p;.'%

5By the way, w is a symplectic form and its existence implies that the manifold is
orientable.

16This is nothing else that the Euclidean algorithm to find the greatest common divisor
of two integers | , Elements, Book VII, Proposition 1 and 2]. The greatest common
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4.29 Note that if you fix the first n {a;}, this corresponds to specifying
which elements of the partition {[5, {]} are visited by the trajec-
tory of {Tz}, T being the Gauss map. By the expansivity of the map
readily follows that  must belong to an interval of size A" for some
A>1.

4.30 Note that T'(x) = x, where T is the Gauss map. Study periodic contin-
uous fractions of period two.

4.31 To see it consider the sets I, 4 := [g — C’q’s,g —Cq™*]. If p < g, then
I,, C [0,1]. Clearly if o & I,, for all ¢ > p € N, then « satisfies
the Diophantine condition. But > o [T, 4] < CY 77, ¢~ * which
converges provided s > 2 and can be made arbitrarily small by choosing
C small. Accordingly, almost all numbers are Diophantine for any s > 2.

4.32 By induction.

4.33 The result is trivial for rational numbers. By Problem 4.29, w =
limy, 00 fag © *+ © fa, (0). Moreover, f,([0,00)) C [0,a!]. Thus for
each n € N there exists @, € [0,a,,},] such that w = fo, 00 fo, (zn).
Thus, be the monotonicity of the f, it follows that either w € [f,, 00
fan(o)vfao ©---0 fan+1(0)] or w & [fao ©---0 f!ln+1(0)’fao ©--+0 fan(o)}'
One can then use the equalities of Problem 4.32 to conclude all the
rationals f,, o+ o f,, (0) satisfy

1

— ) < ———.
|w f(lo © Ofan( )| — an+1q721

You did not like this argument? Here is an interesting alternative. Prob-
lem 4.32 implies that

fuvor o fn® =3 2

k=0

Since the odd and even partial sum of an alternating series form mono-
tone sequences that converge to the limit from opposite sides, it follows

divisor is clearly the last non-zero p;. This provides also a remarkable way of writing
rational numbers: continuous fractions

P _ 1

q0 1
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4.34

4.3

9
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that

lw — fag 00 fa,(0)] < ‘faoO"'Ofan(o)_faoo"'ofan+1(0)|
1

Ap+1 qu

A

<

As we have argued at the end of the hint of Problem 4.33, w € [f,, ©
20 fa,(0), fag 0+ 0 fa,,1(0)] =: I,. Note that if ¢ < gy, then
‘p_pn > L ’p_pn > L
q qn anq q dn qn+14
But |I,| = 7 ql — so it cannot contain any rational number with de-
nominator strictly less than g,. Accordingly, % ¢ I,, and thus |w — §| >
L_ > 1 n other words the fraction determined by [aq, ..., ay]

dn+19 dn+19n
are the best approximation of w among all the numbers with denomi-

nator smaller than ¢,. Since,

|w_f110 O--~Ofan(0)| > ‘f(lo O"'Ofan(o) —f(lo O"'Ofan+2(0)|
1

T (@1 +2)¢2
the result follows by simple computations.

Since ¢ is holomorphic by Rienmann formula we have

o(z) = 2% /7 (;”_(CC))Qdc

where v is a simple closed curve in D, surrounding z € Dg. For 7y we
chose the curve {z + #ei9}96[072ﬂ]. Hence

2
Il < 5z [ Mgy - 201,
2 0 OZ—B a_ﬂ

4.36 Mimic Theorem 4.6.1.

Notes

Lemma 4.3.2 is due to Siegel | ], see | | for a detailed treatment
of flows on surfaces. A detailed treatment of circle rotations can be found in

[

]. A general treatment of KAM theory for Hamiltonian Systems,

7

with an emphasis on concrete applications, can be found in | .



Chapter 5

Global behavior: more
stuff is out there

Dynamical System studied so far exhibited fairly simple motions,
allowmg for a detailed understanding of its behavior. Yet, we have not yet
addressed the problem of long time predictions in systems with more than two
dimensions.

Although this is not the proper occasion for a historical excursus, it is
worthwhile to stress that the first Dynamical Systems were widely investi-
gated have been the planetary motions. Not surprisingly, the main emphasis
in such investigations was accurate prediction of future positions. Neverthe-
less, exactly from the effort of accurately predicting future motions stemmed
the consciousness of the existence of very serious obstructions to such a pro-
gram. Specifically, in the work of Poincaré | | appeared for the first time
the phenomena of instability with respect to initial conditions, a central con-
cept in the understanding of modern Dynamical Systems. In fact, we will see
briefly that such Instability phenomena can already be observed in very sim-
ple systems—such as a periodically forced pendulum—that exhibit a so called
“homoclinic tangle” [ , ]

The realization that many relevant systems are very sensitive with respect
to the initial conditions dealt a strong blow to the idea that it is always possible
to predict the future behavior of a system,' yet the work of many physicists

IWithout going to the extreme of some authors of the eighteenth century arguing that,
given the present state of the universe, a sufficiently powerful mind (maybe God) could
predict all the future. Think, more modestly, of an isolated system and imagine to use
some numerical scheme to try to solve the equations of motion for an arbitrarily long time
with an arbitrary precision.

87
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(and we must mention at least Boltzmann) and mathematicians (in particular,
the so called Russian School with people like Kolmogorov, Anosov, Sinai, but
also some western mathematicians, like Birkhoff, Smale, Ruelle and Bowen,
gave important contributions) led to the understanding that, although precise
predictions were not possible, it was possible and, at times, even easy to make
statistical predictions. The concept of statistical properties of a Dynamical
System will be addressed in the following chapters. This chapter is dedicated
to making precise, in a simple example, the nature of the above mentioned
instability.

5.1 A pendulum—The model and a question

We will study a seemingly trivial example: a forced pendulum. To be more
concrete, let us imagine a pendulum of length [ = 1 meter, mass m = 1 kilo-
gram and remember that the gravitational constant (on the Earth’s surface)
is approximately g = 9.8 meters per second squared. The Hamiltonian of the
system reads | ]

H= ﬁpQ — mgl cos 0, (5.1.1)
where 6 is the angle, counted counterclockwise, formed by the pendulum with
the vertical direction (8 = 0 corresponds to the configuration in which the
pendulum assumes the lowest possible position) and p = 12mA is the associated
momentum. Thus, (0, p) are the coordinates of the pendulum. The phase
space M where the motion takes place consists of T! x R.

The equations of motion associated with the Hamiltonian (5.1.1) represent
the motion of an ideal pendulum in a vacuum, feeling only the force of gravity.
Clearly, this is a highly idealized situation with no counterpart in reality.
Every system interacts with the rest of the universe. Thus, the only hope
for the idea of isolated systems to be fruitful is that the interaction with the
exterior does not significantly affect the behavior of the system. Let us try to
see what this can mean in reality.

The first issue is clearly friction. Let us imagine that we have set up the
pendulum in a reasonable vacuum and reduced the friction at the suspension
point so that the loss of energy is negligible on the time scale of a few minutes.
Does such a system behave as an isolated pendulum within such a time frame?
One problem is that the suspension point is still in contact with the rest
of the world. If the pendulum is in a lab not so distant from a street (a
rather common situation), then the traffic will induce some vibrations. It is
then natural to ask: what happens if the suspension point of the pendulum
vibrates?
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In fact, nothing much happens for small pendulum oscillations (this is a
consequence of Komogorv-Arnold-Moser theory, a highly non trivial fact), but
if we start close to the vertical configuration, it is conceivable that a motion
that would be oscillatory for the unperturbed pendulum could gather enough
energy from the external force as to change its nature and become rotatory,
this would create a substantial difference between the unperturbed (ideal) and
the perturbed (more realistic) case.

This is exactly the question we want to address:

Question: Can we really predict the motion for a reasonable time if the initial
condition is close to the vertical ?

We will assume that the frequency of vibration w is of the order of one
hertz? and the amplitude of the oscillations is very, very small. Hence, as
good mathematicians, we will call such an amplitude €. In other words, the
suspension point moves vertically according to the law e coswt.

The Hamiltonian of the vibrating pendulum is then given by (see Problem
5.1)

H.(0,p,t) = 2[2mp2 — mgl cos § — emw?l cos wt cos 6. (5.1.2)
Accordingly, the equation of motion are (see Problem 5.1)?
gl _
= =2
op  Fm (5.1.3)
. OH. . 2 .
p= 0 = —mgl sin § — emw*“l coswtsin 6.

It is well known that the function H is an integral of motion for the
solutions of (5.1.3) for € = 0, that is: H computed along the solutions of the
associated equations of motion is constant. The physical meaning of H is
the energy of the system. Clearly, the energy H. is not constant in general
since the vibration can add or subtract energy to the pendulum.

5.2 Instability—unperturbed case

Let us first recall a few basic facts about the unperturbed pendulum. The
equations of motion are given by the (5.1.3) setting ¢ = 0. It is obvious that

20ne hertz corresponds to one oscillation every second, and it can be the order of
magnitude for the frequency of a vibration transmitted through the ground (R waves) at a
reasonable distance. Thus we are assuming w = 2.
3Here we write the Hamilton equations associated with the Hamiltonian, see [ s
] for the general theory.
4See | , ] for this general fact or do Problem 5.4 for the simple case at hand.
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there exist two fixed points: (0,0) which corresponds to the pendulum at rest
and is clearly stable , and (7,0), which corresponds to the pendulum in the
vertical position and is certainly unstable. Our interest here is to analyze the
motions that start close to the unstable equilibrium and to make more precise
what it is meant by instability.

5.2.1 Unstable equilibrium

If we want to have an idea of how the motion looks near a fixed point the
natural first step is to study the linearization of the equation of motion near
such a point. In our case, using the coordinates (6y,p) = (0 —m,p), they look
like

b=
2m (5.2.4)
p = mglby.

Let w, = \/%, the general solution of (5.2.4) is
(00(1), p(1)) = (ae" + Be ", mi’w,{ae" — fe™r"}),

where a and (§ are determined by the initial conditions. Note that if the

initial condition has the form «(1, mly/gl) it will evolve as ae“r!(1, mi\/gl).

While if the initial condition is of the form S(1, —mly/gl) it will evolve as

Be~+rt(1, —mly/gl). In other words the directions (1, ml+/gl) and (1, —ml+/gl)
are invariant for the linear dynamics. The first direction is expanded (and be-

cause of this is called unstable direction) while the second is contracted (stable
direction).

Figure 5.1: Unstable fixed point (phase portrait)
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Let us imagine starting the motion from an initial condition of the type
(7 + 00,0), 6y € [—5,0], where § < 10~* represents the precision with which
we are able to set the initial condition (one tenth of a millimeter); what will
happen under the linear dynamics?

Our initial condition corresponds to choosing, at time zero, « = § < g.
As time goes on, the coefficient of 8 becomes exponentially small while the
coefficient of « increases exponentially, thus a good approximation of the
position of the pendulum after some time is given by

0o(t) =~ ae’rt. (5.2.5)

Since wp, ~ 3.13 seconds ™1, it follows that after about 2.5 seconds the position
of the pendulum can be anywhere up to a distance of about 10 centimeters
from the unstable position.

This means that the unstable position is really unstable, and if we tray,
as best as we can, to put the pendulum in the unstable equilibrium (always
imagining that the friction has been properly reduced) it will typically fall
after a few seconds, and it will fall in a direction that we are not able to predict
(since it depends on the sign of §, our unknown mistake). Nevertheless, after
the ideal pendulum starts falling in one direction, the subsequent motion is
completely predictable, as we will see shortly.

An obvious objection to the above analysis is that I did not show that the
linearized equation describes a motion really close to the one of the original
equations. The answer to this question is particularly simple in this setting
and is addressed in the next subsection.

5.2.2 The unstable trajectories (separatrices)

Given the already noted fact that, for e = 0, H is a constant of motion, the
phase space M is naturally foliated in the level curves of H, on which the
motion must take place. This allows us to obtain a fairly accurate picture of
the motions of the unperturbed pendulum. In fact, the level curves are given
by the equations ,
22m
where E is the energy of the motion. It is easy to see that E = —mgl corre-
sponds to the stable fixed point (0, p) = (0,0); —mgl < E < mgl corresponds

—mglcosd = FE

to oscillations of amplitude arccos migl ; B > mgl corresponds to rotatory
motions of the pendulum. The last case E = mgl is of particular interest to
us: obviously, it corresponds to the unstable fixed point (7,0), yet there are

two other solutions that travel on the two curves

p = tml+/2lg(1 + cosb).
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\
/

(e
\\/

Figure 5.2: Unperturbed pendulum (phase portrait)

These two curves are the ones that separate the oscillatory motions from
the rotatory ones and, for this reason, are called separatrices. It is very
important to understand the motion along such trajectories, luckily the two

differential equations
é:i,/Q%(lJrcose). (5.2.6)

can be integrated explicitly (see Problem 5.5) yielding, for 6(0) = 0,

6(t) = 4 arctan e™*»! — 7, (5.2.7)

These orbits are asymptotic to the unstable fixed point both at t — +oo
and at —oo and, for |¢| large, agree with the linear behaviour of section 5.2.1.
This situation is somewhat atypical, as we will see briefly.

5.3 The perturbed case

5.3.1 Reduction to a map

The motion of the above system takes place on the cylinder M = S x R.
By the theorem of existence and uniqueness for the solutions of differential
equations follows immediately the possibility to define the maps ¢L : M — M
associating to the point (0, p) the point reached by the solution of (5.1.3) at
time ¢, when starting at time 0 from the initial condition (6,p). In such a
way, we define the flow ¢! associated to the (5.1.3).



5.3. THE PERTURBED CASE 93

Clearly ¢2(0,p) = (,p), that is, the map corresponding to time zero is
the identity. Moreover, if ¢ = 0 the system is autonomous (the vector field
does not depend on the time) hence the flow defines a group: for each ¢, s € R

o5t (0,p) = o (95(0,D)).

This corresponds to the obvious fact that the motion for a time ¢ + s can be
obtained first as the motion from time 0 to time s, and then pretending that
the time s is the initial time and following the motion for time ¢.

Of course, the above fact does not hold anymore when ¢ # 0. In this case,
the maps ¢. depend on our choice of the initial time (if we define them by
starting from time 1 instead then time 0, in general we obtain different maps).
Nevertheless, due to the fact that the external force is periodic something can
be saved of the above nice property.

Let us define the map T, : M — M by

o

™

Ts=¢aj7

then (see Problem 5.3), for each n € Z,

T = goo (5.3.8)

The interest of (5.3.8) is that, for many purposes, we can study the map 7T

instead than the more complex object ¢t. Morally, it means that if we look at

the system stroboscopically, that is only at the times %"n with n € Z, then it

behaves like an autonomous (time independent) system.® Another interesting

fact is that the flow ¢! (and hence also the map T.) is area preserving (see
Problem 5.7).°

5.3.2 Perturbed pendulum, ¢ # 0

The situation for the case € # 0 is more complex, and no easy way exists to
study these motions.

As a general strategy, to study the behavior of a system (in our case, the
map T¢) it is a good idea to start by investigating simple cases and then move
on from there. In our systems, the simplest motion consists of the equilibrium
solutions. These are the time independent solutions.” Because of the special

5 Another instance of a very simple case of a very fruitful and general strategy: to look
at the system only when some special event happens—in our case, at each time in which the
suspension point has its maximum height.

6This also is a special instance of a more general fact: the Hamiltonian nature of the
system, see [ , ] if you want to know more.

7That is, equilibrium solutions for the map 7. These are periodic solutions for the flows

. 27
of period 27” In fact, Trx =  means ¢ w = = x.
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type of perturbation chosen, the fixed points of the system for the case ¢ =0
remain unchanged when ¢ # 0 (see Problem 5.8 for a brief discussion of a
more general case).

Next, we can study the infinitesimal nature of the fixed points. It is natural
to expect that the nature of the two fixed points does not change if € is small,
yet to verify this requires some checking. We will discuss explicitly only the
fixed point (m, 0).

The first step is to make precise the sense in which the case ¢ # 0 is a
perturbation of the case € = 0. This can be achieved by obtaining an explicit
estimate of the size of

R. = YTy, - Tv).

Let z(t) = (21(t), 22(t)) = ¢} (z) — ¢L(x), then substituting in (5.1.3) and
subtracting the general case from the case € = 0 it yields

: |22]
Al =

|22| < mgl|z1| + emw?l.

In order to get better estimates, it is convenient to define the new variables
(1 = z1 and mlzprQ = 25. In these new variables, the preceding equations
read

|C1| S wp|§2|
w? (5.3.9)

Sl <
|Ca| < wplCil +Ewpl

Which implies ||¢]| < wp|/¢|| + emw?l. Taking into account that, in our
situation, ml2w, > 1, it follows (see Problem 5.9)

mw2 “p

|R]||co < (™= —1) <69.

p

Unfortunately, the above norm does not suffice for our future needs. We
will see quite soon that it is necessary to estimate also the first derivatives of
R, that is the C! norm.

To do so, the easiest way is to use the differentiability with respect to
the initial conditions of the solutions of our differential equation. Fixing any
point € M and calling £°(t) = d,¢L£(0) we readily obtain:®

t
8The vector £(t) is nothing else than the derivative Mjg(o))\s:o, the following
equation is then obtained by exchanging the derivative with respect to t with the derivative
with respect to s.
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o &
1T By (5.3.10)
£ = —mgl cos 0 &5 — emw?l cos wt cos O €5

One can then estimate the C' norm of R by estimating [|£*(22) — °(22)],
since £°(2%) = D g,y T-£%(0). Doing so, one obtains’

Imw? ,_w
MY 37— d, < 690. (5.3.11)

[Rller <
p

5.4 Infinitesimal behavior (linearization)

As a first application of the above considerations, let us study the linearization
of T, at ¢ = (m,0). From (5.3.10) follows (see Problem 5.12)

2w sinh 2mep
DmeO = cosh w . nLleu;,
mi?w, sinh 272 cosh 2%
szTE = DIfT() + O(d15) (5412)

2mwp

The eigenvalues of D, T. are then A\. = e« + O(dze),'” A\J!, where
dy = 2dwpml? ~ 4400. In addition, calling ve, (ve,vp) = 1, the eigenvector
associate to A, holds true ||vg — ve| < dse, d3 = 4)\61w§w2l4d1 ~ 1200.!

Clearly, if ¢ is sufficiently small, then A\, > 1. This means that the hy-
perbolic nature of the unstable fixed point remains unchanged under small
perturbations (see Problem 5.13 for a case when the perturbation is not so
small).!?

If one does a similar analysis at the fixed point (0,0) one finds that the
eigenvalues have modulus one: that is, the infinitesimal motion is a rotation
around the fixed point, exactly as in the € = 0 case.

Hence, the comments made at the end of subsection 5.2.1 for the unper-
turbed pendulum hold for the perturbed pendulum as well. Only now the is no

9The following bounds are not sharp, working more, one can obtain better estimates,
but this would not make much of a difference in the sequel.

10T this chapter we will adopt the strict convention that O(z) means a quantity bounded,
in absolute value, by x.

27w
1 This follows by the fact that the eigenvalues of Dgz ;To are T ~ (23)i1, a simple

perturbation theory of matrices (see Problems 5.10, 5.11) and the already mentioned fact
that the map 7T: is area preserving, thus the determinant of its derivative must be one.

12 As we will see later in detail, hyperbolicity means that there is a direction in which the
maps expand (the eigenvector v¥ associated to the eigenvalue A¢) and a direction in which
the map contracts (the eigenvector v associated to the eigenvalue )\;1)
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longer an integral of motion (the energy) that controls globally the behavior
of the system.

Imagining that the map is linear (which is clearly false but, as we will
see, qualitatively not so wrong) this would mean that the distance between
two trajectories can be expanded by almost a factor 23 in a second. Initial
conditions that are ¢ close at time zero will be about 236 far apart after 1
second. If such a state of affair could persist (and we will see it may) after one
minute the two configurations would differ roughly by a factor 10%°§, which
means that not even knowing the initial condition plus or minus a quark could
we predict the final one. This is certainly a rather worrisome perspective, but
much more work it is needed to decide if this may indeed be the case.

5.5 Local behavior (Hadamard-Perron Theo-
rem)

The next step is to try to go from the above infinitesimal analysis to a local
picture in a small neighborhood of the fixed points.

It is natural to expect that the two fixed points are still stable and unstable
respectively, yet this is a far from trivial fact.

The stability of the point (0,0) can be proven by invoking the so called
KAM Theorem (this exceeds the scope of the present book and we will not
discuss such matters, see [ ] for such a discussion).'?

The study of the local behavior around the point x; is instead a bit
easier and can be performed by applying the Hadamard-Perron Theorem
2.4.2 to conclude that, in a neighborhood of (m,0), there exists two curves
x¥(s) = (0%(s), p¥(s)), zi(s) that are invariant with respect to the map 7.
Namely, there exists . > 0 such that T.zi([—0e,0:]) C zi([—de,d]) and
Ttz ([-0e,0:]) C 2([—0., 0c]); these are called the local stable and unstable
manifold of zero, respectively. Essentially J. is determined by the requirement
that the non-linear part of 7, be smaller than the linear part.

Clearly, for ¢ = 0 2§ = z§ = zo and it coincides with the homoclinic
orbit of the unperturbed pendulum. In addition, by Hadarmd-Perron and the
estimates of the previous section, we can choose d. such that

[z — wol| < 2dse||wol|- (5.5.13)

13In some sense this implies that we can indeed predict the motion for an extremely long
time if we consider only oscillations close to the configuration (0,0), so in that case the
assumption that the pendulum is isolated is legitimate. Yet, this depends on the precision
we are interested in and tends to degenerate if the amplitude of the oscillations is rather
large. A complete analysis would be a very complicated matter but we will have an idea of
the type of problems that can arise by considering extremely large oscillations, close to a
full rotation of the pendulum.
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and the analogous for the stable manifold. We have obtained a local picture
of the behavior of the map T, yet this does not suffice to answer our original
question. To do so, we need to follow the motion for at least a full oscillation:
this requires global information.

To gain a more global knowledge, we can try to construct a larger invariant

set for the map T.. A natural way to do so is to iterate: define W% =

0 oIl x([—0e, dc]). Since Tex™([—de,0:]) D x¥([—0e,0e]), it is clear that

each time we iterate, we get a longer and longer curve. The set W*" is then
clearly a manifold, and it is called the global unstable manifold.'*

The global manifold, as the name clearly states, is a global object: it carries
information on the dynamics for arbitrarily long times. Yet, the procedure
by which it has been defined is far from constructive, and the truth is that,
besides the sketchy considerations above, at the moment we know very little
of it. The next step is to gain a more detailed understanding of a large portion
of W.

5.6 A more global understanding (Melnikov)

From the above considerations follows that the stable and unstable manifolds
(02(s), p2(s)), (0%(s), p(s)), |s| < b, of T at 0, are € close to the homoclinic
orbit of the unperturbed pendulum, (64(t), po(t)), 6o(0) = 0.

Note, however, that while 2o = (6, po) is invariant under the unperturbed
flow, the same does not apply to (65“(s), p5*(s)) under ¢t. The invariant
object is the time-space surface (7, 23" (s, 7)) = (7, ¢Z(02(s), pi(s))) where
(s,7) € [-0,6.] x [0, 2] and and 7 = ¢ mod 2Z.15

We can choose freely the parameterization of our curves in such a surface,
and some are more convenient than others. The separatrix of the unperturbed
pendulum is most conveniently parametrized by time, hence ¢(6y(s), po(s)) =
(Bo(s+1t),po(s+1t)). Note that the separatrix can be visualized as a graph of
(0,G(0)). Analogously, for € small enough, the perturbed unstable manifold
of T. will be the graph of (6,G%(9)), for 6 € [0,37]. Given 6 € [0, 3n],
let S, = 2nw™'n. Let z, := (0,,G¥(0,)) = ¢ (0, G¥(0)), by Hadamrad-
Perron we know that |G¥(0) —G(0)| < C6 for § € [0, 0], also |8, < Ce™*" for

14 Applying the above procedure to the unperturbed problem yields the full separatrix.
15A standard way to bring the present non-autonomous setting into the more familiar
autonomous one is to introduce the fake variables (¢,7) € S! x R and the new, time

independent, Hamiltonian H.(0,p,p,n) := He(0,p, ) + 1. The Hamilton equations

w
yield ¢(t) = %’rt + ¢(0) and hence the equations for 6, p reduce to (5.1.3). Since He is now
conserved under the motion we can restrict the system to the three dimensional manifold

H. = 0. In such a manifold, we have the weak stable and unstable manifolds (now flow
invariant) (22" (s, @), ¢, —2Z He ((z" (s, @), ©))-
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some C,a > 0. The basic idea is to compute

ds

Sn dHo o ¢f u
Ho(0,G(0)) = Ho(6,, G(6,)) + / dity 0 ¢3(6r. G¢(60)
0 S

S’Il
= Hy(zn) + / (VHo, JVHy + e JVH;) o 55" (2)ds
0

0
= HQ(Z»,L) + 6/ <VHO, JVH1> o d)g(z)ds

7Sn
The results of section 5.4 implies that, for some C' > 0,a > 0,
o< °(6, GE(0))]| < Ce™?,
for all s > 0. In addition, by (5.5.13), setting (6(s),p(s)) = ¢y (8, G(6))
l6=°(6, GE(8)) — b5 ° (6, G(6))]| < Cminfee, e},

for some 8 > 0. Thus, taking the limit n — oo, yields
0
Ho(0,G2(9)) = Ho(0) + 5/ (VHy, JVHy) o ¢y(2) + o(e).

Consequently,
., GU(0)2 — Go(0)2  2(Ho(0,G¥(0)) — Ho(6, Go(0
2(Ho(0, GE(9)) — Ho(0))
G2 (0) + Go(6)
I (VHo, JVH) 0 ¢5(8,G(8))ds + O(c)
i G(6) + Go(0)

This allows us to conclude

J° _(VHo, JVH) o ¢5(0,G(0))ds

GZ(9) — Go(9) =¢ +o(e
Arguing analogously for the stable manifold yields
VHy, JVH 6(0,G(0))d
Gr(0) — G2(0) = L2V H0IVED 0 656, CONds |\ 561y

Go(0)

The separatrix of the unperturbed pendulum is most conveniently parametrized
by time, hence

0" (00(s),po(s)) = (Bo(s + 1), po(s + 1)) = (Bo(s + 1), G(Oo(s + 1)) =: xo(s +1).
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Setting A(s) = e~ HG%(0o(s)) — G2(0o(5))]Go(bo(s)), one can compute
Alo) = / {Hy, H} o4y dt + 0 (d462wp|0\) , (5.6.15)

where and explcit computation yields dy ~ 4 - 109, and the curly brackets
stand for the so called Poisson brackets ({f, g}t> = (JV.f, Vzq)).

The integral in (5.6.15) is called Melnikov integral and provides an expres-
sion, at first order in €, of the distance between the stable and the unstable
manifold. All we are left with is to compute the integrals in (5.6.15). This
turns out to be an exercise in complex analysis, and it is left to the reader
(see Problem 5.15), the result is:'°

Tw

> whe 2ep
/ {Hl('7t)a H}wo(t—i-a)dt = 8mml——z—— sinwo.

—oo wi(ewr —1)

We have thus gained a very sharp control on the shape of the above mani-
folds.'” In particular, A(£1/4) ~ £76+0(4-107¢) # 0 provided € < 1.5:1076,
that is the two manifolds intersect. To understand a bit better such an in-
tersection (we would like to know that in the region o € [—1/4,1/4] there is
only one transversal intersection) it suffices to notice that (5.6.14) provides a
control on the angle between z¥ and xy.

This intersections are called homoclinic intersection and their very exis-
tence is responsible for extremely interesting phenomena as can be readily
seen by trying to draw the stable and unstable manifolds (see Figure 5.3 for
an approximate first idea); we will discuss this issue in detail shortly.'®

We have gained much more global information on the map T, yet it does
not suffice to answer to our question. The next section is devoted to obtaining

16 A simple computation yields:
w2
{H1, H} o (t45) = —Tp(t + s) coswtsinO(t + s).
Then, by using (5.2.7) and looking at Problem 5.6, one readily obtains:
2

w? cosw(t — s) sinhwpt
Hy, H — 4
{H1, Hao 0 l (coshwpt)3

Finally, use Problem 5.15.

17Note that € must be exponentially small with respect to w. In many concrete problems
(notably the so-called Arnold diffusion it happens that this it is not the case. One can
try to solve such an obstacle by computing the next terms of the £ expansion of A. In
fact, it turns out that it is possible to express A as a power series in € with all the terms
exponentially small in w . Yet this is a quite complex task far beyond our scope.

I8Note that the intersection corresponds to a homoclinic orbit for the map T (that is,
an orbit which approaches the fixed point ¢ both in the future and in the past). This is
what it is left of the homoclinic orbit of the unperturbed pendulum.
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Figure 5.3: Perturbed pendulum

a really global picture. Up to now, we have used mainly analytic tools. Next,
geometry will play a much more significant réle.”

5.7 Global behavior (an horseshoe)

We want to explicitly construct trajectories with special properties. A stan-
dard way to do so is to start by studying the evolution of appropriate regions
and to use judiciously the knowledge so gained. Let us see what this means
in practice.

The starting point is to note that we understand the shape of the invariant
manifolds, but not very well the dynamics on them, this is our next task.
Since points on the unstable manifolds are pulled apart by the dynamics, the
estimate must be done with a bit of care. In fact, we will use a way of arguing
that is typical when instabilities are present, we will see many other instances
of this type of strategy in the sequel.

For each z in the unstable manifold (zero included) let us call DYT, :=
D, T.v%(x), where v*(0) = v* and if x = 2%(t) then v¥(z) = ||#%(¢)| ~ti(¢),
that is the derivative of the map computed along the unstable manifold. A
useful idea in the following is the concept of fundamental domain. Define
a: Ry — Ry by 2%(t) = 2¥(a(t)). Then [¢, «(t)] is a fundamental domain
and has the property that, setting ¢; := a’(t), the sets a'[ty,t1] intersect only
at the boundary.

19What comes next is the first example in this book of what is loosely called a dynamical
argument.
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Lemma 5.7.1 (Distortion) For each x,y in the same fundamental domain
of the unstable manifold, 5o > 0, and n € N such that ||[T"z| < &, holds™

(50 Cs
)

300 < ‘ Durr
DyTr

a(t)
a(t) |”

where Cy = sup,

PROOF. The proof is a direct application of the chain rule:

puTn n Du n
T € u u
Bire| = L[5 | < o | 1oa(Df., T —loa(D5,, 2
< Exp Z Co|Tw — Ty|| | = Exp | Y Colla(t;) — al(tim1)||| < e%.
i=1 i=1
The other inequality is obtained by exchanging the role of x and y. O

Next, we would like to consider the evolution of a small box constructed
around the fix point.

Consider the following small parallelogram: Qs := {£ € R? | £ = av" +
bv® for some a,b € [—g, %]}, § < 0p. Next, consider the first n € N such that
TIQs N {0 =0} # 0. Our first task is to understand the shape of T7*Q)s near
{6 = 0}. Since a fundamental domain in the latter region is of order one, while
at the boundary of . is of order ¢, Lemma 5.7.1 implies that the expansion
is proportional to C6~'. By the area preserving of the map, it follows that
TQs must be contained din a C'62 neighborhood of the unstable manifold,
see Figure 5.4.

By the previous section’s considerations on the shape of the invariant
manifolds T"Qs N T"Qs # (), moreover they intersect transversally.?!

This is all that is needed to construct a horseshoe (see section 777). In
particular, in our case, it means that 72" Qs N Qs # 0, in fact the intersection
is transversal and consists of three strips almost parallel to the unstable sides.
One contains zero, and it is the least interesting for us, the other two cross
above and below the unstable manifold, respectively. The width of such a
strip is about 6 3. We will discuss in the next chapters all the implications of

20This quantity is commonly called Distortion because it measures how much the map

differs from a linear one (notice that if 7" is linear then B’”; =1). Although apparently an

innocent quantity, it is hard to overstate its importance in the study of hyperbolic dynamics.

21The meaning of transversally is the following: the square Qs has two sides parallel to
v* (the unstable direction), which we will call unstable sides, and two sides parallel to v*
(the stable direction), which we will call stable sides. Then the intersection is transversal
if it consists of a region with again four sides: two made of the image of the unstable sides
and two made of images of the stable sides of Q5.
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T"Qs

Figure 5.4: The evolution of the small box Qs

this situation, here it suffices to notice that if we have two initial conditions
in T72QsNQ;s at a distance h, after 2n iterations the two points will be in
Qs again but at a distance he~!. Since to decide if after that there will be a
rotation or an oscillation we need to know the final position with a precision of
order §, we need to know the initial position with a precision O(de) = O(83).

Note that in the above construction, we have lost almost all the points, only
the ones that come back to Qs at time 2ng are under control. Nevertheless, we
can consider the set A := Ugez [ T2¥"°Qs. This is clearly a measure zero set,
yet it is far from empty (it contains uncountably many points) and it is made
of points that at times multiples of 2ng are always in QJs. When they arrive in
Qs they will rotate if they are above the separatrices and oscillate otherwise.
Let us call these two subsets of Qs R and O. Given a point £ € @5, we can
associate to it the doubly infinite sequence o € {0,1}% by the rule o; = 1 iff
T?wi¢ € R. The reader can check that the correspondence is onto.

5.8 Conclusion—an answer

If ¢ = 107% and § is a millimeter then we need to know the initial condition
with a precision of 10~ meters if we want to decide if the point will come back
or rotate when it will get almost vertical again (this will happen in about 6
seconds). By the same token if we want to answer the same question, but for
the second time, the pendulum gets close to the unstable position, we need
to know the initial condition with a precision of the order 10~!® meters, and
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Figure 5.5: Horseshoe construction

this just to predict the motion for about 12 seconds.??
We can finally answer to our original question:

Answer: NO!

Nevertheless, as we mentioned at the beginning, the above answer it is not
the end of the story. In fact, there exist many other very relevant questions
that can be answered.?® The rest of the book deals with a particular type of
question: can we meaningfully talk about the statistical behavior of a system?

Problems

5.1. Derive the Lagrangian, Hamiltonian and equations of motion for a pen-
dulum attached to a point vibrating with frequency w and amplitude €.
(Hint: see | , | on how to do such things. Remember that two
Lagrangian that differ by a total time derivative give rise to the same
equation of motion and are thus equivalent.)

22Remark that it is not just a matter of precision on the initial condition, it is also a
matter of how one actually does the prediction. If the method is to integrate numerically
the equation of motion, then one has to insure that the precision of the algorithm is of the
order of 10712, This maybe achieved by working in double precision but if one wants to
make predictions of the order of one minute, it is quite clear that the numerical problem
becomes very quickly intractable.

23For example: which type of motions are possible? This is a qualitative question. Such
types of questions give rise to the qualitative theory of Dynamical Systems [ s ls
an extremely important part of the theory of dynamical systems, although not the focus
here.
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5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.
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Consider the systems of differential equations & = f(z), € R™ and
f smooth and bounded. Prove that the associated flow form a group.
(Hint: use the uniqueness of the solutions of the ordinary differential
equation)

Consider the systems of differential equations & = f(z,t), x € R™ and f
smooth, bounded and periodic in ¢ of period 7. Let ¢! be the associated
flow. Define T'= ¢", prove that T" = ¢"".

Show that the Hamiltonian is a constant of motion for the pendulum.
(Hint: Compute the time derivative)

Prove (5.2.7). (Hint: Write (5.2.6) in the integral form

t= /t 9(8) ds.
0 /29(1 + cosf(s))

Using some trigonometry and changing variable, obtain

0(t) 1
tz/ —db.
0 2wpcosg

If O(t) is the motion obtained in the previous problem, show that

and compute it.)

sinh wpt 2
$in0(t) = 2———F—; cosf(t) = ——— — 1;
sin6(¢) (coshwpt)?’ cos9(t) (coshwpt)? 7

0(t)+m 1
2 —
cos FE g

Consider the systems of differential equations & = f(z,¢), x € R™ and
f smooth. Suppose further that divf = 0 (that is >, gi; =0). Show
that the associated flow preserves the volume. (Hint: note that this is
equivalent to saying that | det d¢?| = 1, moreover by the group property
and the chain rule for differentiating it suffices to check the property
for small ¢. See that d¢! = 1 + Dft + O(t2) = PH+O1*) Finally,

remember the formula det e = eT74.)

Let T, T : R? — R? be a smooth maps such that 70 = 0 and det(1 —
DoT) # 0. Consider the map T. = T + €T} and show that, for
small enough, there exists points x. € R? such that T.x. = x.. (Hint:
Consider the function F(z,e) = x —T.x and apply the Implicit Function
Theorem to F' = 0.)
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5.9.

5.10.

5.11.

Let z(t) € R™ be a smooth curve satisfying ||Z(¢)|| < a(t)||z(t)| + b(¢),
2(0) = z9, a,b € CO(R, R, ), prove that

fof0) —zal < [ O fas)aa] +b(s) s

(Hint: Note that ||z (t)—xo|| < fg |z(s)||ds. Transform then the differen-
tial inequality into an integral inequality and apply Gronwall inequality,
Lemma 1.1.8.)

Given two by two matrices A, B such that A has eigenvalues A # pu,
show that the matrix A, = A 4 B, for € small enough, has eigenvalues
Ae, te analytic as functions of e. Show that the same holds for the
eigenvectors. (Hint:>* consider z in the resolvent of A, that is (z — A)~!
exists. Then (z — A:) = (2 — A)(1 — e(z — A)71B). Accordingly, if
e is small enough, (z — A.)7t = {307 je" [(z — A)7'B|"} (= — 4)~L.
Finally, if , v/ are curves on the complex plane containing A and p,
respectively, verify that

1
II, .= —
£ omi

1
(z—A) tdz T := —/ (z— A tdz
21 y

~

are commuting projectors and A. = Al + p IIZ. Finally verify that

1
AL, =

T 2mi T 2mi

1
/ 2(z—A) "tz p L = / 2(z — A) "tz
¥ v

The statement follows then from the fact that the right-hand side of the
above equalities is written as a power series in £.2°)

Given two by two matrices A, B such that A has eigenvalues A # pu,
show that the matrix A. = A + B has eigenvalues A,y such that
|Ae — Al < Ce||B|| and |pue — p| < Ce||B||. Compute C. (Hint: By
Problem 5.10 we know that A., p. are differentiable function of ¢ and
the same holds for the corresponding eigenvector v., 0.. Let us discuss
Ac since the other eigenvalues can be treated in the same way. One
possibility is to use the above formula for A.II. to obtain the wanted
estimates.

In alternative, let v, w, (w,v) = 1 and ||v|| = 1, be the eigenvectors of A,

with eigenvalue A and of A*, with eigenvalue A, respectively. Hence I1y =

240f course, for matrices one could argue more directly by looking at the characteristic
polynomial. Yet the strategy below has the advantage to work even in infinitely many
dimensions (that is, for operators over Banach spaces).

25This is a very simple case of the very general problem of perturbation of point spectrum,

see [

] if you want to know more.
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5.12.
5.13.

5.14.

5.15.
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v@w and ||TIy|| = ||w]||. Normalize v, such that (v.,w) = 1. Differentiate
then the above constraint and the defining equation (A+eB)v. = Acve,
obtaining (the prime refers to the derivative with respect to ¢)

Avl + Bv. + eBvl = Moo, + vl

(vl,w) = 0.
Multiplying the first for w yields A\l = (w, Bv.) + e(w, Bv.). Setting
A := A — AlIy we have

= (A= A) " [Bu. +eBul — Mo, — (A= \)v].

Next, consider €y such that, for € < ¢ holds

lZll < 4ll(X = 7B lwll = 4l1(x = A)HHIB]| [T || =: Co,
(5.8.16)
then |lve —v|| < eCp and |AL| < ||B]| |w|[(1 4 2eCo). If 469Cy < 1, then,
indeed, (5.8.16) holds true. )

Compute DyT'. (Hint: solve (5.3.10) fore =0,0 =7, p=0and t = 2I.)

Compute DoT. and see that, if w is sufficiently large, the eigenvalues
have modulus one (the unstable point becomes stable!). (Hint: setting

€ := & equation (5.3.10) yields £ = w2§ +e%-coswté. Tt is then conve-

nient to write £ := & +en+e2¢ where 5 = w2§ and 7j = wpn—i— coswtf
One can look for a solution of the latter equation of the form

N = Ae“r! coswt + Be“r! sinwt + Ce“rt coswt + De“»! sin wt.

