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Chapter 1

The origins: Differential
equations

As this book is about Dynamical Systems, let’s start by defining the
object of study. The concept of Dynamical System is a very general one
and it appears in many branches of mathematics from discrete mathematics,
number theory, probability, geometry and analysis and has wide applications
in physics, chemistry, biology, economy and social sciences.

Probably the most general formulation of such a concept is the action of a
monoid over an algebra. Given a monoid G and an algebra A, the (left)-action
of G on A is simply a map f : G×A → A such that1

1. f(gh, a) = f(g, f(h, a)) for each g, h ∈ G and a ∈ A;

2. f(e, a) = a for every a ∈ A, where e is the identity element of G;

3. f(g, a+ b) = f(g, a) + f(g, b) for each g ∈ G and a, b ∈ A;

4. f(g, ab) = f(g, a)f(g, b) for each g ∈ G and a, b ∈ A;

In our discussion we will be mainly motivated by physics. In fact, we will
consider the cases in which G ∈ {N,Z,R+,R}2 is interpreted as time and

1In an alternative, one can consider the action on a vector space, if one wants to include,
e.g, stochastic processes.

2Although even in physics other possibilities are very relevant, e.g. in the case of Statis-
tical Mechanics it is natural to consider the action of the space translations, i.e. the groups
{Zd,Rd} for some d ∈ N, d > 1.

1



2 CHAPTER 1. THE ORIGINS: DIFFERENTIAL EQUATIONS

A, interpreted as the observables of the system,3 is a commutative algebra
consisting of functions over some set X. In addition, we will restrict ourselves
to situations where the action over the algebra is induced by an action over
the set X (this is a map f : G×X → X that satisfies condition 1, 2 above).4

Indeed, given an action f of G on X and an algebra A of functions on X such
that, for all a ∈ A and g ∈ G, b(·) := a(f(g, ·)) ∈ A, it is natural to define
f̃(g, a)(x) := a(f(g, x)) for all g ∈ G, a ∈ A and x ∈ X. It is then easy to
verify that f̃ satisfies conditions 1–4 above.

We will call discrete time Dynamical System the ones in which G ∈ {N,Z}
and continuous time Dynamical Systems the ones in which G ∈ {R+,R}.
Note that, in the first case, f(n, x) = f(n−1+1, x) = f(1, f(n−1, x)), hence
defining T : X → X as T (x) = f(1, x), holds f(n, x) = Tn(x).5 Thus in such a
case we can (and will) specify the Dynamical System by writing only (X,T ).
In the case of continuos Dynamical Systems we will write ϕt(x) := f(t, x)
and call ϕt a flow (if the group is R) or a semi-flow (if the group is R+)
and will specify the Dynamical System by writing (X,ϕt). In fact, in this
notes we will be interested only in Dynamical Systems with more structure
i.e. topological, measurable or smooth Dynamical Systems. By topological
Dynamical Systems we mean a triplet (X, T , T ), where T is a topology and T
is continuos (if B ∈ T , then T−1B ∈ T ). By smooth we consider the case in
which X has a differentiable structure and T is r-times differentiable for some
r ∈ N. Finally, a measurable Dynamical Systems is a quadruple (X,Σ, T, µ)
where Σ is a σ-algebra, T is measurable (if B ∈ Σ, then T−1B ∈ Σ) and µ is
an invariant measure (for all B ∈ Σ, µ(T−1B) = µ(B)).6

So far for general definitions that, to be honest, are not very inspiring.
Indeed, what characterizes the modern Dynamical Systems is not so much
the setting but rather the type of questions that are asked, first and foremost:

• Which behaviors are visible in nature? (stability and bifurcation
theory).

• What happens for very long times? (statistics and asymptotic
theory)

The rest of this book will deal in various ways with such questions.
The original motivation for the above setting and for these questions comes

from the study of the motion which, after Newton, typically appears as so-

3Again other possibilities are relevant, e.g. the case of Quantum Mechanics (in the so
called Heisenberg picture) where the algebra of the observable is non commutative and
consists of the bounded operators over some Hilbert space.

4Again relevant cases are not included, for example all Markov Process where the evo-
lution is given by the action of some semigroup.

5Obviously T 2(x) = T ◦T (x) = T (T (x)), T 3(x) = T ◦T ◦T (x) = T (T (T (x))) and so on.
6The definitions for continuos Dynamical Systems are the same with {ϕt} taking the

place of T .



1.1. FEW BASIC FACTS ABOUT ODE: A REMINDER 3

lution of an ordinary differential equation (ODE). It is then natural to start
with a brief reminder of basic ODE theory.7

In section 1.1 I will recall the theorem of existence and uniqueness of the
solutions of an ODE. In addition, I will state the Gronwall inequality, a very
useful inequality for estimating the growth rate of the solution of an ODE.
Finally, a theorem yielding the smooth dependence of the solutions of an ODE
from an external parameter or from the initial conditions is provided.

In section 1.2 is given a very brief account of linear equations with constant
coefficients (by discussing the exponential of a matrix) and of Floquet theory.
That is the study of the solutions of a linear equation with coefficients varying
periodically in time. The basic result being that the asymptotic properties of
the solutions can be understood by looking at the solutions after one period.

Finally, section 1.3 discusses the possibility of qualitative understanding
the behavior of the solutions of ODE that cannot be solved explicitly (essen-
tially all the ODEs). The arguments are very naive and are intended only to
convince the reader that a) something can be done; b) a more sophisticated
theory needs to be developed in order to have a satisfactory picture.

1.1 Few basic facts about ODE: a reminder

Our starting point is the initial Cauchy problem for ODE. That is, given a
separable Banach space B,8 V ∈ C0

loc(B × R,B),9 and x0 ∈ B, find an open
interval 0 ∋ I ⊂ R and x ∈ C1(I,B) such that

ẋ(t) = V (x(t), t)

x(0) = x0.
(1.1.1)

Remark 1.1.1 I will be mainly interested in the case B = Rd, for some d ∈
N. Thus, the reader uncomfortable with Banach spaces can safely substitute

7In fact, also the solutions of a partial differential equation (PDE) may give rise to a
Dynamical System, yet the corresponding theory is typically harder to investigate.

8A Banach spaces is a complete normed vector spaces. This means that a Banach space
is a vector space V , over R or C, equipped with a norm ∥·∥ such that every Cauchy sequence
in V has a limit in V . By separable we mean that there exists a countable dense set. Check
[RS80, Kat66] for more details or [DS88] for a lot more details.

9Given two Banach spaces B1,B2, an open set U ⊂ B1, and q ∈ N by Cq(U,B2) we mean
the continuous functions from U to B2 that are q time (Fréchet) differentiable and the q-th
differentials are continuous (see Problem 1.18 for a very quick discussion of differentiation
in Banach spaces). Such a vector space can be equipped with the norm ∥ · ∥Cq given by
the sup of all its derivatives till the order q included. If we then consider the subset for
which such a norm is finte, then we have again a vector space which is, in fact, a Banach
space. We will call such a Banach space Cq(U,B2, ∥ · ∥Cq ), yet, when no confusion can
arise, we will abuse of notation and call it simply Cq(U,B2). By Cq

loc(U,B2) we mean the
vector space of the functions f : U → B2 such that, for each u ∈ U and R > 0 such that
B(u,R) = {v ∈ B1 : ∥v− u∥ ≤ R} ⊂ U , f ∈ Cq(B(u,R),B2, ∥ · ∥Cq ). Note that, in general,
Cq
loc is not a Banach space (in fact, it is a Fréchet space).
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Rd to B in all the subsequent arguments. Yet, it is interesting that the theory
can be developed for general Banach spaces at no extra cost. For simplicity, in
the following we will always assume that all the Banach spaces are separable
even if not explicitly mentioned. In essence, this is just a fancy way of saying
that much of the following depends only on the Banach structure of Rd, that is
on the fact that Rd is a complete vector space with a norm (e.g. the euclidean
norm) and, for example, nowhere is used the fact that Rd has a finite basis.

I will also briefly consider ODE on (finite dimensional) manifolds. Not
much extra theory is needed in order to do this, since ODE on manifolds can
always be reduced to the case Rd case, see section 1.1.5.

The first problem that comes to mind is

Question 1 Does the Chauchy problem (1.1.1) always admit a solution? If
there exists a solution is it unique?

To address such an issue it is convenient to consider the equation10

x(t) = x0 +

∫ t

0

V (x(s), s)ds (1.1.2)

Problem 1.1 Show that for each finite open interval 0 ∈ I ⊂ R, if x ∈
C1(I,B) is a solution of (1.1.1), then it is a solution of (1.1.2). Show that if
x ∈ C0(I,B) is a solution of (1.1.2) then x ∈ C1(I,B) and solves (1.1.1).

1.1.1 Existence and uniqueness

The issue of existence and uniqueness of the solutions of (1.1.1) can be solved
by applying the clasical Banach fixed point Theorem (see A.1.1), provided we
make a stronger assumption on V .

Theorem 1.1.2 (Existence and Uniqueness theorem for ODE) For each
V ∈ C1

loc(B × R,B) and x0 ∈ B there exists δ ∈ R+ such that there exists a
unique solution of (1.1.1) in C1((−δ, δ),B).11

Proof. Let δ ∈ (0, 1). The reader can verify that the vector space
C0([−δ, δ],B), equipped with the norm ∥u∥∞ := supt∈[−δ,δ] ∥u(t)∥B is a Ba-

nach space.12 By definition there exist δ0, R0 ≥ 0 such that, for all δ ≤ δ0 and

10The most convenient meaning of the integral of a function with values in a Banach space
is the Bochner sense, which reduces to the usual Lebesgue integral in the case B = Rd, see
[Yos95] for definition and properties. Yet, for our purposes the equivalent of the Riemannian
integral suffices and it is defined in the obvious manner. See Problem 1.20 for details.

11We equip B×R with the norm ∥(x, t)∥ ≤ sup{∥x∥B, |t|}, where ∥ · ∥B is the norm of B.
12The uniform limit of continuous functions is a continuos function.
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R ≤ R0, V ∈ C1(DR,B), where DR = {y ∈ C0([−δ, δ],B) : ∥y − x0∥∞ ≤ R}.
We can then define the operator K : DR → C0([−δ, δ],B) by13

K(u)(t) := x0 +

∫ t

0

V (u(s), s)ds.

Let Mδ = sup|t|≤δ supu∈DR
{∥V (u, t)∥ + ∥∂uV (u, t)∥}, note that Mδ is a de-

creasing function of δ. Then, for each u ∈ DR and |t| ≤ δ, (recall Problem
1.22)

∥K(u(t))− x0∥ ≤ δMδ ≤ R

provided we chose δMδ ≤ R. Thus K maps DR into DR. In addition, for
each u, v ∈ DR,

∥K(u)−K(v)∥∞ ≤ δMδ∥u− v∥∞ ≤ 1

2
∥u− v∥∞,

provided we chose 2δMδ ≤ 1. We can then apply Theorem A.1.1 and obtain
a unique solution of the equation Ku = u in DR. This shows the existence
and uniqueness of the solution of (1.1.2). The Theorem follows then by re-
membering Problem 1.1. □

Remark 1.1.3 Note that in the proof of Theorem A.1.1 one can chose the
same δ for an open set of initial condition.

Remark 1.1.4 The hypotheses of the above Theorem can be easily weakened
to the case of V locally Lipschitz in x and continuous in t, yet only continuity
does not suffice for uniqueness as shown by the example

ẋ =
√
x

x(0) = 0.

which has the infinitely many solutions xa(t) = 0 for t ≤ a and xa(t) =
1
4 (t− a)2 for t ≥ a, a ∈ R.14

Remark 1.1.5 The restriction to an interval of size δ in Theorem A.1.1
cannot be avoided as shown by the example

ẋ = x2

x(0) = 1.

Its solution x(t) = (1− t)−1 is not continuous, nor bounded, for t = 1.

13The meaning of C0(K,B2) where K is a closed set of B1 is the usual one.
14If B is finite dimensional, then V ∈ C0 suffices for the existence of a solution. This

follows by a direct application of Schauder fixed point Theorem to (1.1.2). For informations
on such a fixed point theorem and fixed point theorems in general see [Zei86].
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We have seen a mechanism whereby the solution cannot be defined for all
times, the next Lemma shows that, for C1 vector fields, the above is the only
mechanism.15

Lemma 1.1.6 In the hypotheses of Theorem 1.1.2, if x ∈ C1
loc((−δ, δ),B) is

a solution of (1.1.1) for some δ, δ > 0, and if there exists M > 0 such that
supt∈[0,δ) ∥x(t)∥ ≤ M , then there exists δ̄ > δ and x̄ ∈ C1((−δ, δ̄),B) that
solves (1.1.1) (i.e. the solution can be extended for longer times).

Proof. Let {tn} be any sequence that converges to δ, then

∥x(tn)− x(tm)∥ ≤
∫ tm

tn

∥V (x(s), s)∥ds ≤ |tn − tm| sup
∥z∥≤M

sup
s∈[0,δ)

∥V (z, s)∥.

Thus {x(tn)} is a Cauchy sequence and admits a limit x∗ ∈ B such that

x∗ = lim
n→∞

x(tn) = lim
t→δ

x(t) = x0 +

∫ δ

0

V (x(s), s)ds.

We can then consider the equation

y(t) = x∗ +

∫ t

0

V (y(s), s+ δ)ds.

By Theorem 1.1.2 there exists δ1 and y ∈ C1((−δ1, δ1),B) which satisfy the
above equation. Let then δ̄ = δ + δ1 and define

x̄(t) :=

{
x(t) fot all t ∈ (−δ, δ)
y(t− δ) fot all t ∈ [δ, δ̄).

Clearly x̄ ∈ C0((−δ, δ̄),B) and, for t ∈ [δ, δ̄) holds true

x̄(t) = x∗ +

∫ t

δ

V (x̄(s), s)ds = x0 +

∫ δ

0

V (x̄(s), s)ds+

∫ t

δ

V (x̄(s), s)ds

= x0 +

∫ t

0

V (x̄(s), s)ds.

Thus, again remembering Problem 1.1, the Lemma follows. □

Remark 1.1.7 Applying repeatedly Lemma 1.1.6 it follows that there exists
a maximal open interval J ⊂ R such that the Cauchy problem (1.1.1) has a
unique solution belonging to C1

loc(J,B).
15I state the result for positive times, for negative times it is the same.
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1.1.2 Growald inequality

We have seen that the escape (growth) to infinity is the only obstruction to
enlarging the domain of the solution.16 The question remains: how large the
maximal interval J in Remark 1.1.7 can be?

To understand better how the solution of an ODE can grow, we need a
technical but extremely useful Lemma.

Lemma 1.1.8 (Integral Gronwall inequality) Let L, T ∈ R+ and ξ, f ∈
C0([0, T ],R). If, for all t ∈ [0, T ],

ξ(t) ≤ L

∫ t

0

ξ(s) ds+ f(t),

then

ξ(t) ≤ f(t) + L

∫ t

0

eL(t−s)f(s) ds.

Proof. Let us first consider the case in which f ≡ 0. In this case the
Lemma asserts ξ(t) ≤ 0. Indeed, since ξ is a continuos function there exists
t∗ ∈ [0, (2L)−1] ∩ [0, T ] =: I1 such that ξ(t∗) = supt∈I1 ξ(t). But then,

ξ(t∗) ≤ L

∫ t∗

0

ξ(s) ds ≤ ξ(t∗)Lt∗ ≤ 1

2
ξ(t∗)

which implies ξ(t∗) ≤ 0 and hence ξ(t) ≤ 0 for each t ∈ I1. If I1 = [0, T ], then
we are done, otherwise letting t1 := (2L)−1 we have

ξ(t) ≤ L

∫ t

t1

ξ(s) ds

and we can make the same argument as before in the interval [t1, 2t1]. Iter-
ating we have ξ(t) ≤ 0 for all t ∈ [0, T ].

To treat the general case we reduce it to the previous one. Let

ζ(t) := ξ(t)− f(t)− L

∫ t

0

eL(t−s)f(s) ds.

Then

ζ(t) ≤ L

∫ t

0

ξ(s) ds−
∫ t

0

LeL(t−s)f(s) ds

= L

∫ t

0

ζ(s) ds+ L

∫ t

0

{
f(s)ds+ L

∫ s

0

eL(s−τ)f(τ)dτ

}
−
∫ t

0

LeL(t−s)f(s) ds.

16Of course, this is the case only for regular vector fields. For other possibilities, think of
the case of collisions among planets.
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Next, notice that∫ t

0

dsL

∫ s

0

eL(s−τ)f(τ) dτ = L

∫ t

0

dτf(τ)

∫ t

τ

dseL(s−τ)

=

∫ t

0

f(s){eL(t−s) − 1}ds.

Thus,

ζ(t) ≤ L

∫ t

0

ζ(s) ds.

We have then reduced the problem to the previous case which implies that it
must be ζ(t) ≤ 0 from which the Lemma follows. □

Let us see the usefulness of the above Lemma in a concrete example. Let
L(B,B) be the Banach space of the linear bounded operators from B to B.17

Lemma 1.1.9 For each A ∈ C1
loc(R, L(B,B)), consider the Cauchy problem

ẋ(t) = A(t)x(t)

x(0) = x0.

If ∥A(t)∥ ≤ L for all t ∈ R, then ∥x(t)∥ ≤ eLt∥x0∥ for all t ∈ R. In particular,
the solution is defined on all R.

Proof. If we write the equation in the equivalent integral form we have

∥x(t)∥ ≤ ∥x0∥+
∫ t

0

∥A(s)x(s)∥ ds ≤ ∥x0∥+ L

∫ t

0

∥x(s)∥ ds.

Let ξ(t) := ∥x(t)∥, apply Lemma 1.1.8 for any T ∈ R+, the Lemma follows.
□

Problem 1.2 Explain why Lemma 1.1.9 does not apply to the following set-
ting: B = C1(Rn,R) and

ẋ(t, z) = α(z, t)∂zx(t, z),

for some α ∈ C1(Rn,R), α(z, T + t) = α(z, t), T > 0. Compare with Problem
1.24.

17The norm of L ∈ L(B,B) is given by ∥L∥ := sup v∈B
∥v∥=1

∥Lv∥. If B = Rd, then L(B,B)

is just the vector space of the d× d matrices.
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1.1.3 Flows

In this section we analyze the case in which the vector field is time independent
and grows at most linearly.

Lemma 1.1.10 Given V ∈ C1
loc(B,B), if there exists L,M ≥ 0 such that

∥V (x)∥ ≤ L∥x∥+M , then the solution of (1.1.1) exists for all times and for
all initial conditions.