This allows to compute DoTx (e, B) = (£1(35),&(2%)) 4+ O(e?), where
(£1(0),£2(0)) = (o, 8). Finally, one can verify that, for € small and w
large enough the eigenvalues of DyT. are imaginary, hence the equilib-
rium is linearly stable. )

Given an Hamiltonian H : R? — R, for each solution z(t) of the associ-
ated equations of motion show that (V) H, 2(t)) = 0.

Compute the following integrals (5.6.15):
/ ' (cosht) " sinh t dt,
R

a € Randn € N, n > 1.5 (Hint: By a change of variable, one can
consider only the case a > 0. Consider the integral on the complex

26The result, for a > 0, is:

) ¢(" 1)( 2k+1ﬂ.)

€' (cosht) " sinht = 27 7,
[ et eoste) >
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plane, show that the integral on the half circle Re!?, ¢ € [0, 7], goes
to zero as R — oo, then check that the poles of the integrand, on the
complex plane, lie on the imaginary axis, finally use the residue theorem
to compute the integrals.)

5.16. Do the same analysis carried out for the pendulum with a vibrating
suspension point in the case of a pendulum subject to an external force
e coswt and in presence of a small friction —e2~6.

Notes

As already mentioned in the text, the first to realize that the motions arising
from differential equations can be very complex was probably Poincaré | ]
At that time, the main problem in celestial mechanics (the famous n-body
problem) was to find all the integrals of motion. Dirichlet and Weierstrass
worked on this problem, but Poincaré was the first to raise serious doubt on
the existence of such integrals (which would have implied regular motions).
For more historical remarks, see | ]. In fact, all the content of this
chapter is inspired by the more sophisticated, but more qualitative, analysis
in [ ]

where

-2k+1 n
_ _iza z—1 2 ™
Onk(2) =€**sinhz [ ———— .

cosh z

For n = 3, the above formula yields

/ €' (cosht) 3 sinht = male 3%(1 — e~ ™%) "1,
R



Chapter 6

Qualitative statistical properties:
general facts

%rom the previous chapter, we learned that long-time predictions may be
impossible even for seemingly simple Dynamical Systems. Yet, surprisingly, it
is exactly such an unpredictability that makes statistical predictions possible.
In this chapter, we explain how to make sense of sentences like: such and such
will happen with probability p.

For simplicity, we will mainly consider Discrete Dynamical Systems, even
though we will briefly comment on flows.

6.1 Dynamical systems

Before diving into the specific situation we aim to discuss, let us make a few
general comments on the general concept of dynamical systems. This can be
stated in very general terms, to give an example, let us consider the following
definition

Definition 6.1.1 By Dynamical Systems we mean the action of a group G
on a set X. More precisely, il M(X) is the group of morphisms of X where
the group operation is the composition, then the action of G on X is simply
a group homomorphism f from G to X.

The dynamics is given by  — f(g)(z) for x € X and g € G. To substan-
tiate this very abstract definition, let us give some examples.

1. G=N, X =17Z, f(n)(z) =z +n.
2. G=N, X =7Z", f(n)(2); = zitw;n, for some w € ZV.

108
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3. G=Z,X =T, f(n)(x) =z +wn mod 1, for some w € R.
4. G=17,X =C°T), f(n)(g)(x) = g(z + wn), for some w € R.

5.G = Z, X = (C°(T), fy h@)[f(m)(w)(dz) = [ he + wn)u(dz), for

some w € R.
6. G=N, X =R", f(n)(v) = A", for some N x N matrix A.
7. G=R, X =C?N, f(n)(v) = e, for some N x N matrix A.
8. G=7N, X =7, f(n)(2); = Zitn,-
9. G=SL(2,7Z), X = SL(2,7), f(9)(z) = gz.

Note that 3, 4, 5 are the same dynamical system, seen from different points of
view: the first follows the evolution of points, the second of observables, and
the last of measures. In the case in which A; ; > 1 and ), 4; ; = 1, example
6 describes a Markov chain. In the case in which A is self-adjoint, A = A*,
example 7 describes a system of N quantum spins. In 8 we can interpret G
as translations, then the dynamical system can be used to describe a classical
static mechanical spine model. The last model is the left multiplication by a
group element, an operation that is extremely common in many mathematical
fields.

Here we will restrict to the case in which G € {N,Z,R;,R} and X is often
a Riemannian manifold. In the following, we will be interested in the point of
view illustrated by example 5: the evolution of measures. Namely, let X be
a topological space, M (x) the space of its probability Borel measures, and
f X — X a measurable map. Then we are interested in p — f.u, where
fapr(A) = u(f~1(A)) for all measureble sets A C X.
Note that f.d, = d4(z), so the dynamical system (M (z), f.) contains, as a
invariant subset, the dynamical system (X, f). It thus seems quite useless
to look at the infinite-dimensional system (M (x), fi) if we are ultimately
interested in the finite-dimensional dynamical system (X, f), which is often
the case. Nevertheless, (Mj(z), f«) has at least two critical advances

1. the map f, is linear while f is often nonlinear. It is well known that
trading infinite dimensions for linearity is often a good bargain.

2. (Mi(z), f«) contains other important invariant sets that bring a new
perspective on the properties of (X, f).

In the following, we will exemplify point (2) above. Suppose that . € M1(X)
has the property that fip. < ps, that is, f is a regular map with respect to

H-
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Lemma 6.1.2 If f.u. < p, then the set M, ={p € M1(X) : p << s} i
a forward invariant set (that is fu M, C M.,).

PROOF. Let u € M,, then we can write du = hdu, for some h €
LY(X, ps). Thus, for each ¢ € L*(X, 114),

‘/Xsodf*u =‘/X900fdu‘=‘/x<p0fhdu*

< llellzoe(x 0
This implies that f.p < ps. If not there would exists a measurable set A
such that f.u(A) > 0 but p.(A) = 0, which would lead to a contradiction
choosing ¢ =14 in (6.1.1). O

(6.1.1)

hHLl(X,;L*)'

The above lemma implies that for all h € L*(X, ) there exists hy € L1 (X, p.)
such that, setting du = hdu. and df.p = hidp.. Clearly the relation between
h and hy is lienar, hence the exists a linear operator £ : dug = L' (X, 1) —
LY (X, uuy) such that hy = Lh. In additon, equation (6.1.1) implies that £ is an
L' isometry. We have thus obtained the new dynamical system (L' (X, 1), £)
which describes the evolution of the densities.

Remark 6.1.3 If . is non atomic, the dynamical system (L'(X, u.), L) is
not trivially reducible to (X, f). We will see that it enlightens interesting and
non-trivial properties of the dynamics.

The operator £ has some general properties that will be useful in the following.

Lemma 6.1.4 The operator L is positive (sends positive functions in positive
functions) and, for all p € L>°(X,p.) and h € LY (X, ),

@Lh=L(goTh).

PRrROOF. If o, h >0, ¢ € L°°(X, pu.) and h € L*(X, juy), then ¢ o T > 0
and

OS/(pOThd/L:/ wLhdp
X

which implies £h > 0, p-a.s. . Indeed, if A = {x € X : Lh(z) < 0} then
Jx LaLlhdp < 0, unless (A) = 0. Next, we have, for all ¢ € L>(X, p.),

/XW,ChdM*:/}<¢OT(¢oTh)du*=/)(¢c(¢oTh)

from which the Lemma follows by the arbitrariness of ). O
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The first object that one typically studies when presented with a new
dynamic system are fixed points. To start with, note that if Lh = h, then
dp, is an invariant measure since

/ p o Thd, :/ wLhd . :/ whdi,.
X X X

However, it may happen that £h = h has no solution in L!(X, u,). Consider
for example X = [~1,1], f(z) = § and p. be the Lebesgue measure. Then if
p is an invariant probability measure, we have, for each ¢ € C°([-1,1],R),

[ st = tin iso<f”<x>>u<dx>=so<o>.

_1 n—oo J_

That is, the only invariant measure is o which does no belog to L'([-1, 1], R).

6.2 Measurable Dynamical Systems

We will start considering the case in which (L'(X, ), £) has a fixed point
h, Lh = h. This means that the measure dy = hdp, is invariant. It is then
natural to consider p as the reference measure. The idea to consider (X, T)
together with the measure p naturally leads to the notion of a Measurable
Dynamical System.

Definition 6.2.1 By a Measurable Dynamical System with discrete time, we
mean a triplet (X, T, ) where X is a measurable space,' u is a measure
and T is a measurable map from X to itself that preserves the measure (i.e.,
u(T~LA) = p(A) for each measurable set A C X).

An equivalent characterization of invariant measure is u(f oT) = u(f) for
each f € L'(X, u) since, for each measurable set A, p(xa0T) = p(xr-14) =
w(T~1A), where y 4 is the characteristic function of the set A.

Remark 6.2.2 In the following we will always assume pu(X) < oo (and quite
often u(X) = 1, i.e. p is a probability measure). Nevertheless, the reader
should be aware that there exists a very rich theory pertaining to the case
w(X) = oo, see [ .

Definition 6.2.3 By Dynamical System with continuous time we mean a
triplet (X, ¢, u) where X is a measurable space, ji is a measure and ¢ is a
measurable group (¢(z) is a measurable function for each t, ¢t(x) is a mea-
surable function of t for almost all x € X; ¢¥ =identity and ¢' o ¢* = ¢'*+*
for each t, s € R) or semigroup (t € RT) from X to itself that preserves the
measure (i.e., p((¢")"LA) = pu(A) for each measurable set A C X ).

1By measurable space we simply mean a set X together with a o-algebra that defines
the measurable sets.
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The above definitions are very general, this reflects the wideness of the
field of Dynamical Systems. In the present book we will be interested in
much more specialized situations.

In particular, X will always be a topological compact space. The measures
will alway belong to the class M!(X) of Borel probability measures on X.?
For future use, given a topological space X and a map T let us define Mp as
the collection of all Borel measures that are T invariant.?

Often X will consist of finite unions of smooth manifolds (eventually with
boundaries). Analogously, the dynamics (the map or the flow) will be smooth
in the interior of X.

Let us see few examples to get a feeling of how a Dynamical System can
look like.

6.2.1 Examples
Rotations

Let T be R mod 1. By this we mean R quotiented with respect to the equivalence
relations x ~ y if and only if x — y € Z. T can be though as the interval [0, 1]
with the points 0 and 1 identified. We put on it the topology induced by the
topology of R via the defined equivalence relation. Such a topology is the usual
one on [0, 1], apart from the fact that each open set containing 0 must contain
1 as well. Clearly, from the topological point of view, T is a circle. We choose
the Borel o-algebra. By pu we choose the Lebesgue measure m, while T': T — T
is defined by
Tr=x+w mod]l,

for some w € R. In essence, T translates, or rotates, each point by the same
quantity w. It is easy to see that the measure i is invariant (Problem 6.9).

Bernoulli shift

A Dynamical System needs not live on some differentiable manifold, more abstract
possibilities are available.

Let Z, = {1, 2, ..., n}, then define the set of two sided (or one sided) se-
quences X, = ZZ (S+ = Z4*). This means that the elements of %, are se-
quences o = {..., 0_1, 00, 01, weern. } (o = {00, 01, veene } in the one sided case)
where o; € Z,,. To define the measure and the o-algebra a bit of care is necessary.
To start with, consider the cylinder sets, that is the sets of the form

Az:{UEEn|0i:j}.

2Remember that a Borel measure is a measure defined on the Borel o-algebra, that is
the o-algebra generated by the open sets.
3Obviously, for each u € My, (X, T, u) is a Dynamical System.
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Such sets will be our basic objects and can be used to generate the algebra
A of the cylinder sets via unions and complements (or, equivalently, intersections
and complements). We can then define a topology on X,, (the product topology,
if {1,...,n} is endowed by the discrete topology) by declaring the above algebra
made of open sets and a basis for the topology. To define the o-algebra we could
take the minimal o-algebra containing A, yet this it is not a very constructive
definition, neither a particular useful one, it is better to invoke the Caratheodory
construction.

Let us start by defining a measure on Z,,, that is n numbers p; > 0 such that
S pi=1. Then, foreach i € Z and j € Zy,

(Al) = p;.

Next, for each collection of sets {A{;}le, with i; # iy, for each [ # k, we define
pA AN Al =]
1=1

We now know the measure of all finite intersection of the sets A7. Obviously
u(A¢) := 1 — p(A) and the measure of the union of two sets A, B obviously
must satisfy u(A U B) = p(A) + u(B) — u(A N B). We have so defined y on
A. It is easy to check that such a u is o-additive on A; namely: if {4;} C A
are pairwise disjoint sets and U2, A; € A, then p(U2, A;) = 3%, u(4;). The
next step is to define an outer measure®

p(A) = Ei;rel&,u(B) VA CL,.
BDA

Finally, we can define the o-algebra as the collection of all the sets that satisfy
the Carathéodory’s criterion, namely A is measurable (that is belongs to the o-
algebra) iff

pw(E)y=p (ENA)+u* (ENA°) VYECX,.

The reader can check that the sets in A are indeed measurable.

The Carathéodory Theorem then asserts that the measurable sets form a o-
algebra and that on such a o-algebra u* is numerably additive, thus we have our
measure p (simply the restriction of ;* to the o-algebra).” The o-algebra so
obtained is nothing else than the completion with respect to p of the minimal
o-algebra containing A (all the sets with zero outer measure are measurable).

4An outer measure has the following properties: i) p*(0) = 0; ii) u*(A) < p*(B) if
A C Byiil)p* (U2, Ay) < 3572, w*(A;). Note that p* need not be additive on all sets.

5See [ ] if you want a quick look at the details of the above Theorem or consult
[ ] if you want a more in depth immersion in measure theory. If you think that the
above construction is too cumbersome see Problem 6.19.
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The map T : X, — X, (usually called shift) is defined by
(TO')i = 0j+1-

We leave to the reader the task to show that the measure is invariant (see Problem
6.17).

To understand what's going on, let us consider the function f : ¥ — Z,
defined by f(o) = og. If we consider T%, t € N, as the time evolution and f as
an observation, then f(T%c) = 0. This can be interpreted as the observation of
some phenomenon at various times. If we do not know anything concerning the
state of the system, then the probability to see the value j at the time t is simply
pj. fn=2and py =ps = % it could very well be that we are observing the
successive outcomes of tossing a fair coin where 1 means head and 2 tail (or vice
versa); if n = 6 it could be the outcome of throwing a dice and so on.

Dilation

Again X = T and the measure is Lebesgue. T is defined by
Tx =2x mod 1.

This map it is not invertible (similarly to the one sided shift). Note that, in
general, (T A) # p(A) (e.g., A=[0,3]).

Toral automorphism (Arnold cat)

This is an automorphism of the torus and gets its name by a picture draw by
Arnold | ]. The space X is the two dimensional torus T?. The measure is
again Lebesgue measure and the map is

1)) i) e

Since the entries of L are integers numbers it is clear that T is well defined on the
torus; in fact, it is a linear toral automorphism. The invariance of the measure
follows from det L = 1.

Hamiltonian Systems

Up to now we have seen only examples with discrete time. Typical examples of
Dynamical Systems with continuous time are the solutions of an ODE or a PDE.
Let us consider the case of an Hamiltonian system. The simplest case is when
X = R2?", the o-algebra is the Borel one and the measure 1 is the Lebesgue
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measure m. The dynamics is defined by a smooth function H : X — R via the
equations
dr

dt
where grad(H); = (VH); = gTZ and J is the block matrix

J:(_O]l g)

The fact that m is invariant with respect to the Hamiltonian flow is due to the
Liouville Theorem (see | | or Problem 5.7).

Such a dynamical system has a natural decomposition. Since H is an integral
of the motion, for each h € R we can consider X}, = {& € X | H(z) = h}.
If X, # 0, then it will typically consist of a smooth manifold,® let us restrict
ourselves to this case. Let o be the surface measure on Xy, then pp =

JgradH (z)

ag
llgrad H ||
is an invariant measure on X} and (Xp, ¢4, up) is a Dynamical System (see
Problem 6.11).

Geodesic flow

Along the same lines any geodesic flow on a compact Riemannian manifold nat-
urally defines a dynamical system.

6.3 Return maps and Poincaré sections

Normally in Dynamical Systems there is a lot of emphasis on the discrete case.
One reason is that there is a general device that allows to reduce the study
of many properties of a continuous time Dynamical System to the study of
an appropriate discrete time Dynamical System: Poincaré sections (we have
already seen an instance of this in the introduction). Here we want to make
few comments on this precious tool that we will largely employ in the study
of billiards.

Let us consider a smooth Dynamical System (X, ¢!, 1) (that is a Dynam-
ical Systems in continuous time where X is a smooth manifold and ¢! is a
smooth flow). Then we can define the vector field V(z) := %h:(ﬂ

Consider a smooth compact submanifold (possibly with boundaries) ¥ of
codimension one such that T.% (the tangent space of 3 at the point ) is

6By the implicit function theorem this is locally the case if VH # 0.
"Very often it is the other way around: the vector field is given first and then the flow—as
we saw in the introduction.
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transversal to V (z).® We can then define the return time 75 : ¥ — R* U {c0}
by
s = inf{t € RT\{0} | ¢'(z) € X},

where the inf is taken to be oo if the set is empty. Next we define the return
map Ts, : D(T) C ¥ — %, where D(T) = {z € X|rs(x) < 0o}, by

Ts(z) = 9™ (x).

It is easy to check that there exists ¢ > 0 such that 75, > ¢ (Problem 6.14).
To define the measure, the natural idea is to project the invariant measure
along the flow direction: for all measurable sets A C X, define’

vs(A) = lim 26l %(A)). (6.3.2)
6—0 0
See Problem 6.13 for the existence of the above limit; see Problem 6.14 for
the proof that 7 is finite almost everywhere and Problem 6.15 for the proof
that (X, Ty, vy) is a dynamical system. The reader is invited to meditate on
the relation between this Dynamical System and the original one.

6.4 Suspension flows

A natural question is if it is possible to construct a flow with a given Poincaré
section, the answer is that there are infinitely many flows with a given section.
Let us construct some of them. Given a dynamical system (3, T, v) consider
X := % x Rt. Define the flow ¢;((z,s)) = (z,s +t). We then define in X
the equivalence relation (z,t) ~ (y,s) iff s=t+nandy=T"z ort=s+n
and x = T"y for some n € N. A moment of reflection shows that the set X
of equivalence classes is nothing else than the set ¥ x [0,1] with the points
(z,1) and (T'z,0) identified. Clearly the flow is naturally quotiented over the
equivalence classes and yields a quotient flow on X, such a flow is called a
suspension flow.

A more general construction can by obtained by applying a time change
to the above example. Alternatively, one can can choose any smooth function
7:% — RT, that will be called a ceiling function and consider the set X, =
{(x,t) € LxR" |t € [0, 7(x)]} with the points (z,7(z)) and (T'z,0) identified.
A moment of reflection should show that the topology of X, does not depend
on 7 and is then the same than the suspension defined above. The flow is
again defined by ¢(x,s) = (x,s +t) for t < 7(z) —s. Such flows are called
special flows.

8That is 7% @ V(z) form the full tangent space at .
9We use the notation: ¢! (A) := Userd?(A) for each I C R.
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6.5 Invariant measures

A very natural question is: given a space X and a map T does there always
exists an invariant measure u? A non exhaustive, but quite general, answer
exists: Krylov-Bogoluvov Theorem.

First of all we need a useful characterization of invariance.

Lemma 6.5.1 Given a compact metric space X and Borel measurable map
T continuous apart from a compact set K,'° a Borel measure u, such that
w(K) =0, is invariant if and only if u(f o T) = u(f) for each f € CO(X).

PRrROOF. To prove that the invariance of the measure implies the invari-
ance for continuous functions is obvious, since each such function can be
approximated uniformly by simple functions—that is, a sum of characteristic
functions of measurable sets—for which the invariance is immediate.'! The
converse implication is not so obvious.

The first thing to remember is that the Borel measures, on a compact
metric space, are regular | ]. This means that for each measurable set A
the following holds'?

wA) = inf 1(G) = ggu(c)- (6.5.3)
a=4 c=C

Next, remember that for each closed set A and open set G O A, there exists
f € C%X) such that f(X) C [0,1], flge = 0 and f|4 = 1 (this is Urysohn

Lemma for Normal spaces | ]). Hence, setting B4 := {f € CO(X) | f >
X},
A) < inf < inf = u(A). 5.4
n(A4) < ot u(f) < (;géu(G) 1(A) (6.5.4)
G=G

Accordingly, for each A closed, we have

p(T7MA) < inf p(foT) = inf u(f)=pu(A).

In addition, using again the regularity of the measure, for each A Borel holds'?

10This means that, if C C X is closed, then T=1C U K is closed as well.

1 This is essentially the definition of integral.

I2This is rather clear if one thinks of the Carathéodory construction starting from the
open sets.

13Note that, by hypothesis, if C' is compact and C N K = (), then T'C is compact.
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W(T~1A) = sup (T~ A\U) < s sup  u(TH(T'C))

USK USK ccr—'A\U
U=U U=U c=C

< sup sup u(T7'C) < sup u(C) = u(A).
UDK CCA CCcA
v= ¢=C c=C

Applying the same argument to the complement A€ of A it follow that it must
be u(T~*A) = u(A) for each Borel set. O

Proposition 6.5.2 (Krylov—Bogoluvov) If X is a metric compact space
and T : X — X is continuous, then there exists at least one invariant (Borel)
measure.

PRrROOF. Consider any Borel probability measure v and define the follow-
ing sequence of measures {v;, }nen:'? for each Borel set A

vp(A) =v(T7"A).

The reader can easily see that v, € M!(X), the sets of the probability
measures. Indeed, since T X = X, v,(X) = 1 for each n € N. Next, define

1 n—1
Hn = ﬁ Z V.
1=0

Again p,(X) =1, so the sequence {p;}52; is contained in a weakly compact

set (the unit ball) and therefore admits a weakly convergent subsequence
{tn, 12215 let p be the weak limit.'> We claim that y is T invariant. Since p is
a Borel measure it suffices to verify that for each f € C°(X) holds pu(foT) =
u(f) (see Lemma 6.5.1). Let f be a continuous function, then by the weak
convergence we have

Mntuitively, if we chose a point & € X at random, according to the measure v and we ask
what is the probability that Tz € A, this is exactly v(T~"™A). Hence, our procedure to
produce the point T™x is equivalent to picking a point at random according to the evolved
measure Vp,.

15This depends on the Riesz-Markov Representation Theorem [ ] that states that
M(X) is exactly the dual of the Banach space C%(X). Since the weak convergence of
measures in this case correspond exactly to the weak-* topology [ |, the result follows

from the Banach-Alaoglu theorem stating that the unit ball of the dual of a Banach space
is compact in the weak-* topology. But see 1.6.22 if you want a more elementary proof.

16Note that it is essential that we can check invariance only on continuous functions: if
we would have to check it with respect to all bounded measurable functions we would need
that pn converges in a stronger sense (strong convergence) and this may not be true. Note
as well that this is the only point where the continuity of 7" is used: to insure that foT is
continuous and hence that pn, (f o T) — u(f o T).
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n;—1 n;—1
13 1 3 ,
oT) = lim — vi(foT)= lim — v(f o T
u(foT) = lim - ; (foT) = Jim go (foT™h)

lim { Z vi(f) +v(feT™) — V(f)} = pu(f)-

j—00 N ;
J 7 i=o
O

The reason why the above theorem is not completely satisfactory is that
it is not constructive and, in particular, does not provide any information
on the nature of the invariant measure. On the contrary, in many instances
the interest is focused not just on any Borel measure but on special classes of
measures, for example measures connected to the Lebesgue measure which, in
some sense, can be thought as reasonably physical measures (if such measures
exists).

In the following examples we will see two main techniques to study such
problems: on the one hand it is possible to try to construct explicitly the mea-
sure and study its properties in the given situations (expanding maps, strange
attractors, solenoid, horseshoe); on the other hand one can try to conjugate'”
the given problem with another, better understood, one (logistic map, circle
maps). In view of the second possibility the last example is very important
(Markov measures). Such an example gives just a hint to the possibility to
construct a multitude of invariant measures for the shift which, as we will see
briefly, is a standard system to which many other can be conjugated.

6.5.1 Examples
Contracting maps

Let X C R™ be compact and connected, T': X — X differentiable with || DT|| <
A7l <1and T0 =0 € X. In this case 0 is the unique fixed point and the delta
function at zero is the only invariant measure.'®

Expanding maps

The simplest possible case is X = T, T' € C*(T) with |[DT| > X\ > 1, (see Figure
6.1 for a pictorial example).”

17See Definition 6.9.2 for a precise definition and Problem 6.41 and 6.42 for some insight.

18The reader will hopefully excuse this physicist language, naturally we mean that the
invariant measure is defined by do(f) = f(0). The property that there exists only one
invariant measure is called unique ergodicity, we will see more of it in the sequel, e.g. see
example 6.6.1.

9Note that this generalizes Examples 6.2.1.
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Figure 6.1: Graph of an expanding map on T

We would like to have an invariant measure absolutely continuous with re-
spect to Lebesgue. Any such measure p has, by definition, the Radon-Nikodym
derivative h = % e LY(T, m), | ]. In Proposition 6.5.2 we saw how a
measure evolves by defining the operator

Tep(f) = p(foT) (6.5.5)

for each f € CY and u € M(X) (see also footnote 15 at page 118). If we want to
study a smaller class of measures we must first check that 7 leaves such a class
invariant. Indeed, if u is absolutely continuous with respect to Lebesgue then
Top )has the same property. Moreover, if h = % and hy = % then (Problem
6.20

hi(z) = Lh(z) = [DyT|™"h(y).

yeT 1 (x)

The operator £ : L'(T, m) — LY(T, m) is called Transfer operator or Ruelle-
Perron-Frobenius operator, and has an extremely important rdle in the study of
the statistical properties of the system. Notice that ||[£h||1 < ||h]|1.2° The key
property of £, in this context, is given by the following inequality (this type of
inequality is commonly called of Lasota-York type) (Problem 6.21): if f' € L!,
then

%Eh(z) < ALK (2)] + C|Lh(x)] (6.5.6)

20Here || f||1 := [ |h(x)|dz is the standard norm in L*.
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_ DT
DT, -

The above inequality implies ||[(£R)'||1 < A7Y||R/||1 + C||h||1. Iterating such
a relation yields

where C

o ¢
I mY T < A7 R + = WAl

foralln € N. This, in turn, implies that the sup,, o || L™ h||s0 < 00. Consequently,
the sequence h, := %Z;:Ol L'h is compact in L' (this is a consequence of
standard embedding theorems?®! [ ] but see Problem 6.22 for an elementary
proof). In analogy with Lemma 6.5.2, we have that there exists h, € L' such
that Lh, = hy. Thus du := h.dm is an invariant measure of the type we are
looking for.

In fact, it is possible to obtain some more information on such measure.
Equation (6.5.6) implies that £ is a well defined operator also when restricted to
CY or C1. Moreover, for each h € C° and n € N,

127 hlow < 1£"Uaclloe < [Blo (1" + (£ 1) < [hlow 2y
=: C1]h]oo-
Using the above equation and iterating (6.5.6) yields, for each h € C* and n € N,
(L") |oe < AT"C1|W o + CF[D] o

In other words we have a Lasota-Yorke type inequality for £ acting on C%, C!
instead of L', W1 In particular note that one can apply the above inequalities
to the average h,, := %2?_:01 L'h, when h € Ct. Then the compactness follows
by Ascoli-Arzeld Theorem and it follows that the invariant density is continuous
(in fact, Lipschitz as already argued in the Perron-Frobenius Theorem).

Logistic maps

Consider X =[0,1] and
T(x) =4z(1 — x).

This map is not an everywhere expanding map (D%T = 0), yet it can be conjugate
with one, [ ]

To see this consider the continuous change of variables ¥ : [0,1] — [0,1]
defined by

2
U(z) = — arcsin VT,

21Tndeed the space C! closed with respect to the norm || f|| = || f||1 +||f||1 is a well known
Banach space: the Sobolev space W11,
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thus U~!(z) = (sin %x)Q Accordingly,

T(z) :=VoToW ! (z)=V¥(4sin® Zzcos® Zz)

)
= ¥([sin7z]?) = 2 arcsin[sin 7z

which yields??
. 2z forz €0, 3]
T(a) = 1

2 -2z forxels,1].

The map T is called tent map for its characteristic shape, see figure 6.2. What

Figure 6.2: Graph of tent map

is more interesting is that the Lebesgue measure is invariant for T, as the reader
can easily check. This means that, if we define u(f) := m(fo¥™1), it holds true

p(foT)=m(foT oW ) =m(fo¥ ™ oT)=m(fo ") = pu(f).

Hence, ([0,1],T, 1) is a Dynamical System. In addition, a trivial computation
shows

1
p(dx) = md%

thus p is absolutely continuous with respect to Lebesgue.

22Remember that the range of arcsin is [-3, 5] and sinTz = sin7(1 — ).
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Circle maps

A circle map is an order preserving continuous map of the circle. A simple way
to describe it is to start by considering its lift. Let T : R — R, such that
7(0) € [0,1], T(z+1) = T'(z) +1 ad it is monotone increasing. The circle map
is then defined as T'(z) = T(x) mod 1. Circle maps have a very rich theory
that we do not intend to develop here, we confine ourselves to some facts (see
[ | for a detailed discussion of the properties below). The first fact is that

the rotation number 1
p(T) = lim —T™(z).

n—o00 N,

is well defined and does not depend on z.

We have already seen a concrete example of circle maps: the rotation R, by
w. Clearly p(R,) = w. It is fairly easy to see that if p(T') € Q then the map has
a periodic orbit. We are more interested in the case in which the rotation number
is irrational. In this case, with the extra assumption that 7" is twice differentiable
(actually a bit less is needed) the Denjoy theorem holds stating that there exists
a continuous invertible function h such that R,r)yoh = hoT, that is T is
topologically conjugated to a rigid rotation. Since we know that the Lebesgue
measure is invariant for the rotations, we can obtain an invariant measure for T’
by pushing the Lebesgue measure by h, namely define

u(f) =m(foh™t).

The natural question if the measure p is absolutely continuous with respect to
Lebesgue is rather subtle and depends, once again, on KAM theory. In essence
the answer is positive only if T has more regularity and the rotation number is not
very well approximated by rational numbers (in some sense it is ‘very irrational’).

Strange Attractors

We have seen the case in which all the trajectories are attracted by a point. The
reader can probably imagine a case in which the attractor is a curve or some
other simple set. Yet, it has been a fairly recent discovery that an attractor may
have a very complex (strange) structure. The following is probably the simplest
example. Let X = Q = [0,1]? and

@ 9) (2, fy+13) fzel0,1/2]
T(z, y) =
(20 -1, sy +3) ifzell/2, 1]
We have a map of the square that stretches in one direction by a factor 2 and
contract in the other by a factor 8.

Note that 7" it is not continuous with respect to the normal topology, so
Proposition 6.5.2 cannot be applied directly. This problem can be solved in at
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least two ways: one is to code the system and we will discuss it later (see Examples
6.9.1), the other is to study more precisely what happens iterating a measure in
special cases.

In our situation, since T™(Q) consists of a multitude of thinner and thinner
strips, it is clear that there can be no invariant measure absolutely continuous
with respect to Lebesgue.?? Yet, it is very natural to ask what happens if we
iterate the Lebesgue measure by the operator T. It is easy to see that T,m is
still absolutely continuous with respect to Lebesgue. In fact, T, maps absolutely
continuous measures into absolutely continuous measures. Once we note this, it
is very tempting to define the transfer operator. An easy computation yields

Lh(w) = xro(®) Y [det(DyT)|"h(y) = dxro()h(T " (2)).
yeT 1 (x)

Since the map expands in the unstable direction, it is quite natural to inves-
tigate, in analogy with the expanding case, the unstable derivative D", that is
the derivative in the = direction, of the iterate of the density.

1
1D LAl < SIIDA]l1 VR € CHQ) (6.5.7)

To see the consequences of the above estimate, consider f € C(l)(Q) with
f(0,y) = f(1,y) = 0 for each y € [0,1], then if y is a measure obtained by

the measure hdm (h € C') with the procedure of Proposition 6.5.2,%* we have
1 ol . 1 n;—1 ‘
wD ) = I s ; (L) mhD"f) = Jim ; m(LAD" f)
nj—1
= fim o 2 D)

where we have integrated by part. Remembering (6.5.7) we have
N(Duf) =0,

forall f € C[()le)r(Q) ={feCM(Q)| f(0,y) = f(1,y)}. The enlargement of the
class of functions is due to the obvious fact that, if f € C[()le)r(Q), tfjen f(x,y) =
f(z,y) — f(0,y) is zero on the vertical (stable) boundary and D“f = D*f.

23In fact, if p is an invariant measure, Tk p = pu, it follows
u(xrn@) = T n(xrnq) = nlxq) =1,

so ;1 must be supported on A = NS T"Q.

24As we noted in the proof of Proposition 6.5.2, the only part that uses the continuity
of T is the proof of the invariance. Thus, in general we can construct a measure by the
averaging procedure but its invariance is not automatic.
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This means that the measure p, when restricted to the horizontal direction, is
p-a.e. constant (see Problem 6.36). Such a strong result is clearly a consequence
of the fact that the map is essentially linear, one can easily imagine a non linear
case (think of dilations and expanding maps) and in that case the same argument
would lead to conclude that the measure, when restricted to unstable manifolds,
is absolutely continuous with respect to the restriction of Lebesgue (these type
of measures are commonly called SRB from Sinai, Ruelle and Bowen).

We can now prove that indeed the measure i is invariant. The discontinuity
line of T is {x = 3}. Points close to {x = 1} are mapped close to the boundary
of @, soif f(0,y) = f(1,y) =0, then foT is continuous. Hence, the argument
of Proposition 6.5.2 proves that p(f o T) = u(f) for all f that vanish at the
stable boundary. Yet, the characterization of 1 proves that u({(z,y) € Q |z €
{0,1}}) = 0, thus we can obtain u(f o T) = u(f) for all continuous functions
via the Lebesgue dominated convergence theorem and the invariance follows by
Lemma 6.5.1.

Horseshoe

This very famous example consists of a map of the square Q@ = [0, 1]?, the map
is obtained by stretching the square in the horizontal direction, bending it in the
shape of an horseshoe and then superimposing it to the original square in such a
way that the intersection consists of two horizontal strips.?> Such a description
is just topological, to make things clearer let us consider a very special case:

. [ Gz mod 1, fy) ifwel[l/5,2/5)
(@ y) = { (5 mod 1, y+3) ifx € [3/5,4/5].

Note that T is not explicitly defined for = € [0, 1/5[U[2, 2[U]4/5, 1] since for
this values the horseshoe falls outside (), so its actual shape is irrelevant. Since
the map from @ to @ is not defined on the full square, we can have a Dynamical
System only with respect to a measure for which the domain of definition of T,
and all of its powers, has measure one. We will start by constructing such a
measure.

The first step is to notice that the set

A= NnezT™Q (6.5.8)

of the points which trajectories are always in @ is # 0. Second, note that
A =TA =T~ 1A, such an invariant set is called hyperbolic set as we will see in
777. We would like to construct an invariant measure on A. Since A is a compact
set and T' is continuous on it we know that there exist invariant measures; yet, in

25We have already seen something very similar in the introduction.
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analogy with the previous examples, we would like to construct one coming from
Lebesgue.

As already mentioned we must start by constructing a measure on A_ =
Nnenugoy T~ "Q since T*A_ c A_. To do so it is quite natural to construct a
measure by subtracting the mass that leaks out of ). namely, define the operator
T: M(X) = M(X) by

Tu(A) == p(TANQ).

Again we consider the evolution of measures of the type du = hdm. For each
continuous f with supp(f) C @ holds

Tu(f) = pu(foT txg) = /TlehoT|det DT|dm.

We can thus define the operator £ that evolves the densities:

)

£h($) = ZXT—lQmQ (.T)h(T.I‘)

Clearly Tu(f) = m(fLh).

Note that Tm(l) = % thus T’ does not map probability measures into prob-
ability measures; this is clearly due to the mass leaking out of Q. Calling D?
(stable derivative) the derivative in the y direction, follows easily

S 1 S
|D*hls < Z1D° ]

for each h differentiable in the stable direction.
On the other hand, if | D*h|l; < cand A =[0,1/4] U [3/4,1],

(Ta(1)] = /Q o= g drh(z.y)

1 1
= [y [ ax [ agha.0)+ 000N
=IAlIkl + O(ID*hlL) = (1) + O(ID*H]L).

It is then natural to define £h := 2£h and T = 2T. Thus | D*Lh|; <
1|ID*h||y. This means that {% Z?;Ol Tiu} are probability measures. Accord-
ingly, there exists an accumulation point p. and u.(D®f) = 0 for each f periodic
in the y direction. By the same type of arguments used in the previous examples,
this means that pu. is constant in the y direction, it is supported on A_ by con-
struction and Ty, = %u* (conformal invariance) : just the measure we where

looking for.
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We can now conclude the argument by evolving the measure as usual:

Tipi(f) = pse(f o T)

for all continuous f with the support in ). Now the standard argument applies.
In such a way we have obtained the invariant measure supported on A.

Markov Measures

Let us consider the shift (X7, 7). We would like to construct other invariant
measures bedside Bernoulli. As we have seen it suffices to specify the measure
on the algebra of the cylinders. Let us define

Amski, ... k) ={ceSt |oipm =k Vie{l,....1}};

this are a basis for the algebra of the cylinders.
For each n x m matrix P, P;; > 0, Zj P;; = 1 by the Perron-Frobenius
theorem (see Secion (A.3.2)) there exists {p;} such that pP = p. Let us define

/L(A(m, ]{71, ey kl)) = pk1Pk1k2Pk2k3 e Pkl—lkl'

The reader can easily verify that p is invariant over the algebra A and thus extends
to an invariant measure. This is called Markov because it is nothing else than a
Markov chain together with its stationary measure.?®

These last examples (strange attractor, solenoid, horseshoe) show only a
very dim glimpse of a much more general and extremely rich theory (the study
of SRB measures) while the last (Markov measures) points toward another
extremely rich theory: Gibbs (or equilibrium) measures. Although this it is
not the focus here, we will see a bit more of this in the future.

One of the main objectives in dynamical systems is the study of the long
time behavior (that is the study of the trajectories T"x for large n). There
are two main cases in which it is possible to study, in some detail, such a
long time behavior. The case in which the motion is rather regular®’ or
close to it (the main examples of this possibility are given by the so called
KAM | | theory and by situations in which the motions is attracted by
a simple set); and the case in which the motion is very irregular.?® This last
case may seem surprising since the irregularity of the motion should make its
study very difficult. The reason why such systems can be studied is, as usual,

26The probabilistic interpretation is that the probability of seeing the state k at time
one, given that we saw the state [ at time zero, is given by Pj;. So the process has a bit of
memory: it remembers its state one time step before. Of course it is possible to consider
processes that have a longer—possibly infinite-memory. Proceeding in this direction one
would define the so called Gibbs measures.

27Typically, quasi periodic motion, remember the small oscillation in the pendulum.

28Remember the example in the introduction.
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because we ask the right questions,? that is we ask questions not concerning
the fine details of the motion but only concerning its statistical or qualitative
properties.

The first example of such properties is the study of the invariant sets.

6.6 Ergodicity

Definition 6.6.1 A measurable set A is invariant for T if T"'A C A.
A dynamical system (X, T, p) is ergodic if each invariant set has measure
zero or one.

The definition for continuous dynamical systems being exactly the same.

Note that if A is invariant then p(A\T1A) = p(A) — u(T-1A) = 0,
moreover A = N2 T ™A C A is invariant as well. In addition, by definition,
A = TA, which implies A = T~'A and pu(A\A) = 0. This means that, if A
is invariant, then it always contains a set A invariant in the stronger (maybe
more natural) sense that TA = T~'A = A. Moreover, A is of full measure in
A. Our definition of invariance is motivated by its greater flexibility and the
fact that, from a measure theoretical point of view, zero measure sets can be
discarded.

In essence, if a system is ergodic then most trajectories explore all the avail-
able space. In fact, for any A of positive measure, define A, = U,enujoy 7" A
(this are the points that eventually end up in A), since 4, D A, u(4p) > 0.
Since T—1A;, C Ay, by ergodicity follows u(Ap) = 1. Thus, the points that
never enter in A (that is, the points in Af) have zero measure. Actually, if
the system has more structure (topology) more is true (see Problem 6.26).

The reader should be aware that there are many equivalent definitions of
ergodicity. In the following, we give a relevant one, but see Problems 6.31,
6.32 and Theorem 6.7.5 for other possibilities.