Proof. We argue by contradiction. Choose any initial condition x0 ∈ B
and let I(x0) = (−δ−(x0), δ+(x0)) be the maximal interval on which the
solution is defined. If δ+(x0) <∞, then for each t ≤ δ+(x0)

∥x(t)∥ ≤ ∥x0∥+ L

∫ t

0

∥x(s)∥ds+Mt.

Thus Gronawall inequality implies

∥x(t)∥ ≤ eLt
{
∥x0∥+ML−1

}
for t ∈ [0, δ+(x0)). Then, by Lemma 1.1.6, the solution can be extended,
contrary to the assumption that (−δ−(x0), δ+(x0)) was the maximal interval.
A similar argument holds for negative t. □

For each x0 ∈ B and t ∈ R let x(t, x0) be the solution of (1.1.1) at time t.

Lemma 1.1.11 For each V as in Lemma 1.1.10, setting ϕt(x0) := x(t, x0),
ϕ−t = ϕ−1

t for t ≥ 0, we have that (B, ϕt), t ∈ R, is a Dynamical System.

Proof. All we need to prove is that ϕt is an action of R on B. First
of all note that ϕt is indeed invertible. If not then there would be x, x′ ∈ B
such that ϕt(x) = ϕt(x

′). But then the uniqueness of the solutions of the
ODE implies x = x′. Moreover it is easy to check that ϕ−t(x0) = x(−t, x0).
Finally, ϕt(ϕs(x)) = ϕt+s(x). □

Remark 1.1.12 We have thus proved that a large class of vector fields gives
rise to flows.

1.1.4 Dependence on a parameter

Having established the existence and uniqueness of the solution, the next
natural questions present itself.

Question 2 How do the solutions depend on the initial condition? How do
the solutions depend on a change of the vector field?



10 CHAPTER 1. THE ORIGINS: DIFFERENTIAL EQUATIONS

To discuss such issues it is convenient to analyze first the second question.
More precisely, given V ∈ C2

loc(B×R×Rd,B) we consider the Chauchy problem

ẋ(t) = V (x(t), t, λ)

x(0) = x0.
(1.1.3)

Clearly the solution will depend on the parameter λ. The question is then:
calling x(t, λ) the solution of (1.1.3), for a given t ∈ R what can we say about
the function x(t, ·)?

For simplicity let us consider the case V ∈ C2(B × R × B1,B), the more
general case V ∈ C2

loc(B × R× B1,B) is similar and is left to the reader.

Theorem 1.1.13 (Smooth dependence on a parameter) Given two Ba-
nach spaces B,B1, let V ∈ C2(B × R × B1,B). Let X(t, x0, λ) be the unique
solution of (1.1.3), then X(t, x0, ·) ∈ C1

loc(B1,B).

Proof. For each x0 ∈ B consider the ODE for ξ ∈ C1
loc(R×B1, L(B1,B))

ξ̇(t, λ) = ∂xV (X(t, x0, λ), t, λ) · ξ(t, λ) + ∂λV (X(t, x0, λ), t, λ)

ξ(0, λ) = 0.
(1.1.4)

We claim that ξ(t) = ∂λX(t, x0, λ).
18 To verify the claim it suffices to prove

that there exists C > 0 such that, for h ∈ B1 small enough, if ζ(t, h, λ) :=
X(t, x0, λ+h)−X(t, x0, λ)−ξ(t)h, then ∥ζ(t, h)∥ ≤ C∥h∥2. By Taylor formula
we have19

ζ̇(t, h) = V (X(t, x0, λ+ h), t, λ+ h)− V (X(t, x0, λ), t, λ)

− ∂xV (X(t, x0, λ), t) · ξ(t)h− ∂λV (X(t, x0, λ), t, λ)h

= ∂xV (X(t, x0, λ), t) · ζ(t, h) +R(t)

(1.1.5)

where, in the last line, we have used

V (X(t, x0, λ+ h), t, λ)− V (X(t, x0, λ), t, λ)

= ∂xV (X(t, x0, λ), t, λ) · (X(t, x0, λ+ h), t, λ)−X(t, x0, λ))

+O(∥X(t, x0, λ+ h), t, λ)−X(t, x0, λ)∥2),

and

∥R(t)∥ ≤ C
(
∥X(t, x0, λ+ h)−X(t, x0, λ)∥2 + ∥h∥2

)
≤ 2C(∥ζ(t, h)∥2 + (1 + ∥ξ(t)∥2)∥h∥2).

18If B = Rd e B1 = Rm then ξ is just a d×m matrix.
19Note that we cannot Taylor expand X(t, x0, λ+ h) with respect to h, since we do not

know yet that X is differentiable with respect to λ.
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with C = ∥V ∥C2 . Note that ζ(0) = 0. We can then conclude by using Lemma
1.1.8. Indeed such a Lemma applied to (1.1.4) implies ∥ξ(t)∥ ≤ eC1t, for some
C1 > 0. Next, let T > 0 be the maximal time such that ∥ζ(t, h)∥ ≤ 1/2 and
e2C1T ≤ 2. Then, for t ≤ T , (1.1.5) yields

∥ζ(t, h)∥ ≤
∫ t

0

2C∥ζ(s)∥ds+ 3∥h∥2

and Lemma 1.1.8, again, implies the announced estimate. □

Problem 1.3 Prove the analogous of Theorem 1.1.13 when V ∈ C1
loc.

The above theorem allow to easily prove the following fundamental result on
the smooth dependence on parameters of an ODE.

Theorem 1.1.14 (Smooth dependence on initial conditions) Let V ∈
Cr(B×R,B), r ≥ 1. For x0 ∈ B let X(t, x0) be the unique solution of (1.1.1).
Then, for each t ∈ R, X(t, ·) ∈ Cr

loc(B,B). Moreover, ξ = ∂x0
X solves

ξ̇(t) = ∂xV (X(t, x0), t) · ξ(t)
ξ(0) = 1.

(1.1.6)

Proof. Set z = x− x0 and consider the resulting equation

ż = V (z + x0, t) =: V̄ (z, t, x0)

z(0) = 0.

One can then consider x0 as an external parameter, applying Theorem 1.1.13
yields the result for r = 1. On the other hand, (1.1.6) is itself a differential
equation depending on a parameter with a C1 vector field and a C1 dependence
on the parameter x0 , provided r ≥ 2. So we can apply Theorem 1.1.13 again,
and so on for r times, which proves the theorem. □

1.1.5 ODE on Manifolds–few words

Let us remind that a topological manifold is a second countable Hausdorff
space which is locally homeomorphic to Euclidean space. A chart over a
topological manifold M is a pair (U, ϕ) such that U ⊂ M is an open set and
ϕ : U → Rn, for some n ∈ N, is an homeomorphism between U and the
open set Φ(U). An atlas on a topological manifold is a countable collection
of charts {(Uα, ϕα)}. We say that an atlas is Ck if ϕα ◦ ϕ−1

β is Ck when is

defined. We say that two Ck atlas are equivalent if their union is a Ck atlas.
A Ck manifold is a topological manifold equipped with an equivalence class
of Ck atlas (often called a differentiable structure).

Although most often we will be concerned with manifolds embedded in
some Rd, also other possibilities will be relevant. Let us consider two exam-
ples.
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Problem 1.4 Show that Rd is a C∞ manifold.20

Problem 1.5 Let f ∈ Ck(Rd,R), and consider M = {(x, y) ∈ Rd × R : y =
f(x)}. Consider the atlas consisting of the chart (M,ϕ) where ϕ(x, y) = x.
This is a C∞ manifold.

Problem 1.6 Check that Td = Rd/Zd is a C∞ manifold.

Given two differentiable manifolds (Ck manifolds with k ≥ 1) M1,M2 and
a map f : M1 → M2 we say that f ∈ Cr(M1,M2), r ≤ k, if for each atlas
{(Uα, ϕα)} of M1 and atlas {(Vβ , ψβ)} of M2, holds true ψβ ◦ f ◦ ϕ−1

α ∈ Cr on
their domains of definition.

Given a differentiable manifold M and x ∈ M , we say that two curves
γ1, γ2 ∈ C1((−1, 1),M), such that γ1(0) = γ1(0) = x, are equivalent at x if
for each chart (U, ϕ) such that x ∈ U holds true (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0). A
tangent vector at x is an equivalence class of curves.

Problem 1.7 Show that if M is localy homeorphic to Rd, then the set of
tangent vectors at any x ∈M form canonically a d dimensional vector space.21

We will use TxM to designate the tangent space at x, that is the set of the
tangent vectors at x. The tangent bundle is the disjoint union of the tangent
spaces, i.e. TM = ∪x∈M{x} × TxM . Finally, a vector field is a section of the
tangent bundle, i.e. Ṽ :M → TM such that Ṽ (x) = (x, V (x)), V (x) ∈ TxM .
Form now on, with a slight abuse of notation, we will identify Ṽ with V . Also,
given f ∈ C1(M1,M2), since the image of a C1 curve is a C1 curve, ve have
naturally defined a map f∗ : TM1 → TM2.

Problem 1.8 If f ∈ C1(Rd,Rn) discuss the relation between f∗ and the
derivative Df .

We have finally the language to define O.D.E. on manifolds, in fact the Cauchy
problem is exactly given again by (1.1.1), only now V is a, possibly time
dependent, C1 vector field.

Problem 1.9 Suppose that x0 belongs to some chart (U, ϕ), show that the
solution of

ẋ = V (x, t)

x(0) = x0

for a sufficiently small time can be obtained by the solution of an appropriate
O.D.E. in ϕ(U).

20Note that, contrary to Ck, C∞ is not a Banach space (there is no good norm). It is
possible to give to it the structure of a Fréchet space [RS80], but we will refrain from such
subtleties. We just consider C∞ = ∩n∈NCn as a vector space.

21If (U, ϕ) is a chart containing x, and γ1, γ2 two curves, think of the curves γλ(t) = γ1(λt)
and ϕ−1(ϕ(γ1(t)) + ϕ(γ2(t))− ϕ(x)).
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Problem 1.10 Given a finite atlas {(Uα, ϕα)}, show that there exists a smooth
partition of unity subordinated to the atlas, that is a collections {φα} ∈
C∞(M,R) such that

∑
α φα = 1 and suppφα ⊂ Uα.

Problem 1.11 Given a smooth vector field V consider

ẋ = V (x)

x(0) = x0
(1.1.7)

with x0 ∈ Uα for some element of an atlas {(Uαϕα)}. Let zα(t) be the solution
of

żα = (ϕα)∗V (zα)

zα(0) = ϕα(x0)

and suppose that ϕ−1
α (z(1)) ∈ Uβ. Consider then the solution of

żβ = (ϕβ)∗V (zβ)

zβ(1) = ϕβ(ϕ
−1
α (zα(1))).

Show that there exists t1 > 1 such that

x(t) = ϕ−1
α (zα(t)) for t ∈ [0, 1]

x(t) = ϕ−1
β (zβ(t)) for t ∈ (1, t1)

is a solution of (1.1.7) in the time interval [0, t1).

Remark 1.1.15 We have seen that the theory of ODE on manifolds can be
reduced locally to the case of Rd. Yet, the reader should be aware that the
global properties of the solutions can be very different. We will comment at
length on this issue later on.

1.2 Linear ODE and Floquet theory

Let us briefly discuss the simplest possible differential equation: the affine
ones. For simplicity, we restrict ourselves to the case B = Rd for some d ∈ N.

1.2.1 Linear equations

Consider

ẋ = Ax

x(0) = x0.
(1.2.8)
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Problem 1.12 Show, by induction, that for each n ∈ N the solution of
(1.2.8) satisfies

x(t) =

n∑
k=0

1

k!
Aktkx0 +

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnA
n+1x(tn).

Taking the limit for n → ∞ in the above expression one readily obtains
x(t) =

∑∞
n=0

1
n!A

ntnx0. That this is a solution can be verified directly insert-
ing this formula in (1.2.8) (and noticing that the series and the series obtained
by deviating term by term are uniformly convergent). By the standard ana-
lytic functional calculus for matrices (and operators, see Appendix C) we can
thus write

x(t) = eAtx0. (1.2.9)

The above discussion provides a general solution for all equations of the type
(1.2.8).

In reality life it is not that simple: if one has a concrete matrix A and
wants to compute eAt, this may be quite unpleasant. A general strategy,
although not necessarily the simplest one, is to perform a linear change of
variables x = Uz. Then ż = U−1AUz, and U is chosen so that Λ = U−1AU
is in Jordan normal form. Then

x(t) = Uz(t) = UeΛtz0 = UeΛtU−1x0.

It suffices then to know how to take exponentials of Jordan blocks, and this
can be computed by using the defining series.

Problem 1.13 Compute eΛt for

Λ =

(
a 0
0 a

)
; Λ =

(
a 1
0 a

)
; Λ =

a 1 0
0 a 1
0 0 a

 .

Another, equivalent, point of view is to look for solutions of the type
x(t) = eatv, substituting in the first of (1.2.8) one obtains av = Av. Thus, as
we know already, each eigenvalue of A provides a solution of (1.2.8) (ignoring
the initial condition). If there exists real eigenvectors {vi}di=1 which span all
Rd then one can write the general solution, depending on d parameters αi, as
x(t) =

∑d
i=1 αivie

ait, where ai is he eigenvalue associated to the eigenvector

vi. One can then satisfy the initial condition by solving x0 =
∑d

i=1 αivi.
The same can be done is the eigenvectors are complex, by working in Cd

instead then Rd. If Jordan blocks are present one can look for solutions of
the form x(t) =

∑p
k=0

1
(p−k)! t

keatvk, compare this formula with your solution

of Problem 1.13.
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Remark 1.2.1 Note that if the matrix A does not have eigenvalues with zero
real part, then (by spectral decomposition) one can write Rd = V−⊕V+, where
AV± = V± and A restricted to V− has eigenvalues with negative real part while
on V+ has eigenvalues with positive real part. Hence if x0 ∈ V− it will hold
limn→∞ x(t) = 0, and if x0 ∈ V+ it will hold limn→∞ ∥x(t)∥ = ∞. If x0 ̸∈ V−
we can write it as x0 = x− +x+, where x± ∈ V±. Hence limn→∞ ∥x(t)∥ = ∞
and the trajectory will escape to infinity while getting exponentially close to
the subspace V+. This is our first long time result.

A slightly more complex situation is given by

ẋ = Ax+ b(t)

x(0) = x0,
(1.2.10)

where b ∈ C0(R,Rd). The solution of (1.2.10) is given by22

x(t) = eAtx0 +

∫ t

0

eA(t−s)b(s)ds. (1.2.11)

1.2.2 Floquet theory

Let us consider the simplest case of a linear time dependent equation: there
exists a continuous function A ∈ C0

loc(R, L(Rd,Rd)) and T ∈ R+ such that,
for all t ∈ R, A(t + T ) = A(t). More precisely, let Φ(x0, s, t) be the solution
of the Cauchy problem23

ẋ(t) = A(t)x(t)

x(s) = x0.
(1.2.12)

Problem 1.14 Verify the following facts for each x0, y0 ∈ B and for each
a, b, t, s, τ ∈ R

• Φ(ax0 + by0, s, t) = aΦ(x0, s, t) + bΦ(y0, s, t),

• Φ(x0, s, t) = Φ(Φ(x0, s, τ), τ, t),

• Φ(x0, s+ T, t+ T ) = Φ(x0, s, t).

By the first property of Problem 1.14 there existsK ∈ C1
loc(R2, L(Rd,Rd)) such

that Φ(x0, s, t) = K(s, t)x0, the second property implies thatK(τ, t)K(s, τ) =
K(s, t), the third that K(s + T, t + T ) = K(s, t). The next step is the first
occurrence in this book of a very simply but very powerful idea to analyze

22Look for a solution of the form x(t) = eAtz(t) and find the differential equation for z.
23The solution is well defined for all times by Lemma 1.1.10.
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dynamical systems: a Poincaré section. Essentially the idea consist in look-
ing at the system only at specially selected moments in time. In this case
it is convenient to look at t ∈ {nT}n∈Z. That is, we want to investigate
Φ(x0, 0, nT ) =: F (x0, n).

Lemma 1.2.2 The couple (Rd, F ) is a discrete Dynamical System.

Proof. We have to show that F is an action of Z on Rd. Let f(x0) :=
F (x0, 1).

F (x0, n) = Φ(x0, 0, nT ) = Φ(Φ(x0, 0, (n− 1)T ), (n− 1)T, nT ))

= Φ(Φ(x0, 0, (n− 1)T ), 0, T )) = f(Φ(x0, 0, (n− 1)T )) = fn(x0).

In addition, note that the uniqueness of the solutions of the ODE implies that
if f(x0) = 0, then x0 = 0. Now, by construction, f(x0) = K(0, T )x0, thus
K(0, T ) is an invertible matrix. Hence F (x0,−n) = f−n(x0) for all n ∈ N. □

By using the functional calculus (see Problem C.19) one can define B :=
T−1 lnK(0, T ), so eBT = K(0, T ). Let us now consider P (t) := K(0, t)e−Bt.24

P (t+ T ) = K(0, t+ T )e−B(t+T ) = K(T, t+ T )K(0, T )K(0, T )−1e−Bt

= K(0, t)e−Bt = P (t).

We have just proven the following result.

Theorem 1.2.3 (Floquet theorem) The solutions of the equation (1.2.12)
can be written as x(t) = P (t)eBtK(s, 0)x0 where P (t+ T ) = P (t) is periodic.

Note that the matrix B can be complex valued. This can be avoided at a
little extra cost.

Problem 1.15 Prove that the solutions of the equation (1.2.12) can be writ-
ten as x(t) = P (t)eBtx0 where B is real and P (t+ 2T ) = P (t) is periodic of
period 2T .

Note that Theorem 1.2.3 implies that the long time behavior is completely
contained in the eigenvalues of the matrix B often called floquet exponents.

Problem 1.16 Find the solutions of

ẋ = a(t)Ax

where a ∈ C0(R,R) is periodic of period T and A is a fixed matrix.

Problem 1.17 Given a fixed matrix A and a function at matrix values B(t)
of period T , consider the equation ẋ = (A + εB(t))x, ε ∈ R. Show that, for
ε small enough, calling νi the Floquet exponents and setting λi = eνi (often
called Floquet multiplier), the λi are ε-close to the eigenvalues of A.

24Note that the kernel of K(0, T ) must be {0}, otherwise it would violate the uniqueness
of the solutions of the differential equation. Hence, 0 ̸∈ σ(K(0, T )).
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1.3 Qualitative study of ODE

The previous discussion has shed some light on the behavior of linear ODE,
unfortunately the interesting ODE are typically non linear. Although some
nonlinear ODE can be solved explicitly (see any ODE book for examples)
typically this is not possible, hence the need of a qualitative theory. As
for the qualitative study of functions this can be done quite naively in one
dimension, while higher dimensions requires some non trivial theory. Let us
see such a naive qualitative theory for ODE via few examples.