Lemma 6.6.2 Show that a Dynamical Systems (X, T, u) is ergodic if and
only if the transfer operator L acting on L'(X,u) has 1 as a simple eigen-
value.?"

PROOF. Since we want to connect the concept of ergodicity to the spectral
properties of £, it is natural to consider L!(X,u) as a space of complex
functions. Since p is invariant, we have £1 = 1.

Let us suppose that 1 is a simple eigenvalue and assume that there exists a
measurable invariant set A, u(A) € {0,1}. By invariance f~1(A) C A; that is

290f course, the “right questions” are the ones that can be answered.
30That is, there are no other invariant measures absolutely continuous with respect ot .
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Tg40T =114 < 14. But the invariance of y implies u(A) = p(T~*(A)),
hence 14 0T =1 4, p-a.s.. Recalling Lemma 6.1.4 we have

E]IA :ﬁﬂAOT:]lAﬁl :]lA

which contradicts the assumption that 1 is a simple eigenvalue.
Next, suppose that (X, T, ) is ergodic. We start to notice that Lh = h, with
h = hy + thy, with h; real, then by linearity,

hi+iho = Lh1 +iLho

which implies Lh; = h;. We can then restrict ourselves to real invariant
functions. Hence, let h € L' (X, 1) be real and Lh = h, then by Lemma 6.1.4,

L(|h[£h) =0

which implies L|h| > £Lh = +h, that is L|h| > |h|. Yet,

0< / (L] — |h])du =0
X

implies L£|h| = |h|. Suppose now that |h| = 1, then
L1=1=h?>=hLh=L(hoTh).

This allows us to write
OZ/ L(1 —hoTh)d,u:/ (1=hoTh)dpu.
X X

But 1—hoT h > 0, thus it must be 1 —hoT h =0o0r h = hoT. By ergodicity,
this implies h is constant, hence proportional to 1. We are thus left with the
possibility of multiple positive eigenvectors. Let h > 0, Lh = h, then for each
a € Rlet I'y(x) = max{a, h(z)}, then

LTIy >Lh=h LT';>La=a,
which implies L', > T'y. But since [ (L —Tq)dp = 0, it must be LT, = T',.

Next, let A = {x € X : h(z) > a} and notice that = € A iff T'y(z) = h(x).
We have

0= / (Ca — h)dp = / 1AL, — h)dp = / 14 0T (Ta — h)dp.
A X X
Since I'y — h > 0 it must be 1p-1(4)(I'y — h) = 0. This is possible if either

w(A) = 0 or T71(A) c A. Consequently h is p=a.s. constant and hence
proportional to 1. That is 1 is a simple eigenvalue of L. g
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6.6.1 Examples
Rotations

The ergodicity of a rotation depends on w. If w € Q then the system is not
ergodic. In fact, let w = g (p,q € N), then, for each z € T T%x = z +p
mod 1 = z, so TY is just the identity. An alternative way of saying this is to
notice that all the points have a periodic trajectory of period ¢. It is then easy
to exhibit an invariant set with measure strictly larger than O but strictly less
than 1. Consider [0, €], then A = U_T~[0, €] is an invariant set; clearly
e < u(A) < ge, so it suffices to choose ¢ < ¢ 1.

The case w ¢ Q is much more interesting. First of all, for each point z € T
we have that the closure of the set {T"x}2°,, is equal to T, which is to say that
the orbits are dense.?! The proof is based on the fact that there cannot be any
periodic orbit. To see this suppose that = € T has a periodic orbit, that is there
exists ¢ € N such that 79z = x. As a consequence there must exist p € Z
such that x +p = = + qw or w € Q contrary to the hypothesis. Hence, the set
{Tk()}gozo must contain infinitely many points and, by compactness, must contain
a convergent subsequence k;. Hence, for each € > 0, there exists m > n € N:

|T™0 — T™0| < e.
Since T preserves the distances, calling ¢ = m — n, holds
|T90| < e.

Accordingly, the trajectory of T790 is a translation by a quantity less than &,
therefore it will get closer than ¢ to each point in T (i.e., the orbit is dense).
Again by the conservation of the distance, since zero has a dense orbit the same
will hold for every other point.

Intuitively, the fact that the orbits are dense implies that there cannot be a
non trivial invariant set, henceforth the system is ergodic. Yet, the proof it is not
trivial since it is based on the existence of Lebesgue density points | ] (see
Problem 6.44). It is a fact from general measure theory that each measurable set
A C R of positive Lebesgue measure contains, at least, one point Z such that for
each ¢ € (0, 1) there exists 6 > 0:

m(AN[Z -6, T+4])

1—e.
2% > €

Hence, given an invariant set A of positive measure and £ > 0, first choose §
such that the interval I := [Z—J, Z+0] has the property m(INA) > (1—¢e)m(I).
Second, we know already that there exists ¢, M € N such that {T*z}M |

31 A system with a dense orbit called Topologically Transitive.
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divides [0, 1] into intervals of length less that 54. Hence, given any point z € T

choose k € N such that m(T*I N[z —§, z+d]) > m(I)(1—¢) so,

m(AN [z -0, z+6]) >m(ANT ) —m(I)e
2 €2

m(ANIT)—m(I) (1 —2¢)20.

Thus, A has density everywhere larger than 1 — 2¢, which implies p(A) = 1 since
€ is arbitrary.

The above proof of ergodicity it is not so trivial but it has a definite dynamical
flavor (in the sense that it is obtained by studying the evolution of the system).
Its structure allows generalizations to contexts whit a less rich algebraic structure.
Nevertheless, we must notice that, by taking advantage of the algebraic struc-
ture (or rather the group structure) of T, a much simpler and powerful proof is
available.

Let v € M% then define

E, :/62’”47“‘0(61:16)7 n € N.
T
A simple computation, using the invariance of v, yields
F _ e27rinwF
n — n
and, if w is irrational, this implies F;, = 0 for all n # 0, while F; = 1. Next,

consider f € C)(T') (so that we are sure that the Fourier series converges
uniformly, see Problem 6.35), then

A = v = Y fubu = fo= [ Fa)da.
n=0 n=0 T

Hence m is the unique invariant measure (unique ergodicity). This is clearly
much stronger than ergodicity (see Problem 6.6.2)

Expanding maps

Next, we prove that any smooth invariant map has a unique invariant measure
absolutely continuos with respect to Lebesgue and hence it is ergodic with respect
to such a measure. Let h € L' be the density of an invariant measure and A, of
positive measure, an invariant set. For each & > 0 there exists f. € C' such that
Ilfe — Laly < e. Calling fe, = %Z;L:_Ol Lf. and noting that, by invariance,
O == S L, = Tart S L, we have, by taking subsequeces, that f,,
converges in C° to some invariant density f. while o, converges to 1 4h, where

h is the invariant density to which converges %Z?;Ol L1 (or rather the chosen
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subsequence). On the other hand || f- —1 4h||; < €. Since the f. are all uniformly
Lipschitz, hence equicontinuous, (see the end of Example 6.5.1, Expanding maps)
by Ascoli-Arzeld we can extract a converging subquence. This means that 1 4 is
the uniform limit of continuos functions, hence it is continuos hence A is either
empty of everything, thus the map is ergodic. The uniqueness of the invariant
measure follows by similar arguments.

Baker

This transformation gets its name from the activity of bread making, it bears
some resemblance with the horseshoe. The space X is the square [0, 1]2, u is
again Lebesgue, and T is a transformation obtained by squashing down the square
into the rectangle [0, 2] x [0, 1] and then cutting the piece [1, 2] x [0, 1] and
putting it on top of the other one. In formulas

(2z, %y) mod 1 if z € [0, %)
(2z, i(y +1)) modl ifze [5, 1].

This transformation is ergodic as well, in fact much more. We will discuss it later.

Translations (T!)

Let us consider the flow (T!,$;,m) where ¢;(z) = = + wt mod 1, for some
w € R\ {0}. This is just a translation on the unit circle. The proof of ergodicity
is trivial and it is left to the reader.

We conclude the chapter with a theorem very helpful to establish the
ergodicity of a flow.

Theorem 6.6.3 Consider a flow (X, ¢¢, 1) and a Poincaré section ¥ such
that the set {x € X | Uier ¢e(z) N X = 0} has zero measure. Then the
ergodicity of the flow (X, ¢y, 1) is equivalent to the ergodicity of the section

(2, T, ps).

The proof, being straightforward, is left to the reader.

6.6.2 Examples
Translations (T?)

Let us consider the flow (T?2,¢;, m) where ¢;(r) = = + wt mod 1, for some
w € R%\ {0}. This is a translation on the two dimensional torus. To investigate
we will use Theorem 6.6.3. Consider the set X := {(x,y) € T? | z = 0}, this
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is clearly a Poincaré section, unless w; = 0 (in which case one can choose the
section y = 0). Obviously ¥ is a circle and the Poincaré map is given by
T(y) =y + 22 od 1.
w1
The ergodicity of the flow is then reduced to the ergodicity of a circle rotation,
thus the flow is ergodic only if wy; and wy have an irrational ratio.

The properties of the invariant sets of a dynamical systems have very
important reflections on the statistics of the system, in particular on its time
averages. Before making this precise (see Theorem 6.7.5) we state few very
general and far reaching results.

6.7 Some basic Theorems

In this section, we present some basic theorems and constructions fundamental
in Ergodic theory.

6.7.1 Ergodic Theorems

Theorem 6.7.1 (Birkhoff) Let (X, T, pu) be a dynamical system, then for
each f € LY(X, u)

n—1

1 .
m = J
nh_{rgc - Eof(T x)
=

exists for almost every point x € X. In addition, setting

) 1 n—1 )
fHz) = lim — ;0 f(Tw),

/ Frdp = / fdu.
X X
Proof

Since the task at hand is mainly didactic, we will consider explicitly only
the case of positive bounded functions, the completion of the proof is left to
the reader.

Let f € L>(X, du), f >0, and

holds
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For each x € X, there exists

+

£ (z) =limsup S, (z)
f(z)= lirginf Sp ().

The first remark is that both f+ and f T are invariant functions. In fact,

Su(T0) = 8,(@) + — (") =+ f(0)

so, tacking the limit the result follows.??

Next, for each n € N and k, j € Z we define

Doyy = {xeX]f%) e[t ) rrwe |1 )

n’ n n n

by the invariance of the functions follows the invariance of the sets D, ;.
Also, by the boundedness, follows that for each n exists ng such as

U Dy =X
Jjle{—no,...,n0}

The key observation is the following.

Lemma 6.7.2 For eachn € N and I, j € Z, setting A = D,,; ;, holds
l+1 3
S < [ sdu Zuta)
n A n
Luay> [ fdu-Zuta)
e R
From the Lemma follows
no
—+ —+
o< [ G o= Y [ G -1
X l,j=—no D"“l’j
o [l4+1 6 6
< e J D, 1. e D, 1) = —
< Y i< Y wDug =t

l,j=—mno l,j=—mno

Since n is arbitrary we have

/ F"— fHdu=0
X

32Here we have used the boundedness, this is not necessary. If f € L'(X, du) and
positive, then Sy, (T'z) > Sp(x) — f(x), so z+ (Tx) > z+ (z) and it is and easy exercise to
check that any such function must be invariant.
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which implies ?+ = i"’ almost everywhere (since YJF > i+ by definition)
proving that the limit exists. Analogously, we can prove

|t = 1tydu=o.
X

Proof of the Lemma 6.7.2 We will prove only the first inequality, the
second being proven in exactly the same way.
For each x € A we will call k(x) the first m € N such that

by construction k(z) must be finite for each x € A. Hence, setting X = {z €
A | k(z) =k}, Uy Xy = A, and for each £ > 0 there exists N € N such that

" (U Xk> > p(A)(1 - o).

k=1

Let us call
N
Y = A\ | Xx.
k=1

Then pu(Y) < p(A)e, also set L = sup,¢c 4 |f(x)|. The basic idea is to follow,

for each point z € A, the trajectory {T°x}}, where M > N will be chosen

sufficiently large. If the point would never visit the set Y, we could group the

sum Sy (x) in pieces all, in average, larger than Z_Tl, so the same would hold

for Sps(z). The difficulties come from the visits to the set Y.
For each n € {0, ..., M} define

R F(T"z) €Tz gy
fnx:
(=) i ifTrxeY
n

and

~ 1 ML

Sn(z) = i ,;) fn(x).
By definition y € Y implies y ¢ X1, i.e. f(y) < Z_Tl Accordingly, f(x) >
f(T™x) for each x € A. Note that for each n we change the function foT"
only at some points belonging to the set Y and % can be taken less or equal
than L ( otherwise u(A) = 0), consequently

/fd,u:/ SMduZ/gMdu—Lu(Y)z/gMdu—Lu(A)e.
A A A A
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We are left with the problem of computing the sum. As already mentioned
the strategy consists in dividing the points according to their trajectory with
respect to the sets X,,. To be more precise, let x € A, then by definition it
must belong to some X, or to Y. We set ki(x) equal to j is € X, and
ki(z) = 1if 2 € Y. Next, ko(z) will have value j if T7%1(*)z € X or value 1 if
T ¢ V. If ky(x) + ka(2z) < M, then we go on and define similarly ks3(z).
In this way, to each x € A we can associate a number m(z) € {1, ..., M} and
indices {k; ()}, k;(z) € {1, ..., N}, such that M — N < Y7 ki (2) <
M, S ki(z) > M. Let us call Kp(x) = > %1 kj(x). Using such a division
of the orbit in segments of length k;(z) we can easily estimate

_ 1 m(z)—1 1 K;(x)-1 _ M—1 o
Su(r) == > kix) e, o L@+ > f(T)
i=1 S =Ko (x) =K ()1 (x)

m(z)—1
1 -1 M-NI-1
>— ; > .
M ; Fi(z) n — M n

Putting together the above inequalities we get

/Afdu > {(M_AJ%Z_” - LE}M(A)

> ”—U(A) - {2 LD Ls} [(A).

n n Mn

which, by choosing first ¢ sufficiently small and, after, M sufficiently large,
concludes the proof. O

To prove the result for all function in L!(X, i) it is convenient to deal
at first only with positive functions (which suffice since any function is the
difference of two positive functions) and then use the usual trick to cut off
a function (that is, given f define fr by fr(z) = f(x) if f(z) < L, and
fr(x) = L otherwise) and then remove the cut off. The reader can try it as
an exercise. g

Birkhoff theorem has some interesting consequences.

Corollary 6.7.3 For each f € LY(X, i) the following holds
1f* e LX, p);
2. fH(Tx) = fi(x) almost surely.

The proof is left to the reader as an easy exercise (see Problem 6.23).
Another interesting fact, that starts to show some connections between
averages and invariant sets, emerges by considering a measurable set A and
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its characteristic function y 4. A little thought shows that the ergodic average
X i () is simply the average frequency of visit of the set A by the trajectory
{T"z} (Problem 6.32).

Birkhoff theorem implies also convergence in L' and L? (see also Problem
6.30). Yet, it is interesting to note that convergence in L? can be proven in a
much more direct way.

Theorem 6.7.4 (Von Neumann) Let (X, T, u) be a Dynamical System, then
for each f € L?(X, pu) the ergodic average converges in L*(X, ).

PROOF. We have already seen that it can be useful to lift the dynamics
at the level of the algebra of function or at the level of measures. This game
assumes different guises according to how one plays it, here is another very
interesting version.

Let us define U : L?(X, u) — L*(X, u) as
Uf:=foT.

Then, by the invariance of the measure, it follows |Uf|l2 = || fll2, so U is
an L? contraction (actually, and L2-isometry). If T is invertible, the same
argument applied to the inverse shows that U is indeed unitary, otherwise we
must content ourselves with

IU*f13 = (UU £, f) < IUU* fll2ll fllz = U Fll2ll £z,
that is ||[U*||2 < 1 (also U* is and L? contraction).

Next, consider V; = {f € L? | Uf = f} and Va = Rank(1 — U). First of
all, note that if f € V4, then

U™ f = fII5 = 1T FI5 = (£, U f) = (U f. f) + I f]5 < 0.

Thus, f € Vi := {f € L? | U*f = f}. The same argument applied to f € V;*
shows that Vi = Vi*. To continue, consider f € V; and h € L?, then

(f.h—URY = (f = U" f,h) = 0.
This implies that V3 C V35 and Vi C Vi, that is V35 = V.

Problem 6.1 Let V' be a linear subspace of an Hilbert space H, prove that
H=VaV’

Problem 6.2 Let V' be a linear subspace of an Hilbert space H, prove that
(VHt =V.
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Due to the above problems, since V; is a closed space, we have
P=VieVi=Vie V"=V e
Finally, if g € V5, then there exists A € L? such that g = h — Uh and

1% 1
lim — Ulg= lim —(h—U"h) =0.
n—oo M —o n—oo N
On the other hand if f € Vi then lim,, 0o £+ 3277 U?f = f. The only function
on which we do not still have control are the g belonging to the closure of V5
but not in V5. In such a case there exists {gy} C V2 with limg_,o0 g = g.

Thus,
n—1

%ZUigk

=0

e
+77

<
- 2
2

+1lg = grll2 <

1 n—1 1 n—1
i i
~> Uy =~ Ul
i=0 2 i=0

provided we choose k large enough. Then, by choosing n sufficiently large we

2

obtain
1 n—1
i
-~ Z U'g|| <Le.
=0 2
We have just proven that
1 n—1
. = i _
Jm o 2 U =P
i=0
where P is the orthogonal projection on V. 0

Let us investigate the relationship between ergodicity and averages a bit fur-
ther. From an intuitive point of view, a function from X to R can be thought
as an “observable,” since to each configuration it associates a value that can
represent some relevant property of the configuration (the property that we
observe). So, if we observe the system for a long time via the function f, what
we see should be well represented by the function fT. Furthermore, notice
that there is a simple relations between invariant functions and invariant sets.
More precisely, if a measurable set A is invariant, then its characteristic func-
tion x4 is a measurable invariant function; if f is an invariant function then
for each measurable set I € R the set f~1(I) is a measurable invariant set (if
the implications of the above discussions are not clear to you, see Problem
6.31).

As a byproduct of the previous discussion, it follows that if a system is
ergodic then for each function f € L*(X, u) the function f is almost every-
where constant and equal to | /- We have just proven another interesting
characterization of the ergodic systems:
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Theorem 6.7.5 A Dynamical System (X, T, u) is ergodic if and only if for
each f € LY(X, u) the ergodic average f* is constant; in fact, f+ = p(f)
a.e..

In other words, if we observe the time average of some observable for a
sufficiently long time then we obtain a value close to its space average. The
previous observation is very important especially because the space average
of a function does not depend on the dynamics. This is exactly what we were
mentioning previously: the fact that the dynamics is sufficiently ‘complex’
allows us to ignore it completely, provided we are interested only in knowing
some average behavior. The relevance of ergodic theory for physical systems
is largely connected to this fact.

6.7.2 Recurrence Theorems

Next, we discuss another very general result, of a somewhat disturbing nature,
is Poincaré return theorem.

Theorem 6.7.6 (Poincaré) Given a dynamical systems (X, T, u) and a
measurable set A, with u(A) > 0, there exists infinitely many n € N such
that

w(T™"ANA)#0.

The proof is rather simple (by contradiction) and the reader can certainly find
it out by herself (see Problem 6.24).%3

A natural question is how long it takes, on average, to come back to a set
A. Let A C X be a measurable set, and let us define the return time

Ta(z) =inf{n e N : f*(z) € A}. (6.7.9)
Problem 6.3 Check that 7: A — NU {oco} is a measurable function.

Lemma 6.7.7 (Ka¢) Given a dynamical systems (X, T, i) and a measur-
able set A, with u(A) > 0,

[ a@utdn) = 1= (),
A

whereY ={r e X : T"(z) ¢ AVn € N}.

33 An unsettling aspect of the theorem is due to the following possibility. Consider a
room full of air, the motion of the molecules can be thought to happen accordingly to
Newton equations, i.e. it is an Hamiltonian systems, hence a dynamical system to which
Poincaré theorem applies. Let A be the set of configurations in which all the air is in the
left side of the room. Since we ignore, in general, the past history of the room, it could
very well be that at some point in the past the system was in a configuration belonging to
A-maybe some silly experiment was performed. So there is a positive probability for the
system to return to the same state. Therefore, the disturbing possibility of sudden death
by decompression.
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PROOF. Consider the set X4 = U, T~"(A), clearly T-'(X4) C Xa.
This means that X4 \ 77'(X4) has zero measure. We can then define
X4 = ﬂfL‘D:OT’”XA, clearly X4 \ X4 has zero measure and T'(X4) = X4 =
T71(X4). Also, B = A\ X4, must have zero measure, otherwise Poincare
theorem would imply that there exists m € N such that T-™B N B # (), but
T-™B C T™(A) C X4, which is a contradiction. The same argument shows
that 74 is everywhere finite on A, = AN X 4. We can thus resctrict to the
dynamical systems (X a,T,ji), where i = u(X4) tu. By construction, 74
is almost everywhere finite on X 4. Let E, = {& € A, : 7a(z) = n} and
R, ={x & A, : 7a(z) = n}. Note that all these sets are disjoint, hence their
measure must tend to zero as n — oco. Then

T_an = Ln+1 U Rn+1'

Consequently,
W(Ra) = p(Bosd) + p(Rust) = 3 ()
k=n-+1
It follows
1= u(Y) = p(Xa) =D p(En) + p(Rn) = > Y p(Er)
n=1 n=1k=n
= > kulB) = [ ra@utda)

O

The above result is somewhat comforting as far as the comment in footnote
33 is concerned. The reader can easily calculate the average time for a catas-
trophic event to occur and see that it is extremely large.

6.7.3 Kakutani Towers

To conclude the section, we present a construction that is often very useful in
ergodic theory: the Kakutani tower associated to a positive measure set A of
a measurable dynamical system (X, T, p).

Let Ay = {x € A : 74(z) = k}, and consider the set Y = {(x,j) €
AxNU{0} : j<7a(z)} and the map S:Y — Y defined by

(z,j+1) if j+1<7a(x)

S((z,7)) = {(Tr(z)(x),o) if j =71a(z) —1.
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The index, j stands for the floor in the tower. The o-algebra on each floor
is simply the o-algebra on X. Also, define the measure on Y. For each
measurable set B C Y,

v(B)y=> n({x €A : (x,k) € B}).
k=0
Consider the map 7 : Y — X defined by
m(z, k) = TF(z).

Let 74 be as in (6.7.9), and Ay, ={x € A : Ta(z) =k}, k € N, and Ay = A.
Note that, for each measurable set B C X,

7 (B) = Urzo Ujek {(2,§) €Y : € AxNT 7B},

which is the union of measurable sets, hence 7 is measurable. The main
property of Kakutani towers rests in the following Theorem that establishes
the relation between the tower and the original dynamical system.

Theorem 6.7.8 Given the above definitions, we have
Towr=molS,

mv=p, v(Y) =1, and (A, S,v) is a measurable dynamical system.
Conversely, if (A,S,v) is a measurable dynamical system for some measure
v, then (Y, T, 1) is a measurable dynamical system for the measure

w(B) = v((AN B,0)) + i i v((A,NT7B,0)).
j=1n=j+1
PROOF. Let (z,1) € Y, with | < 74(x) — 1, then
moS(x,1) =n(x,l+1) =T (z) =T on(z,l).
If | = 7a(x) — 1, then
Ton(z,1) =T (z) = 7(T™2®)(2),0) = 7 0 S(z,1).

It remains to compute 7,v.

Let B C X be a measurable set, then (z,0) € 7~ 1(B) iff z € AN B; while,
for k > 0, (z,k) € 7 'B iff 7(z,5) = T7(z) € B with j < 7a(x), that is
x€ A, ={x €A : 74(x) =n} with n > j. Accordingly,

71 (B) = (AN B,0)| J[U32,(Uns; 4, N T (B), )] . (6.7.10)
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Let R, ={x & A : 7a(x) =n}. Since T"'R, = R,,+1 U A,,11 we have

v (B) =u(BNA)+ 3.3 1 (4, NT(B))

ZH(B n A) + Z Z [u (T*lR”_1 N Tﬁj(B)) — (Rn ﬂTﬁj(B))}
=u(BNA)+> > (R NT(B))
j=0n>j
*ZZ#(RnﬂT’j(B)) =u(BNA)+ > pu(R,NB)

=u(BNA)+ p(BNA°) = p(B).

In particular, v is a probability measure, since 1 = u(X) = v(r~1X) = v(Y).
To conclude the proof, note that, for each measurable set B € Y we have
v(S7HB)) =v(n~ o T  on(B)) = (T~  on(B)) = p(n(B))
=v(r tom(B)) > v(B).
Since v(S7Y(B)) =1 —v(S71(B°)) <1 —v(B°) > v(B). Thus, v is invariant
for S, and the first statement of the Lemma follows.

To prove the last part, for B C A let i(B) = v((B,0)). By (6.7.10) we can
write, for all B C X,

M(B):ﬂ(AﬁB)+Z > i(A.NTB).

=

Then

pw(T'B)=pANT'B)+ Y (A, nT"B)+> > [i(A.NT/B)
=2

j=2n=j5+1
*iy((AnﬁT’"B,n—l))+§:ﬂ(AnﬂT’lB)+Z > i(A.NTB)
n=2 n=1 j=2n=j+1
:iu A, NT™"B,n—1)) +Z Z (A4, NT77B)
n=1 j=1n=j+1
:V(S*l(AmB,O))Jri i fi (A, NT7B)

j=1n=j+1

(AN B,0)) ii (A, NT™B) = u(B).
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0

Kakutami towers are a powerful tool for investigating measurable systems.
To get a feeling, solve the following two problems.

Problem 6.4 Prove Kaé¢ theorem using Kakutani towers.

Problem 6.5 Given the measurable dynamical system (X, T, u), prove that,
calling Ty the return map to a set A, u(A) > 0, the tripe (A,Ta,pn) is a
measurable dynamical system.

6.8 Mixing

We have argued the importance of ergodicity, yet from a physical point of
view ergodicity may be relevant only if it takes places at a sufficiently fast
rate (i.e., if the time average converges to the space average on a physically
meaningful time scale). This has prompted the study of stronger statistical
properties of which we will give a brief, and by no mean complete, account in
the following.

Definition 6.8.1 A Dynamical System (X, T, p) is called mixing if for every
pairs of measurable sets A, B we have
lim p(T7"(A) N B) = p(A)u(B).
n—oo
Obviously, if a system is mixing, then it is ergodic. In fact, if A is an

invariant set for T', then T~"A C A, so, calling A¢ the complement of A, we
have

m(A)pu(A%) = lim p(T""ANA") =0,

n— oo

and the measure of A is either one or zero.
An equivalent characterization of mixing is the following:

Proposition 6.8.2 A Dynamical System (X, T, ) is mizing if and only if

lim foT"gd,u:/ fdu/ gdu
for every f, g € L*(X, p) or for every f € L>=(X, ) and g € LY (X, u).**

The proof is rather straightforward and it is left as an exercise to the
reader (see Problem 6.33) together with the proof of the next statement.

34The quantity Jx FoTg—[x f [x gis called “correlation,” and its tending to zero—which
takes places always in mixing systems—it is called “decay of correlation.”
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Proposition 6.8.3 A Dynamical System (X, T, u), with X a compact metric
space, T continuous and p Borel, is mixing if and only if for each probability
measure A absolutely continuous with respect to u

Jim A(foT™) = u(f)
for each f € C°(T?).

This last characterization is interesting from a mathematical point of view.
Define, as usual, the evolution of a measure via the equation

(TN =AfeT)

for each continuous function f. If for each measure, absolutely continuous
with respect to the invariant one, the evolved measure converges weakly to the
invariant measure, then the system is mixing (and thus the evolved measures
converge strongly). This has also a very important physical meaning: if the
initial configuration is known only in probability, the probability distribution
is absolutely continuous with respect to the invariant measure, and the system
is mixing, then, after some time, the configurations are distributed according
to the invariant measure. Again the details of the evolution are not important
to describe relevant properties of the system.

6.8.1 Examples

Rotations

We have seen that the translations by an irrational angle are ergodic. They are
not mixing. The reader can easily see why.

Bernoulli shift

The key observation is that, given a measurable set A, for each ¢ > 0 there
exists a set A, € A, thus depending only on a finite subset of indices,?> with the
property>¢

H(ANA) <.

Then, given A, B measurable, and for each ¢ > 0, let A., B, be such an approx-
imation, and I4, Ip the defining sets of indices, then

W(T~™ AN B) = w(A)p(B)| < 4=+ |u(T~™ A (1 B.) — p(A)u(B.)|.

35Remember, this means that there exists a finite set I C Z such that it is possible to
decide if o € X5, belongs or not to Ac only by looking at {c;}icr-

36This follows from our construction of the o-algebra and by the definition of outer
measure, see Examples 6.2.1-Bernoulli shift.
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If we choose m so large that (I4+m)NIp = 0, then by the definition of Bernoulli
measure we have

w(T™ ™A N Be) = (T~ A )u(Be) = p(Ae)p(Be),

which proves
lim u(T~™ANB) = pu(A)u(B).

m—o0

Dilation

This system is mixing. In fact, let f, g € C'(T), then we can represent them
via their Fourier series f(z) = Y, c; €™ fi,, f_x = [1. It is well known that
> okez | fxl <ooand [fi] < ﬁ for some constant ¢ depending on f. Therefore,

f(TnJJ) — Z e27'ri2"kaz:fk7

keZ

which implies that the only Fourier coefficients of f o T™ different from zero are
the {2"k}rez. Hence,

frome= [ [ -Ix

kEZ

frgani — fogo

<2 | ful-

kEZ

The previous inequalities imply the exponential decay of correlations for each
smooth function. The proof is concluded by a standard approximation argument:
given f, g € L*(X, du), for each € > 0 exists f., g. € CY(X): ||f — fellz2 < ¢

and |lg — gell2 < €. Thus,
/stTnge_/fa/gs
T T JT

fremms=[1 o=

which yields the result by choosing first € small and then n sufficiently large.

+2([Ifll2 + llgll2)e,

6.9 Stronger statistical properties

One very fruitful idea in the realm of measurable dynamical systems is the
idea of entropy. In some sense the entropy measure the complexity of the
motions from a measure theoretical point of view.

To define it one starts by considering a partition of the space into measur-
able sets £ := {Ay,... A,} and defines®”

H,(§) = — Z 1(A;q) log p(A;).

37The case of a countable partition, or even an uncountable partition, can be handled and
it is very relevant, but outside the aims of this book, see [ ] for a complete treatment
of the subject.
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Given two partitions ¢ = {A;},n = {B;} we define { V1 := {4, N B;}. Let
then be
gzn =&V Tﬁl(é) VeV Tﬁn+1(§)'

It is then possible to prove that the sequence H,(¢%))) is sub-additive, hence
the limit

h(T,€) = lim ~H,(7,)

n—o00 N

exists.

Definition 6.9.1 The entropy of T with respect to u is defined as

hu(T) := sup{h,(T,€) | H(§) < oo}

If a system has positive metric entropy this means that the motion has
a high complexity and it is very far from being regular. One of the main
property of entropy is that it is a metric invariant, that is if two systems
are metrically conjugate (see the following), then they have the same metric
entropy.

Even more extreme form statistical behaviors are possible, to present them
we need to introduce the idea of equivalent systems. This is done via the
concept of conjugation that we have already seen informally in Example 6.5.1
(logistic map, circle map).

Definition 6.9.2 Two Dynamical Systems (X1,T1, 1), (Xa,Ta, uo) are (mea-
surably) conjugate if there exists a measurable map ¢ : X1 — Xo almost
everywhere invertible*® such that puy(A) = p(p(A)) and Ty o ¢ = ¢ o Ty.

Clearly, the conjugation is an equivalence relation. Its relevance for the
present discussion is that conjugate systems have the same ergodic properties
(Problem 6.42).%7

We can now introduce the most extreme form of stochasticity.

Definition 6.9.3 A dynamical system (X, T, p) is called Bernoulli if there
exists a Bernoulli shift (M, v, o) and a measurable isomorphism ¢ : X — M
(i.e., a measurable map one one and onto apart from a set of zero measure
and with measurable inverse) such that, for each A € X,

and
T=¢ tocgog.

38This means that there exists a measurable function ¢ =1 : X5 — X7 such that gpogp—! =
id po-a.e. and ¢~ o ¢ =id pi-a.e..

390f course the reader can easily imagine other forms of conjugacy, e.g. topological or
differential conjugation.
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That is a system is Bernoulli if it is isomorphic to a Bernoulli shift. Since
we have seen that Bernoulli systems are very stochastic (remind that they
can be seen as describing a random event like coin tossing) this is certainly
a very strong condition on the systems. In particular it is immediate to see
that Bernoulli systems are mixing (Problem 6.42).

6.9.1 Examples
Dilation

We will show that such a system is indeed Bernoulli. The map ¢ is obtained by

dividing [0, 1) in [0, 1) and [3, 1). Then, given = € T, we define ¢ : T — X3 by
e 1

1 ifTz €0, =)

P(x); = _ 1 2

2 ifT'x € [5, 1)

the reader can check that the map is measurable and that it satisfy the required
properties. Note that the above shows that the Bernoulli measure with p; =
P2 = % is nothing else than Lebesgue measure viewed on the numbers written in
basis two. This may explain why we had to be so careful in the construction of

the Bernoulli measure.

Baker

Let us define ¢—!; for each o € £y
—1
=) 2i+1’
i=0
oo

04

i=1

Again the rest is left to the reader.

Forced Pendulum

In the introduction we have seen that there exists a square () with stable and
unstable sides such that, calling T the map introduced by the flow at a proper
time, TQNQ D QyUQY. Where @} are rectangles that go from one stable side
of @ to the other and, in analogy, T-1Q NQ D Q5 U Q5.

We can use this fact to code the dynamics similarly to what we have done
for the Backer map. Namely, given the set A = [, ., T"Q (this set it is non
empty—see Example 6.5.1-Horseshoe) and ¢ : A — 3o define by
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[¢( )] o iE{O,l} |fk20andT’fx€Q;‘
= ie{0,1} ifk<0and The € Q:.

It is easy to verify that ¢ is onto and that it is a.e. invertible. It remains to specify
the measure on the Horseshoe, we can just pull back any invariant measure on
the shift and we will get an invariant measure on the set A.

Let us conclude with a final remark on the physical relevance of the concept
just introduced. As we mentioned, if f is an observable, then its ergodic
average represents the result of an observation over a very long time (the
time scale being determined by the mixing properties of the system). Yet, in
reality, it may happen that we look for too short a time or, after studying a
certain quantity, we can get a grant to buy the needed apparatus to perform
more precise measurements. What would we see in such a case? Clearly, we
would not see a constant, even for an ergodic system, and we would interpret
the non constant part as fluctuations. In many cases it may happen that this
fluctuations have a very special nature: they are Gaussian. In such a case
we say that the system satisfies the Central Limit Theorem (CLT). Let us be
more precise: define S, f := ﬁ S foTl.

Definition 6.9.4 Given a Dynamical System (X, T, u) and a class of obseruv-
ables A C L*(X,p) we say that the class A satisfies the CLT if Vf € A,

u(f) =0,
. 1t ez
Jm (e | 5.2 )= o= [
where (the variance) o is defined by o = p(f) +2> 0, u(fo T f). 2

The relevance of the above theorem is the following: if the system is ergodic
and satisfies the CLT, then - 22:01 oT  —u(f) = (’)(ﬁ), we have thus the
precise scale on which the fluctuations should appear.

In this book we will be mainly interested in the question of how to establish
if a given system is ergodic or not.

Unfortunately, neither ergodicity is a typical property of dynamical sys-
tems, nor is regular motion. It is a frustrating fact of life that generically
dynamical systems present some kind of mixed behavior. Nevertheless, there
are some class of systems that are known to be ergodic and among them the
hyperbolic systems are probably the most relevant. We will discuss them in
the next chapters.

40This definition is a bit stricter than usual because, in general, there may be cases in
which the fluctuations are Gaussian but the formula for the variance does not hold as
written.



PROBLEMS 149

Problems

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.
6.14.

6.15.

6.16.
6.17.

6.18.

6.19.

6.20.

6.21.

Given a measurable Dynamical Systems (X, T, ) verify that, for each
measurable set A, if T'(A) is measurable, then u(T'A) > u(A).

Set MY (X) ={pe M| puX)=1}and ML(X) =M (X)N Mr(X).
Prove that M%(X) and M!(X) are convex sets in M(x).

Call M¢(X) c M!(X) the set of ergodic probability measures. Show
that M¢(X) consists of the extremal points of Mp(X).

Prove that the Lebesgue measure is invariant for the rotations on T.

Consider a rotation by w € Q, find invariant measures different from
Lebesgue.

Prove that the measure p, defined in Examples 6.2.1 (Hamiltonian sys-
tems) is invariant for the Hamiltonian flow.

Given a Poincaré section prove that there exists ¢ > 0 such that inf 7 >
c> 0.

Show that vy, defined in (6.3.2) is well defined.
Show that the return time 7w is finite vs-a.e. .

Show that vy, is T invariant. Verify that, collecting the results of the
last exercises, (X, Ty, vx) is a Dynamical System.

something about holomorphic dynamics?
Prove that the Bernoulli measure is invariant with respect to the shift.

Let ¥, be the set of periodic configurations of X. If 11 is the Bernoulli
measure prove that p(3,) =0

Consider the Bernoulli shift on Z and define the following equivalence
relation: o ~ ¢’ iff there exists n € Z such that T"¢ = ¢’ (this means
that two sequences are equivalent if they belong to the same orbit).
Consider now the equivalence classes (the space of orbits) and choose*!
a representative from each class, call the set so obtained K. Show that
K cannot be a measurable set.

Compute the transfer operator for maps of T. Prove that ||Lhlj1 < ||h]]1.

Prove the Lasota-York inequality (6.5.6).

41 Attention !!l: here we are using the Axiom of choice.
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6.22. Prove that for each sequence {h,,} € CY)(T), with the property sup,,cy ||/ ||1+
|hnll1 < oo, it is possible to extract a subsequence converging in L.

6.23. Prove Corollary 6.7.3.
6.24. Prove Theorem 6.7.6

6.25. Let U C X of positive measure, consider
1 n—1
= lim — T').
fola) =tim 3% (1)
Show that the limit exists and that the set Ay := {x € U | fy(z) = 0}

has zero measure.

6.26. A topological Dynamical System (X,T) is called Topologically transi-
tive, if it has a dense orbit. Show that if (T, T,m) is ergodic and T is
continuous, then the system is topologically transitive.

6.27. Give an example of a system with a dense orbit which it is not ergodic.
6.28. Give an example of an ergodic system with no dense orbit.

6.29. Give an example of a Dynamical Systems which does not have any
invariant probability measure.

6.30. Prove that Birkhoff theorem implies Von Neumann theorem.

6.31. Prove that if (X, T, u) is ergodic, then all f € L'(X, i) such that foT =
f are a.e. constant. Prove also the converse.

6.32. For each measurable set A, let

n—1
1 .
Fan(w) = — 3 xa(T'a).
=0

be the average number of times z visits A in the time n. Show that
there exists Fy = lim; o0 Fla,n a.e. and prove that, if the system is
ergodic, Fiy = p(A4).

6.33. Prove Proposition 6.8.2 and Proposition 6.8.3.
6.34. Show that the irrational rotations are not mixing.

6.35. Prove that if f € C%(T), then its Fourier series converges uniformly.
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6.36.

6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

Let v be a Borel measure on @ = [0,1]? such that v(d,f) = 0 for all

f € Cper(@Q) = {f €CHQ) | £(0,y) = f(1,y) Vy € [0,1]}. Prove that
there exists a Borel measure v; on [0, 1] such that v = m x v4.

Prove that is a flow is ergodic (mixing) so is each Poincaré section.
Prove that is a map is ergodic so is any suspension on the map. Give
an example of a mixing map with a non-mixing suspension (constant
ceiling).

Consider ([0, 1],T) where

([a] is the integer part of a), and

W)= o / f(#)——da.

1+z
Prove that ([0,1],7, u) is a Dynamical System.*?

In view of the two previous exercises explain why it is problematic to
study the statistical properties of the Gauss map on a computer.

Choose a number in [0, 1] at random according to Lebesgue distribution.
Assuming that the Gauss map is mixing (which it is, see 7??) compute
the average percentage of numbers larger than n in the associated con-
tinuous fraction.

Let (Xo, T0, o) be a Dynamical System and ¢ : Xog — X; an homeo-
morphism. Define T} := ¢ o Ty 0 ¢~% and uy(f) = po(f o ¢~ 1). Prove
that (X1,71, p1) is a Dynamical System.

Let (Xo, To, ito) be measurably conjugate to (X1, T1, pt1), then show that
one of the two is ergodic if and only if the other is ergodic. Prove the
same for mixing.

Show that the systems described in Examples ??7—strange attractor and
horseshoe, are Bernoulli.

Prove Lebesgue density theorem: for each measurable set A, m(A) > 0,
there exists * € A such that for each ¢ > 0 exists 6 > 0 such that
m(AN[x—d,z+ ) > (1 —¢e)24.

42The above map is often called Gauss map since to him is due the discovery of the above
invariant measure.
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Hints to solving the Problems

6.1

6.2

6.3

6.4

The first point is to define an orthogonal projection on the closed sub-
space V. For each h € H, let a = inf,ey ||h — v]|. Let {vp}nen CV be
such that lim,,_, ||h — v,|| = a. For each w € V, and t € R, we have

@ < ||h = v, +tw|? = ||h — va||* = 2(h — v, w)t + £2|Jw]|*.

For each ¢ > 0, there exists n. € N such that, for all n > n., we have
|h — v, ||? < @® + €. Hence, for n > n.,

[wl[*? = 2(h — v, w)t + € > 0.

The above can happen for all ¢t € R only if [(h — v,,w)| < /e||w|| for
each w € V. Accordingly, for n,m > n.,

(v _UmH2 < (vn = hyvn = vm)| + [(vm — B, vn — vim)|
S 2\/<g||vn - UmH

That it, {v,} is Chauchy, let v € V be its limit, then h—wve VL. We
can then write h = v + (h — v) which shows that H =V @ V+.

It follows from Problem 6.1 which implies
H=VtaeVv=vigwhHt

If 2 € 7, (n) for some n € N, than T"(2) € A, and T*(x) ¢ A, that is
Tk(z) € A°, for all k € {1,...,n — 1}. Thus

n—1
m T*iAc
=1

which is measurable once T' is measurable.

Tgl(n) eT™(A)N

)

Simply note that,

Let Ta(x) = T74®)(z) be the first return map; it suffices to check the
invariance of p. For each measurable set B C A,

S™HB,0) = U (T""BNA,,n—1),
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6.8

6.11

6.13

6.14
6.17
6.18
6.19

6.20

6.22

6.24

and
U, T"BNA, =T,"B.
Thus,
w(B) =v((B,0)) = u(S’_l(B,O)) = Z v((T™"BNA,,n—1))
n=0
=S WT"B A AL) = u(T5 B).
n=0

Use Krein-Milman Theorem | ].

Use the properties of H to deduce (Vg H, d,¢'V,H) = ||V, H|?, and
2

thus dy ¢!V, H = %vmﬂ* + v where (Vi H, v) = 0. Then

study the evolution of an arbitrarily small parallelepiped with one side

parallel to V,H-or look at the volume form if you are more mathemat-

ically incline-remembering the invariance of the volume with respect to
the flow.

Use the invariance of p and the fact that, by Problem 6.12, if A C ¥
then u(¢00(A) N @ (1 A) = 0 provided (n +1)d < c.

Let 6 < ¢ and X := ¢[%9%, apply Poincaré return theorem to .
Check it on the algebra A first.
Y, is the countable union of zero measure sets.

Show that K NT"K C ¥,, then by using Problem 6.18 show that if
K is measurable > 7 pu(T™K) = 1 which, by the invariance of p, is
impossible.

Use the equivalent definition [gLfdm = [ fgo Tdm.

Consider partitions P,, of T in intervals of size % Define the condi-

tional expectation E(h|P,)(z) = ﬁfl(m) hdm, where x € I(z) €
P,. Prove that |[E(h|P,) — k|1 < 1[|W|l;. Notice that the functions
E(hy|Pr) have only m distinet values and, by using the standard di-
agonal trick, construct an subsequence h,,; such that all the E(hy,;|Py,)

are converging. Prove that h,, converges in L'

Note that u(T~"ANT~™A) # 0 then, supposing without loss of gener-
ality n < m, p(ANT~™T"A) # 0. Then prove the theorem by absurd
remembering that p(X) < oco.
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6.25

6.26

6.27

6.28
6.29
6.30

6.32
6.33
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The existence follows from Birkhoff theorem, it also follows that Aq is
an invariant set, then

0:~/AofU:/AOXU:M(AO).

For each n € N, z € T? consider B (z)-the ball of radius L centered

at x. By compactness, there are {z;} such that U; B1 (z;) = T?. Let
Api={y €T | TF*yN B (X;) =0 Vk €N},

clearly Ay, ; = ﬁkeNT_kB% (x;)¢ has the property T 1A, ; D Ay
It follows that flmﬂ' = UpenT ™A, O Apyi is an invariant set and
it holds ,u(flm’i\Am’i) = 0. Since A, ; it is not of full measure, flm,i,
and thus A, ;, must have zero measure. Hence, A, = N;Ar, i has zero
measure. This means that U,,enA,, has zero measure. Prove now that,
for each y € T?, the trajectories that never get closer than % to y are
contained in A,,, and thus have measure zero. Hence, almost every
point has a dense orbit.)

Extend the result to the case in which X is a compact metric space and

1 charges the open sets (that is: if U C X is open, then u(U) > 0.

A system with two periodic orbits, and the measure supported on them.
Along such lines more complex examples can be readily constructed.

A non transitive system with a measure supported on a periodic orbit.
X =R Te=x+v,v#0.

Note that the ergodic average is a contraction in L, an isometry in L?
and that L' C L? (since the measure is finite). Use Lebesgue dominate
convergence theorem to prove convergence in L? for bounded functions.
Use Fatou to show that if f € L? then f¥ € L? and a 3-¢ argument to
conclude.

Birkhoff theorem and Theorem 6.7.5.

Note that for each measurable set A and € > 0 there exists f € C%(X)
such that u(|f — xa|) < & —by Uryshon Lemma and by the regularity
of Borel measures. To prove that u(T-"AN B) — u(A)u(B) choose
d\ = p(B)"'xpdu and use the invariance of u to obtain the uniform
estimate A(f o T — a0 7)) < u(B)~u(|f — x4])

Remember that f, = 5= [ €*™"* f(x)dz. Thus

1 2mina §(2)
mTinT d .
(27rin)227r/qre fo @) de

fn:
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6.36 The measure v; is nothing else then the marginal with respect to z,
that is: for each continuous function f : [0,1] — R define f : @ — R
by f(m,y) f(y), then vi(f) = V(f) To prove the statement use
Fourier series. If f is smooth enough f(z,y) =>4 fr(y)e2 ™ where
the Fourier series for f and 0, f converge uniformly. Then notice that
0 = v(8,e¥™*") = 27ikv(e2™%) implies v(f) = v(fo) = m x v1(f).

6.38 Write u(foT)=>2, fi foT(x)u(dz), change variable and use the
i+1

identity —'— = £ — 15 to obtain a series with alternating signs.

6.39 The computer uses only rational numbers. It is quite amazing that these
type of pathologies arises rather rarely in the numerical studies carried
out by so many theoretical physicist.

6.40 Define f(z) = [z7!], then the entries of the continuous fraction of z are

{fon}. The quantity one must compute is then m(limg_, oo % Zf;ol X[n,00)©
foT") = u([n, 00)).

6.44 We have seen in Examples 6.9.1-Dilations that Lebesgue measure is
equivalent to Bernoulli measure and that the cylinder correspond to
intervals. It then suffices to prove the theorem for the latter. Let A C
¥t such that p(A) > 0, then, for each € > 0,there exists A. € A such
that A. D A and pu(A:) — pu(A) < eu(A). Since A € A, it exists
ne € N such that it is possible to decide if o € A, only by looking at
{01,...,0,_}. Consider all the cylinders Z{A(0; k1, ..., kn_)}, clearly if
ITe€ZthenINA,iseither Tor. Let Z, ={I €Z|INA. =1} and
I, ={I €Z|InA:; =0} Now suppose that for each I € T, holds
w(INA) <1 —e)u(l) then

pA) = D pANT) < (1—e)u(A:) < u(A),

which is absurd. Thus there must exists I € Z,: u(ANI) > (1 —¢)u(l).

Notes

Give references for SRB and Gibbs, mention entropy, K-systems. diffeo with
holes, strange attractors, history of the field



Chapter 7

Quantitative Statistical Properties,
a class of 1-d examples

WDiven a Dynamical System it is in general very hard to study its ergodic
properties, especially if the goal is to have a quantitative understanding. To
make clear what is meant by a quantitative understanding and which type
of obstacles may prevent it, I devote this chapter to the study of a simple,
but highly non-trivial, class of examples: one dimensional smooth expanding
maps.

7.1 The problem

Recall from Examples 6.5.1 that a one dimensional smooth expanding map is
amap T € C?(T!, T!) such that |[DT| > X > 1.

We know already that such maps have a unique absolutely continuous
invariant measure (see sections 6.5.1, 6.6.1 Expanding maps).

We would like first to understand other invariant measures in order to have
a clearer picture of which measurable Dynamical Systems can be associated
with the topological Dynamical System (T!, T'). This is still at the qualitative
level. In addition, we would like to have tools to compute such invariant
measures with a given precision, which is a first quantitative issue.

Next, we would like to study statistical properties more in depth. To this
end, we will restrict to the case (T, T, u), where p is the measure absolutely
continuous with respect to Lebesgue. The type of questions we would like to
address is

If we make finite time and precision measurements, what do we observe?

156



7.2. INVARIANT MEASURES 157

Remember that a measurement is represented by the evaluation of a func-
tion. The fact that the measurement has a finite precision corresponds to
the fact that the function has some uniform regularity (otherwise, we could
identify the point with an arbitrary precision). The fact that the measure is
made for a finite time means we can only measure finite-time averages. In
other words, we would like to understand the behavior of

N-1
> gor
k=0
for large, but finite, N.

7.2 Invariant measures

Let M be the set of probability (Borel) measures on T!. We can then con-
sider the new Dynamical System (M,T”), where T'u(f) = po T for all
f € C°(TY,R). The invariant measures are the fixed points of 77, let us call
them Fix(T"). If u € Fix(T") then for each h € L>®(TY, u), h > 0, u(h) = 1,
we can consider the new probability measure defined by u,(f) = pu(hf), for
all f € CO(T!,R). Note that

T () = |p(hf o T)| < [kl poe uyp(|f] 0 T) = ||y | £1)-

Hence T" up, is absolutely continuous with respect to p and %:h € L*>®(u). We

can then define the operator £,, : L>(T*, u) — L>(T', u) by L,h := ﬂ;ih.
Let {I;} be a partition in interval of T! such that T'|;, is invertible, T'(I;) =

T! and U;I; = T!. Call S; the inverse of the i-th branch of T.. Then, setting
dT/“ﬂIi

Pi = dn "

Tun(f) =D phly foT) =3 (L, (ho Sif) o T)

:u< Ei:pihos,-] f>.

Thus, setting p = >, p; o T'1l;, we have

a1’ p,
- > (ph) o S; =: L,(h).

It follows that £,(1) = 1 and, for each h € L*(u),

w(Lp(h)) =T'pn(1) = p(h).
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Problem 7.1 Compute p and L,, in the case in which p is the unique in-
variant measure absolutely continuous with respect to Lebesgue.

The relevant fact is that one has the following (partial) converse.

Lemma 7.2.1 For p € C° p > 0, let L,(h)(z) = > yer—12 PWA(Y). If
there exists A € R, h € C°, h > 0, such that Ly,h = Ah, then there exists a
measure ji € M such that (L, f) = Mu(f) for all f € C° and there exists an
invariant measure absolutely continuous with respect to .

PRrROOF. By continuity there exists v > 0 such that h >~ > 0. Thus

L5l <A FlooL£ph = A"y ™A oo| floo-

Hence, calling m the Lebesgue measure, 2 77) ATR(L])Fm is a weakly com-

pact sequence. Accordingly the same arguments used in Krylov-Bogoliubov

Theorem 6.5.2 imply that there exists a measure p such that )\*lﬁg,u = [
Next, define v(f) := p(hf). Clearly v is a measure absolutely continuous

with respect to i, in addition

v(foT) =N Lou)(hf oT) = A" u(fL,R) = u(fh) = v(f).
0

7.3 Absolutely continuous invariant measure:
revisited

We have already seen that there exists a unique invariant measure with re-
spect to Lebesgue. Here we study this issue by a slightly different technique.
Although the main idea is always to study the spectrum of the transfer oper-
ator, it is interesting to see how this can be achieved in many different ways,
each way having its own advantages and disadvantages. Consider the transfer
operator

Lh(z):= Y |D,T|"'h(y) (7.3.1)

yeT 1z

Problem 7.2 Show that if du = hdm, where m is the Lebesgue measure,
then p(f oT) =m(fLh).

Problem 7.3 Show that, for each n € N,

Lrh(x) =Y [DyT"| 'h(y)

yeT "z
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Notice that, since DT cannot be zero, then its sign is constant. We limit
ourselves, for simplicity, to the case DT > .

Problem 7.4 Show that
d ., _ _
L) = > (D,T)"*K(y) — DT (D, T) " h(y)
yeT 1z

= L((DT)™ 1) — L(D*T(DT)?h)

7.3.1 A functional analytic setting

Let us consider first the Sobolev space W' and the space L'.! Then, for
each h € LY(T!,m),

/|£h|dm§/ 1-£|h\dm:/ 1oT|h\dm:/ hldm  (7.3.2)
T T T1 T1

that is £ is a bounded operator on L! and its norm is bounded by one.
In addition, remembering Exercise 7.2,

d
/1 (- Chldm < AW+ + DIhss, (7.3.3)
T

where D := sup D?*T(DT)~2.
Problem 7.5 Iterate the (7.3.2), (7.3.3) and prove, for alln € N,
[L"h|s <[]
L%l < AT hlwia + Blh|p
where B=1+ (1—-A"1H71D.

Since W 1 controls the L*° norm,? then we have that there exists C' > 0 such
that |[£™1]|s < C for each n € N.

Using such a fact we can obtain similar inequalities in the Hilbert spaces
L? and W2, Indeed

el = [ ey ot < il | [ ernor|” =l

[Lenpen]” < chpleienl.:
T1

LFor an open set U C R, the spaces WP+4(U) are the completion of C> (U, C) with respect

1
to the norms [|f|%, + /|2 + -+ +[f®)|%,] 7. Note that they are all Banach spaces by
construction but the W22 are also Hilbert spaces (Exercise: write the scalar product).
2If f € C*°, then the mean value theorem asserts [ h = h(€) for some &. Then h(z) =
h(€) + f; K (z)dz. Thus |hleo < |h|p1 + |W |1 = |hlyy1,1. The result extends then to all

elements of W1 by a standard approximation argument.
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Which implies ||£"h||2 < Cz||h||2 for each n € N. Hence,
d n —n i !
I £kl < A" C2 R L2 + Dallh]l 2.

Iterating as before we have, for all n € N,

|[L"h|p2 < C|h|L2

_ (7.3.4)
LRz < AXNT"|h|lwiz + Blh|Le,

for some appropriate constants A, B, C depending only on the map T

To prove the existence of an invariant measure absolutely continuous with
respect to Lebesgue we can try to mimic the Krylov-Bogolubov approach, but
to do so we need a compactness result to substitute the weak compactness of
the unit ball of the dual of a Banach space. This takes us in a very interesting
detour in some fact of functional analysis.

7.3.2 Deeper in Functional analysis

Since we are on a circle it is a good idea to use Fourier series. For each
function h € C*°(T, C) let hy be its Fourier coefficients and define

(Aph)(z) = ) hype?™ik (7.3.5)

|k|<m

Clearly, for all m > 0,

h=Anlfe= > (= Y hal’ (k2K <m™ Y7 (W)

|k|>m |k|>m. |k|>m. (7.3.6)

<m 2 Re < m2 e,
Using the above fact we can prove.
Lemma 7.3.1 The unit ball of W'2 is (sequentially) compact in L>.

PROOF. Consider a sequence {h,,} C W2 |h,,|w1.2 < 1. Since A; are
all finite rank operators, {A;h,} for [ fixed are contained in a bounded finite
dimensional (hence compact) set, thus there exists a converging subsequence
for all [ while (7.3.6) shows that the sequences for fixed m are all conver-
gent. Using the usual diagonalization trick we can then extract a converging
subsequence. O

Consider now hy, := + ZZ;& LF1. By the above lemma {h,,} is relatively
compact and thus we can extract a subsequence {hy,, } converging in L?. Let
h. be the limit. Note that [ h, =1 for all n € N, thus h, # 0 and [ h, = 1.
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Problem 7.6 Show that Lh, = h, that is du := h.dm is an invariant mea-
sure absolutely continuous with respect to Lebesgue and with L? density.

Of course, at this point it is natural to ask if u is the only measure with
such a property or there exist others. To answer such a question we need
some more facts.

7.3.3 Even deeper in Functional analysis

Since we have to do it, let us do in the following general setting.
Consider two Banach space (B, || - ||) and (Bo, | - |) such that B C By and

i. |h| < k|| for all h € B,
ii. ifheBand |k =0, then h = 0.

ili.  There exists C > 0 : for each € > 0 there exists a finite rank operator
A. € L(B,B) such that ||A.|| < C and |h — A h| < ¢||h]|| for all h € B.3

In addition consider a bounded operator £ : By — By, constants A, B,C €
R,, and A > 1, such that

a. |[L* < CforallneN,
b. L(B)CB
c. ||L£™h|| < AXNT"||h|| 4+ B|h| for all h € B and n € N.

In particular £ can be seen as a bounded operator on B.

Theorem 7.3.2 The spectral radius of the operator L € L(B,B) is bounded
by 1 while the essential spectral radius is bounded by A\~'.*

We can now prove our main result.

PrROOF OF THEOREM 7.3.2. The first assertion is a trivial consequence
of (¢), (a) and (i).

3In fact, this last property can be weakened to: The unit ball {h € B : |k < 1} is
relatively compact in Bg. We use the present stronger condition since, on the one hand, it
is true in all the applications we will be interested in and, on the other hand, drastically
simplifies the argument. Note also that, if one uses the Fredholm alternative for compact
operators rather than finite rank ones (Theorem E.0.1), then one can ask the A to be
compact instead than finite rank making easier their construction in concrete cases.

4The definition of essential spectrum varies a bit from book to book. Here we call essen-
tial spectrum the complement, in the spectrum, of the isolated eigenvalues with associated
finite dimensional eigenspaces (which is also called the Fredholm spectrum).
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The second part is much deeper. Let £,, . := L™ A, clearly such an oper-
ator is finite rank, in addition

[£7h =Ly hl| < AN [[(L=A)h|[+B[(1—-Ac)h| < A(1+C)A™"[|h[|+ Be]|h].
By choosing € = A™™ we have that there exists C7 > 0 such that

L7 = Lnell < CLAT™.
For each z € C we can now write

1-2L=1—-2(L—Lps)) — 2Ly .

Since :
HZ(£ - E’ma)” < |Z|Cl)\_n < 5,
provided that |z| < Q—él)\”, Thus, given any z in the disk D,, := {|z| < ﬁ)\n}

the operator B(z) :=1 — 2(L — L, ) is invertible.” Hence
1—2L=(1-2L,.B(2)7") B(z) =: (1 — F(2))B(z).

By applying Fredholm analytic alternative (see Theorem E.0.1 for the state-
ment and proof in a special case sufficient for the present purposes) to F(z)
we have that the operator is either never invertible or not invertible only in
finitely many points in the disk D,,. Since for |z| < 1 we have (1 — 2£)~! =

Yoo o 2" L™, the first alternative cannot hold hence the Theorem follows. [

7.3.4 The harvest

We are finally in the position to use all the above result to gain a deep un-
derstanding of the properties of the Dynamical Systems under consideration.

Problem 7.7 Show that Theorem 7.5.2 implies that there exists o € (0,1),
{0k}, and L > 0 such that

p
£ = Zewkﬂgk + R
k=1

where Ty, and R are operators on W2 such that g, Ilp, = d;x1lp, and
RIly, =1Ip, R = 0. Moreover |R"| < Lo™.(Hint: Read section 6 of the Third
Chapter of [ | and recall that the operator is power bounded to exclude
Jordan blocks.)

5Clearly B(2)7! = 0% ) [2(L£ — Ln,e)]™
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The above implies that

1 n—1
IIy := lim — E e Wk pk —
n—oo n
k=0

(7.3.7)

Iy, iff6=0;
0 otherwise.

Problem 7.8 Using equations (7.3.4) show that, for each h € L?
[Mohllwre < Cllh| 2.

(Hint: prove it first for h € W2 and then do a density argument).

Next, note that Exercise 7.6 implies that h, = IIgl # 0, that is one is in
the spectrum on £, this means that the spectral radius of L is one.
Accordingly, if IIyh = h we have h € W12 c C% and®

n;—1
1 J
k| = Mph| < lim — Y £¥[h] = TIp|h| < |h|oh.
J—00 15 =0

This means that all the eigenvectors of the peripheral spectrum are of the
form h = gh, with g € C°. Thus, if h; is an W2 orthonormal a base of the
eigenspace associated to an eigenvalue 6, then the eigenprojector must have

the form
th:Zhi/&wh,

with ¢; € L? and f&h] = 5” Hence Iy L = eng implies
e“’th/ek.h:th/zk-Lh:th/ekoT.h.
k k k

That is €¢;, = £, o T. But then if we set fi, := l,h, € L?, we have
ﬁfk = e“’ﬁ(@k o Th*) = e“’[k[,h* = 6i0€_kh* = ewfk

By the above facts, this implies Il fr, = fi € W12 that is £, € C°. But then
for each p € N we can set hy, := ¢} h, obtaining

Lhy, = ePh,.

Since the the peripheral spectrum consists of finitely many eigenvalues it
follows that there must exist p € N such that pf = 6 mod 27, that is the

6Remember that exercise 7.8 implies that the sequence in (7.3.7) converges in L?, ac-
cordingly there exists a subsequence that converges almost everywhere with respect to
Lebesgue.
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spectrum on the unit circle must be the union of finitely many cyclic groups.
In turn this implies that there exists p € N such that pf = 0 mod 27, hence
(7 = (¥ o T. But this implies that if we define the sets Ay :={z € T : |{7| <
L}, L € R, they are all invariant. So if xr, is the characteristic function of
the set Ar, then xp oT = xr and L(xrh+) = xrhs. We can thus produce
a lot of eigenvalues of £, but we know that such eigenvalues form a finite
dimensional space. The only possibility is that only finitely many of the Ay
are different. This is like saying that ¢; takes only finitely many values. But
EZ is a continuous function, so it must be constant. Hence £;, can assume only
p different values, thus, again by continuity, must be constant. Finally this
implies 8 = 0.

The conclusion is that one is the only eigenvalue on the unit circle and
that the associated eigenprojector has rank one. So one is a simple eigenvalue
and h, is the only invariant density for the map.

7.3.5 conclusions

If we have any probability measure v absolutely continuous with respect to
Lebesgue and with density h € W12, then setting du = h.dm, for each
@ € W2 we have

(o T") —v(poT)| = ’/M”(h = ha)| < llell2Co™[|h = hul12

where o is the largest eigenvalue of modulus smaller than one (or A~! is no
such eigenvalue exist).

Remark 7.3.3 The above means that the evolution of the present chaotic sys-
tem, if seen at the level of the absolutely continuous measures, becomes simply
a dynamics with an uniformly attracting fixed point, the simplest dynamics of
all!

7.4 General transfer operators

In the previous sections we have been very successful in studying the measure
absolutely continuous with respect to Lebesgue. We have seen in §7.2 (crf.
Lemma 7.2.1) that to study other invariant measures one has to analyze more
general transfer operators. Here we will restrict ourselves to studying

Lyh = L(e”h)

where L is the usual transfer operator. This are called transfer operators with
weight and ¢ is sometime called the potential. We will consider first the case
of ¢ : T' — C and specialize to real potential later on.
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For convenience, and also for didactical purposes, we will use the Banach
spaces C! and C°. Hence, form now on, we will assume T' € C?(T!, T!) and
¢ € CH(T,C).

The first step is to compute the powers of £, and study how they behave
with respect to derivation.

Problem 7.9 Show that, for each n € N, holds true
Lih=L"[e"h],
where ¢y, = S i_o o T*.

Problem 7.10 Show that for each n € N and h € C' holds true

d s ()" (¢n)’
—Lh =LY — h h
dxﬁqﬁ £¢ |:(Tn)/ [(Tn))2 + (T
Note that [LEhoc < [hocLi4)1- In addition,”
‘ @)"(y) | _ | iz 7'(T*)
[(T) ()] [(T) (y)]?
n—1 . n—1
T"(T*y) ’ : "
S S T// OO)\—n-i-k—i-l S o0
2 [Ty | < LT T
Analogously,
!/ /
(6) | - 10l
(Tn)' | — 1—=x"1
The above inequalities imply
d n —n n n
‘clac£¢h <A E%(¢)|h’| + B£%(¢)|h|. (7.4.8)

Which, taking the sup over z, yields

d .
‘dx£¢h

S AW |00 L)L + BulhlooLiyg) 1,
o0
Note that the above inequality implies that the spectral radius is bounded

1

by p = limy o0 [ L4 1ll¢o while the essential spectral radius is bounded by
A~ !p. The reader should notice that for positive potentials the above bounds
are essentially sharp while for non positive, or complex, potential typically
there will be cancellations that induce a smaller spectral radius. To control
exactly such cancellations is, in general, a very hard problem.

"The quantity estimated here is usually called distortion. In fact, it measure how much
the maps distorts intervals.
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7.4.1 Real potential

In this section we will restrict to the case of ¢ € C}(T!,R), i.e. real potentials.

If we define the cone C, :== {h € C! : h > 0 |[W(z)| < ah(z)}, then
equation (7.4.8), for h > 0, implies that, for each o € (0,A71), L,C, C Cy,
provided a > B(c — A™1)71.% We can then apply the theory of Appendix A
to conclude the following.

Lemma 7.4.1 For each real potential ¢ € C*(T,R), the transfer operator
Ly has the Perron-Frobenius property, i.e. it has a simple strictly positive
maximal eigenvalue o and all the other eigenvalues are strictly smaller in
modulus. In particular, the mazimal eigenvalue o(t) of L+y, T € R, is analytic
in 1.

The above, together with Lemma 7.2.1 imply that there exists p4,hg such
that Lypg = epg, Lohg = €hy, hy € Cq. Moreover, vy () = pgp(phe) is the
invariant measure associated to the potentitial ¢.

7.4.2 Variational principle

Given the above facts it is natural to ask what is the maximal eigenalue of L.
To answer this question, we have to introduce new concepts: the topological
entropy and the the topological pressure.

To this end let us define a dynamical ball

Bp(z,e) ={z €T : [TF(x) - T"(2)| < e,k €{0,...,n}}.

We call S.,, the set of (g,n)-covering sets, that is the finite sets of points
E such that (J,cp Bn(z,6) = T'. We call ., the set of (g,n)-separting
sets, that is the finite sets of points E such that, for all z,y € E,z # v,
By (z,e) N By (y,e) = 0. We then set

S(T,¢,e,n) = Eé%‘f Z eXnio »oT*(x)
" zeE

N(T7 ¢7 67 Tl) - Sup Z ezz;é ¢0Tk (:E)
E€Nen 1o

We are now ready to introduce the topological pressure

U ¢
Piop(T, ¢) = lim liminf — In S(T, ¢, €, n)
e—=0 n—oo N
1 (7.4.9)
= lim limsup — In N(T), ¢, &, n).
e=0 nooo N
8Note that this cone is almost the same than the one in Example 6.6.1, more precisely
is its infinitesimal version.
9This follows from the fact that the maximal eigenvalue must always be simple and the
results in Appendix C.4. This class of potentials is relevant in the so called thermodynamic
formalism.
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Problem 7.11 Prove that the limits in (7.4.9) are both well defined and equal.
It follows that, for each E € S, ,,
1=v4(1) < Cpg(1) <C > pg(B =Ce™ Y ps(Lip, (20))-
z€E zeEE

Note that, for ¢ < 1, the ball B,(z,¢) can contain at most a preimmage,
under 77, of a point z € T'. Hence, by the usual distortion estimates,

n=1 4ok (g
‘Cg]an(r,s)(z) < Cezkzo PoT™( )7
which implies
S(Tv d)a g, TL) 2 Ceing'
Analogously, if E € N,
1:y¢(1)20,u,¢ >cZ/J¢ (z,€)) > ce” n+m)QZ,u,¢£+ 1p, (ace))
z€E el

Note that, if A™ > 7!, then each z € T! has at least a preimage, under
T ™ in B, (z,¢), thus

N(T,¢,e,n) < ce~(ntmie,
From the above facts and the definition (7.4.9) follows that
Ptop(Tv ¢) = 0.

We have thus identified the maximal eigenvalue of L£4. To have a more explicit
expression we need the following deep local characterization of the entropy.

Theorem 7.4.2 (Theorem | 1) For each invariant measure v we have
that for v almost all x € T!

h,(T) = lim lim sup —% In (v(By(x,¢)))

e=0 nooo

Arguing as before we have

~(bm)e SIE T 0TH@) < (B (2, €)) < CeeShos 40T ()

thus, recalling Birkhoff theorem,

n—1
1
hyy(T) =0 — hm lim sup — Z $oTH(x)= Pyop(T, 9) f/ pdvg.
n—oo N T1
Finally, arguing as in [ , Theorem 20.3.7], we can establish the varitional

principle

Theorem 7.4.3 Let M(T) be the set of invariant probability measures for
T, then

Ptop(T7 (b) = SsSup hy (T) + /Tl (de

veM(T)
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7.5 Limit Theorems

Given f € C', n € Nand a € R, let

A n(f) = {x eT! :

LS pomh ) — i)
k=0

> a} . (7.5.10)

By the ergodic theorem lim,,_ o (Aq n(f)) = 0. A natural question is:
Question 3 How large is m(Aq.n)?

Note that we can write %ZZ;S foTk(x) — u(f) = %ZZ;& f o T*(z) where
f:=f—p(f). So we can reduce the question to the study of zero average
function. A more refined question could be.

Question 4 Does it exists a sequence {c,} such that
1 &
o kzz:o foT%(x)
converges in some sense to a non zero finite object?

7.5.1 Large deviations. Upper bound
Note that it suffices to study the set

n—1
AL (f) = {xeT1 : iZfOT’“(x)u(era)zO}.
k=0

since Aq . (f) = AL, (f)NAL, (=f). On the other hand, setting f=f—nlf),
for each A > 0 we have

m(AL () = m({x : S TimFT @ =) > 11y < gmmhay (A iz foT")

_ efn)\am(e/\ Sie foTk)'

Accordingly,
m(Ag,(f)) < e ™ *m(L31) (7.5.11)

where we have defined the operator Lyg := L(e*g), £ being the Transfer
operator of the map T
By Lemma 7.4.1 £, has a maximal eigenvalue «) depending analytically
on A. Hence by the same argument used in Lemma 7.2.1 there exists ¢ € R
such that
m(AaJr,n(f)) < efn()\aflna,\)Jrc’
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Since A\ has been chosen arbitrarily we have obtained

m(AL,(f) < e nl@e (7.5.12)

a’?

where I(a) := sup, g+ {A\a—Inay}. The problem is then reduced to studying
the function I(a) which is commonly called rate function. Note that I is not
necessarily finite. Indeed if a > || f||s0, then clearly m(Af, (f)) =0.

To better understand the rate function it is helpful to make a little digres-
sion into convex analysis.

Recall that a function f : R? — R? is convex if for each z,y € R¢ and
t € [0,1] we have f(ty + (1 — t)x) < tf(y) + (1 —t)f(x) (if the inequality is
everywhere strict, then the function is stricly convex.

Problem 7.12 Show that if f € C*(R%R), then f is convex iff % s a
positive matriz.'’ Give a condition for strict convexity.

Problem 7.13 If a function f : D C R? = R, D convez,'' is conver and
bounded, then it is continuous.

Given a function f : R? — R let us define its Legendre transform as

f () = sup {(z,y) — f(v)} (7.5.13)

y€ER4
Remark that f* can take the value +oo.

Problem 7.14 Prove that f* is convex.
Problem 7.15 Prove that f** < f.

Problem 7.16 Prove that is f € C2(R? R) is strictly conver, then the func-

tion h(y) := g—g(y) 1s invertible and f* is strictly convex. Moreover, calling g

the inverse function of h, we have
fr (@) = (z,9(x)) — fog(x).
Problem 7.17 Show that if f € C? is strictly convex, then f** = f.

Problem 7.18 Show that, for each x,y € RY, (z,y) < f*(x) + f(y), (Young
inequality).

10A matrix A € GL(R,d) is called positive if AT = A and (v, Av) > 0 for each v € R?,
LA set D is convex if, for all z,y € D and t € [0, 1], olds true ty + (1 — t)z € D.
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From the above discussion it follows that the rate function is defined
very similarly to the Legendre transform of the logarithm of the maximal
eigenvalue, which is commonly called pressure of f. In fact, setting I (a) =
maxer(Aa — In ) we will se that, for a > 0, I(a) = I(a). Unfortunately, to
see that the rate function is exactly a Legendre transform takes some work.
Let us start by studying the function a.

Lemma 7.5.1 There exists continuous functions Cy > 0 and px € (0,1) such
that, for X <0, Ly = axIly + Qx, ILQx = QAIIx =0, [|QY]lcx < Crphak.
Also TIx(g) = hala(g), €x(hx) =1, €x(R)) = 0. In addition, px(-) := €x(hy -)
is an tnvariant probability measure. Moreover everything is analytic in \.

PROOF. As we have seen, there exists hy € C! and a measure £y, both
analytic in A, such that the projection on the maximal eigenvalue of £ reads
H)\(h) = h)\g)\(h). ObViOllSly

E)\h)\ :Ot)\h)\, (7514)

and ag = 1, hg = h and £y = m. Notice that h) and ¢, are not uniquely
defined: by Hi = II, follows £)(hy) = 1 but one normalization can be chosen
freely.

Problem 7.19 Show that the normalization of £x, hy can be chosen so that
Ox(Ry) =0.

O
Lemma 7.5.2 The functions a and Inay are convex. Moreover,
d .
’d)\ Inay| < |f]oo
PRroOOF. Note that
a? afay — (a))?
W ané)\ = T, (7515)
thus the convexity of In a;y implies the convexity of .
In view of the above fact we can differentiate (7.5.14) obtaining
E;\h)\-i-ﬁ)\h/)\ :ag\hx—i—a)\h’)\. (7.5.16)
Applying £, yields
dOz)\ P ~
— = axlr(fhy)) = arpa(f)- (7.5.17)

d\
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Thus o, = 0. Note that, as claimed,

’dm < (D) < |floo-

d\

Differentiating again yields
d20¢>\
d\?

On the other hand, from (7.5.16) we have
(Lax = LRy = LA(fah),

where fy = f — ux(f). Since, by construction, Txky = Ix(frhy) = 0, the
above equation can be studied in the space V), = (1—1II,)C* in which Tay—Ly
is invertible.

Setting Ly = a;lﬁA, we have

= axpa(f)? + anls (Fghy) + axta(fRY). (7.5.18)

A= (1= L)' La(frhy). (7.5.19)
Doing similar considerations on the equation £) (L)) = axfx(g), we obtain
oy = anpa(f)? + axla (A = L) 7 L+ La)(Fahn)

= anin(f)* + an D (ALY + Lx)(faha))

1 (7.5.20)
_ (0/)\)2 2 S An
=+ ml)+ 23 O(HLR (k) | e
n=1
Finally, notice that
(AL (fAR)) = (LR (fr o T faha)) = pa(fr o T f)
and
1 n—1 2 1 n—1 .
Jim —Ha [Z froT* = lim_ - Z pa(fa o TH fy o T7)
k=0 k,7=0
9 n—1
= uA(f3) + lim -~ kZ(” —k)ur(froT* fr)
=1

=i () 423 malfro T ).
k=1

(7.5.21)
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The above two facts and equations (7.5.15), (7.5.20) yield

d? ’

> 0. 5.22
e >0 (7.5.22)

n—1
Inay = hm u)\ [Z I oT*
k=0

O

Note that equation (7.5.17) implies oy = 0, hence oy > 0 for A > 0. Since
the maximum of Aa — Ina, is taken either at aya = ) or at infinity (if

a > Supysg o> ) it follows that

I(a) = sup(Aa —Inay) = sup()\a —Inay) =1I(a)
A>0

as announced. In fact, more can be said.

Lemma 7.5.3 Either the rate function I is strictly conves, or there exists
BER,pcC” suchthat f—B=¢—¢oT.

PROOF. By Problem 7.16 it suffices to prove that In « is strictly convex.
On the other hand equations (7.5.15) and (7.5.22) imply that if the second
derivative of In «v) is zero for some A, then

n—1 2
[Zf,\OTk = [ +QZ /JA (froT* fr)
k=0
n—1
= —QHZKA ALY(Fahn) =2 ROA(ALE (i) — aapa(f)?
k=n k=1
<O\ np§+zkp’§1
k=0

Accordingly, the sequence 22_3 fr o TF* is bounded in L?(T!, uy) and hence

weakly compact. Let Y7 e fA oT* a weakly convergent subsequence,'? that
is there exists ¢y € L? such that for each ¢ € L? holds

n;—1

hm N Z FroTH) = pa(pdy).

12Such a subsequence always exists | l.
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It follows that, for each ¢ € C',
’I’Lj*l
APl — dxn + dx o T)) = palpfn) + lim >~ pa(pfr o T —pfy o TF)
= lim py(pfroT™) = lim L(HLY (9hy))
Jj—oo j—oo
= pa(@)pa(fr) = 0.

thus, since C! is dense in L2, it follows

x=0¢x—¢roT, fy — a.s. (7.5.23)

A function with the above property is called a coboundary, in this case an L?
coboundary since we know only that ¢y € L?(T,uy). In fact, this it is not
not enough to conclude the Lemma: we need to show, at least, that ¢, € C°.

First of all notice that, since for each 8 € R we have f) = ¢ + 5 — (éx +
B) o T, we can assume without loss of generality uy(¢x) = 0. But then

LA(frha) = La(dahy) — dnha = —(1 — L3)d ha.

Hence

dx = hy (1 — Ly) " La(frhy) €CL
O

Remark 7.5.4 The above result is quite sharp. Indeed, it shows that if I is
not strictly convez, then for each invariant measure v holds v(f) = 8 = u(f).
So it suffices to find two invariant measures for which the average of f differs
(for example the average on two periodic orbits) to infer that I is strictly
convet.

Problem 7.20 Set o := o”(0). Show that, for a small, I(a) = % + O(a?).
Show that if a > | f|e, then I(a) = +oo.

The above discussion allows to conclude
a2
m(AL,(1) < m(L5_h) < Cewrm o),
Since similar arguments hold for the set A7 (—f), it follows that we have
an exponentially small probability to observe a deviation from the average.

Moreover, the expected size of a deviation is of order n*%, to see if this is
really the case we a lower bound.
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7.5.2 Large deviations. Lower bound

Let I = (o, ), fix ¢ € (O,'ﬁ%o‘) and let us consider a A € R such that

pa(f) € (@ +¢,B—c) =1I. Let S, = 31—y foT*, then 11z(Sn) = nua(f)
and, by (7.5.21)

n—1 2
[zfow —wf)] <Cun,

k=0

where C) depends continuously by A. Thus, setting A, ; = {z € T!

18, (z) € I},
o)

n—1
pa (A7 1) < pa ({

< e PPy

NoT*

< Cre2n~ L

It follows that there exists ny € N such that, for all n > ny, px(4n 1) > %
We can then write

1
5 < O(An 1) < Cye=(mEmimany (pntmg, ). (7.5.24)

To conclude we must analyse a bit the characteristic function of A,, ;. First of
all, notice that if [T*x — T*y| < ¢ for each k < n, then |T*x — Tky| < A\~ntke
for all k& < n. Accordingly, for each z € [z, y]

|DxTn _ DzTn| S |DxTn| . (e :;& |lnDTka71nDTsz| _ 1)
< |D,T™|(e%# Zizo A e _ 1) < Cu| D, T7).
By a similar estimate follows |D,T™ — D, T"| > C4x|D,T"| as well. Moreover,

n—1

|Sn (@) = Sn(y)] <D | FlerCyA™e < Cpe.
k=0

We can then write A, ; D U;J; D A, ;. where J; are disjoint intervals such

that |T™J;| < e. Choosing ¢ small enough it follow that the oscillation of S,
on each J; is smaller than ¢. Moreover

d
e talloy = s [ o< s [0y oo+ il
lo l ¥ l

< 2sup |D,T"|"* + B|Ji| < Cy|Ji|.
zeJ;
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We can then continue our estimate started in (7.5.24),

< C#e—(7z+7rn) In ax+nAB+mCyu Z N (£n+m(]ljl ))
l

= Cyem (EmI MONEINIENCe S 4 () (14 O(™))
l

N =

< C#e—n(lnax—)\ﬁ)m(An I)’

)

where we have chosen m large but fixed. The above computations imply that,
for each L > 0,

m(An’[) 2 CLG_JL(I)n

where Jp(I) = max{x<r, . u, (f)er.} A\a—Inay. Note that, if f is not a cobound-
ary and hence In oy, is strictly convex, the maximum of A\G—In «v, is attained at
some finite value, hence, for L large enough, Jy (I) = SUP(ACR : pux ()€l )} A8 —
In o). This implies that

m(AIn) > C#e_J(a)"

where J(a) = supgy . 4, (f)>a} A@ — Inay.
The surprising fact is that the upper and lower bound are essentially the
same. To see this a little argument is needed.