1.3.1 The one dimensional case

This situation is very similar to the study of the graph of a function of one
variable. Indeed to draw the graph one studies the first derivative and here
the first derivative is specified by the equation. Let us consider a couple of
simple examples. Consider

ẋ = e−x2

+ x− 2 = V (x)

x0 = 0.

One cannot integrate the function V (x)−1 (which would yield an explicit
solution of the ODE), yet from the equation follows that there exists a close
to 2 such that ẋ is negative if x ≤ a and positive otherwise. This implies that
the solution starts to be decreasing and keeps decreasing forever.

Next, consider

ẋ = 1− 2tx

x0 = a.

Such an equation cannot be solved by separation of variables, yet the above
arguments still apply. In particular, for t ≥ 0, we have ẋ(t) < 0 iff x(t) > 1

2t .
On the other hand if x(t) > 1

2t it will be so forever. In fact, consider g(t) =
x(t) − 1

2t , then g
′(t) = ẋ(t) + 1

2t2 . So if g(t∗) = 0, then g′(t∗) > 0 hence for
t < t∗ one has g(t) < 0. Thus the solution will increase until it will intersect
the curve 1

2t and then it will start decreasing but always staying above such

a curve. Accordingly, for t ≥ t∗ we can write x(t) = 1+α(t)
2t with α ≥ 0. Then

ẋ(t) = −α(t), that is

1

2t
≤ x(t) =

1

2t∗
−
∫ t

t∗

α(s)ds (1.3.13)

moreover − 1+α(t)
2t2 + α̇(t)

2t = −α(t)

α̇(t) = −(2t− 1

t
)α(t) +

1

t
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which means that either α(t) ≤ 1
2t2−1 or it is decreasing. But if it is de-

creasing it must decrease to zero otherwise (1.3.13) would be false for large t.
Accordingly it must be limt→∞ α(t) = 0.

1.3.2 Autonomous equations in two dimensions

In this case the basic idea is to consider one component as a function of the
other and in this way reduce to the previous case. Let us see some examples.

Van Der Pol equation

Consider the equation

ẋ = y

ẏ = (1− 3x2)y − x.
(1.3.14)

Clearly (0, 0) is the unique zero of the vector field. If we linearise (1.3.14)
around zero we have

d

dt
(x, y) =

(
0 1
−1 1

)(
x
y

)
.

The matrix has eigenvalues λ± = 1±
√
3i

2 hence the fixed point is repelling and
the solutions spiral away from it.

The next question is if a similar motion takes place also far away from the
origin. To this end we want to forget the time dependence and concentrate
only on the shape of the trajectories. Thus we can represent trajectories on
the xy plane. Indeed, apart from the point (0, 0), either ẋ or ẏ are different
from zero. In the first case one can locally invert x(t) and write y(x) = y(t(x)).
When this is possible one obtains

dy

dx
= 1− 3x2 − x

y
,

which can be studied as in the previous examples. With a bit of work one can
see that the trajectory spirals around zero, but exactly how?

To better understand the behaviour of the solution we introduce a “Lya-
punov” like function.

L(x, y) = 2(x− x3 − y)2 + (x− y)2 + 3x2.

If (x(t), y(t))is a solution of (1.3.14), then a direct computation yields

d

dt
L(x(t), y(t)) = x2

[
6− x2 − 3(x− y)2 − 3y2

]
.
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Accordingly, L is decreasing outside an ellipse. Since 2ab ≤ a2 + b2,25

L(x, y) = 3(x− y)2 − 4(x− y)x3 + 2x6 + 3x2 ≥ (x− y)2 + 3x2

= 4x2 − 2xy + y2 ≥ 2x2 +
1

2
y2.

Hence, the level sets Kα = {(x, y) ∈ R2 : L(x, y) ≤ α} are contained in the
ellipses {(x, y) ∈ R2 : 2x2 + 1

2y
2 ≤ α} and hence are compact.

Thus, far away from the origin the trajectory spirals inwardly. It follows,
by the continuity with respect to the initial data, that there exists an a∗ ≥ 0
such that the corresponding solution is a periodic orbit.

Lotka-Volterra equation

ẋ = ax−Ax2 − λxy

ẏ = −dy + λxy.

This equation is meant to describe the evolution of two populations one feed-
ing on the other (predator-prey). It also has periodic solutions, try to prove
it using qualitative methods.

Second order in one dimension

Consider the equation

ẍ = −γẋ+
x2

1 + x4

x(0) = 0; ẋ(0) = v.

Setting (z, w) = (x, ẋ), we can write it as

ż = w

ẇ = −γw +
z2

1 + z4

which is the type discussed above.

Clearly if we consider still higher dimensional cases the above naive ap-
proach cannot help us very much, hence the need of a more sophisticated
theory.

25It follows from (a− b)2 ≥ 0.
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Problems

1.18. Given two Banach spaces B1,B2 and a functionf : B1 → B2 we can
define the partial derivative at x ∈ B1 in the direction v ∈ B1 (Gâteaux
derivative) by

∂vf(x) = lim
h→0

h−1 [f(x+ hv)− f(x)] ,

if the limit exists. On the other hand we say that f is Fréchet differ-
entiable at x if there exists A ∈ L(B1,B2) (the space of the continous
linear operators from B1 to B2) such that

lim
h→0

∥f(x+ h)− f(x)−Ah∥
∥h∥

= 0,

and A is called the Fréchet differential at of f at x (often writtenDf(x)).
Show that if f is Fréchet differentiable at zero, then it is continuous and
Gâteaux differentiable.

1.19. Let f ∈ C0(B0,B1) and g ∈ C0(B1,B2) such that f is Fréchet dif-
ferentiable at x ∈ B0 and g is Fréchet differentaible at f(x) ∈ B1.
Show that g ◦ f ∈ C0(B0,B2) is Fréchet differentaible at x and that
D(g ◦ f)(x) = Dg(f(x)) ·Df(x) ∈ L(B0,B2). Of course, this is nothing
else than a glorified version of the chain rule.

1.20. Given a compact interval I ⊂ R, a Banach space B, and a continuous
function f ∈ C0(I,B), shows that one can define the equivalent of the
Riemannian integral.

1.21. Prove the fundamental theorem of calculus in this setting. That is,
for f ∈ C1(B1,B2) let Df(x) ∈ L(B1,B2) be the Fréchet differential at
x ∈ B1, then for each x, y ∈ B1

f(y) = f(x) +

∫ 1

0

Df(x+ t(y − x)) · (x− y)dt.

1.22. Show that, for all f ∈ C0([a, b],B),∥∥∥∥∥
∫ b

a

f(t)dt

∥∥∥∥∥ ≤
∫ b

a

∥f(t)∥dt.

1.23. Study the solutions of the following equations for all possible initial
conditions and p ∈ N

ẋ = |x|p

ẋ = x(ln |x|)p
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1.24. Let K ∈ C1(R× [0, 1]). Show that the equation

∂tu(t, s) =

∫ 1

0

K(t+ s, τ)u(t, τ)2dτ

u(0, s) = s2.

has a unique continuos solution for t small enough.

1.25. Under the same hypotheses of Problem 1.17 show that if
∫ T

0
B(s)ds = 0

and the eigenvalues of A have all multiplicity one, then the Floquet
multiplier differ from the eigenvalues of eAT only of order ε2.

1.26. Study the equation

(1 + x)yẏ + (x+ y2) = 0.

1.27. Study the equation (Bernoulli)

ẏ + p(x)y = q(x)yn.

1.28. Study the equation
ẍ = −γẋ− x3.

Hints to solving the Problems

In this section, and in the parallel sections in later chapters, I provide hints
for solving some of the Problems.

It is a very good idea to try very hard to solve the problems before looking
at the hints: it is impossible to appreciate the solution if one has no feeling
for the difficulties in the problem. The only way I know to get such a feeling
is to seriously try to solve it.

Also, keep in mind that I suggest one way to proceed, often other ways
are possible and maybe better.

1.1 The proof is the same as the standard proof for the case B = Rd. How-
ever, to see this, you have to do Problems 1.18 and 1.20 to understand
exactly what the derivative and integral mean in this more general case.

1.12 For n = 0 it is just (1.1.2). To verify it for any n it suffices to show that∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn1 =
tn

(n+ 1)!
.

This follows since the domain of integration is D = {x ∈ [0, t]n+1 :
tn+1 ≤ tn ≤ · · · ≤ t}. On the other hand, for each permutation σ of the
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set {1, . . . , n+ 1} the sets Dσ = {x ∈ [0, t]n+1 : tσn+1 ≤ tσn ≤ · · · ≤ t}
have the same measure, all the Dσ are disjoint and the union of all of
them gives [0, t]n+1.

1.15 First notice that if a matrix has no eigenvalues on the negative axis
(including the zero) then the contour γ in C.3.3 can be taken symmetric
around the real axis and, by using C.3.3 with the standard definition
of ln with a cut on the negative real axis, this defines lnK(0, T ) with
real entries (since the formula for his complex conjugate is the same).
In general, the spectrum of K(0, T ) can be split in σ(K(0, T ) = α ∪ β
where α ∩ [R− ∪ {0}] = ∅ and β ⊂ R−. Let Pα and Pβ = 1 − Pα

be the associated spectral projectors, then we have the decomposition
K(0, T ) = C +D where C = PαK(0, T )Pα, D = PβK(0, T )Pβ . Conse-
quently, CD = DC = 0 and σ(C) = α∪ {0} and σ(D) = β ∪ {0}. Since
we want to define a logarithm, we do not want zero in the spectrum, so
we define C̃ = C + Pβ and D̃ = D + Pα. The reader can check that

σ(C̃) = α ∪ {1} and σ(D̃) = β ∪ {1}. Note that D̃2 = D2 + Pα, hence
σ(D̃2) ⊂ R+. Hence B = 1

T ln C̃+ 1
2T ln D̃2 is real and, cince [C̃, D̃] = 0,

e2BT =
[
eln C̃

]2
eln D̃2

= C̃2D̃2

= [(C + Pβ)(D + Pα)]
2
= K(0, T )2 = K(0, 2T ).

The rest of the argument remains the same.

1.17 Show that the solution satisfies

x(t) = eAtx0 + ε

∫ t

0

eA(t−s)B(s)x(s)ds.

and apply the perturbation theory in Appendix C.

1.20 Let I = [a, b]. Since the function is continuos, it is uniformly con-
tinuous, hence for ε > 0 there exists δ > 0 such that, for each par-
tition ξ = {[x0, x1], . . . , [xn−1, xn]}, x0 = a, xn = b, xn+1 − xn ≤ δ,
holds supz,y∈[xn+1,xn] ∥f(z)− f(y)∥ ≤ ε. Accordingly, for each choice of
zn, yn ∈ [xn+1, xn] we have∥∥∥∥∥

n−1∑
k=0

f(zk)(xk+1 − xk)−
n−1∑
k=0

f(yk)(xk+1 − xk)

∥∥∥∥∥ ≤ ε.

By similar arguments, one can compare the sum defined on one partition
with the sum defined on a finer partition. Finally, the sum over different
partitions can be compared with the sum over the coarser partition,
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which is finer than both. This shows that all sufficiently fine partitions
yield the same approximate value, hence one can consider the partitions
ξn = {[a+ i b−a

n , a+ (i+ 1) b−a
n ]}n−1

i=0 and define

∫
I

f(t)dt := lim
n→∞

n−1∑
i=0

f(a+ i
b− a

n
)
b− a

n
.

By the above discussion, this is equivalent to the same limit taken along
any other partition, the diameter of whose elements tends uniformly to
zero.

1.24 Consider the Banach space B = C0([0, 1],R). Then u(t, ·) ∈ B and one
can apply Theorem 1.1.2.

1.25 By Problem 1.17 we know that the solution at time T is given by the

matrix D(ε) := eAT
[
1+ ε

∫ T

0
e−AsB(s)eAsds

]
. By the results in Ap-

pendix C it follows that, for ε small enough, the eigenvalues of D(ε) are
still simple and analytic on ε. Thus, let λ(ε) one of such eigenvalues
and Π(ε) the associated eigenprojector. We have D(ε)Π(ε) = λ(ε)Π(ε).
Differentiating yields Ḋ(ε)Π(ε)+D(ε)Π̇(ε) = λ̇(ε)Π(ε)+λ(ε)Π̇(ε). Mul-
tiplying on the right by Π(ε), since Π(ε)D(ε) = D(ε)Π(ε), we have

Π(ε)Ḋ(ε)Π(ε) = λ̇(ε)Π(ε).

Since Π(ε)v = ⟨a(ε), v⟩b(ε) for some vectors a, b analytic in ε, λ̇(ε) =
⟨a(ε), Ḋ(ε)b(ε)⟩. We can now apply such a general formula to our spe-
cific case:

⟨a(0), Ḋ(0)b(0)⟩ = ⟨a(0), eAT

∫ T

0

e−AsB(s)eAsb(0)ds⟩

= ⟨a(0), eAT

∫ T

0

e−AsB(s)eAsb(0)ds⟩

= λ(0)

∫ T

0

⟨a(0), B(s)b(0)⟩ds = 0.

Notes

This chapter is super condensed and has no pretension to exhaust the theory of
ODE. If one wants to have a better understanding of the field and some ideas of
how an ODE can be solved in special cases better consult [HS74, Arn92, CL55].



Chapter 2

Local behavior

By local behavior we mean the study of the motion in a neighborhood of
a point. As we have seen in the linear case, the motion can leave the neighbor-
hood in a fixed time but it is also possible that it stays in the neighborhood
for an unlimited time. In the latter case we will have the first example of how
to tackle one of our stated goals: the study of the motion for long times. We
start with a trivial case.

2.1 Flow box theorem

Let us consider the differential equation

ẋ = V (x) (2.1.1)

where V ∈ C2
loc(Rd,Rd). By the results of the previous chapter there exist

δ−, δ+ : Rd → R+ and ϕ : {(z, t) ∈ Rd×R : t ∈ (−δ−(z), δ+(z))} =: D → Rd

such that ϕ(z, t) is the solution of (2.1.1) with initial condition z. We would
like to study the solution in a neighborhood of x0 ∈ Rd such that V (x0) ̸= 0.

Theorem 2.1.1 (Flow box Theorem) In the hypotheses above there exists
a neighborhood U of x0 and a change of variables Θ ∈ C1(U,Rd) such that
Θ(ϕ(x, t)) = Θ(x) + t(0, . . . , 0, 1), for each x ∈ U , (x, t) ∈ D.

Proof. Let S = {x ∈ Rd : ⟨x − x0, V (x0)⟩ = 0} and {ei}d−1
i=1 ⊂ S the

an orthonormal base.1 For r > 0 small enough let Dr = {z ∈ Rd | |zi| ≤ r}.

1That is ⟨ei, ej⟩ = δij .

24
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Then define Ξ : Dr → U by Ξ(ξ) = ϕ(x0 +
∑d−1

i=1 ξiei, ξd). Note that Ξ is
invertible since if Ξ(ξ) = Ξ(ξ′), ξ′d ≤ ξd, it would be

ϕ(x0 +

d−1∑
i=1

ξiei, ξd − ξ′d) = x0 +

d−1∑
i=1

ξ′iei.

That is there would be x ∈ S and τ = ξd − ξ′d ∈ (0, 2r) such that ϕ(x, τ) ∈ S.
But ⟨V (x0), ϕ(x, 0)⟩ = ⟨V (x0), ϕ(x, τ)⟩ = 0 by definition and, for t ∈ [0, 2r],

⟨V (x0), ϕ(x, t)⟩
dt

= ⟨V (x0), V (ϕ(x, t))⟩ > 0

provided that r is chosen small enough. Hence ξd = ξ′d and, consequently,
ξ = ξ′. We can then define Θ = Ξ−1 and, for each x = Ξ(ξ),

Θ(ϕ(x, t)) = Θ(ϕ(ϕ(x0 +

d−1∑
i=1

ξiei, ξd), t) = Θ(ϕ(x0 +

d−1∑
i=1

ξiei, ξd + t))

= Θ(Ξ(ξ + (0, . . . , 0, t))) = ξ + (0, . . . , 0, t)

= Θ(x) + (0, . . . , 0, t).

□

2.2 Behavior close to a fixed point

Here we consider a more interesting situation: the study of the solutions of
(2.1.1) in a neighborhood of x0 such that V (x0) = 0 and det(Dx0

V ) ̸= 0.

Problem 2.1 Note that the condition det(Dx0
V ) ̸= 0 can always be achieved

by a small C1 change of the vector field. On the contrary, a zero of the vector
field cannot be eliminated by small C1 changes of the vector field: prove that
if V (x0) = 0 and W is a vector field C1 close enough to V , then there exists
a x∗ close to x0 such that W (x∗) = 0, and Dx∗W is close to Dx0V . In this
sense we will say that the above conditions are generic (more on this concept
later).

Let us understand the behavior of the equation in the vicinity of x0. First
of all, by a translation, we can assume without loss of generality x0 = 0. Then
we can develop V by the Taylor formula to obtain

ẋ = Ax+R(x) (2.2.2)

where ∥R(x)∥ ≤ C∥x∥2 and ∥DxR∥ ≤ C∥x∥, for all ∥x∥ ≤ 1.



26 CHAPTER 2. LOCAL BEHAVIOR

Problem 2.2 Show that, by a linear change of variable, one can transform
A in its Jordan canonical form. Show then that, by an arbitrary small C1

change of the vector field one can eliminate all the Jordan blocks and insure
that all the eigenvalues have real part different from zero: this is called the
hyperbolic case.

For now, in view of Problem 2.2, we limit ourselves to the hyperbolic case.
We will start by considering the case in which all the eigenvalues of A have

real part strictly smaller than zero.

Problem 2.3 Prove that if A is diagonal with eigenvalues with real part
strictly smaller than zero, then there exists σ > 0 such that, for all x ∈ Cn,2

ℜ(⟨x,Ax⟩) ≤ −σ⟨x, x⟩ (2.2.3)

Prove that, for a general diagonalizable matrix A with all the eigenvalues with
real part strictly smaller than zero, there exists a strictly positive matrix B
such that, for all x ∈ Cn,

ℜ(⟨x,BAx⟩) ≤ −σ⟨x,Bx⟩.

That is, we have the same inequality for the scalar product ⟨·, ·⟩B := ⟨·, B·⟩.

Problem 2.4 Prove that, if ℜ(⟨x,Ax⟩) ≤ −σ⟨x, x⟩, then the solutions of the
equation ẋ = Ax satisfy ∥x(t)∥ ≤ e−σt∥x(0)∥.

Till the end of this section, we assume that all the eigenvalues of A are strictly
negative, hence we assume (2.2.3) (with respect to the appropriate scalar
product). In this case, it is well known that the linear part of (2.2.2) has
solutions that tend to zero exponentially fast, the question is: does the same
holds true for the solutions of the equation (2.2.2)?

To see it, consider z := ⟨x, x⟩. Let z 1
2 = ∥x∥ ≤ σ

2C , then, recalling Problem
2.3,

d

dt
z = ⟨x,Ax+R(x)⟩+ ⟨Ax+R(x), x⟩

≤ ⟨x, (A+A∗)x⟩+ 2C∥x∥3 = 2ℜ(⟨x, (A+A∗)x⟩) + 2C∥x∥3

≤ −2σz + 2Cz
3
2 ≤ −σz

which, seeting z(t) = e−σtζ(t), implies ζ̇ ≤ 0, hence z(t) ≤ e−σtζ(0) and

∥x(t)∥ ≤ e−
σ
2 t∥x(0)∥. (2.2.4)

That is, also the solutions of (2.2.2) tend exponentially fast to zero.

2As usual ⟨x, y⟩ :=
∑n

i=1 x̄iyi where ā is the complex conjugate of a. Moreover by A∗

we mean the adjoint of A.
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Remark 2.2.1 What we have just seen is that, locally, F (x) := ⟨x, x⟩ is
a Lyapunov function for (2.2.2). Given a differential equation like (2.1.1),
where 0 is a fixed point, a local Lyapunov function on an open set U ∋ 0 is
any L ∈ C1(U,R) such that L(0) = 0, L ≥ 0 and ⟨∇xL, V (x)⟩ < 0 for all
x ∈ U \ {0}. Then, for each solution x(t) of (2.1.1) holds

dL(x(t))

dt
= ⟨∇x(t)L, V (x(t))⟩ < 0.

This readily implies that limt→∞ x(t) = 0. (Prove it !).

Yet, the above result is far from being satisfactory: it is possible to tend
to zero in many different ways and it would be nice to understand better how
this happens.

Let us start with a very simple example: x ∈ R, A = −1, R(x) = bx2.
Then the equation reads

ẋ = −x+ bx2. (2.2.5)

If we consider the change of variables

z = Ψ(x) =
x

1− bx

we have

ż =
−x+ bx2

1− bx
+
bx(−x+ bx2)

(1− bx)2
= − x

1− bx
= −z.

Thus, in a neighborhood of zero of size smaller than b−1 there exists a smooth
diffeomorphism that conjugates the solution of (2.2.5) with its linear part.

One can then suspect that this is always the case. This is not so: consider

ẋ = −2x+ cy2

ẏ = −y
(2.2.6)

Let us consider a change of variables

z = x+ αx2 + βxy + γy2 + q(x, y)

η = y + p(x, y)

where q is of third order and p of second. Substituting in (2.2.6) one can see
that it is always possible to choose p ≡ 0, while the first of the (2.2.6) yields

ż = −2x+ cy2 − 2x(2αx+ βy)− y(βx+ 2γy) +O(3)

where by O(3) we designate third order terms. If we try to impose the right
hand side of the above equation equal to −2z (up to second order) we obtain

−2αx2 − 2βxy − 2γy2 = −4αx2 − 3βxy − (2γ + c)y2

that does not admit any solutions if c ̸= 0.
So there is no hope of finding a C3 conjugation with the linear part.
What can be salvaged?
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2.2.1 Grobman–Hartman

One can look for a less regular change of variables. This may not make sense
for the o.d.e. itself but it is meaningful for the associated flows.

Theorem 2.2.2 (Grobman–Hartman) If ϕt is the flow associated to the
vector filed V , V (x0) = 0, and ϕ0t is the flow associated to the linearized vector
field Dx0

V , that we assume hyperbolic (see Problem 2.2), then for all t∗ > 0,
there exists a local homeomorphism Ξ such that Ξ ◦ ϕt∗ = ϕ0t∗ ◦ Ξ.

Proof. We do the proof in the case t∗ = 1, the other cases being similar.
Thus let us fix some small r > 0 and consider a smooth non increasing function
g : R+ → [0, 1] such that g(x) = 1 for x ≤ r and g(x) = 0 for x ≥ 2r, with
−g′ ≤ C. We can then define the functions φ : Rd → [0, 1] F0, F : Rd → Rd

as φ(x) := g(∥x∥) and3

F0(x) := eAx

F (x) := eAx+ φ(x)
[
ϕ1(x)− eAx

]
=: F0(x) + ∆(x),

where ϕ1 is the time one flow associated to (2.2.2). We are considering first
the case in which all the eigenvalues of A have strictly negative real part.
Clearly, for ∥x∥ ≤ r the two functions are simply the time one map of the
linear flow and the time one map of (2.2.2), moreover, they are globally Lip.
Since we will be interested only in x in the ball of radius r, the modification
outside such a ball is totally irrelevant, and it has been done only to facilitate
the exposition of the following argument.

Problem 2.5 Show that, for r small enough, F is a diffeomorphism. Prove
that ∥∆∥∞ ≤ 4Cr2.

The idea is to consider the maps F0, F : Rd → Rd and to show that they can
be conjugated, that is there exists an homeomorphism Ξ : Rd → Rd such that
Ξ ◦ F = F0 ◦ Ξ.

Let us look for a solution in the form Ξ(x) = x+Φ(x), then we have

F0(x+Φ(x)) = F (x) + Φ(F (x))

or, setting ξ = F (x),

Φ(ξ) = F0(F
−1(ξ) + Φ ◦ F−1(ξ))− ξ.

We define then the operator K : C0(Rd) → C0(Rd) defined by

K(Φ)(ξ) := F0(F
−1(ξ) + Φ ◦ F−1(ξ))− ξ

3Here and in the following of the proof, we use the norm determined by the scalar
product introduced in Problem 2.3.
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then our problem boils down to establishing the existence of a fixed point for
K. First of all, by Problem 2.5, for each ∥ξ∥ ≥ 2r + 4Cr2 we have ∥x∥ ≥ 2r.
Hence, recalling Problem 2.4 and equation (2.2.4), it follows

∥K(Φ)(ξ)∥ = ∥F0(F
−1
0 (ξ)+Φ ◦F−1

0 (ξ))− ξ∥ ≤ ∥F0(Φ ◦F−1
0 (ξ)∥ ≤ e−σ∥Φ∥∞.

On the other hand, if ∥x∥ < 2r, then ∥ξ∥ < 2r + 4Cr2, and

∥K(Φ)(ξ)∥ ≤ e−σ [∥x∥+ ∥Φ∥∞] + 2r + 4Cr2 ≤ 4r + 4Cr2 + e−σ∥Φ∥∞.

Thus the set {h ∈ C0 : ∥h∥∞ ≤ (4r + 4r2C)(1− e−σ)−1} is invariant for the
operator K. Next, given two functions h, g ∈ C0(Rd), holds

sup
ξ∈Rd

∥K(h)(ξ)−K(g)(ξ)∥ = sup
x∈Rd

∥F0(x+ h(x))− F0(x+ g(x))∥

≤ e−σ∥h− g∥∞.

Thus, the contracting mapping theorem yields the wanted result.

Problem 2.6 What can be done if all the eigenvalues of A have strictly pos-
itive real part?

We have then, topologically, the behavior of a source, a node, or a stable
or unstable focus are the same as the ones of the linear part of the equation.
But the generic case is the one in which both eigenvalues with positive and
negative real parts are present; do the same conclusions hold for such a more
general situation? The answer is yes. To see it consider that in such a case
Rd is naturally split into two spaces V ⊕W , invariant for A and such that A
restricted to V has only eigenvalues with negative real part, while restricted
toW has eigenvalues with positive real part. Then the spaces are invariant for
F0 as well, on one F0 contracts, on the other expands. Call ds the dimension
of V and du the dimension of W . Clearly ds + du = d.

Then each e ∈ Rd has a unique splitting as e = v + w, v ∈ V , w ∈ W . It
is then convenient to define the projections p1 : Rd → V and p2 : Rd → W
p1(e) = v, p2(e) = w. Moreover, we can split C0(Rd,Rd) as V ⊕ W where
V := {f ∈ C0(Rd,Rd) : p2 ◦ f = 0} and W := {f ∈ C0(Rd,Rd) : p1 ◦ f = 0}.
We can then write canonically f as (f1, f2) := (p1 ◦ f, p2 ◦ f). Analogously,
we can write (x1, x2) = (p1(e), p2(e)).

Accordingly our conjugation equation F0 ◦ Ξ = Ξ ◦ F , becomes

BΞ1 = Ξ1 ◦ F
DΞ2 = Ξ2 ◦ F

where F0((x1, x2)) =: (Bx1, Dx2). We transform the first equation as we did
for the contracting case, while on the second we act as you probably did if
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you solved Problem 2.6:

Ξ1 = BΞ1 ◦ F−1

Ξ2 = D−1Ξ2 ◦ F.

Again, we look for solutions of the form Ξi(x) = xi + Φi(x), where Φi are
bounded. Substituting such a form for Ξ, one can see that bounded functions
are mapped into bounded functions (thanks to Problem 2.5), hence the con-
tracting map argument applies, and the existence of a unique conjugation is
established. □

2.3 Dominated Splitting and center manifold

Let U ⊂ Rd be an open set containing zero and let us consider a vector field
V ∈ Ck(U,Rd), k ≥ 1, such that V (0) = 0 and A := D0V has a spectrum
that splits into two disjoint parts. More precisely, assume there exists real
numbers α < β, such that σ(A) = Σ1 ∪ Σ2 where µ ∈ Σ1 implies ℜ(µ) ≥ β
and µ ∈ Σ2 implies ℜ(µ) ≤ α. Let V1,V2 be the eigenspaces associated to
Σ1,Σ2, respectively.

We say that a manifold W is locally invariant at zero under the flow ϕt
generated by the vector field V if there exists δ > 0 such that, for all t ∈ R,
there exists δt ∈ (0, δ] such that ϕt(W ∩B(0, δt)) ⊂W .

Note that, letting R̃(x) := V (x) − Ax, we can then write the differential
equation as

ẋ = Ax+ R̃(x). (2.3.7)

In the special case R̃ ≡ 0, the differential equation is linear and the subspaces
Vi are invariant manifolds for the above differential equation. It is then nat-
ural to wonder if there exists invariant manifolds also for the non linear case.
Note that the nonlinearity is small only in a neighborhood of zero, it is then
natural to look for local invariant manifolds at zero.

We are thus interested in the solutions of (2.3.7) only in a neighborhood
of zero. It is then convenient to modify the equation outside the ball B(0, δ)
so that the dynamics is linear outside such a ball. This will allow us to look
for a globally invariant manifold for the modified dynamics with the property
of bein locally invariant for the original one.

Namely, let φ ∈ C∞(R+, [0, 1]), be a decreasing function such that φ(t) = 1

for t ≤ δ and φ(t) = 0 for t ≥ 2δ. We then define R(x) = R̃(x)φ(∥x∥). Clearly,
if we construct an invariant manifold for the differential equation

ẋ = Ax+R(x),
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then it is a locally invariant manifold for (2.3.7) as well. By the variation of
constant formula we have

x(t) = eAtx(0) +

∫ t

0

eA(t−s)R(x(s))ds.

To put the problem into a more general context it is convenient to define, for
a given τ small enough, the map F ∈ Ck such that F (x(0)) = x(τ).

Problem 2.7 Prove that

1. F is invertible;

2. we can choose δ > 0 such that F (B(0, 3e∥A∥τδ)) ⊃ B(0, 2δ);

3. F (0) = 0, D0F = eAτ and DxF = eAτ for ∥x∥ ≥ 3e∥A∥τδ;

4. for each ε > 0 we can chose δ such that ∥DxF − eAτ∥∞ ≤ ε;

5. for some β > β′ > α′ > α, ∥e−Aτ |V1
∥ ≤ e−β′τ and ∥eAτ |V2

∥ ≤ eα
′τ .

Problem 2.8 Show that a manifold W is locally invariant at zero for (2.3.7)
if and only if it is so for F .

The above shows the relevance of the following theorem

Theorem 2.3.1 Let F ∈ Ck(Rd,Rd), k ≥ 1, be an invertible map from Rd to
itself such that it enjoys the properties of Problem 2.7 and, for a sufficiently
small ε, ∥DxF − D0F∥∞ ≤ ε. Then, there exists a Ck−1 locally invariant
manifold W . Also, W is dim(V1) dimensional and tangent to V1 at zero.

Proof. By the hypotheses σ(D0F ) splits in two parts Σ̃1, Σ̃2. Let V1,V2

be the associated eigenspaces. By a change of variable we can assume that
V1 = {(ξ, 0)}ξ∈Rd1 and V2 = {(0, η)}ξ∈Rd2 . Also, let Π1(ξ, η) = (ξ, 0), Π2 =
1 − Π1, Π1D0FΠ1 = Λ and Π2D0FΠ2 = Γ. In addition,4 the hypotheses
imply that ∥Λ−1∥ ≤ e−β and ∥Γ∥ ≤ eα with α < β.

The basic idea is to consider manifolds that can be described by a function
G : Rd1 → Rd2 via W = {(ξ,G(ξ)}ξ∈Rd1 . Obviously we need to limit the set
to which G might belong. To this end we define,

Ω = {G ∈ Ck(Rd1 ,Rd1) : G(0) = 0, ∥DG∥∞ ≤ 1}.

Let
F (ξ, η) = (Λξ +A(ξ, η),Γη +B(ξ, η)).

4For convenience I am renaming the constants α, β and, possibly, substituting Fn to
F in order to offsets the constants coming from the equivalence of the norms in the new
coordinates.
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If ∥η∥ ≤ ∥ξ∥ and ε is small enough, we have that there exists β′ > α such
that

∥Λξ +A(ξ, η)∥ ≥ eβ
′
∥ξ∥.

Thus, for eachG ∈ Ω the map TG(ξ) = Λξ+A(ξ,G(ξ)) is invertible. Moreover,
for ∥ξ∥ ≥ Cδ we have TG(ξ) = Λξ. We can then describe the evolution of the
manifolds of interest:

F (ξ,G(ξ)) = (TG(ξ), SG ◦ T−1
G (TG(ξ)))

where SG(ξ) = ΓG(ξ) + B(ξ,G(ξ)). Again note that, for ∥ξ∥ ≥ Cδ we have
SG(ξ) = ΓG(ξ). It follows that the image manifold is described by the oper-
ator K : Ω → Ck(Rd,Rd)

K(G)(ξ) = SG ◦ T−1
G (ξ).

For G ∈ Ω, K(G)(0) = 0. Also

D[K(G)] =
[
(ΓDG+ ∂ξA+ ∂ηADG)(Λ + ∂ξB + ∂ηBDG)

−1
]
◦ T−1

G .

Note that, if DG(0) = 0, then also D(K(G))(0) = 0.
From the above computations it follows that, for ε small enough, there

exists σ ∈ [0, 1] such that

∥D[K(G)]∥∞ ≤ σ∥DG∥∞ + Cε < ∥DG∥∞. (2.3.8)

Accordingly, K(Ω) ⊂ Ω. A direct computation shows that, for G1, G2 ∈ Ω,

∥TG1
− TG2

∥∞ ≤ C#ε∥G1 −G2∥∞
∥SG1

− SG2
∥∞ ≤ (eα + C#ε)∥G1 −G2∥∞.

On the other hand, for all ξ ∈ Rd1 ,

∥T−1
G1

(ξ)− T−1
G2

(ξ)∥ = ∥T−1
G2

◦ TG2
◦ T−1

G1
(ξ)− T−1

G2
(ξ)∥

≤ (e−β + C#ε)∥TG2 ◦ T−1
G1

(ξ)− TG1 ◦ T−1
G1

(ξ)∥
≤ C#(e

−β + C#ε)ε∥G1 ◦ T−1
G1

(ξ)−G2 ◦ T−1
G1

(ξ)∥.

To conclude we introduce the norm5

|||G||| = sup
ξ∈Rd1

∥G(ξ)∥ · ∥ξ∥−1.

5This norm is necessary only because we do not assume α < 0. If we would do so, then
the usual sup norm would work perfectly.
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Remark that if G ∈ Ω, then |||G||| ≤ 1. Next, note that

∥K(G1)(ξ)−K(G2)(ξ)∥ ≤ ∥SG1
◦ T−1

G1
(ξ)− SG1

◦ T−1
G2

(ξ)∥
+ ∥SG1

◦ T−1
G2

(ξ)− SG2
◦ T−1

G2
(ξ)∥

≤ (eα + C#ε)∥T−1
G1

(ξ)− T−1
G2

(ξ)∥+ (eα + C#ε)∥G1 ◦ T−1
G2

(ξ)−G2 ◦ T−1
G2

(ξ)∥.

Accordingly,

|||K(G1)(ξ)−K(G2)||| ≤
[
C#(e

−β + ε)εe−β′
+ (eα + C#ε)e

−β′
]
|||G1 −G2|||

Hence, provided ε is small enough, there exists σ ∈ (0, 1), such that for each
G1, G2 ∈ Ω

|||K(G1)−K(G2)||| ≤ σ |||G1 −G2||| .

The above implies that K has a unique fixed point G = limn→∞Kn(0). In
addition, G is of the form G(ξ) = ∥ξ∥Ĝ(ξ) with Ĝ ∈ C0.

We leave to the reader the task of checking that the contraction takes
place in Ck−1 as well. In particular, if k ≥ 2, it is trivial to check that
DG(0) = 0. □

From the above, we directly obtain the following very useful result.

Theorem 2.3.2 (Center Manifold Theorem) Let F ∈ Ck be an invert-
ible map from Rd to itself such that it enjoys the properties (1-4) of Problem
2.7. Moreover assume that the spectrum of the matrix A now splits into three
disjoint parts Σ− ∪ Σ0 ∪ Σ+ such that µ ∈ Σ− implies ℜ(µ) ≤ α < 0, µ ∈ Σ0

implies α < ℜ(µ) < β and µ ∈ Σ+ implies ℜ(µ) ≥ β > 0. Let V0 be the
eigenspace associated to Σ0 and d0 be its dimension. Then, there exists a
Ck−1 d0-dimensional locally invariant manifold W . In addition, W is tangent
to V0 at zero.