7.5.3 Large deviations. Conclusions

In fact, it is possible to give a variational characterization of the rate function
in the spirit of general Large deviation theory | , , ].

Lemma 7.5.5 Let My be the set of invariant probability measures invariant
with respect to T'. Then

I(a) = — sup ho(T) = J(a).
{veMr :v(f)>a}

PROOF. By section 7.4.2 we have that, for each v € Mr, Inay = sup, ¢ v, {7 (T)+
A(f)} = hyuy (T) + Apa(f). Thus for each v € My such that v(f) > a, we
can write
I(a) < max{Ma — v(f)) ~ hu(T)} = —h (D).

On the other and

I(a) = igpo{k(a = ux(f)) = huy (1)}
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If a > sup px(f), then I(a) = +o0, otherwise let A, be such that uy, (f) = a,*?
then
I(a) > —hy, (T) > — sup hy (T).
{veMr :v(f)>a}

Finally, since py and h,, depend smoothly from A,

J(a) = sup Aa = Ax(f) — h (T) = I(a).
A pa(f)>a}

7.5.4 The Central Limit Theorem

We can now address the second question we have posed. From the above
discussion is clear that we must chose ¢, = \/n.
Let f € BV and set f := f — u(f), then

n—1
.1 5k
JLQOﬁkE_OfOT (£)=0 m—ae.

Let us set ¥, = —= Sv o foT* We can consider ¥, a random variable

with distribution F,(t) := p({z : ¥,(z) < t}). It is well known that, for
each continuous function ¢ holds™

w(g(,)) = / o(t)dF, (1)

where the integral is a Riemann-Stieltjes integral. It is thus clear that if we
can control the distribution F,,, we have a very sharp understanding of the
probability to have small deviations (of order y/n) from the limit. From the
work in the previous section it follows that there exists § > 0 such that, for
each || < dy/n,

o2 \2

2n

() = (™) = p(L ) mh) = (1= S+ O(Nn~2 + p")||fllsv)"

a2x2

= e T2 (1+ O F +np")||f]5v).

(7.5.25)

13 Actually one must show that the sup is a max.
141f g € CJ, then

[ odFs == [ Fawg@ar=- [ at [ doxie. a,mzo @30
R R R T1
Applying Fubini yields

o0
[oars == [ do [ dixie w,en@d @ == [ o [ " gwar= [ oo,
R Tl R T1 n(z) T1
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The above quantity is called characteristic function of the random variable
and determines the distribution (at continuity points) via the formula

) i 1 A efia)\ _ efib)\ WA
Ful >7Fn<a>nggo%/7ATson( ),

as can be seen in any basic book of probability theory.'®
Formula (7.5.25) means in particular that

lim m(e?n) =e 2 =: p(N).

n— oo
What can we infer from the above facts? First of all a simple computation

shows that
1 1 42

t)=— [ e "p(\)d\ = T207
o) = 3= [ e eir = e
a random variable with such a density is called a Gaussian random variable

with zero average and variance o. Accordingly, formula (7.5.25) can be inter-
preted by saying that there exists a Gaussian random variable G such that

1%, 1 ,

— oThH v —G(1+0(n"2

22 o T~ oG+ 067
in distribution. But what does this means concretely. Actual estimates are
made difficult by the fact that the distribution under study not necessarily
have a density, thus we are Fourier transforming function that behave quite
badly at infinity. To overcome such a problem we can smoothen the quantities
involved.

Let j € C*°(R,Ry) such that [, j(t)dt =1, j(t) = j(—t), and j(t) = 0 for

all [t| > 1, for each € > 0 defined then j.(t) := e~ 1j(e7t) and

Py () = / Jo(t — 5)Fo(s)ds. (7.5.26)
R
A simple computation shows that, for each a,b € R, holds
F,(b+¢e)—F,(a—¢)>F,.(b)—F,:(a) > F,(b—¢) — F,(a+¢)

that is: if the measurements have a precision worst than 2e, then F, . is as
good as Fj, to describe the resulting statistics. On the other hand calling ¢y,

15Tn the case when there exists a density, that is an L' function f, such that Fy(b) —
Fn(a) = f; fn(t)dt, then the formula above becomes simply

1 )
[ enan,
R

~ o
and follows trivially by the inversion of the Fourier transform.

fn(t)
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the characteristic function associated to F,, o, holds ¢, .(\) = gpn()\)j’(s)\),
where j is the Fourier transform of j. Since now F,, ¢ is the law of a smooth
random variable it has a density f, . and

1

T or

Foell) / M, (V) (A)dA

since j is smooth it follows that there exists C' > 0 such that |j(\)| < C(1 +
A?)72. We can finally use formula (7.5.25) to obtain a quantitative estimate

1 eV . .
fne() = o e Mpn(N)j(EN)dA + O(e"n"2)
271' _6\/5
1 evn . A 3 1
= — e~ Mp(N)j(EN)dN + O(ePn"2 +n72)
27 —evn

—g(t)+O(e+en % 407 3) = g(t) + O(n"2)

provided we choose n3 > ¢ > n~° Which, as announced, means that, if the
precision of the instrument is compatible with the statistics, the typical fluc-
tuations in measurements are of order in and Gaussian. This is well known
by sperimentalists who routinely assume that the result of a measurement is
distributed according to a Gaussian.'¢

7.6 Perturbation theory

To answer the questions posed at the beginning we need some perturbation
theorems. Few such results are available (e.g., see | I, [ ] or | ]
for a review), here we will follow mainly the theory developed in | ) ]
adapted to the special cases at hand.

For simplicity let us work directly with the densities and in the case d = 1.
Then £ is the transfer operator for the densities. We will start by considering
an abstract family of operators L. satisfying the following properties.

Condition 1 Consider a family of operators L. with the following properties

1. A uniform Lasota-Yorke inequality:

[£2nllBv < AXNT"[[hl|Bv + Blh|Lr,  [£2h|pr < Clhlps ;

2. [Lh(z)dx = [ h(z)dx ;

16Note however that our proof holds in a very special case that has little to do with a
real experimental setting. To prove the analogous statement for a realistic experiment is a
completely different ball game.
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3. For L : BV — BV define the norm

LIl = sup 1\Lf|L1,

IhllBv <

that is the norm of L as an operator from BV — L'. Then we require
that there exists D > 0 such that

1€ = Le|| < De.

Condition 1-(3) specifies in which sense the family £. can be considered
an approximation of the unperturbed operator £. Notice that the condition
is rather weak, in particular the distance between L. and L as operators on
BV can be always larger than 1. Such a notion of closeness is completely
inadequate to apply standard perturbation theory, to get some perturbations
results it is then necessary to drastically restrict the type of perturbations
allowed, this is done by Conditions 1-(1,2) which state that all the approxi-
mating operators enjoys properties very similar to the limiting one.!”

To state a precise result consider, for each operator L, the set

Vs (L) :={2€C||z| <rordist(z,0(L)) < d}.
Since the complement of Vs (L) belongs to the resolvent of L it follows that
Hs(L) == sup{|(z— L) v | 2 € C\Vs,(L)} < .
By R(z) and R.(z) we will mean respectively (z — £)~! and (2 — £.)7!
Theorem 7.6.1 ([ 1) Consider a family of operators L. : BV — BV
satisfying Conditions 1. Let Hs, := Hs . (L); Vs := Vs, (L), 7 > A", 8 >0,

then, if e < e1(L,1,0), 0(L:) C Vs (L). In addition, if € < eo(L,1,6), there
exists a > 0 such that, for each z & Vs, holds true

lIR(2) — Re(2)|l| < Ce".

PRroor.'® To start with we collect some trivial, but very useful algebraic
identities.

17 Actually only Condition 1-(1) is needed in the following. Condition 1-(2) simply implies
that the eigenvalue one is common to all the operators. If 1-(2) is not assumed, then the
operator L. will always have one eigenvalue close to one, but the spectral radius could vary
slightly, see [ | for such a situation.

18This proof is simpler than the one in [ ], yet it gives worst bounds, although
sufficient for the present purposes.
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For each operator L : BV — BV and n € Z holds

%i(z_lL)i(z ~L)+ (D) =1 (7.6.27)
=0
R(z)(z — L) + % i(zflc)i(cs —L)+R)'L)M(L—L) =1
=0

(7.6.28)
(2= L) [Gne + (z7'L)"R(2)] =1 — (27 'L)" (L. — L)R(2)  (7.6.29)
[Gre+ (27'L)"R(2)] (2 — L) =1 — (27" L)"R(2) (L — L),  (7.6.30)
where we have set Gy, o := < 2?2—01 (27 1L.)%
Let us start applying the above formulae. For each h € BV and z € V5
holds
B
IG71L)" (£e = L)R(2)h]| By < (rA) " All(Le = L)R(2)hllpy + Z[(Le = L)R(2)h] s
< [(T)\)_nA2C1 + B’r‘_nDE]H»,"(;Hh”BV < ”hHBV
Thus [[(z71£)" (L. — L)R(2)||py < 1 and the operator on the right hand

side of (7.6.29) can be inverted by the usual Neumann series. Accordingly,
(z — L) has a well defined right inverse. Analogously,

1z L) R(2)(Le=L)hll gy < (r\) T AIIR(2)(Le=L)h|| gy +Br~"|R(2)(Le=L)h] 1.

This time to continue we need some informations on the L! norm of the
resolvent. Let g € BV, then equation (7.6.27) yields

|
A

n

|R(2)g|11 < [(z7L) gl + |R(2) (27" L)"gll v

ﬁMH

Il
— o

2

< =9l + Ha AN lglloy + Hop Br"lgls

< M(Hee B+ (1= 1) Ylglor + Hsr ArN) gl v
Substituting, we have

(27 L™ R(2)(Le — L)h|| v < {(rA)""AHs,2C[1 + Br—"]

+ Br *"[Hs,B + (1 —r)"'|De}||h||py < 1,
again, provided ¢ is small enough and choosing n appropriately. Hence the
operator on the right hand side of (7.6.30) can be inverted, thereby providing

a left inverse for (z— £.). This implies that z does not belong to the spectrum
of L..
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To investigate the second statement note that (7.6.28) implies

n—1
1 _
R(z) — R.(2) = Z 2(2715)1(58 — L)R.(2) — R(2)(27'L)" (L. — L)R.(2).
i=0
Accordingly, for each ¢ € BV holds
|R(2)o—Re(2)p|pr < {r " (1—r) e+ Hs . (\r) "2AC,+Hs, Be}||R-(2) 0| By -

O

7.6.1 Deterministic stability

The L. are Perron-Frobenius (Transfer) operators of maps 7. which are C!'-
close to T, that is de1(Tz, T) = e and such that de2(T.,T) < M, for some
fixed M > 0. In this case the uniform Lasota-Yorke inequality is trivial. On
the other hand, for all ¢ € C! holds

[t -2pe= [ 1ot~ por).
Now let ®(z) := (D, T) " [:% o(2)dz, since
¥(2) = —(D,T) " DET®(x) + D, To(D.T) ' p(Tox) — (Ta)
follows
Jtecr-2pe= [ 10+ [ H@UDT) DTB@)+(1-DADLT) p(Tes).

Given that |®|, < A7le|ploo and |1 — D, To(D,T) o < A7 te, we have

/(ﬁgf—ﬁf)ap <8V A @looe + 1 fl L1 AT (B + 1Delglos < DI fllBvel@lso-

By Lebesgue dominate convergence theorem we obtain the above inequality
for each ¢ € L°°, and taking the sup on such ¢ yields the wanted inequality.

|Lof —Lflr < D||fllve.

We have thus seen that all the requirements in Condition 1 are satisfied. See
[ | for a more general setting including piecewise smooth maps.
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7.6.2 Stochastic stability

Next consider a set of maps {T,} depending on a parameter w € Q. In
addition assume that ) is a probability space and consider a measure P on
Q. Consider the process z,, = T, o--- 0T, xo where the w are i.i.d. random
variables distributed accordingly to P and let E,, be the expectation of such
process when zq is distributed according to p. Then, calling £, the transfer
operator associated to T,,, we have

B(f i) | 20) = £rfen) 1= | Lof(ea)Pldo).
Then if
|LohBy < ALt A|BY + Bulhlm
integrating yields
|Lph|py < EQ\;Y)|lBv + E(BL)|hL

And the operator £ p satisfy a Lasota-Yorke inequality provided that E(A~!) <
1 and E(B) < cc.
In addition, if for some map T and associated transfer operator L,

E(|Loh — Lh]) < elh|py

then we can apply perturbation theory and obtain stochastic stability.

7.6.3 Computability

If we want to compute the invariant measure and the rate of decay of correla-
tions, we can use the operator P, defined in (7.3.6) and define £, ,,, = P,L™.
By a direct computation it follows

|Li.mh|pv < 4%6™ k| gy + Blh|p1.

We can then chose the smallest m so that 4%6™ = o < 1. Moreover, we also
saw that

|Lt.mh — Lh] < t7Hh|py.

So we are again in the realm of our perturbation theory and we have that the
finite dimensional operator L; ,, has spectrum close to the one of the transfer
operator. We can then obtain all the info we want by diagonalizing a matrix.
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7.6.4 Linear response

Linear response is a theory widely used by physicists. In essence it says the
follow: consider a one parameter family of systems Ty and the associated
(e.g.) invariant measures g, then, for a given observable f one want to study
the response of the system to a small change in s, and, not surprisingly, one
expects ps(f) = po(f) + sv(f) + o(s). That is one expects differentiability in
s. Yet differentiability is is not ensured by Theorem 7.6.1. Is it possible to
ensure conditions under which linear response holds? The answer is yes (for
example if holds if the maps are sufficiently smooth and the dependence on
the parameter is also smooth in an appropriate sense). To prove it one need
a sophistication of Theorem 7.6.1 that can be found in | ].

7.6.5 The hyperbolic case

One can wonder is the previous approach can be applied to uniformly hyper-
bolic systems and partially hyperbolic system. The answer is yes although
the work in this direction is still in progress and the price to pay is the need
to consider rather unusual functional spaces (space of anysotropic distribu-
tions). Just to give a vague idea let us look at a totally trivial example: toral
automorphisms.

Then one can consider the norms:

_ |F[?
1fllp.q = Z |fk|1+|<vs7k>‘p+q +1/ol,
kez?*\{0}

where fj are the Fourier coefficients of f and v* is the unit vector in the stable
direction. Then

£ . < Cillfllp.a:

N N (7.6.31)
I1£ f”p,q < Csp ||f||p,q + B”f”p—l,q—&-l-

we have thus the Lasota-Yorke inequality. Moreover on can easily check the

relative compactness of {||f||,,q < 1} with respect to the topology induced by

the norm || - ||p—1,4+1, hence our previous theory applies almost verbatim.
To have a more precise idea of what can be done, see | , ].

Hints to solving the Problems

7.19 Let £y, hy be analytic. Let us define z) = e Is ei(hé)di, define BA = z)hx
and /) = z;lf » and check that they are normalized as required.
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Notes

Large deviations are taken from Lai-Sang article and Keller book.

The stochastic stability is reasonably well understood (Cowienson) but
what about the smooth dependence from a parameter (linear response)?
Counterexamples in d = 1 but unknown in higher dimensions. The uniformly
hyperbolic case is well understood but not much is know on how to apply the
present ideas to the partially hyperbolic case and to the case of systems with
discontinuities, although a concentrated effort is taking place to extend the
theory in such directions.



Chapter 8

Uniformly hyperbolic
systems

B he concept of ergodicity is a very important one in dynamical systems,
yet it turns out to be surprisingly difficult to establish if a system is or not
ergodic and very few examples have been fully analyzed. Nonetheless, in this
chapter we will see that a very simple idea introduced by Hopf | , ]
allows to discuss the ergodicity in some special cases. The relevance of Hopf’s
idea is that, properly generalized, it allows to prove ergodicity in a vast class of
systems. Much in the following chapters will deal with such a generalization.

8.1 A Basic Example

To explain the Hopf approach we will study a very simple case: a slight
generalization of Arnold’s cat, see Examples 6.2.1. Let T : T? — T? (here by
T? we mean R? mod 1) be defined by

! (2) - (i lfaZ) (2) mod 1 (8.1.1)

It is obvious that if a € Z, then T is well defined and it is a linear auto-
morphism of T? . Moreover, for all € T?

1 a .
DT = <a 1+a2> =1L

Since det = 1, Lebesgue measure is preserved. It is immediate to see that

185
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there exists A > 1; vy, v_ € R%:

L’U+ :)\’U_;,_
Lv_ =\"1o_.

We will call vy the unstable eigenvector (direction) and v_ the stable eigen-
vector (direction). Remark that, since L* = L, (vy, v_) = 0.

The dynamical system just described is a basic model of hyperbolic sys-
tems (see next chapter) and will appear in various disguises in this book.

Proposition 8.1.1 The Arnold cat is ergodic.

Sections 8.1.1 and 8.2.1 contain two different proofs of the above proposi-
tion.

8.1.1 An algebraic proof

A first idea to studying the ergodic properties of this system is to imitate what
we have done for the Rotations (Examples 6.6.1) and the Dilations (Examples
6.8.1): use Fourier series. Let us see how such an approach would work.

Let f, g € C™)(T?), then'

f OT”(JZ) _ Z e2ﬂz’(k,L"m>fk _ Z €2m<k’m>fL*"ka

kez? kez?
0
[ rorg= [ formgor = 3 fingin
T2 T2
kez?
= fogo + Z frL-nkgrrk.
kezZ2\{0}
It is well known | ] that f € C(™)(T?) implies®
(m)
el < 100 g g2
%[
hence

£ N1l ||y
E e E .
Joorikgrek| < | L=mk||™ || L™ k(™
kez2\{0} keZ2\{0}

1Note that 627Ti<k,T”z) — eZwi(k,Ln’z>.

2Here for ||f(™)]|; we mean sup W Jr2 |6};18§E‘2f|dmldacg; and ||k| = /K3 + k2.
i+j=m
4,520
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For each k € Z? holds ||k||? = (k, v*)? + (k, v™)? hence one of the two terms
must be larger than ||k|?/2.° Moreover if k # 0 ||L"k| > 1 for each n € Z.
Using the above facts it yields

3 £l llg ™l 272

o L

Z fr—nkgrrk| <

kez2\{0} kez2\{0}
< const.[| F™[1]|g™™ L A7,
where the constant does not depend on f or g and we have assumed m > 3

to insure the convergence of the series.
Accordingly, for each f, g € C®)(T?) we have

foTrg - / 7 / g\ < const.|| £ 1 [lg@ 1A=,
T2 T2 T2

To obtain the final result we need an approximation argument. If f, g €
L?(T?) we can choose fy,, gn € C®)(T?) such that they converge to f and g,
respectively, in L2.

Then, for each € > 0, choose m € N such that

||f_ fm||2 + Hg_gmH2 <e.

Accordingly,

/TzfoT"gf/wf Y

<

/fmoTngm*/ fm/ gm’
T2 T2 T2

+2f = fmll2llgllz + 2[ fmll2llg — gmll2
<2([lgllz + I £ll2)e + &,

where we have chosen n large enough depending on m and €. We have just
proven mixing.

The above result is certainly rather satisfactory: non only it proves the
mixing—hence the ergodicity—of the map but gives an explicit estimate on the
rate of decay and shows how such a rate depends on the regularity of the
functions.* Therefore, an eventual critique can not concern the type of result
but only the method; indeed the method does have a shortcoming.

The use of Fourier series is strictly related to the group structure of T?
and the linearity of the map. Clearly, in more general systems, where both

3Here we have normalized the eigenvalues so that |jv*| = 1.
4In fact, the obtained estimate it is not optimal: using the Diofantine properties of the
stable and unstable directions a better estimate can be obtained (see Problem 2.1).
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such properties may fail, such a technique has no hope whatsoever of being
applied.” In some sense, much of the theory of hyperbolic systems may be
viewed as an attempt to find an alternative proof of the above facts. Such a
proof must be dynamical, meaning that it must use properties of the dynamics
and as little as possible of the structure of the space.

The best way to gain a real feeling of what is meant by dynamical is to
see such a type of argument in action.

8.2 An Idea by Hopf

The following argument, due to Hopf [ , ] is exactly such a dy-
namical proof of ergodicity. Let f : T2 — R be a continuous function. We
want to prove that for almost every x € T2 the time averages converge as
n — 400 to the average value of f, i.e., sz fdu. Once this is established one
can obtain the same property for all integrable functions by an approximation
argument, this proves ergodicity due to the characterization provided by The-
orem 6.7.5 (see also Problem 1.6.31). From Birkhoff Ergodic Theorem (BET)
we know that the time averages converge almost everywhere to a function
f* € LY(T?, i) which is invariant on the orbits of T, i.e., fT oT = f*, and
has the same average value as f, i.e., [ fTdu = [ fdu. Further, applying
BET to f and 7~! we obtain that the time averages in the past

fl@)+ (T 'a) -+ (T )

converge almost everywhere as n — +oo to f~ € LY(T?, ), f~oT = f~ and

[ fdp= [ fdu.

The next Lemma is part of the usual magic of the ergodic theory.
Lemma 8.2.1 The functions f+ and f~ coincide almost everywhere.

PROOF. Let
Ay ={z €T | fr(z) > f-(2)};

by definition A, is an invariant set, hence
[ 1@~ f@lduo) = | fa)duta) - [ fa)dua) =0
Al Al Al

which implies p(A4) = 0 and fi < f_ p-almost everywhere. The same
argument, this time applied to the set A = {x € T? | f_(z) > f+(2)},
implies the converse inequality. O

5In fact, there are very few cases in which this type of idea has produced relevant results,
notably the case of geodesic flows on surfaces of constant negative curvature.



8.2. AN IDEA BY HOPF 189

8.2.1 A dynamical proof

For x € T? let us denote by W¥*(x) (W*(z)) the line in T? passing through z
and having the direction of the unstable eigenvector (the stable eigenvector),
i.e., the eigenvector with eigenvalue A\ (A™1). We call W“(z) (W?(z)) the
unstable (stable) leaf (or manifold) of z. The leaves of x have the following
property. If y € W¥(x) (y € W*(z)) then the distance (computed along the
leaf)

d(T™y, T"z) = A 1"Md(y, ) - 0 as n — —oco(+00).

Hence for y, z € W) ()
[f(T"y) — f(T"2)| = 0 as n — —oo(+00).

It follows that for y, z € W™ (z) either f~(y) and f~(2) are both defined and
equal or they are both undefined; the same can be said for f*(y) and f*(2)
if y,z € W#(x).

It is interesting to notice that W*(z) is an infinitely long line in the di-
rection v4 that fills densely the torus (see Problem 2.6). This implies that
the collection (foliation) {W™"(z)} etz of this global manifolds has a quite
complex structure (see Problem 2.7). For this reason it turns out to be much
more convenient to deal only with local manifolds.

A local manifold of size § is simply a piece of W (z) of size § centered at
x. In the following by W*(z) and W*(z) we will always mean local manifolds
(lines) of some length. The exact length is, most of the times, irrelevant an
often will not be specified (in the following it will be frequently chosen so that
the lines do not wrap around the torus more than once).

Up to now we have seen that f is constant along a.e. stable lines while f~
is constant along a.e. unstable line, since they are equal a.e. it seems obvious
that they must be equal and constant. Yet, in the last sentence there are a
lot of almost everywhere and, being measure theory a rather subtle subject,
it is better to spell out the reasoning in full detail.’

Let us choose any point € T? and prove that there is a neighborhood
of z in which fT is a.e. constant. Since z is arbitrary this implies that fT
is a.e. constant.” Chose a square Qs of size 26 < % centered at x with
sides parallel to vy and v_ respectively. Let ¢ : [-§,0]> — Qs be defined
by ¢(a,8) = © + avy + fv—, where we have chosen ||vi| = 1. It is then
convenient to transport the problem in [—4,d]? by ¢: doing so the Lebesgue
measure is sent in the Lebesgue measure and that fo¢ is a.e. constant in the
vertical direction (« constant), while f~ o ¢ is a.e. constant in the horizontal

6We have already seen in Examples 6.6.1-Rotations that these type of arguments must
employ measure theory in a non trivial way.

"Please, note this apparently naive idea to look at the problem first locally and then
globally, we will see much more of it in the following.
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direction. This corresponds simply to a change of variables and from now on
we will confuse Qs and [—§, §]? since this does not create any ambiguity.

_ There are three full measure sets to consider:

By ={£€ Qs | (&) isdefined} ; B = {{ € Qs | f(§) is defined} and
G={{eBnNB_[f7(&)=f(O}

Let us call W2 := {(a,b) € Qs | a = a} the segment in Qs parallel to the
stable direction passing through the point (, 0), and W§ := {(a,b) € Qs | b =
B} the segment in (s parallel to the unstable direction passing through the
point (0, 8). The previous discussion proves that there exist By € [—§, §] such
that By = Uaes, W3 and B_ = Uges_ WE.

Since m is the product of two one dimensional Lebesgue measures® Fubini
theorem [ ] implies that By are measurable sets of full measure. Again
by Fubini Theorem, it follows

B 5
46% =m(Qs) =m(BL NG) = /B da /4 dBxwsna(a, B).

This implies immediately that there exists a set I C B, of full measure, such
that, for each « € I the set J, = {8 € B_ | (o, 8) € G} is measurable and
has full measure as well; the same holds for £ = UaerW,.

Finally, let z,y € E, z = (a,b) and y = (¢,d). If a = ¢, then z,y € W}
and f*(z) = f*(y). On the other hand, if a # ¢ then by choosing 8 € J, N J.
it follows

fre) = W) = f*(a,B) = (a,B)
= Wg)=f"(e.8) = f"(c.) = fT(y)

That is, fT is constant on F, hence f* (and f7) is a.e. constant on Qs. By
the arbitrariness of Qs follows that f* = f~ =constant a.e..

Up to now we have proved that f* is a.e. constant only if f € C(O(T?),
to prove ergodicity we need the same result for each f € L'(T?). This can
be easily obtained by an approximation argument; yet, it is probably more
interesting to prove directly that all invariant sets have measure zero or one.

Let us consider a T-invariant measurable subset A. Let

fa—xa in LY(T? p)

be a sequence of uniformly bounded continuous approximations to the indi-
cator function.” We will use the fact that the time average is continuous with

8Here, to have an unambiguous notation, we should use m,, for the Lebesgue measure
in R™, then we just said ma = m1 X mj. For simplicity, I have suppressed all the subscript
hoping not to confuse the reader too much.

91f the existence of such a sequence {f,} it is not obvious, consider the following: for
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respect to the L' norm to establish that the time average of y4 must be

constant on T2. Indeed, if we denote by || - ||, the L' (T2, m) norm, then

N
1 . .
||fﬁIr _ng”l :‘ A}POONZ(anTl_XAOTz)
i=1 1
N . .
=0y ;(fnoTl—XAoTl) 1

by the Lebesgue Dominated Convergence Theorem.
Using the invariance of the measure we obtain

1o
Ut =il < Jim 0=l = =l
i—

Since the time averages f,;/ = m(f,) a.e. in T? and lim,,_,o. m(f,) = m(A),
the Lebesgue dominated convergence theorem implies ||m(A)—x 7|1 = 0, that
is ng = m(A) a.e.. In addition, the invariance of A forces ng = x4 so that
either A or A° has measure zero. In view of the arbitrariness of the invariant
set A it follows that T" must be ergodic.

8.2.2 What have we done?

The question remains of how and if such an argument can be extended to
more general systems. The answer must lie in the possibility to generalize the
main ingredients of the previous proof. Such ingredients are essentially two:
a) the existence of two foliations on which f* (f~ respectively) are constant;
b) some regularity property of such foliations.

In general the foliations will be provided by the stable and unstable mani-
folds (the existence of which is the content of the next chapter). A careful look
at the previous proof should convince the reader that the needed regularity
is a property of the type: consider two manifolds W, W3 and define a map
¢ Wg — W5 by ¢(x) = W¥(xz) N W3 (this is often called holonomy map or
Poincaré transformation'’, we will use the first name), then ¢ is measurable
and absolutely continuous that is : if A C W5 has positive measure so has
¢ 'A. The absolutely continuity property of stable and unstable foliations
will be the topic of chapter 7.

each € > 0, by the regularity of the Lebesgue measure, there exists C. C A C G: (Ce
closed and G. open) such that m(G:) — m(C:) < e. Then Uryshon lemma implies that
there exists fo € C(O)(T2) such that f.(T?) C [0,1], felc. = 1 and fe|ge = 0. Thus
1z — xalli < m(GAC:) <.

10Note that if one could define a flow along the unstable direction—and in our case it is
possible—then the above map would indeed be a Poincaré map with respect to such a flow.
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Of course, the above comments are very imprecise, their only aim is to
give an idea of what is coming next. In the mean time, to start building
some feeling for the foliations and their properties, see Problems 2.12; 2.13
and 2.14.

8.3 About mixing

We continue our investigations with a discussion of an other dynamical proofs
in which we will see the role of hyperbolicity and some basic ideas associated
to it at work. The final goal will be to obtain a dynamical proof of the
following.

Proposition 8.3.1 The Arnold cat is mizing.
We will start by proving Topological Mixing.

Definition 8.3.2 A smooth Dynamical System is topologically mixing if for
each two open sets U and V there exists an integer n € N such that

T-"UNV #0 Ym>n.

Note that the all point in the above definition is that it holds for all n
large enough (see Problem 2.3).

Remark that it suffices to have the above property for any class of sets
that can be used as a basis for the topology. The most convenient choice is
given by the so called “rectangles.” Such sets are an extremely important tool
in hyperbolic theory and we have already met them several times—although I
will not insist on them in the present book—here they appear in the simplest
possible form.

Definition 8.3.3 By rectangle we mean a quadrilater (i.e. a region with
boundaries consisting of four segments) with sides parallel to the stable or
unstable directions.

Proposition 8.3.4 The Arnold cat is topologically mizing.

PROOF. Let us consider two rectangles A and B. A first key observation
is that, for each m € N, T™A and T™ B are rectangles as well. The second
key observation is that they have a very special shape: in the stable direction
their size has contracted by a factor A" while in the unstable direction the size
has expanded by the same factor. Hence, provided m is chosen large enough,
T™A and T™B are very thin in the stable direction and very elongated in
the unstable direction. This property of stretching and squeezing, that we
are witnessing here, is the cornerstone of almost all arguments in hyperbolic
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theory. Of course, similar, but symmetrical, arguments hold for T~™A and
T—™B. We can then choose m € N so large that the length of the unstable
sides of T™B is larger than 2 and, at the same time, the same is true for
the stable side of T-™A. It is then a trivial geometric observation, best
seen on the covering of T2, that T"ANT "B # (), for each n > m, thus
T72"AN B # 0, which suffices to prove the topological mixing. O

The reader who starts to appreciate the spirit of the game may be unhappy
about the previous proof. The problem is that we have used a bit too heavily
the structure of the foliation (straight lines) and of T? (the covering).

It is then quite natural to wonder if a more flexible and dynamical proof
is available. Here it is.

ANOTHER PROOF OF PROPOSITION 8.3.4. Let us start by a preliminary
result.

Given any rectangle A let us call A, a rectangle of half the size and situated
at its center.!

Lemma 8.3.5 If T""A. N A. # 0 for some n € N such that \™ > 4, then
T-™ANA#0D for all m € N.

PRrROOF. By construction T~ A intersects A completely from one unstable
side to the other (see figure 8.1)

This means that 772" A > T~"(T~" AN A), which is a very thin rectangle
contained in T~"A and that crosses it from one unstable side to the other.
Accordingly T—2" A will intersect A completely (from one unstable side to the
other). By induction the result follows. O

Note that the n € N required by the above statement always exists (see
Problem 2.3).

Next, let A, B C T? be two rectangles and let np € N such that Lemma
8.3.5 applies to B. We then consider the Dynamical Systems (T2, T"2,m),
this is ergodic as well (see Problem 2.2).'? Consequently, for each integer
i€{l,...,ng — 1} there exists k; € N such that

T=kne (T~ A) N B, # 0,

and the unstable size of A times A~%:"5 is smaller than one quarter of the
unstable size of B (see Problem 2.4). This implies immediately that

T~ *e(T"A)NB#0 Vk> k. (8.3.2)

1 This may seem a silly construction but it is a rather general trick used to exploit
topological mixing and we will see it again under the name of core of a rectangle in chapter
8.

12This is the crucial property always needed to obtain mixing in hyperbolic systems:
ergodicity of all the powers of the map.
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T-"A, —+

~— T77A

Figure 8.1: Intersection between A and T-"A

In fact, T—*"8(T~"A) crosses B from one unstable side to the other and
touches B., thus (8.3.2) can be proved by the same type of arguments used
in Lemma 8.3.5.

Finally, set k,, := max{k; | i € {1,...,ng}}. For each n > k,,np we can
write n = knpg + ¢ where 0 < i < npg, thus

T"ANB=T=(T7"A)N B # 0,
by (8.3.2). O
By the same arguments one can prove the following (see Problem 2.5).

Lemma 8.3.6 Given any stable segment W* of length 0, and any unstable
segment W of length L > X\6—!, then it holds W N W™ #£ ().

To start discussing the problem of mixing we need to adopt a point of
view among the many possible. We will take the one that looks at the mea-
sures (see Proposition 6.8.3 and Problem 1.6.33) which, by now, should be
rather familiar to the reader. Calling po a measure absolutely continuous
with respect to Lebesgue we would like to study the asymptotic behavior of
tn = Ty"po. Thanks to Proposition 6.8.3 we need to study only the weak
convergence. The first observation is that such a set of measures is compact
hence we can study the set of its limit points I' (of course with the goal of
showing that it consists of only one point).'* Such a set is simply the set of

13Note that such accumulation points are not necessarily invariant measures, this is why
we considered accumulation points of averages in section 6.5.
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limits of convergent subsequences. Since the measure pg is absolutely con-
tinuous with respect to m there exists a function h € L*(T?), h > 0, such
that

po(f) = m(hf).

A lesson that we have learned from the computation in Fourier trans-
form and from the Hopf argument is that the regularity of the functions do
matter considerably and that it may be useful to consider, at first, regular
functions and then obtain the wanted result by an approximation argument.
Accordingly, we will restrict ourself to the case h € CV(T?) and establish
two fundamental facts.'*

Lemma 8.3.7 If i € ' then ji is absolutely continuous with respect to Lebesgue.
In addition, h = 4 € L>(T?,m).

PrOOF. We notice that the sequence p,, is uniformly absolutely continu-
ous with respect to Lebesgue, that is Vf € C(9(T?) such that f >0

puf) = [ o < bl I

This implies f(f) < [|hllom(f) and

fi(A) = sup i(C) = sup inf a(f) < llhllem(4),  (8.3.3)
CcA ccA {fec® | f>xc}
c=C c=C

where we have used (6.5.3) and (6.5.4). Clearly (8.3.3) implies the absolute
continuity. Hence, by the Radon-Nikodym theorem | ], there exists h €
LY(T?,m) such that dji = hdm.

Next, let A= {x € T? | h(z) > ||h|ls}. If m(A) # 0, then

Ihfloem(A) < /A Rdim = i(A) < ||h]cm(A)

which is a contradiction, thus A < ||h/|s a.e.. O

The next argument is very similar to what we have already seen in Ex-
amples 6.5.1-Strange Attractors. Let us call D* the derivative along the
unstable direction (if v™ is the normal vector in the unstable direction then

Df = (Vf, vT)).
Lemma 8.3.8 There exists ¢ > 0 : for each f € CV(T?)

[ (D" )] < A7l floo-

14 Actually, this regularity condition on h will be needed only in Lemma 8.3.8.
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PROOF.

(D" ) = / W(D"f) o T" = / W{(Vf)oT, vF)

T2
2

. -n o™ +y " e (foT™ +

= [T e ) =3 S [ hon(sor

=-A"" DYhfoT",
T2
where the last equality is obtained by integrating by parts with respect to
both coordinates. Accordingly,

(D F)| < ATV AL floo-
O

From the above results it follows that if 1 € T then there exists h € L>°(T?)
such that, for each f € L'(T?, m),

() = [ fham

and for each f € C™)(T?), a(D*f) = 0. This two facts together imply that h
is constant almost everywhere.

To see this we start by a local argument showing that h is constant along
the unstable direction. We have already done a similar argument, in Exam-
ples 6.5.1-Strange Attractors, by using Fourier series, let us see here a more
measure theoretical argument to convince the reader that the global structure
of T? has nothing to do with the result.

Let us consider an arbitrary rectangle R of size smaller than 1/4. Con-

sider an arbitrary f € C(l)(']I‘Z) with support contained in ;{ Then consider
coordinates in R parallel to its sides (since this is achieved by rotations and
rigid translations it leaves invariant the Lebesgue measure). As before, the
unstable sides are horizontal. Let us call x the coordinate along the stable
direction and y the one along the unstable direction. In such coordinates
R =10,a] x [0,b] (we have translates the origin at the bottom left corner of
R). Given f € C™V, we define

Flaon = o) - [ 56 s
Flao) = [ Fe e

Then F|pr = 0 so F can be extended to a function on T? by setting F' = 0
outside R. Note, that F' is continuous and differentiable everywhere apart
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from the boundary OR where the derivative can be discontinuous. In the new
coordinates D" becomes simply the derivative with respect to z.

/mhfZ/Rhf=/oadx/obdyhf+i/obdy/oadxh(x, y)/oadgf(g, Y,

and, setting h(y) = 3 [y dh(&, v), [(y) = [y d€f(& ),
B a b B b B B B b B B
L= [ [ ashor+ [ aiiie) = [ 50er+ [ ash) ).

At this point a small obstacle appears, due to the fact that F' is not C("). The
problem is easily solved by approximating F by C!) functions F. such that

|D“F — D“F.||; <. Then
/ hDUF — / WD F.
T2 T2

/ hD“F’ =
'H‘Q

Hence, fTQ hD"F = 0 also if the derivative is not continuous, consequently

/Tzﬁf:/wﬁf. (8.3.4)

By the arbitrariness of f (8.3.4) implies that h = h almost everywhere in

< [IRlloce.

R. Since R is arbitrary it follows that A is constant a.e. along the unstable
direction. ~
A global argument is now needed to show that h must be constant.'?

PROOF OF PROPOSITION 8.3.1—A SHORTCUT. Consider a line ¢, = {x =
a}. Clearly for each point p = (a,y) € £, W' intersects again £, at the point
(a,y + wy mod 1) where (1,w;) is the unstable direction. Then we can
consider the Dynamical Systems (¢, R.,, ,m), and the function h, = h(a,y).
By the previous discussion (and Fubini Theorem) it follows that, for almost
every a, the function h, is an L'({,,m) invariant function for the rotation
R, ; but we know that the irrational rotations are ergodic (see Examples
6.6.1), thus h, =constant which implies immediately h constant. O

The above proof is simple but uses quite heavily the global properties of
the foliation and of T? to reduce the problem to one already studied (the
irrational rotations). Clearly it is not clear how such a trick could work in
more general situations. Again we would like a more flexible and dynamical
argument.

15The fact that the argument is global, i.e. uses some properties of T2, reflects the fact
that it is not as general has the Hopf argument which, instead, is of a completely local
nature, as we will see better later.
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PROOF OF PROPOSITION 8.3.1-DYNAMICAL. We will use a strategy al-
ready employed to prove the ergodicity of irrational rotations based on the
existence of density points. Morally, this allows us to consider only rectangles.
By topological mixing we can ensure that any two rectangle are crossed by
the same unstable line (although it is more convenient to take preimmages of
the rectangle and show that they must intersect a given unstable segment),
so it is not possible that h has values different in the two rectangles. This
very naive argument can be made precise as follows.