Proof. Let V+,V0,V− be the eigenspaces associated with the splitting
of the spectrum and d+, d0, d− be their dimensions. Simply apply Theorem
2.3.1 to F with the splittings Σ1 = Σ+ ∪ Σ0, Σ2 = Σ− and to F−1 with
the splitting Σ1 = Σ+, Σ2 = Σ− ∪ Σ0. In such a way, we obtain two invari-
ant manifolds: W+ (the weak unstable manifold) and W− (the weak stable
manifold), respectively of dimension d+ + d0 and d− + d0. The reader can
easily check that the hypotheses of the implicit function theorem apply and
prove thatW =W+∩W− is a d0 dimensional Ck−1 locally invariant manifold
tangent to V0 in zero.6 □

6To show that the matrix at zero is invertible, remember (2.3.8) which says that the
manifolds are graphs of functions with derivative strictly less than one.
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2.4 Hadamard-Perron

Theorem 2.3.2 is quite general but it has a couple of disadvantages: a slightly
annoying loss of regularity (from Ck to Ck−1) and, most importantly, it does
not provides any information on the dynamics when restricted to the invariant
manifold which, in fact, can be pretty much anything. To eliminate such short-
coming it is necessary to consider situations in which there are no eighevalues
with zero real part. This gives rise to a sharper results: the Hadamard-Perron
theorem. We will discuss it in the simplest possible setting, also we will repeat
several arguments to make this section independent on the previous one.

Definition 2.4.1 Given a smooth map T : X → X, X being a Riemannian
manifold, and a fixed point p ∈ X (i.e. Tp = p) we call (local) stable manifold
(of size δ) a manifold W s(p) such that7

W s(p) = {x ∈ Bδ(x) ⊂ X | lim
n→∞

d(Tnx, p) = 0}.

Analogously, we will call (local) unstable manifold (of size δ) a manifold
Wu(p) such that

Wu(p) = {x ∈ Bδ(x) ⊂ X | lim
n→∞

d(T−nx, p) = 0}.

It is quite clear that TW s(p) ⊂ W s(p) and TWu(p) ⊃ Wu(p) (Problem
2.10). Less clear is that these sets deserve the name “manifold.” Yet, if one
thinks of a linear map it is obvious that the stable and unstable manifolds at
zero are just segments in the stable and unstable direction, the next Theorem
shows that this is a quite general situation.

Theorem 2.4.2 (Hadamard-Perron) Consider an invertible map T : U ⊂
R2 → R2, T ∈ C1(U,R2), such that T0 = 0 and

D0T =

(
λ 0
0 µ

)
(2.4.9)

where 0 < µ < 1 < λ.8 That is, the map T is hyperbolic at the fixed point
0. Then there exists unique C1 stable and unstable manifolds at 0. Moreover,
T0W s(u) = Es(u) where Es(u) are the expanding and contracting subspaces of
D0T .

9

7Sometime we will write W s
δ (p) when the size really matters. By Bδ(x) we will always

mean the open ball of radius δ centered at x.
8Notice that if D0T has eigenvalues 0 < µ < 1 < λ then one can always perform a

change of variables such that (2.4.9) holds.
9By T0W s(u) I mean the tangent space to the manifold (curve) Wu (or W s) at the point

zero.
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Remark 2.4.3 There is an issue not completely addresses in our formulation
of Hadamard-Perron theorem: the uniqueness of the manifolds.10 It is not
hard to prove that the W s(u) are indeed the only sets satisfying Definition
2.4.1 (see Problem 2.13).

The proof of Theorem 2.4.2 will be done in two steps: first we will show
the existence of the invariant manifolds and then we will prove the regularity.

2.4.1 Invariant manifolds–existence

We will deal explicitly only with the unstable manifold since the stable one
can be treated exactly in the same way by considering T−1 instead of T .

Proof of existence of the unstable manifold. Since the map is con-
tinuously differentiable for each ε > 0 we can choose δ > 0 so that, in a
2δ-neighborhood of zero, we can write

T (x) = D0Tx+R(x) (2.4.10)

where ∥R(x)∥ ≤ ε∥x∥, ∥DxR∥ ≤ ε.
The first step is to decide how to represent manifolds. In the present case,

since we deal only with curves, it seems very reasonable to consider the set of
curves Γδ,c passing through zero and “close” to being horizontal, that is the
differentiable functions γ : [−δ, δ] → R2 of the form

γ(t) =

(
t

u(t)

)
and such that γ(0) = 0; ∥(1, 0) − γ′∥∞ ≤ c. It is immediately clear that any
smooth curve passing through zero and with tangent vector, at each point,
in the cone C := {(a, b) ∈ R2 | | ba | ≤ c}, can be associated to a unique
element of Γδ,c, just consider the part of the curve contained in the strip
{(x, y) ∈ R2 | |x| ≤ δ}. Moreover, if γ ∈ Γδ,c then γ ⊂ B2δ(0), provided
c ≤ 1/2.

Notice that it suffices to specify the function u in order to identify uniquely
an element in Γδ,c. It is then natural to study the evolution of a curve through
the change in the associated function.

To this end let us investigate how the image of a curve in Γδ,c under T
looks like.

Tγ(t) =

(
λt+R1(t, u(t))

µu(t) +R2(t, u(t))

)
:=

(
αu(t)
βu(t)

)
.

At this point the problem is clearly that the image it is not expressed in
the way we have chosen to represent curves, yet this is easily fixed. First of

10Namely the doubt may remain that a less regular set satisfying Definition 2.4.1 exists.
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all, αu(0) = βu(0) = 0. Second, by choosing ε < λ, we have α′
u(t) > 0, that

is, αu is invertible. In addition, αu([−δ, δ]) ⊃ [−λδ + εδ, λδ − εδ] ⊃ [−δ, δ],
provided ε ≤ λ−1. Hence, α−1

u is a well defined function from [−δ, δ] to itself.
Finally,

| d
dt
βu ◦ α−1

u (t)| =
∣∣∣∣β′

u(α
−1
u (t))

α′
u(α

−1
u (t))

∣∣∣∣ ≤ µc+ ε

λ− ε
≤ c

where, again, we have chosen ε ≤ c(λ−µ)
1+c .

We can then consider the map T̃ : Γδ,c → Γδ,c defined by

T̃ γ(t) :=

(
t

βu ◦ α−1
u (t)

)
(2.4.11)

which associates to a curve in Γδ,c its image under T written in the chosen
representation. It is now natural to consider the set of functions Bδ,c = {u ∈
C1([−δ, δ]) | u(0) = 0, |u′|∞ ≤ c} in the vector space Lip([−δ, δ]).11 As
we already noticed Bδ,c is in one-one correspondence with Γδ,c, we can thus

consider the operator T̂ : Lip([−δ, δ]) → Lip([−δ, δ]) defined by

T̂ u = βu ◦ α−1
u (2.4.12)

From the above analysis follows that T̂ (Bδ,c) ⊂ Bδ,c and that T̂ u deter-
mines uniquely the image curve.

The problem is then reduced to studying the map T̂ . The easiest, although
probably not the most productive, point of view is to show that T̂ is a con-
traction in the sup norm. Note that this creates a little problem since C1 it
is not closed in the sup norm (and not even Lip([−δ, δ]) is closed). Yet, the

set B∗
δ,c = {u ∈ Lip([−δ, δ]) | u(0) = 0, supt,s∈[−δ, δ]

|u(s)−u(t)|
|t−s| < c} is closed

(see Problem 2.11). Thus Bδ,c ⊂ B∗
δ,c. This means that, if we can prove that

the sup norm is contracting, then the fixed point will belong to B∗
δ,c and we

will obtain only a Lipschitz curve. We will need a separate argument to prove
that the curve is indeed smooth.

Let us start to verify the contraction property. Notice that

α−1
u (t) = λ−1t+ λ−1R1(α

−1
u (t), u(α−1

u (t))),

thus, given u1, u2 ∈ Bδ,c, by Lagrange Theorem

|α−1
u1

(t)− α−1
u2

(t)| ≤ λ−1|⟨∇ζR1, (α
−1
u1

(t)− α−1
u2

(t), u1(α
−1
u1

(t))− u2(α
−1
u2

(t)))⟩|

≤ ε

λ

{
|α−1

u1
(t)− α−1

u2
(t)|+ |u1(α−1

u2
(t))− u2(α

−1
u2

(t))|
}
.

11This are the Lipschitz functions on [−δ, δ], that is the functions such that

supt,s∈[−δ, δ]
|u(s)−u(t)|

|t−s| < ∞.
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This implies immediately

|α−1
u1

(t)− α−1
u2

(t)| ≤ λ−1ε

1− λ−1ε
∥u1 − u2∥∞. (2.4.13)

On the other hand

|βu1
(t)− βu2

(t)| ≤ µ|u1(t)− u2(t)|+ |⟨∇ζR2, (0, u1(t)− u2(t))⟩|
≤ (µ+ ε)∥u1 − u2∥∞. (2.4.14)

Moreover,

|β′
u(t)| ≤ µ+ ε. (2.4.15)

Collecting the estimates (2.4.13, 2.4.14, 2.4.15) readily yields

∥T̂ u1 − T̂ u2∥∞ ≤ ∥βu1 ◦ α−1
u1

− βu1 ◦ α−1
u2

∥∞ + ∥βu1 ◦ α−1
u2

− βu2 ◦ α−1
u2

∥∞

≤
{
[µ+ ε]

λ−1ε

1− λ−1ε
+ (µ+ ε)

}
∥u1 − u2∥∞

≤ σ∥u1 − u2∥∞,

for some σ ∈ (0, 1), provided ε is chosen small enough.
Clearly, the above inequality immediately implies that there exists a unique

element γ∗ ∈ Γγ,c such that T̃ γ∗ = γ∗, this is the local unstable manifold of
0. □

2.4.2 Invariant manifolds–regularity

As already mentioned, a separate argument is needed to prove that γ∗ is
indeed a C1 curve.

To prove this, one possibility could be to redo the previous fixed point
argument trying to prove contraction in C1

Lip (the C1 functions with Lipschitz
derivative); yet this would require to increase the regularity requirements on
T . A more geometrical, more instructive and more inspiring approach is the
following.

Proof of the regularity of the unstable manifold. Let δ > 0 such
that the arguments of section 2.4.1 apply. We want to define local cone fields
in the region {ξ = (ξx, ξy) ∈ R2 : |ξx| < δ}. For each |u| ≤ cδ and 0 < θ ≤ cδ
we define the affine cone field Cθ(ξ, u) := {ξ+(a, b) ∈ R2 : |b−au| ≤ θ |a|}.12
As we need to perform a local argument we must localise the cones. To this
end we will intersect them with cylinders of the form Dh(ξ) = {ξ + (a, b) ∈

12A set C is a cone iff, for all y ∈ C and α ∈ R, αy ∈ C. A set C is an affine cone if there
exists z such that {y − z : y ∈ C} is a cone.
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R2 : |a| ≤ h}. We define thus a local affine cone field (that in the following
we will simply call cone field) by

Cθ,h(ξ, u) = Cθ(ξ, u) ∩Dh(ξ) = {ξ + (a, b) ∈ R2 : |a| ≤ h; |b− au| ≤ θ |a|}.

By the construction in Section 2.4.1, Dh(ξ) ∩ γ∗ ⊂ Ccδ,h(ξ, 0) for each ξ ∈ γ∗.
We will study the evolution of such a cone field on γ∗.

For all η ∈ Cθ,h(ξ, u), if (a, b) = η − ξ and (α, β) = Tη − Tξ, it holds

(α, β) = D0T (a, b) +O(ε|a|) = (λa, µb) +O(ε|a|).

and, at the same time, since T is C1, ∥(α, β) − DξT (a, b)∥ ≤ εθ|a| provided
h ≤ hθ for some hθ small enough. Thus, setting (α′, β′) = DξT (a, ua) and

u′ = β′

α′ , one can compute

∥(α, β)− (α′, β′)− (0, µ(b− ua))∥ ≤ ∥(DξT −D0T )(0, b− ua)∥+ θε|a|
≤ Cθε|a|.

Hence,∣∣∣∣βα − u′
∣∣∣∣ ≤ ∣∣∣∣βα − β′

α

∣∣∣∣+ ∣∣∣∣β′

α

∣∣∣∣ ∣∣∣1− α

α′

∣∣∣ ≤ µθ

λ− Cε
+

(µ+ Cε)Cθε

(λ− Cε)2
.

Accordingly, if h ≤ hθ, then there exists σ ∈ (0, 1) such that

Dh(Tξ) ∩ TCθ,h(ξ, u) ⊂ Cσθ,h(Tξ, u′). (2.4.16)

A similar, but rougher, computation yields

Dh(Tξ) ∩ TCθ,h(ξ, u) ⊂ Cθ,h(Tξ, 0). (2.4.17)

Finally, let ξ ∈ γ∗, then, for each n ∈ N, T−nξ ∈ γ∗ and γ∗ ∩Dhn
(T−nξ) ⊂

Ccδ,hn
(T−nξ, 0). Thus, for all hn ≤ hσncδ, (2.4.16) implies13

γ∗ ∩Dhn
(ξ) ⊂ TnCcδ,hn

(T−nξ, 0) ∩Dhn
(ξ)

= Tn−1
(
TCcδ,hn(T

−nξ, 0) ∩Dhn(T
n−1ξ)

)
∩Dhn(ξ)

⊂ Tn−1Cσcδ,hn
(T−n+1ξ, vn,1) ∩Dhn

(ξ)

⊂ Cσncδ,hn
(ξ, vn)

(2.4.18)

where (a, avn,k(ξ)) = DT−nξT
k(1, 0), for some a ∈ R+, and vn(ξ) = vn,n(ξ).

The last relevant fact is that the limit

v∗ = lim
n→∞

vn (2.4.19)

13Remember that the map T expands in the first coordinate, hence TDh(ξ) ⊃ Dh(Tξ)
provided ξ ∈ Ccδ,δ(0, 0) and h is small enough.
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exists. The proof of this fact is left as an entertainment for the reader (see
Problem 2.12). Using (2.4.18), (2.4.19) and remembering that γ∗ admits the
parametrization γ∗(t) = (t, u∗(t)) we can compute the derivative. Indeed, let
τ so that (τ, u∗(τ)) = ξ ∈ γ∗, then for each ε > 0 let m so that σmcδ ≤ ε

2 and
|vm − v∗| ≤ ε

2 , then for each h ≤ hm holds∣∣∣∣u∗(ξ + h)− u∗(ξ)− v∗h

h

∣∣∣∣ ≤ ∣∣∣∣u∗(ξ + h)− u∗(ξ)− vmh

h

∣∣∣∣+ ε

2

≤ cσmδ +
ε

2
≤ ε.

That is, γ∗ is differentiable and

γ′∗(τ) = (1, v∗). (2.4.20)

□

Problem 2.9 Prove Theorem 2.4.2 in the hypotheses at the beginning of Sec-
tion 2.3 when α < 0 < β.

There is another point of view that can be adopted in the study of stable
and unstable manifolds: to “grow” the manifolds. This is done by starting
with a very short curve in Γδ,c, e.g. γ0(t) = (t, 0) for t ∈ [λ−nδ, λnδ], and
showing that the sequence γn := Tnγ0 converges to a curve in the strip [−δ, δ],
independent of γ0. From a mathematical point of view, in the present case,
it corresponds to spell out explicitly the proof of the fixed point theorem.
Nevertheless, it is a more suggestive point of view and it is more convenient
when the hyperbolicity is non uniform. For example consider the map.14

T

(
x
y

)
:=

(
2x− sinx+ y
x− sinx+ y

)
(2.4.21)

then 0 is a fixed point of the map but

D0T =

(
1 1
0 1

)
is not hyperbolic, yet, due to the higher order terms, there exist stable and
unstable manifolds (see Problems 2.15, 2.16, 2.17).

Problems

2.10. Show that, if p is a fixed point, then TW s(p) ⊂ W s(p) and TWu(p) ⊃
Wu(p).

14Some times this is called Lewowicz map
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2.11. Prove that the set B∗
δ,c in section 2.4.1 is closed with respect to the sup

norm ∥u∥∞ = supt∈[−δ,δ] |u(t)|.

2.12. Prove that the limit in (2.4.20) is well defined and depend continuously
on ξ.

2.13. Prove that, in the setting of Theorem 2.4.2, the unstable manifold is
unique.

2.14. Show that Theorem 2.4.2 holds assuming only T ∈ C1(U,U).

2.15. Consider the Lewowicz map (2.4.21), show that, given the set of curves
Γδ,c := {γ : [−δ, δ] → R2 | γ(t) = (t, u(t)); γ(0) = 0; |u′(t)| ∈
[c−1t, ct]}, it is possible to construct the map T̃ : Γδ,c → Γδ(1+c−1δ), c in
analogy with (2.4.11).

2.16. In the case of the previous problem show that for each γi ∈ Γδ,c holds

d(T̃ γ1, T̃ γ2) ≤ (1− cδ)d(γ1, γ2).

2.17. Show that for the Lewowicz map, zero has a unique unstable manifold.

Hints to solving the Problems

2.1. Use the implicit function theorem on the one parameter vector fields
V (λ) = V + λ(W − V ).

2.3. If A is diagonal, the claim is trivial. For a general diagonalizable matrix,
let U be such that U−1AU = Λ, diagonal. Set B = (UU∗)−1, then

ℜ(⟨x,BAx⟩) = ℜ(⟨U−1x, U−1AUU−1x⟩) = ℜ(⟨U−1x,ΛU−1x⟩)
≤ −σ⟨U−1x, U−1x⟩ = −σ⟨x,Bx⟩.

2.5. By the variation of the constants method it follows that

ϕt(x) = eAtx+

∫ t

0

eA(t−s)R(ϕs(x))ds.

Hence
∥∆(x)∥ ≤ sup

∥x∥≤2r

∥ϕ1(x)− eAx∥ ≤ 4Cr2.

2.12 By (2.4.17) and arguing as in (2.4.18) it follows

TnCcδ,hn
(T−nξ, 0) ∩Dhn

(ξ) ⊂ Tn−1Ccδ,hn
(T−n+1ξ, 0) ∩Dhn

(ξ)

⊂ Cσn−1cδ,hn
(ξ, vn−1(ξ)).
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Since, for a small enough, Tn(T−nξ + (a, 0)) = ξ + aDT−nξT
n(1, 0) +

o(a), it follows that (a, vn(ξ)a) ∈ Cσn−1cδ,hn
(ξ, vn−1(ξ)). Hence |vn(ξ)−

vn−1(ξ)| ≤ σn−1cδ. From this the Problem easily follows.

2.13. This amounts to showing that the set of points that are attracted to
zero are exactly the manifolds constructed in Theorem 2.4.2. Use the
local hyperbolicity to show that.

2.16. Grow the manifolds, that is, for each n > 1 define δn := ρ
n . Show that

one can choose ρ such that δn−1 ≥ δn(1+ c
−1δn). according to Problem

2.15 it follows that T̃ : Γδn,c → Γδn−1,c. Moreover,

d(T̃n−1γ1, T̃
n−1γ2) ≤

n∏
i=1

(1− cδi)d(γ1, γ2).

Finally, show that, setting γn(t) = (0, t) ∈ Γδn,c, the sequence T̃n−1γn
is a Cauchy sequence that converges in C0 to a curve in Γ1,c invariant

under T̃ .

Notes

The content of this section is quite standard and rather sketchy, it is intended
only to introduce the reader to some basic ideas and techniques. The treat-
ment of the Hadamard-Perron Theorem follows mostly [HK95].



Chapter 3

Bifurcation Theory (the
minimum)

Continuing the analysis of the previous section we would like to place it
on a more systematics ground: we worried only about hyperbolic fixed points;
are more complex situations relevant? To answer to such a question it is first
necessary to understand its meaning, that is:
what does it mean to be irrelevant?

3.1 Generic Vector fields

By relevant we mean situations which are typical. We would like to summarise
the content of Section 2 as follows:

Theorem 3.1.1 We understand the typical local behavior of the solutions of
the differential equations

ẋ = V (x) (3.1.1)

where V ∈ C1
loc(Rd,Rd).

However, to make sense of Theorem 3.1.1 it is necessary to give a technical
meaning to the words behavior, local and typical.

3.1.1 Local behavior

We say that we understand the behavior of a vector field in an open set U if it
is equivalent to a vector field whose associated ODE can be explicitly solved.

42
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Definition 3.1.2 We say that two vector fields V,W are equivalent in the
open set U , if, for each t > 0, there exists a homeomorphism F : U → U such
that, calling ϕVt , ϕ

W
t the flows generated by the vector fields, hold ϕVt ◦ F =

F ◦ ϕWt .

Definition 3.1.3 We say that we have a local understanding of the ODE
(3.1.1) in a region K if, for each point x ∈ K, there exists a neighborhood
of x in which the equation (3.1.1) is equivalent to an equation with an affine
vector field.1

If we could consider only neighborhoods U in which V (x) ̸= 0 with, at most,
the exception of isolated points where the linear part is hyperbolic, then we
understand already the local behavior. In fact, either V (x̄) ̸= 0 and then the
flow box Theorem tells us that the field has the same local behavior than a
constant vector field; or, if V (x̄) = 0, then Grobmann-Hartman Theorem tells
us that the field has the same local behavior than its linear part.

Of course, this is not always the case (think of the case V ≡ 0), our claim
is that the above situation is typical.

3.1.2 Typical

Definition 3.1.4 Given a topological space Ω, we say that a set A ⊂ Ω is
generic if it is open and dense. A set is typical if it is the countable intersection
of generic sets (this is also called a residual set).

Since C1(Rd,Rd) is a Banach space, its topology is determined by the norm.

Problem 3.1 Prove that the finite intersection of a generic set is generic.
Prove that, in a metric space, a residual set is dense.

Problem 3.2 Give an example of a typical set in [0, 1] with zero Lebesgue
measure.

Next, for each K ⊂ Rd, let us define2

AK := {V ∈ C1
loc(Rn,Rn) : ∀x ∈ K, V (x) = 0 implies ∂xV hyperbolic }

Remark 3.1.5 In the following we will prove that, for K compact, AK is
generic, hence ARd is typical. Note that the same holds for

{V ∈ C1
loc(Rn,Rn) : ∀x ∈ K, V (x) = 0 implies det(∂xV ) ̸= 0}.

1Note that, if K is compact, then finitely many such neighborhoods will cover K. On
the other hand if, for example, K = Rd, then countably many neighborhoods will do the
job.

2Since our analysis is local, the following can be trivially adapted to the case C1
loc(U,R

n),
for some open set U . We avoid it to simplify notation.
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Yet, it is convenient to consider small generic sets (see Problems 3.25, 3.26).
This allows to obtain a generic understanding with the least effort.

Problem 3.3 Prove that, for each compact set K ⊂ Rd, if V ∈ AK , then V
has only finitely many zeroes in K.

Problem 3.4 Prove that, for each compact set K ⊂ Rd, AK is open.

To prove that AK is generic we need to establish the density, this is not
entirely obvious and we need a result of independent interest.

Theorem 3.1.6 (Sard–baby version) Let F ∈ C1(Rd,Rd), and A = {x ∈
Rd : det(DxF ) = 0}, then F (A) has zero Lebesgue measure.

Proof. Let Qδ(x) := {z ∈ Rd : |xi − zi| ≤ δ ∀i ∈ {1, . . . , d}}, clearly
it suffices to prove that for each x̄ ∈ Rd the Lebesgue measure of F (A∩Q1(x̄))
is zero. Now, for each n ∈ N and k ∈ {−n, . . . , 0, . . . , n}d =: Sn, let xk := k

n
and ∆k := Q1/2n(x̄+ xk). Clearly Q1(x̄) ⊂ ∪k∈Sn

∆k. We will consider only
the ∆k such that ∆k ∩A ̸= ∅. For each such ∆k let us chose ξk ∈ ∆k ∩A.

Next, consider the function Ψ : Q1(x̄)
2 → R defined by

Ψ(x, y) :=

{
∥F (x)−F (y)−DxF (x−y)∥

∥x−y∥ if x ̸= y

0 if x = y

Since F = C1 we have Ψ ∈ C0, hence for each ε > 0 there exists nε ∈ N such
that

sup
∥x−y∥≤n−1

Ψ(x, y) < ε

for each n > nε. Since ξk ∈ A, there exists vk ∈ Rd, ∥vk∥ = 1, such that
⟨vk, DξkFw⟩ = 0 for all w ∈ Rd. Hence, setting C = ∥DF∥∞ and for n large
enough,

F (∆k) ⊂ {F (ξk) + w + tvk ∈ Rd : ⟨w, vk⟩ = 0; ∥w∥ ≤ Cn−1; |t| ≤ ε

n
)}.

Thus, calling λ the Lebesgue measure,

λ(F (∆k)) ≤ 4d−1Cd−1n−d−1 ε

n
= λ(∆k) · 4d−1Cd−1ε.

Thus
λ(F (A ∩Q1(x))) ≤ 4d−1Cd−1

∑
k∈Sn

λ(∆k)ε = 4dCd−1ε,

as announced. □

Problem 3.5 Use Sard’s Theorem to show that, for each compact set K ⊂
Rd, AK is dense in C1(Rd,Rd). Prove that ARd is typical.
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3.2 Generic families of vector fields

Our next aim is to consider a situation in which the system has a control
parameter. That is, it is described by the equations of the type

ẋ = V (x, λ) (3.2.2)

where x ∈ Rd and λ ∈ [−2, 2] is the parameter that, in principle, can be
varied. Now by local understanding in a region K we mean that for each
point (x̄, λ̄) ∈ K × [−1, 1] =: K1 we can find a neighborhood of the form
U × (λ − ε, λ + ε) in which we are able to understand the behavior of the
solutions of (3.2.2).

Let us now try to understand the local picture for typical families of vector
fields. In analogy with the previous section, for any K ⊂ Rd, let us consider

ĀK := {V ∈ C1 : ∀ (x, λ) ∈ K1, V (x, λ) = 0 implies

∂xV (x, λ) hyperbolic }

Problem 3.6 Prove that if V ∈ ĀK , then for each (x̄, λ̄) ∈ K1 there exists
an open set of the form U×(−ε+λ̄, ε+λ̄) =: U×I such that either V (x, λ) ̸= 0
or there exists X ∈ C1(I,K) such that V (X(λ), λ) = 0 for each λ ∈ K and
there are no other zeroes in U × I. Then, prove that ĀK is open.

Clearly the above situations can be treated exactly as we did in the previous
section and are therefore locally understandable. Unfortunately, the above
does not exhaust all the possibilities.

Lemma 3.2.1 For each K with non empty interior ĀK is not generic.

Proof. Since ĀK is open, the problem must be the density. To see this
let us consider, for example, the case d = 1, a compact set K with interior
containing zero and the family

V (x, λ) = λa+ λx+ bx2. (3.2.3)

Now let us consider any W ∈ C1(R × [−1, 1],R) and look at Ṽ (x, λ, µ) :=
V (x, λ) + µW (x, λ). The claim is that for each µ sufficiently small, then
Ṽ (x, λ, µ) ̸∈ ĀK . In fact, there exists (x(µ), λ(µ)) ∈ K such that both
Ṽ (x(µ), λ(µ), µ) = 0 and ∂xṼ (x(µ), λ(µ), µ) = 0. To see this we define the
function F : R3 → R2

F (x, λ, µ) :=

(
λa+ λx+ bx2 + µW (x, λ)
λ+ 2bx+ µ∂xW (x, λ)

)
=

(
Ṽ

∂xṼ

)
, (3.2.4)

clearly we are looking for (x(µ), λ(µ)) such that F (x(µ), λ(µ)) = 0. Since
F (0, 0, 0) = 0 we can apply the implicit function theorem provided(

∂xF ∂λF
) ∣∣∣

x=0;λ=0;µ=0
=

(
0 a
2b 1

)
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is invertible, that is if ab ̸= 0. We have thus seen that the family has an open
neighborhood disjoint from ĀK , hence the latter set cannot be dense. □

Thus, to have a generic situation, we need to consider a larger set.
The above example sugegst to ask that ∂λV ̸= 0 if det(∂xV ) = 0. This is

a good idea, but it does not suffice to have a nice theory. As we have seen,3

and we will see later on, it is natural to have some condition on the second
derivative. It is then convenient to consider at least Cr vector fields, r ≥ 2.
Accordingly, from now on the genericity will be according to the Cr topology.
This would not have changed the previous discussion, see Problem 3.32.

The above can be made precise in many ways. Here is a simple, but not
totally satisfactory, possibility. For K ⊂ Rd let K1 := K × [−1, 1].

BK =

{
V ∈ Cr

loc : ∀ (x, λ) ∈ K1, V (x, λ) = 0 =⇒ rank (∂xV ∂λV ) = d

}
Let us understand how the vector fields in BK look like.

Lemma 3.2.2 If V ∈ BK and V (x̄, λ̄) = 0, then there exists ε > 0 and a
neighborhood U ∋ x̄ such that the set of zeroes of the vector field V (x, λ) in
U × (λ̄− ε, λ̄+ ε) consists of a smooth curve.

Proof. First suppose, without loss of generality, that (x̄, λ̄) = (0, 0).
If det(∂xV (0, 0)) ̸= 0, then we can argue as in Problem 3.4. The implicit

function theorem yields an ε > 0, a neighborhood U of zero and a function
x ∈ Cr([−ε, ε],Rd) such that V (x(λ), λ) = 0 are the only zeroes of the vector
fields V (·, λ), λ ∈ [−ε, ε], in U .

On the contrary, if det(∂xV (0, 0)) = 0 then the approach based on a direct
application of the implicit function theorem fails. The problem is that the
curve of the fixed points it is not a graph over λ so one need to change variables
before applying the implicit functions theorem, let us see how.

The null space of ∂xV (0, 0) must have dimension one, otherwise we would
have rank (∂xV (0, 0) ∂λV (0, 0)) < d, let v ∈ Rd, ∥v∥ = 1, be the unique vector
such that ∂xV (0, 0)v = 0. Consider the change of variables (λ, x) = F (ξ, τ)
defined by

x = ξ − τv

λ = ⟨ξ, v⟩.
(3.2.5)

It is easy to check that F−1 is defined by

τ = λ− ⟨x, v⟩
ξ = λv + x− ⟨x, v⟩v.

3In applying the implicit function theorem to (3.2.4).
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Then define the field Ṽ := V ◦F . Since F (0, 0) = 0, Ṽ (0, 0) = 0. To apply the
implicit function theorem in the new variables, we need ∂ξṼ to be invertible,

but ∂ξṼ (ξ, τ) = ∂xV (x, λ) + ∂λV (x, λ) ⊗ v.4 It follows that ∂ξṼ (0, 0) must
be invertible, otherwise there would exists z ∈ Rd such that, for all η ∈ Rd,

0 = ⟨z, ∂ξṼ (0, 0)η⟩ = ⟨z, ∂xV (0, 0)η⟩+ ⟨z, ∂λV (0, 0)⟩⟨v, η⟩.

Choosing η = v follows ⟨z, ∂λV (0, 0)⟩ = 0 and hence ∂xV (0, 0)T z = 0. This
would mean that all the columns of the rectangular matrix (∂xV (0, 0) ∂λV (0, 0))
are orthogonal to z, contradicting the definition of BK .

So we can apply the implicit function theorem and obtain (for ξ, τ in a
neighborhood of zero) a C1 function ξ(τ) such that Ṽ (ξ(τ), τ) = 0. Then,
setting (x(τ), λ(τ)) := F (ξ(τ), τ) we have a C1 curve in Rd+1 such that
V (x(τ), λ(τ)) = 0 and no other zero is present in the neighborhood of zero.
To study such a curve, we need to compute some derivative. Differentiating
Ṽ (ξ(τ), τ) = 0 with respect to τ yields

∂xV (ξ(τ)− τv,⟨ξ(τ), v⟩)(ξ′(τ)− v)

+ ∂λV (ξ(τ)− τv, ⟨ξ(τ), v⟩)⟨ξ′(τ), v⟩ = 0.
(3.2.6)

For τ = 0 yields

(∂xV (0, 0) + ∂λV (0, 0⟩ ⊗ v) ξ′(0) = 0

which implies ξ′(0) = 0. Moreover,

dλ

dτ
= ⟨ξ′(τ), v⟩, (3.2.7)

hence dλ
dτ (0) = 0. While

x′(τ) =
dx(τ)

dτ
= ξ′(τ)− v. (3.2.8)

hence x′(0) = v. □

Problem 3.7 Show that BRd is typical.

We thus have a typical set, yet it contains behaviors that we have never
analyzed: equilibrium points with a derivative having a one-dimensional ker-
nel and equilibrium points with no kernel but a non-hyperbolic derivative. It
would be convenient if we could limit the appearance of such situations to
a bare minimum. To do this systematically would require the development
of a formalism beyond the present goals. Yet, for the case of one-parameter
families, it is still possible to do it naively, provided one is willing to put up
with some boring computations.

4Given two vectors v, w ∈ Rd, by v ⊗ w is the matrix with elements (v ⊗ w)ij = viwj .
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Definition 3.2.3 Given V ∈ Cr we call a point (x̄, λ̄) ∈ Rd+1 such that
V (x̄, λ̄) = 0 and V (·, λ̄) ̸∈ AU , for a neighborhood U of x̄, a bifurcation
point.5 Let (x̄, λ̄) be a bifurcation point, we call such point non degenerate,
if rank

(
DV (x̄, λ̄)

)
= d − 1, ⟨w,D2V (v, v)⟩ ̸= 0 where v, w are such that

DV v = DV Tw = 0. We call the the bifurcation point regular if it is non
degenerate or if det

(
DV (x̄, λ̄)

)
̸= 0 but there are two eigenvalues with zero

real part and Tr
(
Π0

[
d
dλA(λ)

]
Π0

)
̸= 0 where Π0 is the eigenprojector on

the eigenspace associated to the above eigenvalues and A(λ) = ∂xV (x(λ), λ),
where x(λ) is determined by V (x(λ), λ) = 0.

The idea is then to define the new sets

B̃K = {V ∈ BK : all the bifurcation points are regular}.

Let us show that the elements of B̃K enjoy a nice characterization.

Lemma 3.2.4 In B̃K the bifurcation points are isolated.

Proof. Let us start analyzing the case of non-degenerate bifurcation
points. Suppose, without loss of generality, that the bifurcation point is at
(0, 0). Note that, by continuity, the condition on the second derivative holds
in a neighborhood of zero. By Lemma 3.2.2 we know that the zeroes of V
lie on a curve (x(τ), λ(τ)), with the derivative with respect to τ given by
(3.2.8), (3.2.7). Also, there exists unique normalized vectors w, v such that

∂xV (0, 0)v = [∂xV (0, 0)]
T
w = 0. By (3.2.7) it follows that if λ′(τ) = 0,

then ⟨ξ′(τ), v⟩ = 0, and then (3.2.6) implies ∂xV (ξ′(τ) − v) = 0. That is, if
λ′(τ) = 0, then (x(τ), λ(τ)) is a bifurcation point. Hence, to show that the
difurcation point is isolated, it suffices to prove that τ = 0 is the only point
for which λ′ = 0. To this end, we can compute

λ′′(0) = ⟨ξ′′(0), v⟩.

Differentiating (3.2.6) at zero yields

∂2xV (0, 0)(v, v) + (∂xV (0, 0) + ∂λV (0, 0)⊗ v)ξ′′(0) = 0.

If we multiply the above by w we have

⟨w, ∂2xV (0, 0)(v, v)⟩+ ⟨w, ∂λV (0, 0)⟩λ′′(0) = 0

since the zero is a non degenrate bifurcagtion point ⟨w, ∂λV (0, 0)⟩ ≠ 0, and
⟨w, ∂2xV (0, 0)(v, v)⟩ ≠ 0. It follows λ′′(0) ̸= 0, hence zero is an isolated zero
of λ′.

5That is the vector field V (·, λ̄) is not generic.
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We are left with the case det(∂xV (x̄, λ̄)) ̸= 0 but with an eigenvalue which
has a zero real part. This means that we have two purely imaginary eigenval-
ues. Let Π0 be the eigenprojection associated with such two eigenvalues. By
perturbation theory (see Appendix C) it follows that there exists a rank two
projector family Π(x, λ) such that Π∂xV = ∂xVΠ and Π(x̄, λ̄) = Π0.

Problem 3.8 Show that a two-by-two real matrix has purely imaginary eigen-
values iff its trace is zero and the determinant is positive.

Then we have Tr(Π0∂xV (x̄, λ̄)Π0) = 0. Now, let x(λ) be the curve of the
zeroes of V , then

d

dλ
Tr(Π∂xVΠ)

∣∣∣∣
λ=0

= Tr

(
Π0

[
d

dλ
∂xV

]
Π0

)
since Π2 = Π implies Π

(
d
dλΠ

)
Π = 0.6 This concludes the argument. □

Problem 3.9 Show that B̃K is still generic.

Thus, to achieve a typical local understanding of the behavior of one pa-
rameter families of vector fields we have to worry only about families with, at
most, one regular bifurcation point. Let us suppose, without loss of generality,
that the regular bifurcation point is at (0, 0), then by Taylor expansion

V (x, λ) = a(λ) +A(λ)x+
1

2
⟨x,B(λ), x⟩+R(x, λ), (3.2.9)

where B is a vector of d × d symmetric matrices and a(0) = 0, R(0, λ) =
∂xR(0, λ) = ∂2xR(0, λ) = 0.

Due to the previous discussion we need to consider only the following cases

a) AT (0) has one, and only one, zero eigenvalue w and ⟨w, a′(0)⟩ ≠ 0;

b) A(0) has two purely imaginary conjugated eigenvalues.