If h it is not a.e. constant then there exists two sets A and B of positive
measure such that 7L|A > fL|B a.e.. Let x4 and xp be density points, of A and
B respectively, and choose two rectangle R4 and Rp of the same size, smaller
than %, and such that

m(ANR,) > am(Rya)
m(BNRg) > am(Rp) (8.3.5)

where « € [0, 1) will be chosen later.

Let us consider hoT™, clearly hoT"™|p-n4 > hoT"|r-np and the relations
(8.3.5) hold for T~"A, T""R4 and T~ "B, T""Rp.

Next, let Ris C Ra and Rp C Rp be two shorter rectangles obtained
by the original ones by chopping off a quarter of the length in the stable
direction from each side. Let ng be so large that the stable length of the
rectangles time A™° is larger than one. Now chose another rectangle R, of
size p < i, as you please. By topological mixing it follows that there exists
n > ng such that T"R4 N R # 0 and TRz N R # (. In addition, by the
construction of R4 and Rp and the choice of no, it follows that T~"R 4 and
T-"Rp cross R completely from one unstable side to the other, where Risa
rectangle containing R at its center and of double size. Moreover, the same
quantitative argument of Lemma 8.3.6 shows that it is possible to choose n
such that the stable length of T""R 4, T "Rp is shorter than 8\

Let L4, Lp the two rectangles contained in T7" R4 N Rand T-"RpnN R,
respectively, that cross R from an unstable side to the other. Chose

m(Lp) _  m(La)

—1_™MEB) 4 TNREA)

4m(Rp) 4m(Ra)’

The all point is that, on almost all the unstable lines in R, hoT™ is constant,
so if one of this unstable lines intersects both T-"A and T~"B we have a
contradiction. Thus, it must be

) o

m( U W;‘nglﬂl U wrnLg

zeT—"A zeT—"B
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Fubini theorem implies

m< U W;mLB>=m< U WﬁﬂLA>2m(T‘"AﬂLA),

xeT—"A zeT—"A
and

m< U ngLB> >m(T BN Lg),

z€T "B
This yields:

m(Lg) >m(T ANLs)+m(T "BNLg)
>m(T "ANT "Ra) —m(T "Ra\La)
+m(T~"BNT "Rp)—m(T "Rpg\Lg)
> 2{am(T""Rp) — m(T""Rp) +m(Lp)}

3
> §m(LB)

which is a contradiction. This shows that is not possible that the unstable
manifolds starting at T~ A systematically avoid T~ "B.

Hence, h is constant, but then h = [, h = (1) = po(1). We have just
proved that I' consists of only one measure: the Lebesgue measure. Thus

lim hfoT"dm = hdm fdm,

n—o0 T2 T2 T2

for each g, f € C(M(T?). The mixing follows by the same approximation
argument used in the Fourier series analyses. (|

8.4 Shadowing

In this section we explore the topological complexity of the dynamics of our
model systems. I have already remarked that when such a strong instability
with respect to the initial condition is present it is impossible to follow exactly
an orbit of the system. In fact if we compute (e.g. with a computer) the orbit
of the initial point 2 € T?, due to round off errors we do not get an orbit but
rather a pseudo-orbit.

Definition 8.4.1 Give an systems (X,T), X Riemannian manifold, an infi-
nite sequence {x;}icz C T? is called an e-pseudo orbit if, for all i € Z,

d(l’i+1, TZL’Z) S E.
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Which means exactly that at each step an error of order ¢ is allowed.

The following result, beside being very useful, is a partial replay to the
argument that it is not possible to follow orbits on a computer. Although the
result is quite general, we state, and prove, it in our special context.

Proposition 8.4.2 For each § > 0 there exists and € > 0 such that, if {z;}
is a e-pseudo-orbit for the Arnold cat, then there exists € € T? such that

d(z;, T'€) < 6§ VieZ.

That is, there exists an orbit that §-shadows the pseudo-orbit, moreover such
an orbit is unique.

PROOF. As usual we consider rectangular (better yet: square) neighbor-
hood of points. So, let Q.(z) be a square of size € centered at x with sides
parallel to the stable and unstable direction, respectively.

Next, let us consider T'Qs(xg), since d(Txg,z) < e, if % +e< % and
)‘75 —e> g, then T'Qs(xo) crosses Qs(x1) completely from the stable side to
the other stable side. Thus, provided we choose ¢ > )\2—3‘16, we have the picture
of the intersection between rectangle that we have already learned to like.

Of course the same transversal intersection takes place for each T'Qs(z;)
and Qs(x;+1). This immediately implies that T"Q;s(xo) crosses Qs(x,) from
one stable side to the other (see figure 8.2)

TQé(irO) 776(1171)
4 s o .
L_To LT Lot
Qs(z0) Qs(71) Qs(x2) 205 (o)

Figure 8.2: Intersection between T"Qs(xo) and Qs5(zy)

Thus K, = T7"(T"Qs(x0)NQs(xy)) is a sequence of nested (K, +1 C K,,)
vertical rectangles. The unstable side of K, is of size A™"¢ while the stable
side is of size d.

Clearly, if £ € K,,, then

d(T¢,2;) <6 Vie{0,...,n}.
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We can then consider the vertical line Ko = NpenKy,, by construction Ko
consists of points whose orbit § shadows {x;};en. By doing the same exact
construction in the past we obtain an horizontal line K., of points that &
shadows {x_;}sen. The theorem is then proven by choosing {¢} = Koo N K.

the uniqueness should be obvious from the construction. In alternative
the reader can prove it by contradiction. O

The above theorem is not so helpful from the measure theoretical point of
view, since it could happen that the set of trajectories that shadow pseudo-
orbits are of measure zero. (say more)

Nevertheless, it is very useful from the topological point of view (see Prob-
lem 2.15 for a dim glimpse to such possibilities).

8.5 Markov partitions

In all the above constructions the concept of rectangle has played a key role.
In this section we present a construction that is the glorification of such a
point of view.

Consider the stable and unstable manifolds of zero and prolong them until
they meet (of course when they meet we meet an old friend: an homoclinic
intersection) few times.

Figure 8.3: Markov partition

Clearly in such a way we have obtained a partition of T2. Such a partition
consists of rectangles with sides that are either stable or unstable manifolds.
We call them respectively the stable and the unstable sides of the rectangles.
A partition is Markov if the preimage of each unstable side of a rectangle is
contained in the unstable side of a rectangle and the image of every stable
side is contained in the stable side of a rectangle. The reader can check that
it is possible to use the above construction to have a Markov partition with
(for example) three rectangles (see Figure 8.3 where the case a = 1 is drown).
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Problems

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Use the Diofantine properties of the stable and unstable direction to
obtain better estimates of the decay of correlations. The Diofantine
property refers to the following fact: if we normalize the eigenvectors in
such a way that vy = (1,w4), then wy are irrational numbers that are
badly approximated by rationals: there exists ¢ > 0 such that |wy — §| >
q% for each p,q € N.

Prove that the dynamical System (T2,7™,m) (where T is the Arnold
cat map) is ergodic for each n € N. (Hint: the same proof as for n = 1.)

Let (X,T,u) be a Dynamical Systems where X is a compact metric
space, T' is continuous, and p charges the open sets (i.e. if U C X
is open, then u(U) > 0). Prove that for each U C X open, there
exist infinitely many n € N such that T="U NU # §. (Hint: Poincaré
Theorem.)

Let (X, T, u) be an ergodic Dynamical Systems where X is a compact
metric space, T is continuous, and p charges the open sets. Prove that
for each U,V C X open, there exist infinitely many n € N such that
T~"UNV # (. (Hint:For each k € N, A = U, <;T~"U is an invariant
open set, if it does not intersect V', then m(A) < 1, thus, by ergodicity,
m(A) = 0 which implies U = (.)

Prove Lemma 8.3.6. (Hint: As in the proof of Topologically mixing
consider T7"W* T"W*" and chose n so large that Ad > 2 while the
length L of W* must satisfy A\™"L > 2.)

Show that for each = € T? the global unstable manifold W (z) is dense
in T2. (Hint: An algebraic proof-Let us normalize vy = (1,w), then w
is irrational. Clearly W"(z) = {z + tvy mod 1};cr. Consider a point
y = (y1,y2) and chose to = y; — x1, then, for each n € Z, x + (to +
n)vy mod 1 = (y1, R%¢ mod 1) where € = x5 + (y1 — 21)w mod 1. Now,
we know that R, has dense orbits (see Examples 6.6.1-Rotations), thus
the result.

A dynamical proof-It follows Lemma 8.3.6 plus the fact that T-"W" is
shorter than W*".)

Consider the global unstable foliation {W*(z)} and choose an interval
of length (in the horizontal direction) one from each fiber.'® Let K be
the set obtained by the union of all such segments. Prove that K it
is not measurable. (Hint: Define R : T? — T? by R(x,y) = (z, R,y).
Then, remember Problem 1.6.19.)

16The Axiom of choice again.
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8.8

8.9

8.10

8.11

8.12

Let W¥(z), Wé(z) c U C R%, U :[; and U compact, smooth mani-
folds (C™") curves) such that, the {W"()(z)},cp are pairwise disjoint,
oW ) (z) C AU, if z € W(z) NW*(y), then the angle between W (z)
and W#(y) at z is larger than some 6 > 0. In addition, assume that,
calling v*(*)(x) the unit tangent vector to W*(*)(z) at z, v**) € 1),
We will call such two foliation ¢ C(Y) uniformly transversal foliations.”
Show that to each such a foliation it is associated a change of variable
(a diffeomorphism ¥ : U — U) and that to each change of variables is
associated such a foliation. (Hint: ...)

Consider two C™) uniformly transversal foliations (as in Problem 2.8).
Prove that if f € L™ is constant along almost every fiber of the two fo-
liations, then it is constant almost everywhere. (Hint: Do the argument
locally and change variables so that the foliations becomes straight.)

Consider the Bernoulli measures z) defined on Y7 (the one sided se-
quences with two symbols) by choosing pg = p and p; = 1 — p (see
Examples 6.2.1-Bernoulli shift). Show that, if p # p’ then uf and uf,
are mutually singular. (Hint: All the dynamical systems (X3, 7, pl) are
ergodic—See Examples 7?7 and 77.)

Let p, be the measure on [0, 1] obtained from uf by the binary repre-
sentation of the real numbers let

Fp(z) :== pp([0, z]).

Show that, for each p € (0,1), F, : [0,1] — [0,1] is one one, onto,
continuous. In addition, show that there exists ¢ € R™ such that, for
each p,q € [i %], holds

|Fp() = Fo(@)] < clp —ql.

(Hint: Note that the cylinder correspond to intervals with end points
made of binary rationals. It is then immediately clear that all the mea-
sures fi, give positive measures to the open sets. To prove the last
inequality prove the representation

oo n
Fy(z) = o [[p7(1—p)"
n=0 1=0

where o is the binary representation of x.)

Construct ¢ : [0,1] — [0, 1], invertible and continuous, such that there
exists A C [0,1] with m(A) = 0 while m(¢(A)) = 1. (Hint: Any of the
above F, will do.)
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8.13

8.14

8.15

CHAPTER 8. UNIFORMLY HYPERBOLIC SYSTEMS

Construct a continuous foliation ¥ in [0, 1]?made of C* leaves (that
is ¥ is a isomomorphism of [0,1]* and ¥(-,y) € C*). In addition,
the foliation must be made of straight lines in {(x,y) € [0,1)* | z €
[0, 1] U [2,1]} but is should not be absolutely continuous in the region
{(z,y) € 0,1 | = € [}, 3]}, (Hint: Let p € C(R), ¢(R) = [0,1],
¢(z) = 0for < 0 and ¢(x) = 1 for z > 1. Then, using ¢ from Problem

2.12, define

(z,y) if zelo, é}
U(z,y) =4 (@ [L—pl@—Dly+e@— Do) if zelf,]]
(z,6(y)) it zel3 1]

Clearly the leaves W(-,y) are C(>), yet the foliation it is not absolutely
continuous. )

Find two C(®) uniformly transversal foliations in [0, 1]2, with C(>) leaves,
such that the Hopf argument does not apply. (Hint: Call ¥, p € [1, ]
the foliation constructed in the Problem 13 starting from the function
F, defined in the Problem 11. Choose a sequence p,, converging to one
quarter, e.g. p, = i + ﬁ, then let z,, = % — L. Finally define the

2n°
foliation

_ Uy, (mn =+ (xn-&-l - xn)xa y) for x € [Ina'rn-‘rl]
U(z,y) = { (2, F1(y)) for z € [1,1]

Further define the function ¢ : [0,1] — [0, 1] to be one on a set of full
measure for y11 and of zero measure for pp,, and zero otherwise. The

functions fT, f~ defined by

f_(x,y)z{ 1 forz e [3,1]

and
S, W, y) = g(a),

are then constant on the vertical and the ¥ foliation respectively. More-
over they clearly are equal Lebesgue almost everywhere, nevertheless
they are certainly not constant.)

Show (first without using Markov Partitions and then by using Markov
partitions) that the Arnold cat has at least e periodic orbits of pe-
riod n, for some ¢ > 0. (Hint: If we have a rectangle R of size £, then
T"RNR # () for some n < clne~!. Then, if x € T""RN R we con-
sider the pseudo orbit z,, = T2 where i = k mod n. Then Proposition
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8.4.2 implies the existence of a periodic orbit in an e-neighborhood R,
of R. On the other hand the boxed T-*R., k € {0,...,n} invade a
part of T? of measure cg?Ine~!. The argument is then concluded tak-
ing boxes in the remaining space and continuing until all the available
space is exhausted. On the other hand, if one takes in account Markov
partions, then the number of periodic orbits is given—appart from the
non-invertibility of the coding—by the number of periodic simbolic se-
quences of period n.)

Notes

Hopf history and ref
Mention Young-Robinson example



Chapter 9

Non-uniform hyperbolicity
an introduction

G5 1 this chapter, we discuss what is probably the simplest example of
non-uniform hyperbolic behaviour. This is not intended to be a discussion
of the general theory; it is just a taste of it. The theory of non-uniformly
hyperbolic systems is rather vast, starting with Pesin theory, till the results
on the Henon map and their generalizations.

9.1 Pomeau-Manneville map

Let us consider the map

Fa) = {fo(x) = 2 itz e [0, L] 0.1.1)

filx):=2zx-1 if z € (3,1],

for some 7y € (0, 1]. Such a map was introduced as a model for the phenomena
of intermittency; indeed, the trajectory has a hyperbolic character away from
zero, but in a neighborhood of zero, the motion is very regular.

Let us first study the latter regime: consider the preimages of a point = under
the map fop.

Lemma 9.1.1 for zo € [0,1] let z, = f; "(x0). Then, for each n € N,

n

2=
==

(x5t +27yn) "7 <z, <27y

206
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PROOF. Let A =z, " consider the sequence a,, = (4 + 29yn)~7"", then

27 N 27y 4+ 1) e
(A+2vyn) > (A+2ryn)r 22" (9.1.2)
=an + 274,77 + 207 (7 4 Dl e

ap—1 = Qp +

Accodringly, a,—1 > fo(ay). Consequently,
an < fo H(an—1) < fg™(a0) = fo " (x0) = @n.

Next, suppose that z, < ek~ for all 1 < k < n, then

1
Tn, = fo(Tn+1) = Tpt1 + Q'Yxn—_n-

If g1 > c(n + 1)7%, then
nTV >, > c(n+ 1)_% + 27 (n 4 1)_1+T7

>en v — SpTA Tl 27 (n + 1)71%7
v

§ 1 _ 14y
277y 1—1—5 -1

>en v+ Cp3-1 27"y — 1]

.

_1 cC _1_4
=cn *+ —nm

. 1 1 .
this is a contradiction if we choose ¢ = 27'y75 > %, which also ensures
z1 <ec. O

The basic ided is to study the return map F : [3,1] — [§,1]. That is, let
m(z) =inf{n e N : f*(z) € [},1]}, and

F(z) = 7@ (a).

If we choose 29 = 1, then 21 = 1. So f™([zn+1,2n]) = [3,1]. Accordingly, set-

ting z, = fl_l(:nn), 7(x) =n for all z € [z, 2n—1], and F([zn, 2n-1]) = [%, 1].
That is, F' is a Markov map with a countably infinite number of branches. To

study such a map, we need first to investigate the distortion D(x) = 5:;53%

Lemma 9.1.2 There ezists K > 0 such that for each x € [3,1]

D(z) < K.
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PROOF. By a direct computation, for z € [z, z,—1],
_ (fof " H)"(x)
D) = @y @
_ " UTTH@UTY @)+ U @) (T ()
frfr=Hz))2 (1) (2)?

= Di(f""!(x)) + —1(2)

v p
f’(f”*l( ))

-y "Dy a)
D Hf’ =T 2 (T F ()

In addition, for w,y € [z, 2n—1], let wg = f’“(w) and yi, = f*(y), we have

[
M:

~
Il

1

o = Bxp kzz (1n( /3 (wn)) 1n<f5<yk>>]
[n—1 i
Ex —
< Exp > fo |wy, yk|‘|
fél n—1 1 //
< Exp Z | T — Tm—r—1]| < Exp [ ‘ } =:C.
L fo 00 k=2 T

Since f*~([zp—k—1,Zn—k]) = [3,1], by the mean value theorem there must
exists & € [Tp_p_1,Tn_r) such that (f*~1) (&) = [2|Tn_k-1 — Zn_i|] 7' Let
Ck € [2n, Zn_1] be such that f"~%¢, = &, then

1 fk—l I fn—k C
) ~ 2o g < ok
from which the result readily follows. O

By Lemma 9.1.2, the first return map F' has a unique invariant measure abso-
lutely continuous with respect to Lebesgue. Accordingly, so has the Kakutani

tower ([3,1],5). Let v be such a measure. Then Theorem 6.7.8 implies that

there exists a measure p = v which is absolutely continuous and ([0, 1], f, )
is a measurable dynamical system. In addition,

1
/ go fhedu=muw(gof") =v(pomgo from) =v(gomoSTpomn).
0

In other words, the decay of correlation for the map f and the map S coincide.

9.2 Young towers
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Appendix A

Fixed Points Theorems
(an idiosincratic selection)

In this appendix, I provide some standard and less standard fixed-point theo-
rems. These constitute a very partial introduction to the subject. The choice
of the topics is motivated by the needs of the previous chapters.

A.1 Banach Fixed Point Theorem

Theorem A.1.1 (Fixed point contraction) Given a Banach space B, a
bounded closed set A C B and a map K : A — B if

i) K(A) C A,

it) there exists o € (0,1) such that ||K(v) — K(w)|| < ollv — w]| for each
v,w € A,

then there exists a unique v, € A such that Kv, = v,.

PRrROOF. Since A is bounded sup,, ,c 4 [[z—y|| = L < o0, i.e. it has a finite
diameter. Let ag € A and consider the sequence of points defined recursively
by an+1 = K(a,) and the sequence of sets A4g = A and 4,11 = K(A,) C A.
Let dy, := sup, ,ca, |z — yl| be the diameter of A,. Then if z,y € A,, we
have

1K (y) = K(@)|| < ollz =yl < odn.

That is d,+1 < od,, < ¢™L. This means that, for each n,m € N, a,,ap € A
and am, Gpym € Am, hence ||apim — am|| < o™L. That is, {a,} C A is a
Cauchy sequence and, being B a Banach space, it must have an accumulation

210
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point v, € B. Moreover, since A is closed, it must be v, € A. Clearly

|Kve — v = lim ||Kve —ayn]| = lim ||[Kv, — Kap—1||
n—oo n—oo
< lim ofjvsx — an—1| = 0.
n—oo

Hence, v, is a fixed point. Next, suppose there exists u € A such that Ku = u.
Then

l[u = vl = 1K (u—v)|| < olju—vx|

implies u = v,. 0

Corollary A.1.2 Given a Banach space B and a map K : B — B with the
property that there exists o € (0,1) such that || K (v) — K(w)|| < ol|lv —w]| for
each v,w € B, then there exists a unique v, € B such that Kv, = v,.

PrROOF. To prove the theorem, for each L € R, consider the sets By, :=
{veB: |u] <L} Then [K(v)] < [K(v) - KO+ [KO)] < ollol] +
K@) < oL+ ||[K(0)||. Thus, for each L > (1 — o) | K(0)|| we have
that K(By) C Bp. The existence follows by applying Theorem A.1.1. The
uniqueness follows from the same argument used at the end of the proof of
Theorem A.1.1. O

A.2 Brouwer’s Fixed Point Theorems

The basic problem addressed in this section is to study the existence of fixed
points for continuous maps f : D — D, for some domain D. The remark-
able feature of the theorems that we are going to present is that they relate
the geometrical properties of the domain of a map to the existence of a fixed
point. However, one should note that the fixed point may not be unique. In
the following, I provide elementary proofs, which will also be constructive.
Other proofs based on algebraic topology exist, but are outside the scope of
this book.

We present a sequence of results that build on each other, progressively in-
creasing the level of generality.

A.2.1 Maps on a symplex

We start by recalling the definition of a simplex.
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V2 V2
[} o ——————O
AO Vo Al (%} Vo AQ (%1} Vo A3 (%1
Figure A.1: Low-dimensional examples

Definition A.2.1 (Geometric n-simplex) Let vg,vy,..., v, be affinely in-
dependent points in R™, m > n.! The n-simplex spanned by these points is

n+1 n+1
A™Mw1, . Upg1) = {:c ER™:x=> N\vi, i >0, Y A= 1}.
i=1 i=1
The standard n-simplex in R*+! is
n+1
A" = A"(ey,. .. enp1) = {(xl, ey Tpy1) ERMTL g >0, in = 1}.
i=1

Definition A.2.2 (Coloring) Let A™ be the standard n—simplez, and let T
be a simplicial subdivision (triangulation) of A™. We call V(T) the set of
vertices of the simplicial decomposition of T. A s-coloring of T is a function
C:V(T) = {1,...,n+1} such that if v lies on the face of A™ opposite e; (that
is, v; = 0), then £(v) # i. A simplex with vertices in V(T) is fully colored if,
calling V' the set of its vertices, |y is invertible on its image.

The basis tool that we will use is the following combinatorial lemma.

Lemma A.2.3 (Sperner’s Lemma) Let A™ be the standard n—simplex. Let
T be a simplicial subdivision (triangulation) of A™. Any s-colouring of T' con-
tains at least one fully colored simplex.

PROOF. The proof is by induction on n.
Let us start with n = 1. Here A! is the interval with endpoints eg,e;. The
labeling rule forces ey to have label 0 and e; to have label 1. If all the
subdivisions have vertices with the same color, then eg and e; would have the
same color, contrary to the assumption.
Assume the lemma is true for dimension n — 1. Consider A™. By assumption,

1A set of points vg,v1,...,vn € R™ is called affinely independent if the collection of
vectors v1 — vg, v2 — Vg, ..., Un — g are linearly independent.
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there is at least one fully colored (n — 1)-simplex A(vy,...v,), v; € V(T),
lying on the boundary 0A™. Let Ay := A(vy,...vn41) € T be the n-simplex

containing A(vy,...,v,). If L(v,y1) # £(v;) for all i@ < n, then we have a
fully colored simplex and we are done. Otherwise, there is a unique j such
that vp41 = v;. We then consider the simplex A(vi,..., 051, Vj41, -, Unt1),

which is fully colored by construction. Note that each face of an element of
T belongs to two elements of T', unless it belongs to JA™ in which case it
belongs to a unique element of T'. So there exists a unique v, 2 € V(T') such
that vp40 # v; and Ag == A(v1,...,0j_1,Vj41, - Unt1,Uny2) € T. Again,
either is fully colored, or we can erase the vertex with the same color as v,42
and obtain another fully covered n — 1-simplex. In this way, we can construct
a sequence of simplices {A} € T.

Next, we show that Ay, = A; = k = j. Suppose the contrary, and let k be
the smallest integer for which there exists j < k such that Ay = A;. Let w?‘ €
V(T') be the last vertex added to obtain A; and w; € V(T') the unique vertex
in A; such that £(w;") = ¢(w;" ). Consequently, if V/(A) are the verteces of A,
we have V(Ar) = [V(Ar-1)\{w,_; HU{wy } and V(A1) = [V(A;)\ {w; }]U
{wj-++1}. By contruction A(V(Ag) \ {w}), AV (Ar) \ {wy }), AV (A))\
{w;}), and A(V(Aj) \ {wj}) are all fully coloured. Since, by hypothesis,
V(Ar) = V(4;), it must be wlf € {w;,wf}, otherwise A(V(Ag) \ {wlf})

could not be fully colored. So, either w,f = wj.t, or w,f = w;F. If w,j =

wj', and j > 1, then it must be Ay_; = A;_; contradicting the hypothesis
that k is the smaller integer for which this happens. If j = 1, then note
that wfr ¢ OA"™ while w,:r € OA™ since otherwise Aj_; would have a vertex
outiside A™. It remains the possibility wz =wy, this implies Ap_1 = Aj4q
again contradicting the hypothesis unless k¥ = j + 2. But this would imply
Aj = Ajyo which is impossible, as one can check directly.

The above implies that all the A, are different, but they are only finitely many,
so the construction must eventually stop, and the only possibility to stop is

when a fully colored simplex appears, whereby concluding the proof. O
We are now ready to prove our first fixed-point Lemma in the simple case
where the domain is a simplex.
Theorem A.2.4 (Fixed Point Theorem for simplices) FEvery continuous
map f: A" — A™ has a fized point.

PROOF. Let x € A™ such that f;(x) > x; for each i € {1,...,n+1}, then

d+1

0=1-1=> (filz) —x), (A.2.1)

i=1

which implies f(z) = z. It thus suffices to show that such a point exists.
We argue by contradiction, assume that for every x there exists some i with
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fi(z) <.

For each k € N, consider a triangulation T} of A™ with simplices of size
smaller than 27%. For each vertex v of T}, we set £(v) = arg max;{v; — f;(v)}.
By our assumption, we have vy,) > fiw)(v). If v lies on the face {z; = 0},
then clearly f;j(v) > 0 = v;, so £(v) # j. Thus, we have defined an s-
coloring of Ty. It follows that there exists a simplex Ay € Ty which is fully
colored. Let zx € Ay =: A(Vg1,...Vkn+1), by compactness the sequence
{71} admits a convergent subsequence {zy,}. Let T = lim; o 2y,. It follows
that = lim; o g, 1, for each [ € {1,...,n + 1}. Since the Ay are fully
colored, for each i and j there exists lj,i such that f(vk, 1, ;)i < (vk,1,,)i- By
the continuity of f, it follows

z; < f(x)

for each i € {1,...,n + 1}, hence the contradiciton. The lemma follows. O

A.2.2 Maps on finite-dimensional convex sets

To obtain a more general result, we need to recall a useful characterization of
convex sets.

Lemma A.2.5 Let K C R" be a non-empty compact convex set with nonempty
interior. Then K is homeomorphic to the standard n—simplex A™.

PRrROOF. Choose zy € int(K) and zp = (%ﬂ”%ﬂ) € R". Let R
be a rotation that sends egi; into the vector [n +1]72(1,...,1). Consider

the map ®o(z) = 20 + R(z — 20,0) and let K = ®o(K). By construction,
K belongs to the same hyperplane containing A™. For each z € K, the half
line {zp + t(z — z0) : t > 0} intersects the boundary K at a unique point
a(z) and the boundary OA™ at a unique point b(z). Define a continuous map
(bl : R — A" by

el

la ¢ ™)

Clearly, ¢ = ¢1 o ¢ is the wanted homeomorphism. g

$1(x) = 20 +

Theorem A.2.6 (Brouwer Fixed Point Theorem) For every non-empty
compact convexr set K C R™ and continuous map f: K — K, f has a fized
point.

PRrROOF. By Lemma A.2.5, there exists a homeomorphism ¢ : K — A",
Define F = ¢o fo¢~! : A" — A" Theorem A.2.4 implies that there
exist Z € A" such that F(n) = z. Hence, setting . = ¢~(Z) we have
flzy) = x4 O
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A.2.3 Maps on compact convex sets

To conclude this survey, we show how Brouwer’s result can be extended to
the infinite-dimensional setting by an approximation procedure. Note that
this result is less constructive than the previous ones, as it is based on a
compactness argument.

Theorem A.2.7 (Schauder Fixed-Point Theorem) Let B be a Banach
space and K C B a nonempty, compact, convexr subset. Let f : K — K be
continuous. Then f has a fized point.

PROOF. Since K is compact, for each € > 0 there exists a finite set
{z1,...,2n} C K such that

N
K C U BE(.L“i),
i=1
where B.(z;) denotes the open ball of radius e around z;. Let
K. :=conv{zy,...,ay} C K

be the convex hull of the points {z;}. Then K. is a compact, convex, and

finite-dimensional set since it is contained in span{zy,...,zy}. Next, define
e — ||z —z;|| forl|lx —x;l| <e
bi() = | — il for| ' ill
0 otherwise.
and

N -1 N
P.(z) = lz @(x)] > i),
i=1 i=1
Note that P.(B) = K., P- is continuos and, for all z € K

N
[P () — af| = Z@(CE)} Z@(x)(xi —z)|| <e. (A.2.2)
i=1 i=1

We can then define the continuous function
fe=P.of: K., — K..
By Brouwer’s fixed-point theorem, there exists

xze € K. such that f.(z:) = z..
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Since K is compact, there exists a convergent subsequence {xaj}, let z, be
the limit. Consequently, reacalling (A.2.2), we have

Hf(xa‘]) - xfz‘j” = ||f(x81) - ij(xEj)H = Hf(xffj) - Péj(f(xéj))H < €j-

Taking the limit j — oo, by the continuity of f, we have the wanted fixed
point f(z) = .. O

A.3 Hilbert metric and Birkhoff theorem

One may wonder if there are cases in which the fixed point provided by the
Brower and Shauder theory is unique. In general, the answer is negative,
but much more can be said for linear maps. In particular, we will see that
the Banach fixed-point theorem can produce unexpected results if used with
respect to an appropriate metric. We thus start with a short digression on
projective metrics.
Projective metrics are widely used in geometry, not to mention the importance
of their generalizations (e.g. Kobayashi metrics) for the study of complex
manifolds [ ]. It is quite surprising that they play a major réle also in our
situation, | ]

Here we limit ourselves to a few words on the Hilbert metric, a quite
important tool in hyperbolic geometry.

A.3.1 Projective metrics

Let C' C R™ be a strictly convex compact set. For each two point =,y € C
consider the line £ = {Ax + (1 — Ay) | A € R} passing through = and y. Let
{u,v} = dC N ¢ and define?

[l — ulllly = vl

O(z,y) = |In
[ = vlllly = vl

(the logarithm of the cross ratio). By remembering that the cross ratio is a
projective invariant and looking at Figure A.2, it is easy to check that © is
indeed a metric. Moreover, the distance of an inner point from the boundary
is always infinite. One can also check that if the convex set is a disc, then the
disc with the Hilbert metric is nothing but the Poincaré disc.

The objects that we will use in our subsequent discussion are not convex
sets but rather convex cones, yet their projectivization is a convex set, and one
can define the Hilbert metric on it (whereby obtaining a semi-metric for the
original cone). It turns out that there exists a more algebraic way of defining
such a metric, which is easier to use in our context. Moreover, there exists

2Remark that u, v can also be co.
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Figure A.2: Hilbert metric

a simple connection between vector spaces with a convex cone and vector
lattices (in a vector lattice one can always consider the positive cone). This
justifies the next digression in lattice theory.?

Consider a topological vector space V with a partial ordering “=<,” that is
a vector lattice.* We require the partial order to be “continuous,” i.e. given
{fn} eV nhﬁn;o fn= [, 1 fn = g for each n, then f = g. We call such vector

lattices “integrally closed.” ®
We define the closed convex cone ° C = {f € V| f #0, f = 0} (hereafter,
the term “closed cone” C will mean that CU{0} is closed), and the equivalence

3For more details, see | ], and [ ] for an overview of the field.

4We are assuming the partial order to be well-behaved with respect to the algebraic
structure: for each f, g €V f = g<= f—g = 0; foreach f € V, A € R"\{0} f = 0 =
Af > 0; foreach f € V f =0 and f <0 imply f =0 (antisymmetry of the order relation).

5To be precise, in the literature “integrally closed” is used in a weaker sense. First, V
does not need a topology. Second, it suffices that for {an} € R, an — «; f, g € V, if
anf = g, then af = g. Here we will ignore these and other subtleties: our task is limited
to a brief account of the results relevant to the present context.

6Here, by “cone,” we mean any set such that, if f belongs to the set, then Af belongs
to it as well, for each A > 0.
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relation “~7: f ~ g iff there exists A € RT\{0} such that f = Ag. If we call C
the quotient of C with respect to ~, then C is a closed convex set. Conversely,
given a closed convex cone C C V, enjoying the property C N —C = (), we can
define an order relation by

f=g <= g-feCu{0}.

Henceforth, each time that we specify a convex cone, we will assume the
corresponding order relation and vice versa. The reader must therefore be
advised that “<” will mean different things in different contexts.

It is then possible to define a projective metric © (Hilbert metric),” in C,
by the construction:

a(f, g) =sup{A e RT | Af < g}
B(f, g) =inf{u e R" | g < uf}

ot =53]

where we take @ = 0 and 8 = oo if the corresponding sets are empty.
The relevance of the above metric in our context is due to the following
Theorem by Garrett Birkhoff.

Theorem A.3.1 Let Vi, and Vg be two integrally closed vector lattices; L :
Vi — Vi a linear map such that £L(C1) C Ca, for two closed convez cones
Ci € Vy and Co C Vo with C; N —=C; = 0. Let ©; be the Hilbert metric

corresponding to the cone C;. Setting A = sup ©s(f, g) we have
f,9€L£(C1)

ou(cf, L) < anh (T ) €a(fi)  Whgec

(tanh(co) =1).

PROOF. The proof is provided for the reader’s convenience.
Let f, g € C1, on the one hand if & = 0 or § = oo, then the inequality is
obviously satisfied. On the other hand, if a # 0 and § # oo, then

O:(f, ) ="

where af < g and Sf > g, since V; is integrally closed. Notice that a > 0,
and f > 0 since f = 0, g = 0. If A = oo, then the result follows from
alf = Lgand BLf = Lg. If A < oo, then, by hypothesis,

O (L(g—af), LIBf —g)) <A

"In fact, we define a semi-metric, since f ~ g = ©O(f, g) = 0. The metric that we

describe corresponds to the conventional Hilbert metric on C.
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which means that there exist A, 4 > 0 such that

M(g—af) 2 LBf—g)
pl(g —af) = L(Bf —g)

with In & < A. The previous inequalities imply

B+ A
-
14+ Lf=Lg
po+ 8
Lf = Lg.
1+pu f=Lg
Accordingly,
(B+ ) (14 p) e®1(f9) 4 A 14+ A
<1 =1 _
O2(Lf, Lg) < n(l-i-/\)(,ua-i-ﬁ) ne(“)l(fvg)—ku M
A

B O1(fi9) (= A)et 1-2
*/0 mdfﬁ@l(ﬁ 9)(1+\/§>2

< tanh <§) O1(f, g9).
U

Remark A.3.2 If L(C1) C Ca, then it follows that ©Oo(Lf, Lg) < O1(f, g).
However, a uniform rate of contraction depends on the diameter of the image
being finite.

In particular, if an operator maps a convex cone strictly inside itself (in
the sense that the diameter of the image is finite), then it is a contraction in
the Hilbert metric. This implies the existence of a “positive” eigenfunction
(provided the cone is complete with respect to the Hilbert metric), and, with
some additional work, the existence of a gap in the spectrum of £ (see | ]
for details). The relevance of this theorem for the study of invariant measures
and their ergodic properties is obvious.

It is natural to wonder about the strength of the Hilbert metric compared
to other, more usual, metrics. While, in general, the answer depends on the
cone, it is nevertheless possible to state an interesting result.

Lemma A.3.3 Let || -| be a norm on the vector lattice V, and suppose that,
for each f, g€V,

—f2g=2f=1fll=lgl
Then, given f, g € C C 'V for which ||f| = |lgll,

1f = gll < (259 ~1) |1 f].
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PRrOOF. We know that O(f, g) = In2, where af < g, Bf = g. This
implies that —g < 0 <X af < g, i.e. |lg]] > al|f|l, or @« < 1. In the same
manner, it follows that 8 > 1. Hence,

which implies

lo— £l < (8- a)lfll < 2211 = (209 — 1) 7).

(67

O

Many normed vector lattices satisfy the hypothesis of Lemma 1.3, e.g.
Banach lattices.®

A.3.2 An application: quantitative Perron-Frobenius

Consider a matrix L : R™ — R" of all strictly positive elements: L;; >« > 0.
The Perron-Frobenius theorem states that there exists a unique eigenvector
vt such that v;r > 0, in addition, the corresponding eigenvalue X is simple,
maximal and positive. There are quite a few proofs of this theorem; one is
based on Birkhoff’s theorem. Consider the cone C* = {v € R? | v; > 0}, then
obviously LCtT C CT. Moreover an explicit computation (see

Problem A.1 shows that

VW
O(v,w) = Insup —=
ij VjWi

(A.3.3)
Then, setting M = max;; L;;, it follows that

M
O(Lv, Lw) <2In— = A < 0.
Y
We then have a contraction in the Hilbert metric, and the result follows from
the usual fixed points theorems. Note that, since O (v, A\v) = 0, for all A € R,
the fixed point vy € R™ is only projective, that is Lv; = Avy for some A\ € R;
in other words, we have an eigenvalue.

Remark that L* satisfies the same conditions as L, thus there exists wT &
C*, u € RY, such that L*w" = pwt. Next, define p;(v) = |[(w*,v)| and

8 A Banach lattice V is a vector lattice equipped with a norm satisfying the property
[I'1f] Il = IIf|l for each f € V, where |f| is the least upper bound of f and —f. For this
definition to make sense it is necessary to require that V is “directed,” i.e. any two elements
have an upper bound.
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p2(v) = ||v||. Tt is easy to check that there are two homogeneous forms of
degree one adapted to the cone.

In addition, if p;(v) = pa(v), then p; (L™v) = p1(L™w). Hence, by Lemma
A.3.3

IE7 = Ll < (9EE" ) — 1) minf|[ L], | 2" w] ]}
< KA" mind]| "0, | L"w]},

(A.3.4)

for some constant K depending only on v, w. The estimate A.3.4 means that
all the vectors in the cone grow at the same rate. In fact, for all v € intC,

IATPLMy — AT LMw|| < KA™.

Hence, lim,, oo A™"L"0 = v,

Finally, consider V; = {v € V | (w*,v) = 0}. Clearly LV; C V; and
Vi @ span{v;} = V. Let w € Vi, clearly there exists @ € RT such that
avy +w € C,” thus

IL"w|| < || L™ (cqvy +w) — aL™vy || < LA™A™.

This immediately implies that L restricted to the subspace V; has spectral
radius less than AA. In other words, A is the maximal eigenvalue; it is simple,
and any other eigenvalue must be smaller than AA. We have thus obtained
an estimate of the spectral gap between the first and the second eigenvalue.

Notes

For more details on Hilbert metrics see | |, and [ | for an overview
of the field.

9this is a special case of the general fact that any vector can be written as the linear
combination of two vectors belonging to the cone.



Appendix B

Implicit function theorem
(a quantitative version)

In this appendix we recall the implicit function Theorem. We provide an
explicit proof because we use in the text a quantitative version of the theorem
so it is important to keep track of the various constants.

B.1 The theorem

Let n,m € N and F € C}(R™"" R™) and let (2, \g) € R™ x R™ such that
F(xg,X\0) = 0. For each 6 > 0 let V5 = {(z,\) € R*"™™ : |z — x| <

5.0~ Dol < ).

Theorem B.1.1 Assume that 0, F(xo, Ag) is invertible and choose § > 0 such

that sup, y ey, [1—[02F (20, M)l "' 0.F (2, \)|| < 3}. Let Bs = sup, y)ev; [|OAF(z, V]|
and M = ||0,F (29, Xo) 1||. Setd; = (2M Bs)~15 and As, := {\ € R™ : ||A—

Al < 61}. Then there exists g € C(As,, R™) such that all the solutions of the
equation F'(z,\) = 0 4n the set {(z,\) € B1xBa : ||A=Xo|| < d1, ||lz—z0]| < I}

are given by (g(\), A). In addition,

g = =0 F(9(N), X)) T AF (g(N), N).

We will do the proof in several steps.

B.1.1 Existence of the solution

Let A(z,\) = 0, F(z,\), M = || A(xo, Xo) |-
We want to solve the equation F'(z, \) = 0, various approaches are possi-
ble. Here we will use a simplification of Newton method, made possible by the

222
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fact that we already know a good approximation of the zero we are looking for.
Let A be such that [[A—Ag|| < §1 < §. Consider Us = {z € R" : |lx—z| < I}
and the function ©) : Us — R” defined by!