3.3 One dimension

In the one dimensional case (b) cannot take place. Then in (3.2.9) we have
a = a′(0) ̸= 0, A(0) = 0, c = B(0) ̸= 0. Then V (x, λ) = 0 has no solutions

if ac > 0, while for ac < 0 there are the two solutions x = ±
√
−λb

B + O(λ).

We have therefore the generic picture: either two points collide and kill each
other or there is a creation of two zeroes of the vector field.

6Indeed, Tr(Π′∂xVΠ) = Tr(ΠΠ′∂xVΠ) = Tr((ΠΠ′Π∂xV ) = 0. Analogously,
Tr(Π∂xVΠ′) = 0.
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Problem 3.10 Study the solutions of

ẋ =
B

2
x2 + g(x)

near zero when g(0) = g′(0) = g′′(0) = 0.

Problem 3.11 Prove that the two equilibrium points of the vector field (3.2.9)
are one attractive and the other repulsive.

The above scenario is called a saddle-node bifurcation.
A natural question is if there exists a simpler standard form of the above

bifurcation. Indeed, we can try to kill some of the terms in 3.2.9 by a change
of variable.

Problem 3.12 Show that with a change of variables of the type x = αλ+ρz,
one can change the vector field (3.2.9) to the from Ṽ (z, λ) = λ+bz2+O(λ2)+
o(z2).

The above is the normal form of the saddle node bifurcation. This type of
reduction can be made for each bifurcation and gives rise to the large field
of normal form theory which, unfortunately, goes beyond the scopes of the
present notes.

3.4 Two dimensions

3.4.1 A zero eigenvalue

In this case the vector field must have the form (possibly after a linear change
of variable to put ∂Vx(0, 0) in diagonal form)

V (x, λ) =

(
0 0
0 ν

)
x+ bλ+

1

2

(
⟨x,B1x⟩
⟨x,B2x⟩

)
+λCx+O(λ2)+ o(∥x∥2), (3.4.10)

with b1, B1 ̸= 0. It is straightforward to prove that the scenario is identical
to the one-dimensional case. We leave the details to the reader.

3.4.2 Two imaginary eigenvalues: Hopf bifurcation

In this case, the vector field must have the form (possibly after a translation
and a linear change of variable to put ∂Vx(0, 0) in chosen form, see Problem
3.33)

V (x, λ) = Ax+R(x, λ), (3.4.11)
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with A =

(
0 −ω0

ω0 0

)
for some ω0 > 0, R(0, 0) = ∂xR(0, 0) = 0 and

Tr(∂xxR(0, 0)A
−1∂λR(0, 0)− ∂xλR(0, 0)) ̸= 0.

In the above situation, no new fixed point can appear, yet one expects
something to happen.

Theorem 3.4.1 (Hopf bifurcation) As λ goes trhough zero, it appears a
periodic orbit circling the fixed point.

Proof. To minimize the computations, we start by performing some
changes of variables that reduce the ODE to a simpler one.

Problem 3.13 Show that, with a change of coordinates of the type x = ξ +
α(λ), the remainder R in (3.4.11) can be made to satisfy R(0, λ) = 0, for each
λ small enough, ∂ξR(0, 0) = 0 and Tr(∂ξλR(0, 0)) ̸= 0.

Problem 3.14 Show that with a further change of variables x = D(µ)z,
λ = µρ(µ) one can put (3.4.11) in the form

ż = [ω(µ)J + µ1] z +R(z, µ), where J =

(
0 −1
1 0

)
, (3.4.12)

with ω(0) = ω0 and R(0, µ) = ∂zR(0, µ) = 0.

Problem 3.15 Find the solutions of (3.4.12) in the case R ≡ 0.

Given that the solutions of the linear part of (3.4.12) rotate around zero
almost in circles, it may occur the idea to treat the problem in polar coordi-
nates. In fact this point of view is quite advantageous and we will adopt it.
The reader who wants to appreciate the advantages of this choice is invited
to try to do the following analysis in Euclidean coordinates.

The polar coordinates can be written as x = ρv(θ), where ρ ∈ R+, θ ∈ R
and v(θ) := (cos θ, sin θ).

Remark 3.4.2 Note that such a change of coordinates is singular for ρ = 0.
In addition, it is not globally one-one. Yet, to consider θ in the universal
cover of S1 rather than in S1 will be very useful in the following.

If we substitute such coordinates in (3.4.12), we obtain

ρ̇v(θ) + ρn(θ)θ̇ = µρv(θ) + ω(µ)ρn(θ) +R(ρv(θ), µ),

where n(θ) := (− sin θ, cos θ). That is

ρ̇ = µρ+ ⟨v(θ), R(ρv(θ), µ)⟩ =: µρ+ a(θ, ρ, µ)

θ̇ = ω(µ) + ρ−1⟨n(θ), R(ρv(θ), µ)⟩ =: ω(µ) + b(θ, ρ, µ),
(3.4.13)
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where a(θ, 0, µ) = ∂ρa(θ, 0, µ) = b(0, µ) = 0. In addition, note for later use
that, ∂2ρa(θ, 0, 0) and ∂ρb(θ, 0, 0) are homogeneous trigonometric polynomials
of degree three, while ∂3ρa(θ, 0, 0) and ∂

2
ρb(θ, 0, 0) are of degree four. By Prob-

lem 3.35 it follows that we can write a(θ, ρ, µ) = a0(θ, µ)ρ
2+a1(θ, ρ, µ)ρ

3 and
b(θ, ρ, µ) = b0(θ, µ)ρ+ b1(θ, ρ, µ)ρ

2. Finally, the reader can easily verify that
a ∈ Cr, while b ∈ Cr−1.

Note that the equation (3.4.13) is well defined also for ρ = 0 but in such a
case, instead of a fixed point, it has the periodic orbit (ρ(t), θ(t)) = (0, ω0t).
Thus in polar coordinates for ρ = 0 we have a rotation, this captures the
behavior of the system much better than the fixed point in Euclidean coordi-
nates.

Problem 3.16 Solve (3.4.13) in the case b = 0, a = ρ2. Do it for b = 0,
a = µρ2 + ρ3.

Since for small ρ we have θ̇ > 0, it is convenient to use θ rather than
t to parameterize the motion (here is now evident the advantage of using
the universal cover of S1). Calling again ρ the distance from the origin as a
function of θ we have

dρ

dθ
=
µρ+ a(θ, ρ)

ω + b(θ, ρ)
=:

µ

ω(µ)
ρ+ β(θ, µ)ρ2 + γ(θ, ρ, µ)ρ3, (3.4.14)

where

β(θ, µ) = ω(µ)−1a0(θ, µ)− µω(µ)−2b0(θ, µ)

γ(θ, 0, µ) = µω(µ)−3b20 + a0b0ω(µ)
−2 − µb1ω(µ)

−2 + a1ω(µ)
−1.

Note, that β(θ, 0) is a trigonometric homogeneous polynomial of third degree
while γ(θ, 0, 0) is the sum of two monomial, one of degree four and one of
degree six.

It is now convenient to perform a last change of variables: ρ = νr, µ = ±ν2,
ν ≥ 0.7 Under such changes of variables (3.4.14) becomes

dr

dθ
= ± ν2

ω(±ν2)
r + β(θ,±ν2)νr2 + ν2γ(θ, νr,±ν2)r3, (3.4.15)

Remark 3.4.3 The reader my wonder what is going on: if the coefficients
would not depend on θ, then the periodic orbit would be circular and would
correspond to a zero in the above vector field. Such a zero would occur for
r = O(ν−1βγ−1), thus it seems that I have just done the wrong scaling. The
point is that the above naive analysis is correct only if we consider the average
(with respect to θ) of the coefficients, but the average of β is zero! This is a
very simple instance of a general theory called averaging.

7In fact, we have two different changes of variable according to the sign of µ.
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Remark 3.4.4 In the following we will choose the case in which µ > 0, hence
the change of variable with the plus is selected. The computations for µ < 0
are completely analogous and are left to the reader.

Let us call r(θ, ξ, ν) the solution of (3.4.15) with initial condition ξ and
parameter ν.

Problem 3.17 Prove that, for each θ ∈ [0, 2π] the function r(θ, ·, ·) are Cr−1.

We are finally ready to prove the existence of a periodic orbit. Clearly,
an orbit is periodic if and only if r(0, ξ, ν) = r(2π, ξ, ν). In other words, if we
look at the motion only when it crosses the {θ = 0 mod 2π} line, then we
see the orbit always at the same point. We have thus another instance of a
Poincaré section.

In concrete, if we consider the map S : R2
+ → R+ defined by S(ξ, ν) :=

r(2π, ξ, ν), then the periodic orbits of the flow correspond to the fixed points
of the maps S(·, ν).8

Our last task is thus to study such a maps. The right idea is to develop
them in power series of ν. Note that r(θ, ξ, 0) satisfies the Cauchy problem

dr

dθ
= 0

r(0, ξ, 0) = ξ.

Thus S(ξ, 0) = ξ. To compute the derivative we must compute η := ∂νr(θ, ξ, ν).
Such a derivative satisfies the equation obtained by differentiating (3.4.15) (see
Theorem 1.1.13)

dη

dθ
=

2ν

ω
r − 2ν3ω′

ω2
r +

ν2

ω
η + βr2 + 2νrηβ + 2ν2r2∂ν2β

+ 2νγr3 + 3ν2r2ηγ + 2ν3r3∂ν2γ + ν3r3(r + νη)∂νrγ

η(0, ξ, ν) = 0.

(3.4.16)

Setting ν = 0 in the above equation yields η(θ, ξ, 0) = ξ2
∫ θ

0
β(φ, 0)dφ. Ac-

cordingly, ∂νS(ξ, 0) = 0 (see Problem 3.36).
To conclude we need to compute the second derivative at ν = 0. Setting

ζ(θ, ξ) = ∂νη(θ, ξ, 0) and differentiating (3.4.16), yields

dζ

dθ
=

2

ω0
ξ + 4βξη(θ, ξ, 0) + 2γ(θ, 0, 0)ξ3

ζ(0, ξ, 0) = 0.

8I mean the non trivial ones, since zero is always a trivial fixed point by construction.



54 CHAPTER 3. BIFURCATION THEORY (THE MINIMUM)

which yields

ζ(θ, ξ) =
2θ

ω0
ξ + 4ξ

∫ θ

0

β(φ, 0)η(φ, ξ, 0)dφ+ 2ξ3
∫ θ

0

γ(φ, 0, 0)dφ.

Next, note that dη(φ,ξ,0)
dφ = ξ2β(φ, 0), hence

∫ θ

0

β(φ, 0)η(φ, ξ, 0)dφ =
η(θ, ξ, 0)2

2ξ2
=
ξ2

2

(∫ θ

0

β(φ, 0)dφ

)2

.

Thus, setting γ̄ =
∫ 2π

0
γ(φ, 0, 0)dφ, we have9

S(ξ, ν) = (1 +
2π

ω0
ν2)ξ + ξ3γ̄ν2 + ν3ξΓ(ξ, ν) (3.4.17)

To study the solution of S(ξ, ν) = ξ for ν ̸= 0 and ξ ̸= 0 it is convenient to
introduce the function F (ξ, ν) = ν−2ξ−1(S(ξ, ν)− ξ) = 2π

ω0
+ ξ2γ̄ + νΓ(ξ, ν).

If γ̄ > 0, then F (ξ, 0) has no solutions different from zero and the same
must hold for small ν.

If γ̄ < 0, then ξ0 =
√
− 2π

ω0γ̄
is the only positive solution of F (ξ, 0) = 0.

We can then apply the implicit function theorem since F (ξ0, 0) = 0 and

∂ξF (ξ0, 0) =
2π

ω0
+ 3ξ2γ̄ = −4π

ω0
̸= 0.

As a conclusion we have a unique ξ(ν) = ξ0+O(ν) such that S(ξ(ν), ν) = ξ(ν)
for ν ̸= 0.

Problem 3.18 Compute, in terms of the Tailor coefficients of V , what it
means γ̄ = 0 and shows that it is not possible for V ∈ B̃R2 .

□

3.5 The Hamiltonian case

It is important to note that non-generic situations may appear due to sym-
metries or other types of constraints. To give an example of such a situation,
let us consider a Hamiltonian vector field, that is a vector field of the type
V (x, p) = (∂pH,−∂xH) for some function H(x, p). In this case

DV =

(
∂xpH ∂ppH
−∂xxH −∂xpH

)
.

9Since S(0, ν) = 0, the coefficient of ν3 must have the form ξΓ.
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Note that the trace of DV is always zero. Hence, if V (x, p) = 0 and detDV ̸=
0, either the fixed point is hyperbolic or has two purely imaginary eigenval-
ues. This means that having two purely imaginary eigenvalues is generic for
Hamiltonian vector fields, contrary to the general ones. Analogously, the sit-
uation for a one-parameter family, already when (x, p) ∈ R2, is more complex.
For example, at a generic bifurcation point, the vector field will have two, not
one, zero eigenvalues.

In fact, for mechanical systems, the Hamiltonian often has the formH(x, p) =
1
2p

2 + U(x), for some function U . Hence, V (x, p) = (p,−∂xU), which means
that the zeroes of the vector field are the critical points of U . Let us discuss
Hamiltonian systems in which the Hamiltonian is of the above type.

We start with the so called one degree of freedom, i.e. x, p ∈ R.

Problem 3.19 Show that if U has a minimum, then the fixed point is a
center, while if U has a maximum, then the corresponding fixed point is hy-
perbolic.

We thus have a new phenomenon: a center that is stable under small
perturbations!

Let us consider the case in which a one-parameter family of potentials
U(x, λ) has a degenerate minimum at zero, i.e. U(0, λ) = 0, ∂xU(0, λ) =
0, ∂2xU(0, 0) = 0. This means that U(x) = λx2 + a(λ, x)x3 and

V (x, λ) = (p, 2λx+ a1(x, λ)x
2)

Problem 3.20 Show that in the above family, we have the collision of two
fixed points (a center and a saddle) that collide and exchange type.

This means that the zeroes of the vector fields are p = 0, x(λ) = 0 and
x(λ) ∼ − 2λ

a1(0,0)
. We then have a new phenomenon: two fixed points that

cross and exchange type.10

Even more singular situations may happen if more constraints are present.
Consider, for example the above situation when, for some reason, the Hamil-
tonian is constrained to being symmetrical: H(x, p) = H(−x, p). Then it
would have the form U(x) = λx2 + a(λ, x)x4.

Problem 3.21 Show that in the above case one has one fixed point that
evolves into three fixed points. Moreover, show that if only one fixed point
is present, the fixed point is unstable, then of the three fixed points, two are
unstable and one is stable. This is called a peach fork bifurcation.

10Hence, the set of fixed points no longer forms a smooth curve in the x, λ space.
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Next let us consider the case of two degree of freedom, i.e. x, p ∈ R2. Lim-
ited to the case of a minimum. In such a situation, at the point of minimum,
we have

∂xV (x, p) =

(
0 1

−∂2xU 0

)
. (3.5.18)

where ∂2xU is a positive symmetric matrix, let ω2
1 , ω

2
2 be its eigenvalues.

Problem 3.22 Show that the eigenvalues of ∂xV , at the fixed point, are ±ωi.

Another surprise: a stable situation with four imaginary eigenvalue (an
higher dimensional center).

Problem 3.23 Consider the linear equation (obtained by the matrix (3.5.18)
after a change of variables)

ẋ = p

ṗ =

(
−ω2

1 0
0 −ω2

2

)
x

Show that p2i + x2i are invariant of the motion, i.e. the motion takes place on
two-dimensional tori.

Remark 3.5.1 Contrary to the case of one degree of freedom, in which the
conservation of the Hamiltonian implies that the center is stable for the full
motion, in higher dimensions it is not clear if the center is stable or not for
the full dynamics. Indeed, this is a rather complex matter at present, and it is
not yet completely clarified. Part of the answer is the subject of the so called
KAM theory.11 We will discuss some aspects of KAM theory in the following.

Problems

3.24. Compute Ṽ = V ◦ F where V is given by (3.2.3) and F by (3.2.5), i.e.
F (ξ, τ) = (ξ − τ, ξ). Show, by direct computation, that Ṽ (ξ, τ) = 0 has
solution ξ(τ) = − b

aτ
2 +O(τ3).

3.25. Prove that the set {A ∈ GL(n,R) : det(A) ̸= 0} is generic with respect
to the topology induced by the norm.

3.26. Prove that the set {A ∈ GL(n,R) : A is hyperbolic} is generic.

3.27. Prove that {A ∈ C0([−1, 1], GL(n,R)) : rank(A(λ)) ≥ n − 1 ∀λ ∈
[−1, 1]} is generic.

11KAM stands for Kolmogorov, Arnold, and Moser.
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3.28. Prove that the set {A ∈ GL(n,R) : A is hyperbolic and has only
simple eigenvalues} is generic (i.e. Jordan blocks are atypical).

3.29. Show that if A ∈ GL(2,R) and its eigenvalues have zero real part, then
Tr(A) = 0.

3.30. If A ∈ C1([−1, 1], GL(n,R)) and Π ∈ C1([−1, 1], GL(n,R)) is an eigen-
projector, show that d

dλ Tr(ΠA) = 2Tr(Π d
dλA).

3.31. Show that the set {A ∈ C1([−1, 1], GL(n,R)) : at most two eigenvalues
have zero real part} is generic.

3.32. Prove that the set

AK := {V ∈ Cr(Rn,Rn) : V (x) = 0 implies ∂xV hyperbolic ∀x ∈ K}

is generic in the Cr topology.

3.33. Show that any matrix A ∈ GL(2,R) with two eigenvalue with zero trace
and positive determinant is conjugate to a matrix of the form(

0 −ω
ω 0

)
for some ω > 0.

3.34. Let f ∈ Cr(Rd+1) and write the elements of Rd+1 as (ξ1, . . . , ξd, t). If
f(ξ, 0) = ∂kt f(ξ, 0) = 0 for all k ≤ s < r, then there exists g ∈ Cr−s

such that f(ξ, t) = tsg(ξ, t).

3.35. Let f ∈ Cr(Rd+1) and write the elements of Rd+1 as (ξ1, . . . , ξd, t). Then,

for all s < r, there exists g ∈ Cr−s such that f(ξ, t) =
∑s−1

k=0 f
k(ξ, 0)tk+

tsg(ξ, t).12

3.36. Show that if p(θ) is a product of an odd number of functions equal either

to sin θ or cos θ, then
∫ 2π

0
p(θ) = 0.

Hints to solving the Problems

3.1 The finite case is easy. The countable case follows from the Baire cate-
gory theorem.

12Essentially this is Taylor formula where one controls the smoothness of the remainder.
This issue is relevant in the applications, but often not investigated in standard textbooks.
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3.2 For each ε ∈ R let

Uε = ∪q∈N ∪p∈0,...,q

{
x ∈ [0, 1] : |x− p

q
| < ε

q3

}
.