Ox(z) = 2 — A(x0, o) " F(z, ). (B.1.1)

Problem B.1 Prove that, for x € U(N), F(x,\) = 0 is equivalent to © =
@)\(x)

Next,
[Ox(z0) = Ox, (wo)[| < M|[F (20, )| < MBs6;.

In addition, ||0,0x| = |1 — A(zo, Ao) *A(z, A)|| < . Thus,
1 1
1©x(x) = 2ol < Sl = ol + ©x(z0) — zoll < 5llz = zol| + M Bsdy < 6.

The existence of x € Us such that ©y(x) = x follows then by the standard
fixed point Theorem A.1.1. We have so obtained a function g : {A : [|A —
Xo|| < 61} = As;, — R™ such that F(g(A),\) = 0. it remains the question of
the regularity.

B.1.2 Lipschitz continuity and Differentiability
Let A, \ € As,. By (B.1.1)
1
lg(A) = g < Sllg(N) — g\l + MBs|A — X
This yields the Lipschitz continuity of the function g. To obtain the differ-

entiability we note that, by the differentiability of F' and the above Lipschitz
continuity of g, for A € R™ small enough,

[F(g(A+h), A+ h) = F(g(A),A) + 0. F[g(A + h) — g(A)] + Oz Fhl| = o(||]).
Since F'(g(A+ h), A+ h) = F(g(A),\) =0, we have that

lim |2 g\ + h) = g(A) + [0 F)~ 0xFh|| = 0
h—0

which concludes the proof of the Theorem, the continuity of the derivative
being obvious be the obtained explicit formula.

1The Newton method would consist in finding a fixed point for the function z —
A(z,\)"'F(x,)\). This gives a much faster convergence and hence is preferable in ap-
plications, yet here it would make the estimates a bit more complicated.
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B.2 Generalization

First of all note that the above theorem implies the inverse function theorem:.
Indeed if f: R™ — R™ is a function such that J, f is invertible at some point
Zo, then one can consider the function F(z,y) = f(x) —y. Applying the
implicit function theorem to the equation F'(z,y) = 0 it follows that y = f(z)
are the only solution, hence the function is locally invertible.

The above theorem can be generalized in several ways.

Problem B.2 Show that if F' in Theorem B.1.1 is C", then also g is C".

Problem B.3 Verify that if By, B2 are two Banach spaces and in Theorem
B.1.1 we have By instead of R™ and By instead of R™ the Theorem remains
true and the proof remains exactly the same.

As I mentioned the statement of Theorem B.1.1 is suitable for quantitative
applications.

Problem B.4 Suppose that in Theorem B.1.1 we have F € C?, then show
that we can chose
-1
6 =2 D0y Fllo0] -



Appendix C

Perturbation Theory
(a super-fast introduction)

The following is really super condensate (although self-consistent). If you
want more details see | , ] in which you probably can find more
than you are looking for.

C.1 Bounded operators

In the following we will consider only separable Banach spaces, i.e. Banach
spaces that have a countable dense set.

Given a Banch space B we can consider the set L(B,B) of the linear
bounded operators from B to itself. We can then introduce the norm ||B|| =
sup|, <1 [|1Bv]-

Problem C.1 Show that (L(B,B),|| - ||) is a Banach space. That is that || - ||
s really a norm and that the space is complete with respect to such a norm.

Problem C.2 Show that the n x n matrices form a Banach Algebra.?
Problem C.3 Show that L(B,B) form a Banach algebra.’

1Recall that a Banach space is a complete normed vector space (in the following we will
consider vector spaces on the field of complex numbers), that is a normed vector space in
which all the Cauchy sequences have a limit in the space. Again, if you are uncomfortable
with Banach spaces, in the following read R? instead of B and matrices instead of operators,
but be aware that we have to develop the theory without the use of the determinant that,
in general, is not defined for operators on Banach spaces.

2A Banach Algebra A is a Banach space where the multiplication between elements is
defined with the usual properties of an algebra and, in addition, for each a,b € A holds
llabl| < llall - [I5]]-

The multiplication is given by the composition.

225
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To each A € L(B,B) are associated two important subspaces: the range
R(A) ={v e B : Jw e Bsuch that v = Aw} and the kernel N(A) = {v €
B : Av=0}.

Problem C.4 Prove, for each A € L(B,B), that N(A) is a closed linear
subspaces of B. Show that this is not necessarily the case for R(A) if B is not
finite dimensional.

A very special, but very important, class of operators is the set of projec-
tors.

Definition C.1.1 An operator Il € L(B, B) is called a projector iff 12 = II.

Note that if II is a projector, so is 1 — II. We have the following interesting
fact.

Lemma C.1.2 IfII € L(B, B) is a projector, then N(II) & R(II) = B.

PRrROOF. If v € B, then v = ITv + (1 — IT)v. Notice that R(1 —II) = N(II)
and R(IT) = N(1 —II). Finally, if v € N(II) N R(II), then v = 0, which
concludes the proof. O

Another, more general, very important class of operators are the compact
ones.

Definition C.1.3 An operator K € L(B,B) is called compact iff for any
bounded set B the closure of K(B) is compact.

Remark C.1.4 Note that not all the linear operator on a Banach space are
bounded. For exzample consider the derivative acting on C*((0,1),R).

C.2 Functional calculus

First of all recall that all the Riemannian theory of integration works verbatim
for function f € C°(R, B), where B is a Banach space. We can thus talk of
integrals of the type f; f(t)dt.* Next, we can talk of analytic functions for
functions in C°(C,B): a function is analytic in an open region U C C iff at
each point zy € U there exists a neighborhood B 3 zy and elements {a,,} C B
such that

flz)= Z an(z —20)" Vz € B. (C.2.1)
n=0

4This is special case of the so called Bochner integral [ 1.
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Problem C.5 Show that if f € C°(C,B) is analytic in U C C, then given
any smooth closed curve v, contained in a sufficiently small disk in U, holds®

/f(Z)dz =0 (C.2.2)

Then show that the same hold for any piecewise smooth closed curve with
interior contained in U, provided U is simply connected.

Problem C.6 Show that if f € C°(C,B) is analytic in a simply connected
U C C, then given any smooth closed curve 7y, with interior contained con-
tained in U and having in its interior a point z, hods the formula

f(2) = = / (€ — 2 F(e)de. (C2.3)

= omi

Problem C.7 Show that if f € C°(C,B) satisfies (C.2.3) for each smooth
closed curve in a simply connected open set U, then f is analytic in U.

C.3 Spectrum and resolvent

Given A € L(B,B) we define the resolvent, called p(A), as the set of the
z € C such that (21 — A) is invertible and the inverse belongs to L(5, B). The
spectrum of A, called o(A) is the complement of p(A4) in C.

Problem C.8 Prove that, for each Banach space B and operator A € L(B, B),
if z € p(A), then there exists a neighborhood U of z such that (z1 — A)~! is
analytic in U.

From the above exercise follows that p(A) is open, hence o(A) is closed.

Problem C.9 Show that, for each A € L(B,B), o(A) # 0.
Problem C.10 Show that if I1 € L(B, B) is a projector, then o(II) = {0,1}.
Up to now the theory for operators seems very similar to the one for

matrices. Yet, the spectrum for matrices is always given by a finite number
of points while the situation for operators can be very dfferenct.

50f course, b; z)dz we mean that we have to consider any smooth parametrization
y [, y P

g : la,b] = C of v, g(a) = g(b), and then f,y f(2)dz = f;’f o g(t)g’(t)dt. Show that the
definition does not depend on the parametrization and that one can use piecewise smooth
parametrizations as well.
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Problem C.11 Consider the operator L : C°([0,1],C) — C°([0,1],C) defined
by
1 1
(E1)() = 35(e/2) + 1 (/24 1/2).
Show that (L) ={z € C : |z| < 1}.

Problem C.12 Show that, if A € L(B,B) and p is any polynomial, then for
each n € N and smooth curve v C C, with o(A) in its interior,

p(A) = 5 [ P - ),

T 2mi
Problem C.13 Show that, for each A € L(B,B) the limit
. nyt
H(A) = lim |47
exists.

The above limit is called the spectral radius of A. A useful fact concerning
the spectral radius is the following.

Lemma C.3.1 For each A, B € L(B,B) and k € N, we have
r(AB) = r(BA) r(A*) =r(A)*
ProOF. Using Problem C.13 yields
r(AB) = lim [[(AB)"|* = lim |A(BA)"' B
< lim A7 [(BA)" |7 ||B| ™ = r(BA).
By the same argument, exchanging A and B, we obtain r(AB) = r(BA).

Next,
r(AF) = lim ||AR||%5 = r(A)F.

n— oo

Lemma C.3.2 For each A € L(B,B) we have sup,¢,(ay|2| = 7(A).

PROOF. Since we can write
(21 —A) =211 -2t =27t Z 2 A",
n=0

and since the series converges if it converges in norm, from the usual criteria
for the convergence of a series follows sup,c,(4)|2| < 7(A). Suppose now
that the inequality is strict. That is, there exists 0 < < r(A4) and a curve
v C {ze€C : |z| <n} which contains o(A) in its interior. Then applying
Problem C.12 yields ||A™|| < Cn™, which contradicts n < r(A). O
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Note that if f(z) =Y .2, f»2" is an analytic function in all C (entire), then
we can define

FA) =) faA™
n=0

Problem C.14 Show that, if A € L(B,B) and f is an entire function, then
for each smooth curve v C C, with o(A) in its interior,

£ = 5 [ 11 - )

= 2mi
In view of the above fact, the following definition is natural:

Definition C.3.3 For each A € L(B,B), f analytic in a region U containing
o(A), then for each smooth curve v C U, with o(A) in its interior, define

F(A) = % / F(2)(21 — A)~Ldz. (C.3.4)

Problem C.15 Show that the above definition does not depend on the curve
5.

Problem C.16 For each A € L(B,B) and functions f,g analytic on a do-
main D D o(A), show that f(A) + g(A) = (f + 9)(4) and f(A)g(A) =
(f-9)(A).

Problem C.17 In the hypotheses of the Definition C.3.3 show that f(c(A)) =
o(f(A)) and [f(A), A] = 0.

Problem C.18 Consider f : C — C entire and A € L(B,B). Suppose that
{z€C : f(z) =0}No(A) =0. Show that f(A) is invertible and f(A)~! =
f71(A).

Problem C.19 Let A € L(B,B). Suppose there exists a semi-line £, starting

from the origin, such that £No(A) = () and that 0 € o(A). Prove that it is
possible to define an operator In A such that ™4 = A.

Remark C.3.4 Note that not all the interesting functions can be constructed

i such a way. In fact, A = (_01 (1)
be interpreted as a square rooth of —1 but it cannot be obtained directly by a
formula of the type (C.3.4).

Problem C.20 Suppose that A € L(B,B) and 0(A) = BUC, BNC =0,
suppose that the smooth closed curve -y C p(A) contains B, but not C, in its
interior, prove that

is such that A> = —1, thus it can

Pg : 1 /(zll —A)tdz (C.3.5)

- 211

is a projector that does not depend on 7.



230 APPENDIX C. PERTURBATION THEORY

Note that by Problem C.17 follows that PgA = APg. Hence, AR(Pg) C
R(Pg) and AN(Pg) C N(Pg). Since, by Lemma C.1.2, B= R(Pg) ® N(Pg)

we have obtained an invariant decomposition for A.

Problem C.21 In the hypotheses of Problem C.20, prove that A = PgAPg+
(I - Pp)A(L - Pp).

Problem C.22 In the hypotheses of Problem C.20, prove that, calling Ay the
resriction of A to R(Pg) we have 0(Ay1) = B. Moreover, if dim(R(Pg)) =
D < oo, then the cardinality of B is less or equal D.

C.4 Perturbations

Let us consider A, B € L(B,B) and the family of operators A, := A+ vB.

Lemma C.4.1 For each § > 0 there exists vs € R such that, for all |v| < vs,
p(4,) D{z€C : d(z,0(A)) > d}.

PROOF. Let d(z,0(A)) > 4, then
(21— A,) = (21— A) [1—v(z1 — A)"'B| (C.4.6)

Now |[[(21 — A)~!B]| is a continuous function in z outside o(A), moreover it
is bounded outside a ball of large enough radius, hence there exists Ms > 0
such that 3-, . 4y (21 — A)7'B|| < Ms. Choosing vs = (2M;)~" yields
the result. 0

Suppose that z € C is an isolated point of o(A), that is there exists § > 0 such
that {z € C : |z —Zz| <} N(0(A4)\ {Z}) = 0, then the above Lemma shows
that, for v small enough, {z € C : |z — Zz| < 0} still contains an isolated part
of the spectrum of o(A4,), let us call it B, clearly By = {z}.

Problem C.23 Let Pg, be defined as in Problem C.20. Prove that, for v
small enough, it is an analytic function of v.

Problem C.24 If P,Q are two projectors and |P—Q|| < 1, then dim(R(P)) =
dim(R(Q)).

The above two exercises imply that the dimension of the eigenspace R(Pg,)
is constant.

Next, we consider the case in which By consist of one point and dim(R(Pg,)) =
1, it follows that also B, must consist of only one point, let us set P, := Pp, .

Lemma C.4.2 If dim(R(Fy)) = 1, then A, has a unique eigenvalue z, in a
neighborhood of zZ, zg = z. In addition z, is an analytic function of v.
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PROOF. From the previous exercises it follows that P, is a rank one
operator which depend analytically on v. In addition, since P, is a rank
one projector it must have the form P,w = v,¢,(w), where ¢, € B'.° Then
z,P, = P,A,P,. Next, setting a(v) := lo(P,vg) = £,(vo)lo(v,), we have
that a is analytic and a(0) = 1. Thus a # 0 in a neighborhood of zero and
2, = a(v) " Ho(P,A, P,vp) is analytic in such a neighborhood. O

Problem C.25 If dim(R(Fy)) = 1, then there exists h, € B and ¢, € B’
such that P,f = h,0,(f) for each f € B. Prove that h,, ¢, can be chosen to
be analytic functions of v.

Hence in the case of A € L(B,B) with an isolated simple’ eigenvalue z
we have that the corresponding eigenvalue z, of A, = A+ vB, B € L(B,B),
for v small enough, depend smoothly from v. In addition, using the notation
of the previous Lemma, we can easily compute the derivative: differentiating
Ay v, = z,v, with respect to v and then setting v = 0, yields

Bv + Av)) = z{v + zZv}.

But, for all w € B, Pw = vl(w), with {(Aw) = z¢(w) and £(v) = 1, thus
applying £ to both sides of the above equation yields

2y, = {(Bv).
Problem C.26 Compute v}).

Problem C.27 What does it happen if the eigenspace associated to Z is finite
dimensional, but with dimension strictly larger than one?

Hints to solving the Problems

C.1. The triangle inequality follows trivially from the triangle inequality of
the norm of B. To verify the completeness suppose that {B,} is a
Cauchy sequence in L(B, B). Then, for each v € B, {B,v} is a Cauchy
sequence in B, hence it has a limit, call it B(v). We have so defined
a function from B to teself. Show that such a function is linear and
bounded, hence it defines an element of L(B,B), which can easily be
verified to be the limit of {B,, }.

C.2. Use the norm ||A| = sup,cpn HIﬁJII)IH'

6By B’, the dual space, we mean the set of bounded linear functionals on B. Verify that

is a Banach space with the norm [[£|| =32 5 %.

"That is with the associated eigenprojector of rank one.
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C.3.
C.4.

C.5.

C.6.

C.7.

C.8.

C.9.

C.10.
C.11.

APPENDIX C. PERTURBATION THEORY

Use the same norm as in Problem C.2.

The first part is trivial. For the second one can consider the vector
space (2 = {z € RY : > 22 < oo}. Equipped with the norm

i

2] = /Do soo 7 it is a Banach (actually Hilbert) space. Consider now

(2

the vectors e; € £2 defined by (e;) = d; and the operator (Az), = %xk
Then R(A) = {z € > : > k*z} < oo}, which is dense in ¢ but
strictly smaller.

Check that the same argument used in the well-known case B = C works
also here.

Check that the same argument used in the well-known case B = C works
also here.

Check that the same argument used in the well-known case B = C works
also here.

Note that
(L1-A)=0(GLl-A-—(z=01)=(1-A)[1—-(z2—()(z1 - A)"']

and that if ||(z — ¢)(21 — A)~!|| < 1 then the inverse of 1 — (z — ¢)(21 —
A)~tisgiven by 327 ((2—()"[(21— A)~*]™ (the Neumann series—which
really is just the geometric series).

If 0(A) = ), then (21 — A)~! is an entire function, then the Neumann
series shows that (21 — A)~! = 271(1 — 271 A)~! goes to zero for large
2z, and then (C.2.3) shows that (21 — A)~! = 0 which is impossible.

Verify that (21 —II)~! =271 [1 — (2 — 1)7'I].

The idea is to look for eigenvalues by using Fourier series. Let f =
> okez fre?™* and consider the equation £f = zf,

1 . . , ,
Z fki {eﬂzkm + eﬂ'zk:w-i—ﬂ'zk:} -5 kae%mk:x.
kEZ keZ

Let us then restrict to the case in which for41 = 0, then

Z f2k€2ﬂ'ik:v — ZZ fk627rikx.
keZ kez

Thus we have a solution provided for, = zfi, such conditions are satisfied
by any sequence of the type

fo = 27 ifk=2'm,j €N
B 0 otherwise
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C.12.

C.13.

C.14.
C.17.

for m € N. It remains to verify that Z;io 272712’ helong to C°. This is
the case if the series is uniformly convergent, which happens for |z| < 1.
Thus all the points in {z € C : |z| < 1} are point spectrum of infinite
multiplicity. Since the spectrum is closed, the statement of the Problem
follows.

First note that

1 1
— /(z]l —A)ldr = — / 27 1 - 27t A) .
27 J, 2mi J,

By analiticity we can choose v = {Re} for R > ||A]|, hence

1
o
1 2 0 )
ZR’"@”"GA”dG =1.
n=0

1
— 1-A)"tdz =
97 ’Y(z )" dz

2
/ (1—-R'e"A)"1ap
0

:ﬂ )

Next, let p(z) = 2", n € N, then

1 1
221 — A) rdr = A"+ — /(z” — A" (21 — A)tdz
8!

2mi J, 2
n—1 1
= A" | kARG, =A™,
£Y g [ arta:
k=0 v

The statement for general polynomials follows trivially.

Let o = liminf,, o HA"H% Then for each € > 0 exists n. € N such
that
[A™]] < (a+e)".

Then, for each n € N we can write n = m + kn., with m < n..
Consequently,

1 kng

AT < (AT A} < AT (o )

which implies limsup,,_,.. [|A"[|* < a 4 e. The claim follows from the
arbitrariness of e.
Approximate by polynomials.
For z ¢ f(o(A)) it is well defined

K(z) = = [ (2= F(O) M ¢ — 4)tdc.

21 ~
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C.19.

C.20.

C.21.

C.22.
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with v containing o(A) in its interior. By direct computation, using def-
inition C.3.3, one can verify that (21 — f(A))K(2) = 1, thus o(f(A)) C
f(c(A)). On the other hand if, if f is not constant, then for each z € C
f(z)=f(&) = (2=&)g(§). Hence, applying Definition C.3.3 and Problem
C.16 it follows f(z)1—f(A) = (#—A)g(A) which shows that if z € o(A),
then f(z) € o(A) (otherwise (z — A) [g(A)(f(2)1 — f(A))~!] =1).

Since one can define the logarithm on C\ (¢N{0}), one can use Definition
C.3.3 to define In A. It suffices to prove thatif f : U - Candg:V — C,
with o(A) C U, f(U) C V, then g(f(A)) = go f(A). Whereby show-
ing that the definition C.3.3 is a reasonable one. Indeed, rememebring
Problems C.17, C.18,

a(f(A)) = - / 9(2)(+1 — F(A))1dz

T 2mi

_ _9B) g -1gs
= i) /Wl/yz—ﬂf)(“ A dzdg
_— / J(F©)(EL — A)Ndg = f o g(A).

T omi

From this imediately follows e 4 = A.

The non dependence on v is obvious. A projector is characterized by

the property P2 = P. Thus
1

P2 =—— / / 21— A7 — A)"rdzdC
B (27_”)2 " 72( ) ( )
1 / -1 -1 -1
=— dz [ d¢(z—¢) 7 [(z1 -4 —(C1—-A)" .
o2 ], ), [ ]

If we have chosen 7; in the interior of 7o, then (z — ¢)~1(¢1 — A)~!
is analytic in the interior of ~;, hence the corresponding integral gives
zero. The other integral gives Pg, as announced.

Use the decomposition 1 = Pg + (1 — Pg), the fact that Pg, (1 — Pgp)
are projectors and that they commute with A.

Since

(21 — A)~! = Pp(21 — A)"'Pp + (1 — Pg)(21 — A)~*(1 — Pp).
Calling A; the restrction of A to R(Pg) and As the restriction to N(Pg),
we have 0(A) C 0(A;) Uo(As). Next, for z ¢ B, define the operator

K(z) = o [ (z— ) (61— Ay de,

211 ~
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where 7 contains B, but no other part of the spectrum nor z, in its
interior. Then

1 _ —

(1-AKE = 5 -9+ (€~ D) -0 (€1-4) " de = P
v

Restricting the above equality to R(Pp) we have that 0(A;) C B. Anal-

ogously o(A;) C C, hence it must be 0(A4;) = B and o(4;) = C.

The second property follows from the fact that PgAPg, when restricted
to the space R(Pg) is described by a D x D matrix Ap and the equation
det(z1 —Ap) = 0 is a polynomial of degree D in z and hence has exactly
D solutions (counted with multiplicity).®

C.22. Use the representation in Problem C.20 and formula (C.4.6).

C.23. Note that Q(1 + P — Q) = QP, then Q = QP(1 — (Q — P))~ !, hence
dim(R(P)) > dim(R(Q)), exchanging the role of P and Q the result
follows.

C.25. Note that ¢,(h,) = 1 since P, is a projector, hence they are unique
apart from a noralization factor. Then we can chose the normalization
£,(hg) = 1 for all v small enough. Thus P, f = h,, that is h, is analytic.
Hence, for each g € B and v small, £, (g)¢y(h,) = €o(P,g), which implies
£, analytic for v small.

C.27 Think hard.”

8This is the real reason why spectral theory is done over the complex rather than the
real. You should be well aquatinted with the fact that a polynomial p of degree D has
D root over C but, in case you have forgotten, consider the following: first a polynomial
of degree larger than zero must have at least a root, otherwise ﬁ would be an entire

function and hence

1 2 1
= lim — — =0.
p(z) r—oo 2m /0 p(z + ret?)
Let z1 be a root. By the Taylor expansion in z; follows the decomposition p(z) = (z —
21)p1(z) where p; has degree D — 1. The result follows by induction.
9A good idea is to start by considering concrete examples, for instance

G Do) )l o)



Appendix D

More on perturbation
theory

This section contains some useful perturbation results. We follow and extend

the ideas in [ , Theorem 3.2]. Several such results are available (e.g., see
[ I, | ] or | ] for a review). Here we provide a simplification
of the theory developed in [ , ], see the original works for the full
story.

We start by stating the setting in which we work.

D.1 Setting

Hypothesis D.1.1 Let X C X,, be two Banach spaces, || - || and |- |, being
the respective norms, satisfying | - |w < || - ||. Also assume that the unit ball
of X s weakly compact in X,,. Consider a family of operators L. with the
following properties.

1. A uniform Lasota—Yorke inequality: There exist A\, > 1 and A, B,C >0
such that,

ILZR) < AN [P + Blhlw,  [£2hlw < Clhlw
2. For L: X — X define the norm

LI = sup [Lf]uw,
InlI<1

that is the norm of L as an operator from X — X,,. Then we require
that there exists D > 0 such that

£ = Le]|| < De.

236
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To state a precise result consider, for each operator L, the set
Vsr(L) :={2€C||z| <ror dist(z,0(L)) < 6}.
Since the complement of Vj (L) belongs to the resolvent of L it follows that
Hs, (L) :=sup{||(z = L)"'|| | = € C\V5,-(L)} < 0.

D.2 Perturbation of Lasota-Yorke operators

By R(z) and R.(z) we will mean respectively (z — £)~! and (2 — £)~ 1.

Theorem D.2.1 ([ 1) Consider a family of operators Lo : X — X
satisfying D.1.1. Let Vs, = Vs.(L), r > A\;1, § > 0, then, if e < e1(L,1,0),
o(Le) C Vs (L). In addition, if € < eo(L,r,0), there exists a > 0 such that,
for each z & Vs,

I1R(2) — R(2)|I] < Ce”.
In addition, for each v > A and 6 > O there are constants a,b > 0, such
that a depends only on r and b depends also on §, such that, for all h € X
and e < go(L,1,9),

[R=(2)h]| < allh]| + blh]w.

ProoF.! To start with we collect some trivial, but very useful algebraic

identities.
For each operator L : X — X and n € Z holds

%ni(z*lL)i(z ~L)+ (D) =1 (D.2.1)
i=0
R(:)(=— L)+ é S (L)Ll — £+ R() (= LMLl — £) = 1
=0

(D.2.2)

(5= £2) [Goe + (7L RE)] =1 — (L)L~ ORE) (D23

[Ge+ (27 L)"R(2)] (2 — L) =1 — (27" L)"R(2)(Le — £), (D.2.4)
where we have set G,, . := L 30 (271 L)%

Let us start applying the above formulae. For each h € X and z € V, 5,
and n large and e small enough,

(720" (e = RGN < (A" AN(Le — LRG|
+ 2. yrel
< [(rAs)""A2C1 + Br~"De|H; (L) ||h]| < ||k

IThis proof is simpler than the one in | ], yet it gives worse bounds, although
sufficient for the present purposes.
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To obtain the last inequality, choose n € N such that n = L—llnn—/\ij Then

In r
assuming 7 < 1 without loss of generality, we have r=" < ™3« | so that both

In 7
1+1n/\* lnr

terms are bounded by Ce ; and g > —1 since r\, > 1 by hypothesis.
The claimed inequality follows for € > O sufﬁc1ently small.

Thus [|(z71£.)"(L: — L)R(2)|| < 1 and the operator on the right hand
side of (D.2.3) can be inverted by the usual Neumann series. Accordingly,
(z — L) has a well defined right inverse. Analogously,

[(z7 L) R(2)(Le — L)A]| < (rA) " A||R(2)(L: — L)
+ Br"|R(2)(Le — L£)hlw.

This time to continue we need some information on the X, norm of the
resolvent. For g € X equation (D.2.1) yields

[R(2)glw < = ZI (z7'L) glw + | R(z) (=71 L)

=0
C
< —n —-n
< a9+ Hor (OAGA) gl + Her (£)Br " gl
1" (Hs,(£)B + C(1 = 1)"lglw + Hs,r (L) A(rA) ™" llgll -

(D.2.5)
Substituting, we have

I(z71Le)" R(2)(Le = L)R]| < {(rA) " AHs,(£)2C1[1 + Br™"]

+ Br=*"[Hs, (L)B + (1 —r)"'|De}||h|| < 1,
again, provided ¢ is small enough and choosing n appropriately. Hence the
operator on the right hand side of (D.2.4) can be inverted, thereby providing
a left inverse for (z —£.). This implies that z does not belong to the spectrum

of L..
To investigate the second statement note that (D.2.2) implies
1 n—1
R(z) — R.(2) = - z:(z_lli)i(ll8 —L)R:(2) — R(z)(z_lﬁ)"(,llE — L)R(2).

z “
=0

Accordingly, for each ¢ € X,
|R(2)p—Re(2)plw < {r7"(1-r)""e+Hsr (L) (M) ""2AC1+H;, (L) Be} | Re (2)e]|-

Ine

To complete the argument, choose n = [—; J as before and note that by
our previous bounds on the inverse of z — L’E, we have ||R:(2)p| < Cqllell,s
for all € < gg and €p > 0 small enough. The first inequality of the theorem
follows with a =1 + 11”
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To prove the second inequality, for |z| =7 > AJ!, we use D.2.1 to write

m—1
oLk L) ™ (2 - L)
k=0
<A(1 - r_l)‘*_l)_IHhH + Crm|hlw
+ AT (2 — 56)71h|| +r " B|(z — 56)71h|wa

Iz~ £2)7"hl =

for some constant C, ,, depending on r and m. We can thus choose m such
that AN, ™r™™ < % and, recalling the first inequality of the Theorem, write

I(z = L) h|| < Collhl| + Crm|blw + Ce®r~™B||h|| + "™ B|(z — £) ' hly.
To conclude, we can use D.2.5 and write, for all n € N,

I(z = L) Rl < C4[Cr + *r™™ + AHs o (L) (rA) " r ™2l + Crimonis

hlw.

Choosing n and ¢ so that Hs,(L£)(rA.) " "r~™ < 1 and €%~ < 1 yields the
statement. g

D.2.1 shows that the point spectrum is stable. Yet, in applications it is also
important to control the multiplicity of the spectrum. This can be done
thanks to the following Lemma.

Lemma D.2.2 Consider a family of operators L. : X — X satisfying D.1.1.
Letv € o(L), |v| > A, and let m be the dimension of the eigenspace associated
to v. Then, for each & small enough there exists eo(L,v,§) such that, for all
e <ex(L,1,90), o(L)N{z € C : |z—v| <} contains at most m eigenvalues
and the total dimension of their eigenspaces is m.

PROOF. Since |v| > A, F.4.2 implies that v belongs to the point spec-
trum. Hence, there exists dp such that {z € C : |z —v| < do} No(L) = {v}.
Then D.2.1 implies that, for each § < d¢/2 and £ < g9(L, 1, ), we can split the
spectrum as o(L.) = 01Ucs where 01Noz = Pand oy C {z € C : |z—v| < d}.
Accordingly, by (C.3.5) we can define the eigenprojectors

1
II, :=

=5 (21 — L)Yz, (D.2.6)

s

where v5(t) = v+ de*t, and o(II.L.) = [0(L)N{z € C : |z —v| < §}]U{0}.
Note that the first inequality of D.2.1 implies, for ¢ < e¢(L,r,0), where we
can choose r = {\;! + |v|}/2,

(T = To)hlw < Cse®(|A],
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for some constant C'5, depending on the choice of §. While the second inequal-
ity of D.2.1 implies that there exist constants a and bs, the latter depending
on ¢, such that

[TIeh]| < ad]|h]| + bs|hlw.
Since II. is independent of § (see (C.3.5)) we have
TRl < (ado + bs, )[[2]| = col[R]-
The above inequalities imply

e — 1o > za e — o 5 e — 1o
[(TL. — To)?R| < 2ad]|(IT. — To)hl| + 2b5]|(TLe — Tlo) ||
< [4a605 + 2b50§€a] ||h||

Accordingly, if we choose ¢ such that 8acgd < 1 and &5 such that 2b5Cse® < %,
we obtain

(T = THo)?| < 1. (D.2.7)
This concludes the Lemma due to the following general fact.
Problem D.1 Let IT;, 15 € L(X, X) be two projectors. Assume that

(I, — Tp)?|| < 1,
then dim(IT; (X)) = dim(I1(X)).

O

The above two results are rather effective to study perturbations of transfer
operators. The reader can verify this directly by solving the next problem.

Problem D.2 Consider the maps f, : T — T' defined by
1 .
flx) =22+ 2, sin 2my/nx  mod 1
n

and use D.2.1 and D.2.2 to study the spectrum of the operators L,h(z) =
Zyeﬁl(m) %, forn largel. In particular, show that, for n large enough, L,
has a spectral gap close to 3.

Given the above results, it is natural to ask if the spectral data have
some more regular dependence on the change in the operator. These types of
questions are related to linear response.
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D.3 Linear Response

In order to have a linear response, one needs more control on the operators
L. than that provided by D.1.1. Here we provide the simplest possibility, see
[ , Section 8] and | | for more details.?

Hypothesis D.3.1 Let X5 C X; C Xy be three Banach spaces, equipped with
the norms || -||;, respectively, satisfying |- llo < ||-|lx < ||-|l2- Also assume that
the unit ball of X; is weakly compact in X;11. Consider a family of operators
L. with the following properties.

1. A uniform Lasota—Yorke inequality: There exist A\, > 1 and A, B,C > 0
such that,

ILZh|l: < AN ™||Al: + Bl|hlli—1, fori >0 and for all h € X;
ILZh|l; < Cllh|li,  fori >0 and for all h € X;.
2. We require that there exists an operator A € L(X;, X;), for each j > i,
such that

(Le — L —eA)h|lo < De|lh|l1, forallh e X3
(Le — L —eA)h|1 < De||hl|2, for all h € Xs
I(Le — £ —eA)h|lo < De'™||hl|2,  for all h € Xo,

for some a > 0 and each h € X5.

Remark D.3.2 The D.3.1 are a bit different from the ones in [ . This
is made in order to present a simplified proof.

Remark D.3.3 Note that the D.3.1 imply D.1.1 for L, L. both with respect
to the norms || - |lo, || - |1 and with respect to the norms || - |1, ] - ||2-

We will need the following well-known fact.

Problem D.3 Prove that for any A,B € L(X,X) and z ¢ 0(A) Uo(B) we
have

(21 — A — (21 -B)'=(21-A)"'(A-B)(:1-B)},
which is called the resolvent identity.
Finally, let us define
Vs (L) :={z€C||z| <ror dist(z,0x, (L)) <d},

where ox (L) is the spectrum of £ seen as an operator in L(X, X).

2Note that [ , Section 8] contains an imprecision which is fixed in | , Theorem
3.3].
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Remark D.3.4 Note that [ox,(L£) N {|z] = A7'}] C [ox, (£) N{|z] = A7}
since by F.4.2 this part of the spectrum belongs to the point spectrum. Ac-
cordingly, if v € ox,(L) N{|z| > A\;'}, then there exists h € Xa such that
Lh = vh and hence v € ox, (L).

We are then ready to provide the last result of this section.

Remark D.3.5 D.3.6 says that (z — L.)~', when seen as a function from
R to L(X2,Xo) is differentiable at zero. But then also the eigenprojectors
II. defined in D.2.6 are differentiable and so is II.L.. In particular, if the
projector Il is associated with a simple eigenvalue v., and hence has the
form Il = €. ® h,, then II.L. = v Il.. It follows that v. is differentiable and
€ — he is differentiable as a function from R to Xg.

Theorem D.3.6 Consider a family of operators L. : Xqg — Xo satisfying
D.3.1. Letr > A and § > 0. If e < eo(L,1,0), then ox, (L) C Vs..(L) and
ox,(Le) C Vs, (L). Moreover, there exists n > 0 such that, for all z ¢ Vs (L)
and h € X5,
I[R(2) = Re(2) — eR(2)AR(2)]hllo < Cse' || l|2.
PRrROOF. The fact that ox,(L:) C V5, (L) follows from D.2.1 and D.3.4.

Let Q. = L. — L — eA and, as before R(z) = (21 — £)7! and R.(z) =
(21 — £.)71. By D.3 we can write

R.(z) — R(z) = R.(2)(L. — L)R(2).
Thus if we define E = R.(2).AR(z), we have that
I(R<(2) = R(2) — eE)hllo = [ Re(2) Qe R(2)h]0.

Arguing as in D.2.5, recalling D.3.3 and the second inequality of D.2.1, we
can show that there exists C, s > 0 such that for all g € X,

1R=(2)gllo < Co.r [r™llgllo + (rA) "™ llgll)] -

Accordingly, using D.3.1-(2) and recalling ox, (L) C V5,.(L), we have, for each
h e Xs,

I(R-(2) = R(2) = €2)hllo < Cs [r™[|Q=R(2)]lo + (rAe) " [ Q= R(2)1]|1)]
< CorD [r7™e ™ + (rA)T"e)] [ R(2)R] 2
< Ciy [r7me T+ (rA) 7)) (IR 2
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for some constant C(’;J,. Choosing m so that €* = A;™, the above implies

that, setting no = a(1 — lrig;) > 0, we have
I(R-(2) = R(2) — €2)hllo < Cse' ™| |h]|2.
On the other hand, D.2.1 implies

| [R-(2)AR(z) — R(z)AR(:)] hllo < Cs® [ AR(=)A]x
< Cse* [R()h]la < Cje hla-

Which concludes the proof with n = min{no, a}. O



Appendix E

Analytic Fredholm Theorem

Here I provide a proof of the Analytic Fredholm alternative in Banach spaces.

Theorem E.0.1 (Analytic Fredholm alternative)' Let D be an open con-
nected subset of C. Let F: C — L(B,B) be an analytic operator-valued func-
tion such that F(z) is compact for each z € D. Then, one of the following
two alternatives holds true

o (1 —F(z2)) ! exists for no z € D

o (1 — F(2))7! ewists for all z € D\S where S is a discrete subset of D
(i.e. S has no limit points in D). In addition, if z € S, then 1 is an
eigenvalue for F(z) and the associated eigenspace has finite multiplicity.

PROOF. First of all notice that, for each zg € D there exists r > 0 such
that D,(.,)(20) ;= {2 € C : |z — 2| <7(20)} C D, and
1
sup  [[F(2) = F(z0)] = 7-
2€D,.(20)(20)

If we can prove the theorem in each such disk, we are done.? We can ap-
proximate F(z) by a finite rank operator K such that |[F(z) — K|| < 1.
Then
sup  [|[F(z) — K] <
ZEDr(zO)(ZO)

| =

1The present proof is patterned after the proof of the Analytic Fredholm alternative for
compact operators (in Hilbert spaces) given in | , Theorem VI.14].

2In fact, consider any connected compact set K contained in D. Let us suppose that
for each z9 € K we have a disk D,.(,,)(20) in which the theorem holds. Since the disks
D,.(29)/2(20) form a covering for K we can extract a finite cover. If the first alternative
holds in one such disk then, by connectness, it must hold on all K. Otherwise each S N
D,.(24)/2(20), and hence K N .S, contains only finitely many points. The Theorem follows
by the arbitrariness of K.
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Note that
1-F(z)=(1-K(@-[F(z) - K))"") (1 - [F(2) - K]).

Thus the invertibility of 1 — F(z) in D,(z¢) depends on the invertibility of
1-K(1—[F(z)— K])~!. Let us set Fy(z) := K(1 — [F(2) — K])~! and note
that Fy(z) is a finite rank operator.

Let us start by looking at the equation

(1 — Fy(2))h = 0. (E.0.1)

Clearly if a solution exists, then h € Range(Fy(z)) = Range(F(2)) := Vo.
Since Vj is finite dimensional there exists a basis {h;}Y; such that h =
>~; @ih;. On the other hand there exists an analytic matrix G(z) such that”

Fo(Z)h = Z G(z)ijajhi.

Thus (E.0.1) is equivalent to
(1 - G(2))a=0,

where o 1= ().

The above equation can be satisfied only if det(1 — G(z)) = 0 but the
determinant is analytic hence it is either always zero or zero only at isolated
points.*

Suppose the determinant different from zero, and consider the equation

(1= Fo(:))h = g.
Let us look for a solution of the type h =), a;h; + g. Substituting yields
a—G(z)a=p
where § := (8;) with Fy(z)g =: >, Bih,. Since the above equation admits a

solution, we have Range(1 — Fy(z)) = B, Thus we have an everywhere defined
inverse, hence bounded by the open mapping theorem.

3To see the analyticity notice that we can construct linear functionals {¢;} on Vg such
that £;(h;) = d;; and then extend them to all B by the Hahn-Banach theorem. Accordingly,
G(z)ij == £;(Fo(z)h;), which is obviously analytic.

4The attentive reader has certainly noticed that this is the turning point of the theorem:
the discreteness of S is reduced to the discreteness of the zeroes of an appropriate analytic
function: a determinant. A moment thought will immediately explain the effort made by
many mathematicians to extend the notion of determinant (that is to define an analytic
function whose zeroes coincide with the spectrum of the operator) beyond the realm of
matrices (the so called Fredholm determinants).
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We are thus left with the analysis of the situation z € S in the second
alternative. In such a case, there exists h such that (1 — F(z))h = 0, thus
one is an eigenvalue. On the other hand, if we apply the above facts to the
function ®(¢) := (71 F(2) analytic in the domain {¢ # 0} we note that the first
alternative cannot take place since for |¢| large enough 1 — ®(() is obviously
invertible. Hence, the spectrum of F(z) is discrete and can accumulate only
at zero. This means that there is a small neighborhood around one in which
F(z) has no other eigenvalues, we can thus surround one with a small circle
~ and consider the projector

L (¢ Py tac

o

=5t [ e P ac

1

" 2mi

/ (€~ Fz)™ = ¢ Y] de

By standard functional calculus, it follows that P is a projector and it projects
on the eigenspace of the eigenvector one. But the last formula shows that P
equals a compact operator times a bounded one, hence it is compact, therefore
finite-dimensional. 0



Appendix F

Hennion—Neussbaum Theory

I provide a self-contained proof of Hennion—-Neussbaum’s theory.

While such results are routinely used in many papers devoted to the study
of the statistical properties of dynamical systems, as far as we know, no self-
contained account of the theory is available. Our goal here is to present such
a complete account in a manner accessible to a reader with basic knowledge of
functional analysis and to reduce technicalities to a minimum. We start with
some needed preliminary functional analytic facts, then we discuss the essen-
tial spectrum. There exist many alternative definitions of essential spectrum;
here, we use the most convenient for our goals. The reader interested in more
details can have a look at the first chapter of | ]. Next, we introduce the
measures of noncompactness, which form the basis for Neussbaum’s essential
spectral characterization. After that we are finally able to state and prove
Hennion’s theorem.

F.1 A bit of functional analysis preliminaries

In the following, we will need some facts from functional analysis that are not
necessarily common knowledge; hence, we state them here together with their
proofs. The goal is to establish Theorem F.1.3.

Lemma F.1.1 Let X be a Banch space, if V.W C X are closed and finite
dimensional, respectively, then V 4+ W is closed.

PROOF. The Lemma follows if we can prove it for the case dimW = 1,
and W g V. Letx e W, |Z|| =1, then V+ W ={éx+v : €R, £E€V}.
Suppose that {n, = x, + v,} converges to some 7, we want to show that
n = x€s + v, for some &, € R and v, € V; that is, V + W is closed.

Since V is closed and = ¢ V, it must be d(z,V) =: d > 0. In addition, for

247
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each £ € R, v € V, we have
1€z + v[| = d(§x + v, V) = &d(z, V) = [¢]d.

Hence,
||77n - 77m|| = ||(€n - gm)aj + (Un - Um)” > d|§n - fml

It follows that {&,} is Cauchy and then it has a limit &.. But the v, = n,—§,x
converges as well to some v, and, since V is closed, v, € V. This proves the
Lemma. O

Lemma F.1.2 Let X be a Banach space and T € L(X,X) such that R(T)
is closed and dim(N(T')) < oo, then R(T™) is closed for all n € N.

PRrROOF. It suffices to prove that if V' C X is closed, the TV is closed.
Let {x,} C V be such that T'z,, is Chauchy. Since R(T) is close, there esists
y € TX such that lim,,_,., Tx, =y, we have to show that y € TV. Consider
the quotient space X = X/N(T), and the quotient map T € L(X,X). We
have that Y := TX = R(T) is closed and T is injective and surjective from
X to Y. Then the bounded inverse theorem implies that T-! € L(Y, X),
that is, it is bounded.! Accordingly, there exists {z,} C N(T) such that
{zn+2,} CV+N(T) is Cauchy. Since N(T) is finite dimensional, V + N(T)
is closed, by Lemma F.1.1, and hence there exists w € V + N(T) such that
limy— 00 Tn, + 2p, = w. We can write w = a + b, with a € V and b € N(T).
Then

T(a) =T(w) = lim T(x, + 2,) = lim T(z,) =y

n— oo n— oo

concluding the proof. O

The main result of this section follows ideas from | , Theorem IV-5.30].

Theorem F.1.3 Let X be a Banach space and T € L(X, X) a quasi-nilpotent
operator with dim(N(T)) < oo and R(T) closed.” Then dim(X) < oco.

PrROOF. First, we need to establish the following fact. Consider the spaces
V, = N(T)NR(T™). Since T"X = T" YT (X)), we have R(T™) C R(T"1).
Thus, by Lemma F.1.2, V,, is a decreasing sequence of closed subspaces.
Since N(T) is finite dimensional, there exists m € N such that V,, = V,,, for
all n > m.
Let Y =T™X, then TY = T™(TX) C Y, and it is closed by Lemma F.1.2

IRecall that the bounded inverse theorem is an immediate consequence of the open
mapping theorem, see | , Theorem III.11]).

2Recall that an operator T € L(X, X) is quasi-nilpotent if limy,— oo HT"H% =0.
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again. It follows that T, := Ty, the restriction to Y, belongs to L(Y,Y),

| T.|| < ||IT|| and R(T,) is closed. Note that,
1 ; (F.1.1)
“NT)NT™ X c T"HX = T.Y.

y) for all n € N.
C R(T.), then if
R(T,) and T"b €

That is N(T.) C R(Ty). Next, we prove N(T") C R(T.
We proceed by induction: assume that we have N(T7)
x € N(T") we can write * = a + b where a € N(T?) C
N(T.) C R(Ty), thus x € R(T}).

Since N(T,) C N(T) is finite dimensional, there exists a closed subspace
Z C Y such that Y = N(T,) ® Z.> Then T.Z = R(T.), hence Ty|z is a
one-one map onto R(T}). Accordingly to the bounded inverse theorem (e.g.,
see | , Theorem III.11)) there exists S € L(R(T\), Z) such that T,.S = 1
and S(Ty|z) = 1. It follows that, if z € N(T}) then x € R(T,) and we can
apply S, yielding Sz € N(T**!). Accordingly, if x € N(T.), S"z is well
defined for all n € N. We can finally use the quasi-nilpotent hypothesis: for
each z € N(T,),

lall = lim (728" < Y (72 1S]" ]
RN (F.1.2)
< Tim 78] ] = 0.

That is N(Ty) = {0}. But this implies Z =Y and ST, = 1, hence S™T}* = 1.
Then, for each z € Y,
el = lim [[$"T2] = lim [$"T"] < lim ||| 7l2] = 0.
That is {0} =Y =T™X, i.e. X = N(T™). We can finally conclude since
dim X = dim(N(T™)) < mdim(N(T)) < oo.

F.2 Essential Spectrum

Our aim is to divide the spectrum o(T') of a bounded, linear operator T into
two parts, o,(T) and ocss(T"). The discrete spectrum of T, o,(T'), consists
of isolated points A € o(T) such that their associated Riesz projector has
finite rank and the range of A\ — T is closed, while the essential spectrum of
T, 0ess(T), will be the remaining part of the spectrum. This motivates the
following definition of the essential spectrum, akin to | ]

3This follows from the Hahn-Banch theorem, which, given a base {x;} of N(T%) allows
to construct functionals ¢; such that ¢;(x;) = d;; and hence the projector P = > x;l;
whose range is N(7%), therefore the kernel is the wanted Z.
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Definition F.2.1 Let T be a bounded linear operator on a Banach space X .
The (Browder) essential spectrum of T, oess(T), is the set of A € o(T), such
that at least one of the following conditions holds:

1) The range of A\ =T, R(AL —T), is not closed;
2) N(A1 —T) is infinite dimensional;
3) X is a limit point of o(T) \ {\}.

There are many other definitions of the essential spectrum. For example,
Wolf’s ([ ]) essential spectrum is the set of those z € C such that z — T
is not Fredholm. Recall that an operator T : X — X is Fredholm if R(T) is
closed and the dimensions of both N(T') and the quotient X /R(T) are finite.

The essential spectral radius of a bounded operator T is defined as*

re(T) :=sup{|z| € C : z € g¢55(T)}. (F.2.3)

A relevant fact is that r. is the same under all these different definitions; see
[ , Section 1.4] and the subsequent discussion. In the following, we do
not need to enter into such subtleties.

However, it is useful to better clarify the properties of 0,(T") = (1) \ 0ess(T).

Lemma F.2.2 Given T € L(X,X), for some Banch space X. If z € 0,(T),
then we can write X = Xo ® X1,> T(Xo) C Xo, T(X1) C X1, Xo is finite
dimensional and, finally, o(T|x,) = {z} while o(T|x,) N{z} = 0.

PROOF. By defintion z is an isolate point of o(T), thus we can consider
a close curve « such that, calling D its interior, D N o(T") = {z} an consider
the projector (see Problem C.20)

P= i /(4]1 —T)~tdc.
27i J,

Let Xo = R(P) and X; = N(P), by Lemma C.1.2 and Problems C.21, C.22,
these subspaces have all the wanted properties apart from the finite dimen-
sionality of Xj.

To establish the latter, consider the operator Ty = T'|x, € L(Xo, Xo). Since
o(Ty) = {2}, we have that o(z1 — Tp) = {0}.° Then Lemma C.3.2 implies
that the spectral radius of r(z1 — Ty) = 0, that is, Tp is quasi-nilpotent. In
addition, suppose that for some sequence {z,} C Xy and y € X, we have

4We will often write simply r. if the operator T is clear from the context.

5In particular Xo N X7 = {0}.

6Here, and in the following, we slightly abuse notation and we write 1 for 1x,, the
identity operator in L(Xq, Xo), since the meaning is clear from the context.
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lim;, 00 (21 — Tp)xy, = y. Since (21 — Tp)z, = (21 — Tz, and R(z1 —T) is
closed by hypotheis, there exists £ € X such that (21 — T)§ = y. Yet,

y=Py=P(l-T)=(s1-T)P¢,

where we have used Problem C.17. Hence, y € R(z1 —Ty), that is R(z1 —Tp)
is closed. Finally, dim(N(z1 — T)) < oo by hypothesis as well. The Lemma
follows then from Theorem F.1.3. O

F.2.1 Subspaces

Here we recall a few, mostly well-known facts, about subspaces of a Banach
space.

Definition F.2.3 Let V C X be a subspace of a normed vector space X.
Given x € X, we define the distance to V' by:

dist(z, V) = inf{|lz —y|| : y € V}.

Definition F.2.4 A subspace V is called a proper subspace of X if it is nei-
ther the whole space X nor the zero subspace {0}.

Lemma F.2.5 Let X be a Banach space, V. C X a proper closed subspace.
For every e > 0 there exists xg € X, ||xo|| = 1, and dist(z, V) > 1 —¢.

PROOF. Let 2’ € X \V, then d = dist(2’, V) > 0, (since V is closed). For

each 1 > 0 there exists ¢y’ € V so that d < |2/ —¢/|| < d+1n. Let g = ”fc,:z,”

and n = %. For any z € V we have:

1 d d
oo = 2l = |2 =3/ = I’ = ¥/l 2| 2 > =1-,
[l =/l [ =yl — d+mn
since 3 + |2’ — y/'|| 2 € V. The result follows since ¢ is arbitrary. O

Definition F.2.6 A normed vector space X is locally compact if any bounded
sequence in X has a convergent subsequence.

Theorem F.2.7 (S. Banach) Every locally compact Banach space X has fi-
nite dimension.

PRrROOF. If dim X = oo, then we can construct a sequence of unit vectors
{zi}ien C X such that ||z;—x;|| > § for alli # j € N. Indeed, since for all r €
N, span{zy,-- -, z,} is finite dimensional, and hence closed, by Lemma F.2.5
there exists z,41 € X, ||z 41| = 1, such that d(z,41,span{z, -+, z,}) > 3.
This contradicts the assumption that X is locally compact.
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F.2.2 Measure of Noncompactness

We can now introduce our major technical tool.

Definition F.2.8 Let X be a Banach space and A C X a bounded subset.
We define v(A), which we call the (Kuratowski) measure of noncompactness
of A, to be

inf{r>0 :dneN, Sy, 5, diam(S;) <r,st. AC USZ}
i=1

Definition F.2.9 We call the ball measure of noncompactness of A in X,
Fx (A), to be "

n
inf{T>O :dneN,B.(x1),- ,Br(zy) ;€ X s. t. AC UBT(xi)}.

=1

Definition F.2.10 If X; and X5 are Banach spaces and T € L(X1, X2), we
say that T is a k-set-contraction if for every bounded set A C X1,

We say that T is a ball-k-set-contraction if

for every bounded set A in X;.
We define

~(T) =inf{k > 0: T is a k-set-contraction}
A(T) =inf{k > 0: T is a ball-k-set-contraction}.

Remark F.2.11 The above ideas can also be defined for nonlinear maps be-
tween metric spaces [ ) /.

Denote the closed ideal of compact linear operators of X into X by K(X),
or K if no confusion arises.® Let Z = L(X, X) /K.

Definition F.2.12 We define a seminorm ||T||x on L(X,X) by

Tl = jnt |7+ 0.

"We use the notation By(z) = {y € X : ||z —y| <r}.

8Recall that an operator is compact iff the image of a bounded set is relatively compact,
that is, if its closure is compact. It is an easy exercise to check that if K € Kad T € L(X, X),
then TK, KT € K and K is closed in the operator topology.
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Note that ||T||x induces a norm on Z with respect to which Z is a complete
normed space.

Lemma F.2.13 The measure of noncompactness and the ball measure of
noncompactness satisfy the following properties:

a) Let AC X bea bounded set, then its closure A is compact if and only
if ¥(A) = 0. Also, A is compact if and only if v(A) = 0.

b) An operator T € L(X,X) is compact if and only if ¥(T) = 0. Also, T
is compact if and only if v(T) = 0.

¢) A(T) < |-

d) For bounded subsets A,B C X, we have y(A+ B) < v(A) 4+ ~(B) and
YA+ B) <3(4) +3(B).

e) For all S,T € L(X,X) we have

Y(ST) < ¥(SHT).

PROOF. a) For ¢ > 0, since A is compact, A can be covered by a finite
number of balls of radius e. Since ¢ is arbitrary, we have ¥(A) = 0. Therefore
7(A) = 0, because 7(A4) < 7(A). Now assume that A is not compact, then
there is a sequence {x,}nen C A which has no accumulation points.? Let
Se n be any collection of sets such that x,, € S, and the diameter of S, is
smaller than . Then there exist n € N and € > 0 such that, for any m > n,
Sen N Sem = 0. If not, then for any n € N and € > 0 there exists m > n
such that |2, — ,,| < 2. Then, if we choose € = 27% n; =1 and ng,; such
that |z,, — 2n,,,| < 27%, then {z,,} is a convergent subsequence of {z, }nen
and therefore it has an accumulation point, contrary to the assumption. So
we conclude that ¥(A) > v(A) > e.

b) First suppose that T is a compact operator. For any bounded set A C X,
T(A) is compact. So by (a), ¥(T'(4)) = 0 and (T (A)) = 0. Hence for any
k>0, T is a ball-k-set-contraction and a k-set-contraction. So ¥(7') = 0 and
Y(T) = 0.

Next, assume that v(T) = 0. Let A C X, be a ball of radius R > 0. For
€ >0, we have v(T') < &. Therefore v(T(A)) < £v(A4) <e. Soy(T(A)) =0,

then (a) implies T'(A) is compact. So T is a compact operator. The same
proof works for the case 4(T') = 0.

9We assume implicitly that z; = z; implies 7 = j.
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c) If v(A) = r, then for A > r, there is a covering of A by finitely many sets
{B;}?_; of diameter not greater than A. So {T'(B;)}}'_; will cover T'(A). For
any 1 <i<n

diam(T'(B;)) = sup [Tz —Ty|| < |T|| sup [z -yl <[IT[|A,

z,y€B; z,y€B;
which implies v(T') < ||T|.

d) Let v(A) = a and v(B) = . Then for r > «, there is a covering of A by
a finite number of sets {a;}?_; of diameter not greater than r and for p > 3,
there is a covering of B by a finite number of sets {b;}2; of diameter not
greater than p. So A+ B = {z + y}sca,yen C Ui j{Z + Y}reca, yep,. For any
1<i<n,1<j<mandzz €a;y,y €bj we have

le+y—a" =yl <lle -2 +lly =yl <r+p.

Therefore v(A + B) < y(A) +v(B).

Now let 4(A) = x and (B) = A. Then for p > &, there is a covering of
A by a finite number of balls {B(a;,r;)}?, of radius r; < u and for v > A,
there is a covering of B by a finite number of balls {B(b;, p;)}7%; of radius

pj Sv. So A+ B = {4+ ylecayen € Ui i{® + Y}oeB(air)yeBb; p;)- FOT
any 1 <i<n,1<j<mandax € B(a;,r:),y € B(bj, p;) we have
Iz +y = (ai + b))l < llo —aill +lly = bl < p+v.
Therefore ¥(A + B) < (A) + 5(B).
e) For all S € L(X, X), A C X, we have:
Y(S(A)) <7(5)7(4)
Hence for all S,T € L(X,X), ACX
Y(ST(A)) <A(S)FH(T(A)) < A(S)FT)V(A),
from which the claim follows. O

Lemma F.2.14 Let X and Y be complex Banach spaces and T € L(X,Y).
Then we have y(T*) < F(T).*°

PROOF. Suppose T is a ball-k-set-contraction. To show that 7™ is a k-
set-contraction, it suffices to show that if S is a set of diameter less than or

0By T*we mean the dual operator: for all continuous linear functional £ € Y’ we have
T*¢ € X' where T*{(z) = £(Tz).
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equal to d in Y*, T*(S) can be covered by a finite number of sets of diameter
less than or equal than kd + €, for any € > 0.

Consider T(B), where B = {z € X, ||z|| < 1}. Since 4(B) < 1 and T
is a ball-k-set-contraction, T'(B) can be covered by a finite number of balls
Byt g (yi) in Y, 1 < i < n, with centers at y;, and radii k + 55. Select M
such that ||y;]| < M, 1 <i <n,and ||y*|| < M for all y* € S. Hence, we have
ly*(y;)| < M? for each y* € S. Decompose the closed interval [—M?, M?] into
a union of disjoint intervals A;, 1 <14 < p, of length less than 5. We consider
an equivalence relation as follows: Given yi and y5 € S, write yi ~ y5 iff for
each i, 1 <i < n, yi(y;) and y3 (y;) lie in the same interval A;(;), 1 < j(i) < p.
Then we divide S into equivalence classes S;, 1 < j < g,

We claim that diameter (7*(S;)) < kd + e. Take y} and y; in S;. We have

1T (y1) = T"(y2)ll = sup [y1 (T'x) = yo(T2)| = sup |y (y) —v2(y)l-
zeB yeT(B)

Ify € T(B), we know that y € By (y;) for some 4, 1 <4 < n. It follows that
i (y) = v )] < lyi(y —vi) —v3(y — vi)l + |vi(v) — y3 (vs)]
= (s = ¥3) — vl + g7 () — w5 ()| < dlk+ o) + = = kd +<.
Thus, for each € > 0, || T*(y}) — T*(y3)|| < kd + €. This shows that diameter

(T*(S;)) < kd+e¢, and since T*(S) U7, T*(S;), we have covered T*(S) by
a finite number of sets of diameter less than or equal to kd + €. O

Lemma F.2.15 Let X be a complex Banach space and T € L(X, X).
Assume that for some n > 1,3(T™) < 1. Then R(1 — T) is closed and
dim(N(L - T)) < 0.

PROOF. The proof consists of two steps. First, we prove that if A C X
is closed and bounded, while K C X is compact, then (1 —T)7'K) N A is
compact.!! Then we prove that this implies the claimed properties.!?

Step 1: Let A be a closed, bounded subset of X and let K be a compact set.
We prove that Ky = {x € A: (1 — T)x € K} is compact. By Lemma F.2.13-
(a), in order to show that K; is compact, it suffices to show that (K;) = 0.
Notice that 4(K7) is defined, since A is bounded. Suppose x € K7, so that
x = Tz + m for some m € K. Iterating we obtain

n—1
z=T"z+ Y T'm. (F.2.4)
1=0

1A map such that the preimage of a compact set is compact is called proper.
12Tn fact, the proof of the second step implies in general that if S is proper, then R(S) is
closed and dim N(S) < co.
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If we write K, = Z?:_OI TY(K), K, is compact, since it is the continuous image
of a compact set. Furthermore, (F.2.4) implies that K1 C T"(K;) + K, so
that ¥(K71) < (T™(K1)), by Lemma F.2.13-(a)-(d). Since T™ is a ball-k-set-
contraction, k < 1, ¥(K;) < ky(K1). It follows that 4(K;) = 0.

Step 2: Let S = (1 —T). By step 1, N(S) = S71(0) is locally compact,
consequently N(S) is finite-dimensional by Theorem F.2.7. Next, we prove
that R(S) is closed.

Let {z,,} C X be such that lim, _, ., Sx,, =y, we want to show that y € R(.S).
Choose z, € N(S) so that

1
d(xn, N(S)) > §H$n — Zn||-

We want to show that ||, — 2, is bounded.

Suppose that, for some subsequence n, lim; o0 ||2n, — 2n, || = 00, and define
&n = ||zn — 2zn|| 7Y (20 — 2n). Then
lim S&,, = lim ||z, — znjH_lsxnj =0. (F.2.5)
Jj—o0 Jj—o0

Since K = {S(&,,)}U{0} is compact, by Step 1 S™H(K)n{z € X : |zf| <1}
is compact as well. Consequently, {{,,} is contained in a compact set and
must have a convergent subsequence {§njk}. Let & be its limit. Equation
(F.2.5) implies S¢ = 0, that is £ € N(S). However, this is a contradiction
since

1€n = €ll 2 d(€n, N(S)) = |2 — 2]~ d(z0, N(S)) 2

N |

As claimed, sup,,cy ||zn — 2, || < M for some M € R. By Step 1 again,
K, =87 ({Sza}U{yh)n{z € Z : ||zl < M}

is compact. Consequently, {z, — z,} C K, has a convergent subsequence
{®n; — 2n; }. Let n be its limit. By continuity

S(n) = lim S(zy, — zn,) = lim S(zn,) =y

j—o0 j—o0

wereby proving that R(S) is closed.

F.3 Nussbaum formula

In this section, we obtain a characterization of the essential spectral radius
re = Sup{|A| : A € 0¢s5(T")}. We essentially follow | ].
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Lemma F.3.1 Let X be a complex Banach space and T € L(X,X). Let
L= inf{(3(T™))% : n e N}. Then

(&

re = lim (5(I™)" = lim (y(T")".

n— oo n—roo

Furthermore, if |A| > rl,, then dim(N(A —=T)) < oo and R(A —T) is closed.

PROOF. We start showing that limsup,, . (5(T™))= < r/.

For any ¢ > 0, choose m such that ((I™))w < r/ +¢. For large enough
n, write n = pm + ¢ where 0 < g < (m —1).
Then, by the above fact and reaclling Lemma F.2.13-(e), we obtain

FIT™)® < GE™)E - GO < (rl+2) % F(T))

Taking the limit n — oo yields limsup,, . ((T )) < 71l 4+ e. Since € was
arbitrary, we have proved lim SuUp,, oo (F(T™)) % <7, < liminf,_ o0 (F(T™)) 7.
Therefore lim,, oo (¥ (T”)) n ex1sts and equals r/. In the exact same way, we

3l

Sk

can prove that lim,_,. (y(T™))% exists.

Suppose |A| >/ and n is such that (5(T™))» < |A|. Consider T} = (X)T and
notice that 4(17') = (WY( ) =k < 1. By Lemma F.2.15, R(1 — T}) is
closed and dim(N(1 —T1)) < oo. O

Lemma F.3.2 If |A\o| > 7., then Ao is not a limit point of o(T) \ {Xo}-

PrOOF. We show that all points A # Ag, in some neighborhood of the
point Ag, belong to the resolvent of 7" and so A is not a limit point of o(T).
The case A\g € p(T') is trivial. Let Ao € o(T'). First we prove that either
N(Xo = T) # {0} or N(Ao —T) # {0}.

Suppose that N (Ao —T) = N(Ag —T*) = {0}. Then (\g—T7)"': D — X
exists on D = R(Ag — T) which is closed, by Lemma F.3.1. Assume that
D # X, then by Lemma F.2.5, there is u € X, such that |jul] = 1 and
|u—w| > 1 for any w € D. Let V := span{u, D}, then for any v € V we
can write v = au + w with w € D. Define I(v) := «, then

_ 1 1
oll = flaw + wl| = lal[lu = (=a~ w)|| = 5la] = Sliw)]

So
[1(v)] < 2]v].

We can then apply the Hahn-Banach theorem to produce an extension of [ on
all of X and [ # 0, since I(u) = 1. For any v € X,

(Mo — T)I(w) = 1((Ao — T)v) = 0.
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This contradicts N (Ao — T*) = {0}. So D = X, which implies that A\ — T is
invertible on X and by the bounded inverse theorem, (Ao —7") ! is a bounded
operator. Therefore \g ¢ o(T") and this contradicts the assumption.

Suppose that there exists a sequence {A\,}22, C o(T) \ {Xo}, Ni # \j
for i # j, which accumulates to Ag. Then there are either infinitely many
Un € N(A\, — T) or infinitely many I, € N(A, — T*). For each ¢ > 0, let
ne € N such that, for n > nc, |\, — Ao| < £]Ao]-

In the first case, for any k € N, let My be the subspace spanned by the

vectors Uy, ,Un k- €t Up = Up_4+, and Ap = A, 4x. Note that the
U1, Uz, - - - are linearly independent. This can be proven by induction, indeed
if {u1,...,upq1} are linearly dependent, then either also {uwj,...,u,} are

lienarly dependent or Z?Ill a;u; = 0, with a7 # 0. Then

n+1 n+1
0= Z()\zazuz + TOéfL'Ui) = Z i Qi
Jj=1 Jj=1

But this implies Z?Zl()\i—)\n)aiui = 0, which again implies that {u1,...,u,}
are linearly dependent. Accordingly, each My_; is a closed proper subspace
of M. So, by Lemma F.2.5, there exists vy, € My, such that ||vg| = 1 and
d(’Uk,Mk_l) Z 1—e.

Note that vy = apug + wi where ap € R,wy € Mi_1. So for k,r,s € N,
such that s > k,

1T vs — T k|| = || T  (asus) + T"ws — T ok || = [|asAius + T ws — T o |
= [Aellvs = (ws = AT ws + A T 0x ) || = (AL (1 =€) = [(As = Ao+ o) [(1—¢)
>\9 — )\0 r /\9 - )\O
: 1=) 2 Aol (1|
2 ezl (1-] 25

This implies that T"{|v] < 1} cannot be covered by finitely many sets of
diameter 1|Ao|"(1 — &)"*!. Therefore, by the arbitrariness of €, J(T") >
TT) = 1A

In the second case, exactly the same argument implies v(7*") > [\o|".
By Lemma F.2.14, (T") > 1|xo|".

Thus in both cases, . = inf, (F(T™))# > |Ao| which contradicts the as-
sumption. So Ag is not a limit point of o(T). O

— [l 1+

\)T (1-6) > Mol (1—).

Corollary F.3.3 According to the Definition F.2.1 of the essential spectrum,
Lemmata F.3.1 and F.5.2 imply that v, > re.'

Lemma F.3.4 Let T € L(X,X) and r > r.(T). Then there exists a finite
dimensional linear operator F such that o(T + F) C {\: |A| <r}.

13Gee (F.2.3) for the defintion of re.
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PROOF. Since o(T) N {X : |A\| > r} is a compact set of isolated points,
it consists of a finite number of points Ay, -+, \,. Let C; be a small circle
about A;, C; N C;j =0 for i # j and containing only \; from o(T’), and

P= [ (e-1) e

27 c;
be the Riesz projector associated with A;. Let P = Z?=1 P, and F = —TP.
By Lemma F.2.2, dim(R(P)) < co and
o(T+ F) = o(T(1 - P)) C[o(T)\ {N}]U{0},
which implies the Lemma. g
The following lemma provides the desired characterization of r..

Lemma F.3.5 Let X be a complex Banach space and T € L(X,X). Then

lim ((T™) = lim (F(T™)7 = lim (|T"[lx))" = re.

n— oo n—oo

PRrROOF. By Lemma F.3.1 the first two limits equal r,. The same argu-

ment as in Lemma F.3.1 shows that ) := lim, o |T"|| ¢ exists.
For S € L(X, X) and any compact operator K € IC(X), by Lemma F.2.13,

Y(S)=v(S+K)<|S+K].

Therefore v(S) < S|k, which implies rg < r[.

To conclude, we show that 7/ < r.. Suppose r. < r”, and let r € (r¢, 7).
For this r, let F' be as in Lemma F.3.4 and write 77 = T + F. Then
lim, o0 ||T7]]% < 7 (if unclear, see Problem C.13). On the other hand,

i
IT™|lx < |ITl, so that we obtain r; = lim,_ [|[T"||g < 7, a contradic-
tion. It follows that ) < r.. Then, Corollary F.3.3 implies r. =7, =r/. O

F.4 Hennion’s theorem and its generalizations

We first prove Hennion’s theorem, then provide a more recent generalization.

In fact, the next Theorem is itself a small generalization of | ], since
it allows the weak norm to be just a semi-norm. A similar generalization is
contained in | , Theorem XIV.3]. To this end, we need a bit of notation:
given a vector space X and a semi-norm | - ||, we call Xg,, the space X
equipped with the topology induced by the semi-norm. Next, we can consider
the vector space X, of the equivalence classes with respect to the semi-norm
(i.e. z ~y iff ||z — y|lw = 0). We can define the norm ||Z||" = inf ez ||z|]. This
yields a Banach space X,,, as it can be checked directly.
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Problem F.1 Given a normed space Y, a Banch space X togheter with a
seminorm || - ||w, and and operator T € L(Y, Xo,), show the they canonically
induce an operator T : L(Y, X,,).

Definition F.4.1 Using the notation of Problem F.1, we say that T € L(Y, X )
is || - ||w-compact if T(B) is compact.

Theorem F.4.2 (] 1) Let (X,]|-||) be a Banach space and T € L(X, X).
Assume that there exists a continuous'® semi-norm || - ||, on X, and M >
0>0, A, B,C >0, such that, for alln € N and f € X,"

1T fllw < CM™ ([ fllw; [T fI] < AO"[[f]| + BM™|[f]]o -

Then the spectral radius of T € L(X, X) is bounded by M. If, in addition, T
is || - ||w-compact, then the essential spectral radius of T is bounded by 6.

ProOOF. Continuity of the semi-norm implies that there exists C’ > 0
such that || f|lw < C'||f]| for all f € B. For if not, then for any n € N, there
must exist f, € B with [|f,|| = 1, but || f,]l» > n. But then ||2 f,|| — 0 while
£ fallw > 1, contradicting continuity of the semi-norm.

This fact plus the second inequality yields, for all n € N and f € B,
1T < (A + BE)M™| . (F.1.6)

By the spectral radius formula, see Problem C.13, we conclude the spectral
radius is bounded by M.
For the second part, by Lemma F.3.5, and recalling Defintion F.2.10, we
have
re = lim {/4(T") < lim {/5(T"B)
n—roo

where By :={fe X | ||f|| <1}
Next we prove that T™B; can be covered by a finite number of balls of radius
Cy - 0™, which implies that

re < lim ¥/4(T"B;) < ILm YCy -0 =4.

n—oo

By hypothesis, TBj is relatively compact in X,,. Thus, for each € > 0 we can
extract a finite sub-cover { B.(fi)}Xe, from the covering { B. (£)} ferp,» Where

B.(f) ={3€ Xw : |lg—fll', < e}. Then, choosing'® f; € f; N TB; and

1By continuous, we mean that if (f,)n C B is a sequence such that || fn|| — 0, then
necessarily || fn|lw — 0.

5These are often called Lasota-Yorke (or Doeblin-Fortet) inequalities.

16Recall that elements of X, are equivalence classes of elements in X.
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setting U(fi) ={f € X : |f = fillw <e} ={f € f : f € Bfi)} we have
a finite covering of T'B;. Accordingly, for each f € U.(f;) N T By we have

1772 = Fll < A6 F = fill + BM" IS = fill
< A9"12(A0 + BC'M) + BM™ e,

where we have used equation (F.4.6). Choosing ¢ sufficiently small we can
conclude that for each n € N the set 7™ (B1) can be covered by a finite number
of || - ||-balls of radius Cj - 0" centered at the points {77~ f;} e, O

To conclude the appendix, we show that the hypotheses of the above theorem
can be further weakened to situations in which 7' is not necessarily continuous
with respect to the weak norm.'”

Theorem F.4.3 (] 1) Let (X,]|-|l) be a Banach space and T € L(X, X).
Assume that there exists a semi-norm || - ||, on X such that any bounded se-
quence in || - || contains a Cauchy sequence for || - ||w. If there exist ng € N

and 0, B > 0 such that,
[Tl < 0" F 1l + Bl (F.4.7)

then the essential spectral radius of T is bounded by 6.

PRrROOF. Note that there must exist C' > 0 such that || ||, < C||f]|. If not

then there would be a sequence {f,,}, || fn]| < 1, such that lim,, o || fr || = 00,
but this contradicts that f,, must have a Cauchy subsequence.
Let M = 2||T||, then we can define the new seminorm,

1F 1l = 20) 7 - M T £l

n=0

Note that
! 1 - —n mn 1 S —n
1A, < 5 STl < 5 32 = I
n=0 n=0

ITfl < (20)71 D M7 T |l (F.4.8)

n=0

=(2C)'M Y M T fllw < MI|£I,-

n=1

17Indeed, note that the first displayed inequality in F.4.2 amounts simply to the continuity
of T in the weak norm.
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Thus, if we set A = M™@~"0, for each n € N we can write n = kng + m,
m < ng, and, iterating F.4.7,

k—1
T fI| < 6Fro ™| fI| + ) BOE—I=Dmo|pinotmy]l,
j=0
< 0" M™ | f|| + B max{g— =m0 ppamotmy | g7
< A0"™||f|l + BM"| fII.,

since it must be that 6 < ||T'|| = M/2.

Next, if {f,} is bounded in the || - || norm, so are the sequences T f,,
m € N. Then, by hypothesis, we can extract a sequence njl such that fn]l.
is Cauchy in the || - ||, norm. From it we can extract a sequence n§7 with
n? = ni, such that Tfy2 is Cauchy in the || - ||,, norm, and so on. Note that,
by construction, n] = n for m > j. Then the sequence ng is such that

1™ f, is Cauchy in the [| - ||, norm for all m € N. Then, for each £ > 0, if
(2C)7127F < £/2, then, by the definition of the norm || - ||’,, we can write

L
£y = Fall < QC)71 D2 M7 IT™ (f5 = fut)lh + /2.
m=0

It follows that there exists m € N such that, if j, k& > m, then || f, , = [k I, <e,
J

i.e. we can extract a Cauchy sequence in the [|-||}, norm. So the ||-||,, norm has

the same property as the || - ||,, norm. This implies that T is a || - ||/, -compact
operator. The statement follows then from Theorem F.4.2. O
The paper | ] provides an application of Theorem F.4.3 to prove a

local limit theorem for weakly coupled lattices of expanding maps in which
the relevant operators are indeed not continuous in the weak norm. For more
details, see | , Section 3.



Appendix G

Probability—the minimum

This appendix is intended to provide the minimum of probability theory
needed in this Book. Of course, there are wonderful books to study prob-
ability (e.g., on one extreme, the monumental | 1Ll |, on the other,
the synthetic but really deep | ]), but they require some effort to read as
they contain much more material than needed here.

G.1 Distribution and Characteristic Functions

Let X be a measurable space and p a probability measure. For any mea-
surable set A will use the notation P(A) = u(A) = [, du for its probabil-
ity. Also, given a measurable function (random variable) ¢, we will write
E(p) = u(p) = [y edp for its expectaion. Given a random variable ¢ we
define the distribution function

F(z) =P({y e X : o(y) < z}).

Note that F' is an increasing function, and lim F(z) =0, lim F(z) = 1.
r—r—00 Tr—r00

Also note that F' defined a measure vg on R, such that
Fz)=vr({yeR : y <)}

Another fundamental object is the characteristic function

eitw(z),u(dx) = /

R

o) =) = [

. e”z/p(dz):/Re”F(dz), (G.1.1)

where the last is a Riemann—Stieltjes integral. Note that, since u is a proba-
bility measure ¢(0) = 1. In addition, if F is differentiable and F’ is Riemann

263
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integrable,! then

6(t) = / I () d. (G.1.2)
R
In this case, if ¢ is integrable, the usual Fourier inversion formula yields
1 ,
F'(z) = —/ e~ (t)dt. (G.1.3)
2 R
More generally, we have the following result.
Lemma G.1.1 ([ , page 20]) Given the distribution function F and
the charatcteristic function ¢ of a random variable ¢, we have
1 T e—ibt _ o—iat
F()— F(a) = lim — t)—————dt

for all points a,b of continuity of F.
Let us mention another useful fact.

Lemma G.1.2 IfE(|p|) < oo, then ¢ is differentiable at zero. In addition,
¢'(0) = iE(¢p).

PROOF. Let us compute the derivative

h
lim ¢(h) — 4(0) = lim %E(eﬂw -1)= %E)%]E (upflz/o eig“"d§>

h—0 h h—0

h
= lim (upi /0 [eie? —1] d§> +E(ip).

Next, let 8 < %, and let A, = {¢ > h™P}. Then, since ¢ is integrable, it
must be?

lim E(Ls, |¢l) = 0.

h—0

We can then estimate

E <will /Oh [eie? —1] dg)

from which the Lemma follows. O

< 2E(La, o) +E(Las [@|*h) < 2E(La,|o])+R' %,

INote that, since F is increasing, F’ is defined almost everywhere.
2If unsure, consider the set I'n = {|] € [27,2"T1)}, then 37,y 2"(Tn| < E(lg|) < oo.
Thus, for each L € R,

Elescle) € 30 270,
n>lng L
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In applications, we often try to estimate the characteristic function. It is
then natural to try to investigate how an error in the characteristic function
reflects on our knowledge of the distribution function.

Lemma G.1.3 (] , equation (3.13) of Chapter XVIL.3]) Let ¢ and ® be
two characteristic functions and let F' and G be the corresponding character-
istic functions. Assume that F is the distribution function of an integrable
random variable and G is differentiable with |G’ ||cc < M for some M € R.
Then, for all T € R, ?

F@) -6 <1 [

T™J_T

P(€) — 2(&) 12M
: 'd§+ —

PROOF. Let T > 0 and @r € C°(T,R) such that supp(wr) C [T, T].
Also, let wr be the inverse Fourier transform of wy. Since wy is an analytic
function, the convolutions Fr := F xwr and Gt := G % wr are smooth
functions. Also, by formula (G.1.2),

/ ZZt/F x)wh( z—xda:dz—/ m/wT z —x)dF(z)dz
= ar(t) [ e = o(0)r(0)

Analogously, ®r(t) = ®(t)r(t). Then folumula (G.1.3) applies and yields

1
21

T .
Fi(x) — Gp() = / e [ole) = B0 ar (0.

Integrating with respect to x yields

Fir(z) = Grlo) = % [ o - ewlrtyagar
T ’LSt _e —ixt
- % S r T [p(t) — @) Or(t)dt (G.1.4)

=5 | i et — @] @yt

where, in the last line, we have used the Riemann-Lebesgue Lemma, also the
integrand is a bounded function since ¢(0) = ®(0) = 1 and, recalling Lemma
G.1.2, ¢ — @ is differentiable at zero.

Next, we want to estimate the difference between Fr(x) — Gr(x) and F'(z) —
G(z). For each € > 0, let . be such that

[F' = Glloo < [F(ze) — Glae)| + &

3SHumm, Feller has 24 rather than 12, maybe I lost a 2 somewhere.
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We discuss only the case F(x.) — G(z.), the other one can be treated in the
same way with the obvious changes. To compute it is convenient to make an

explicit choice of wr. Following | ] we choose
1—cosTzx
wp = ————5—
r nTa?

To check the the Fourier trasfom is supported as required solve the following
probem.

Problem G.1 Show that
1— ] rlt| <T
wp(t) = { T for |t <

0 otherwise.

For x > x., recalling that F'is increasing, we have
F(z)—G(z) > F(z:) — G(ze) + G(z:) — G(x) > F(x:) — G(ze) — M(x — ).

We can then choose 1 = x. + % =: z. + A and compute

|Fr — Grlloo > |Fr(z1) — G(21)| =

/R [F(z) — G(@)|wr (21 — o)da

x1+A

2%(F(a@5) — G(z)) /xl_A wr(z, —x)dx
— [F(ze) — G(ze) + €] /xl-leAwT(xl —z)dx

1 *©1—cosTz
Z§(F(Is)*G(Is))/ de

3 N 1
- [sre ey e [ g
F(z:) — G(z:) [ 1—cosz 3(F(ze) — G(xe)) + 2¢
2 2 / 2 du = T A

— 00
To conclude, solve this problem.

Problem G.2 Show that
oo 1_
[
T

The above, since ¢ is arbitrary, implies
12M
IF = Glloo <2[|Fr — Grlloo + —-
T

which, together with (G.1.4), implies the Lemma. O
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