Then the Uε are generic in [0, 1]. Yet, their Lebesgue measure is bounded
by

∞∑
q=1

q∑
p=0

2ε

q3
≤

∞∑
q=1

4ε

q2
≤ γε

for some fixed constant γ. Accordingly, ∩nU1/n is a typical set of zero
measure.

3.3 Let x̄ ∈ K such that V (x̄) = 0. Then, by assumption Dx̄V is invertible,
so V (x̄+ ξ) = 0 can be written as

Dx̄V
−1(Dx̄V ξ − V (x̄+ ξ)) = ξ.

Since Dx̄V ξ − V (x̄ + ξ) = o(∥ξ∥), it follows that the above equation
has the unique solution ξ = 0 in a sufficiently small neighborhood of
zero. Hence, there exists a neighborhood of x̄ in which there are no
other zeroes. Next, for each point in K consider a neighborhood as
follows: if the V is different from zero at such a point, then consider
a neighborhood for which the vector field is different from zero. If the
vector field is zero at the point, then consider the above neighborhood
in which the point is the only zero. In such a way, we have a covering of
K, we can then extract a finite subcover, hence proving the statement.

3.4 Let V ∈ AK and {xi}Mi=1 be the zeroes of V . Then for each vector
field W ∈ C1(Rd,Rd), ∥W∥ ≤ 1, consider the family V (x, µ) := V (x) +
µW (x). For each i ∈ {1, . . . ,M}, use the implicit function theorem
to show that there exists εi, δi > 0 and Xi ∈ C1([−εi, εi],Rn) → Rd,
Xi(xi) = 0, such that V (Xi(µ), µ) = 0 and V (x, µ) = 0, ∥x− xi∥ ≤ δi,
|µ| ≤ εi implies that x = Xi(µ). Verify (using perturbation theory) that,
for µ small enough ∂xV (X(µ), µ) is hyperbolic. Next, set δ = min δi and
ρ := inf |x−xi|≥δ ∥V (x)∥. Clearly V (x, µ) ̸= 0 if |x − xi| ≥ δ and µ < ρ.
Hence a neighborhood of V of size min{εi, ρ} belongs to AK , hence AK

is open.

3.5 If ZK = {z ∈ K : det(DxV ) = 0}, then V (ZK) is a zero measure set by
Sard’s Theorem. Let Z ⊂ Rd be a zero measure set and, for each v ∈ Rd,
define Z(v) = {z ∈ Rd : z − v ∈ Z}. Show that for each ε > 0 there
exists v ∈ Rd, ∥v∥ ≤ ε, such that 0 ̸∈ Z(v). Given V ∈ C1(Rd,Rd), use
this to show that for each ε > 0 there exists v ∈ Rd, ∥v∥ = 1 such that
Vε(x) := V (x) + εv has the property that det(DxVε) = det(DxV ) = 0
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implies Vε(x) ̸= 0. An application of the implicit function theorem
then shows that the zeroes of Vε are isolated. Finally, construct Ṽε,
∥Vε − Ṽε∥C1 ≤ ε, such that the zeroes are unchanged but the derivative
is hyperbolic, hence Ṽε ∈ AK . This last step can be performed locally,
so it suffices to show how to perform it around one single point. First
of all, note that, by continuity, there exists α > 0 such that Vε(x) = 0
implies ∥(DxVε)

−1∥ ≤ α−1. Next, let x0 ∈ K such that Vε(x0) = 0.
Then Vε(x) = Dx0

Vε(x− x0) + o(x− x0). Thus, there exists δ > 0 such
that, for all ∥x− x0∥ ≤ δ,13

∥Vε(x)∥ ≥ α

2
∥x− x0∥.

Finally, consider the vector field Ṽt(x) = Vε(x) + t(x − x0)φ(x − x0).
Where φ ∈ C1(Rd,R) is some fixed function such that the support of φ
is contained in the ball of radius δ, φ(0) = 1, ∇φ(0) = 0 and ∥φ∥∞ ≤ 1.
Then

∥Ṽt(x)∥ ≥ (
α

2
− t)∥x− x0∥

so if t < α
2 , the filed Ṽt(x) has the same zeroes than Vε. Moreover,

Dx0
Ṽt = Dx0

Vε + t1 which is hyperbolic and

∥Vε − Ṽt∥C1 ≤ 2tδ + t∥φ∥C1

which can be made smaller than ε by choosing t sufficiently small.

3.7 It suffices to show that BK is generic for each compact K ⊂ Rd.
The openness comes from the fact that a small perturbations cannot
change the condition on the rank. For the density, consider the set
Ω := {(x, λ) ∈ K1 : rank(∂xV ∂λV ) < d}. Using the same strategy as
in Theorem 3.1.6 show that V (Ω) has zero Lebesgue measure.14 This
means that, for each ε > 0 there exists v ∈ Rd, ∥v∥ ≤ ε, such that for
each (x, λ) ∈ K1 such that V (x, λ) = −v holds rank(∂xV ∂λV ) = d.
We can then consider the vector field Vε = V + v and argue as in the
first part of Problem 3.5.

3.13 We know from the discussion Lemma 3.2.2 that there exists x(λ) such
that V (x(λ), λ) = 0, we can then set α(λ) = x(λ). We get then the
wanted equation with the new remainder given by R(ξ + x(λ), λ) −
R(x(λ), λ). The other properties of R are obtained by direct computa-
tion.

13Note that, by the uniform continuity of the derivative on K, δ can be chosen indepen-
dent of the point.

14In fact, this is nothing else than another special case of the general Sard Theorem.
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3.14 Remember that the change of variable must be performed on the equa-
tion ẋ = V (x, λ), so the vector field changes as D−1V (Dz). In addition,
since ∂ξR(0, 0) = 0, Problem 3.35 implies that we can write ∂ξR(0, λ) =
C(λ)λ for some Cr−1 matrix C. Choose D(λ) = D0(λ)(1 + D1(λ)).
Since we do not want to change the form of ∂xV at first order in λ, we

impose [D0, A] = 0. Show that this implies D0(λ) =

(
1 −a(λ)

a(λ) 1

)
.

Show that one can choose a such that

D−1
0 ∂xV (0, λ)D0 = A+ λH(λ)

with H11 = H22 ≥ 0. Note then that Hii(0) ̸= 0 since TrH(0) ̸= 0 by

hypothesis. Next, choose D1 =

(
0 0
0 λb(λ)

)
. Show that b can be chosen

so that

(1+D1)
−1D−1

0 ∂xV (0, λ)D0(1+D1) = A+ λH̃(λ)

with H̃ii = Hii and H̃12 = −H̃21. The problem is then solved by
choosing ρ.

3.30 Using a “dot” to mean differentiation holds d
dλ Tr(ΠA) = Tr(Π̇A+ΠȦ).

If B is the portion of the spectrum associated with Π(0) and γ a curve
surrounding it and no other part of the spectrum, then

Π̇(0) =
1

2πi

∫
γ

(z −A(0))−1Ȧ(0)(z −A(0))−1dz

Thus

Tr(Π̇A) = Tr(ΠȦ) +
1

2πi

∫
γ

zTr
(
(z −A(0))−1Ȧ(0)(z −A(0))−1

)
dz

= Tr(ΠȦ) +
1

2πi

∫
γ

zTr
(
(z −A(0))−1Ȧ(0)

)
dz = Tr(ΠȦ).

Notes

The present discussion is intended only to give a flavor of the subject and of
how it can be systematically developed. For a more complete (and advanced)
treatment of bifurcation theory, see [Arn83, CH82]. As a historical curiosity,
note that the bifurcation theory can be traced back to antiquity, notably to
the Floating bodies treatise by Archimed.



Chapter 4

Global Behavior–regular
motion

Different local behaviors have been analyzed in the previous chapter. Un-
fortunately, such analysis is insufficient if one wants to understand the global
behavior of a Dynamical System. To make precise what we mean by global
behavior we need some definitions.

Definition 4.0.1 Given a Dynamical System (X,ϕt), t ∈ N or R+, a set
A ⊂ X is called invariant if, for all t, ∅ ≠ ϕ−1

t (A) ⊂ A.

Essentially, the global understanding of a system entails a detailed knowl-
edge of its invariant sets and the dynamics in their neighborhoods. This is,
in general, very hard to achieve; essentially, the rest of this book is devoted
to the study of some special cases.

Remark 4.0.2 We start with some simple considerations in the case of con-
tinuous Dynamical Systems (this is part of a general theory called Topological
Dynamical Systems1) and then we will address more subtle phenomena that
depend on the smoothness of the systems.

4.1 Long time behavior and invariant sets

We are interested in the long-time behavior of a system, and we look at it
locally (i.e., in the neighborhood of a point). Then, three cases are possible:

1Recall that a Topological Dynamical Systems is a couple (X,ϕt) where X is a topolog-
ical space and ϕt is a continuous action of R (or R+,N,Z) on X.
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either the motion leaves the neighborhood and never returns, or leaves the
neighborhood but eventually comes back, or never leaves. Clearly, in the
first case, the neighborhood in question has little interest in the study of the
long-time behavior. This is made precise by the following.

Definition 4.1.1 Given a Dynamical System (X,ϕt), a point x ∈ X is called
wandering if there exists a neighborhood U of x and a t0 ≥ 1 such that, for all
t ≥ t0, ϕt(U)∩U = ∅. A point that is not wandering is called non-wandering.
The set of non-wandering points is called NW ({ϕt}) or simply NW if no
confusion arises.

Problem 4.1 If ϕt ∈ C0, then the set NW is closed and forward invariant
(i.e. ϕt(NW ) ⊂ NW for each t ≥ 0). If the ϕt are open maps, then NW is
also invariant.

Problem 4.2 Construct an example of a topological dynamical systems in
which the non-wandering set is not invariant.

Problem 4.3 Show that if A is invariant, then the sets Λ = ∩∞
t=0ϕ

−1
t A

and Ω = ∪∞
t=0ϕt(A) are non-empty, invariant and, more, ϕ−1

t (Λ) = Λ and
ϕ−1
t (Ω) = Ω

The relevance for the long time behavior is emphasized by the following
lemma.

Lemma 4.1.2 If K ⊂ X is compact and K ∩ NW = ∅, then for all x ∈ K
there exists T such that ϕt(x) ̸∈ K for all t ≥ T . In addition, if K is invariant,
then T can be chosen independent of x.

Proof. If all the points in K are wandering, then for each x ∈ K there
exists a neighborhood U(x) and a time t(x) such that ϕtU(x) ∩ U(x) = ∅
for all t ≥ t(x). Clearly {U(x)}x∈K is an open covering of K, hence we
can extract a finite subcover. Let {Ui}Ni=1 be such a subcover, let {ti} be the
corresponding associated times. If x ∈ K then x ∈ Ui for some i ∈ {1, . . . , N},
and ϕt(x) ̸∈ Ui for t ≥ ti. If ϕt(x) ̸∈ K for all t ≥ ti, then we are done. If
there exists t ≥ ti such that ϕt(x) ∈ K, then ϕt(x) must belong to another
Uj , that will leave forever for t ≥ tj . It is then clear that ϕt(x) cannot remain
in K for a time longer than

∑
i ti, nor can the trajectory return for more than

N times.
If K is invariant then it follows that if x ̸∈ K then ϕtx ̸∈ K for all t ≥ 0.

Thus, once a point exits K, it can never come back. The above argument
then shows that each point must exist forever in a time at most

∑
i ti. □

Corollary 4.1.3 If K ⊂ X is compact and invariant, then either there exists
t ∈ R+ such that ϕ−1

t K = ∅ or NW ∩K ̸= ∅.
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Proof. If NW∩K = ∅, then Lemma 4.1.2 imply that there exists t ∈ R+

such that ϕtK ∩K = ∅, hence ϕ−1
t K = ∅. □

To see the connection to long time behavior and invariant sets, we need
an extra definition

Definition 4.1.4 Given a topological Dynamical System (X,ϕt), t ∈ I ∈
{R,Z,R+,N}, and x ∈ X we call ω(x) (the ω-limit set of x) the accumulation
points of the set ∪t≥0{ϕt(x)}. If t belongs to R or Z, then the α-limit set is
defined analogously with t ≤ 0.

Problem 4.4 Show that the ω-limit sets are closed sets such that ϕt(ω) = ω
(hence if ϕt is invertible then the omega limits are invariant).

Theorem 4.1.5 For each x ∈ X we have ω(x) ⊂ NW . In addition, if X is
a proper metric space,2 then for each z ∈ X either holds limt→∞ d(ϕt(x), z) =
∞, or limt→∞ d(ϕt(x), NW ) = 0.

Proof. Let x ∈ X. If z ∈ ω(x), then for each neighborhood U of z we
have {tn} ⊂ R+ such that ϕtn(x) ∈ U . Thus ϕtn+1−tnU∩U ⊃ {ϕtn+1

(x)} ≠ ∅.
Hence z ∈ NW .

Let us come to the second part of the Theorem. If the two alternatives
do not hold, then there exists a compact set (a closed ball) that contains
infinitely many points of the orbit of x all at a finite distance from NW . This
implies that the orbit has an accumulation point (hence an element of ω(x))
not in NW contradicting the first part of the Theorem. □

In particular the above Theorem shows that all the interesting long time
dynamical behavior happens in a neighborhood of the non-wandering set.

Problem 4.5 Given a discrete topological dynamical system (X,T ), let A =
NW (T ). Since A is forward invariant, one can consider the restriction S of
T to A. Find an example in which NW (S) is strictly smaller than A.

Definition 4.1.6 Given a Dynamical System (X,ϕt), a point x ∈ X is called
recurrent if x ∈ ω(x). The set of recurrent points is called R({ϕt}), or simply
R if no confusions arises.

Problem 4.6 Consider a linear system ẋ = Ax. Show that if A is hyperbolic,
then NW = {0}.

2That is, a distance d is defined and the base for the topology is made of the sets
Br(x) = {y ∈ X : d(x, y) < r} (this is called a metric space). A proper metric space is
one in which all the closed balls {y ∈ X : d(x, y) ≤ r} are compact.
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Problem 4.7 Consider a saddle-node bifurcation in one dimension. Show
that in a small neighborhood of the bifurcation point, when two fixed points
x1, x2 are present, NW = {x1, x2}. Show that this may not be the case in
higher dimensions.

Problem 4.8 Consider the ODE ẋ =

(
0 −ω0

ω0 0

)
, ω0 > 0, 2πω0 ̸∈ Q. Show

that NW = R2, while for each x ∈ R2 holds ω(x) = {z ∈ R2 : ∥z∥ = ∥x∥}.

Problem 4.9 In the case of the Hopf bifurcation in two dimensions when
the fixed point O is repelling, and hence the periodic orbit γ is attracting,
show that (in a neighborhood of O for the bifurcation parameter small enough)
NW = {O} ∩ γ.

Remark 4.1.7 We have thus seen examples in which the ω-limit sets can be
a point or a periodic orbit, do other possibilities exists?

This question is going to lead us on a long journey.

4.2 Poincaré-Bendixon

The first result is for surfaces.

Theorem 4.2.1 (Poincaré-Bendixon) Let Σ be a surface on which the
Jordan Theorem applies and (Σ, ϕt) a flow generated by a C1 vector field.
Assume that x ∈ Σ has a compact omega limit set which contains no fixed
points, then ω(x) is a periodic orbit.

Proof. Let x be a point with a compact omega limit set which does
not contain fixed points, then let ξ ∈ ω(x). Note that ω(ξ) ⊂ ω(x) since if
z ∈ ω(ξ) then there exists {tn} such that d(z, ϕtn(ξ)) ≤ n−1. But then, since
the flow is C1, there are neighborood of Un of ξ such that d(z, ϕtn(ζ)) ≤ 2n−1

for each ζ ∈ Un. Since ξ ∈ ω(x), there eists times {sn} such that ϕsn(x) ∈ Un,
hence d(z, ϕsn+tn(x)) ≤ 2n−1, that is z ∈ ω(x).
Our first goal is to show that ω(ξ) contains a closed orbit.
Let V be the vector field generating the flow, and ζ ∈ ω(ξ). By assumption
V (ζ) ̸= 0, let n be a vector normal to V (ζ). Let S be the line passing through
ζ and parallel to n. Let S ⊂ S be a segment containing ζ and such that, at
each point z ∈ S, V (z) ̸= 0 and ⟨V (z), V (ζ)⟩ ≥ 1

2∥V (z)∥∥V (ζ)∥. Since ζ is an
accumulation point of {ϕt(ξ)}t∈R+

, the trajectory of ξ intersects S infinitely
many times, let {ϕtn(ξ)}n∈N ⊂ S be the intersections of {ϕt(ξ)}t∈R+

with S.
We can then consider the close curve γn consisting of {ϕt(ξ)}t∈[tn,tn+1] and
the segment In ⊂ S connecting ϕtn(ξ) with ϕtn+1

(ξ). If In consists of just one
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point, then the trajectory is periodic. Otherwise, by Jordan’s Curve Theo-
rem, such a curve divides the plane into two open connected components.
Let us call An the component of the side of S toward which point V (ζ), and
Bn the other. Note that a trajectory can cross the boundary of the two com-
ponents only through I. Therefore, a trajectory can change the connected
component only going from Bn to An through I. Consequently, trajectories
in An stay in An forever. In addition, the trajectory ϕtn+1+s(ξ) for small s > 0
enters in An, thus An+1 ⊂ An. Moreover, if the trajectory is not periodic,
then the inclusion is strict as ϕtn(ξ) ̸∈ An+1. In addition, since the trajectory
accumulates to ζ, it follows that ζ ∈ An for all n.
Next, we follow the trajectory of ϕt(x). By assumpton there exists a sequence
of times {sn} such that ϕsn(x) converges to ϕt1(ξ). Thus ϕsn+t2−t1(ξ) con-
verges to ϕt2(ξ). But this means that, for t large enough, ϕt(x) ∈ A2. Hence,
the trajectory will remain in A2 forever, and since ϕt1(ξ) ̸∈ A2, it cannot
accumulate to it, contrary to the hypothesis.
It follows that it must be ϕt1(ξ) = ϕt2(ξ), that ξ belongs to a periodic trajec-
tory of period T = t2 − t1.

3

Next, we show that ω(x) consists of exactly a periodic orbit. If ϕsn(x) is close
enough to ϕt1(ξ), then it will intersect again S, and, arguing as before, will
do so closer to ϕt1(ξ), hence it will intersect S, infinitely many time converg-
ing monotonically to ϕt1(ξ). Thus, for each ε there exists n̄ such that ϕt(x)
will be in an ε-neighborhrood of the periodic trajectory for each t ≥ sn̄. To
conclude let ξ′ ∈ ω(x) \ {ξ}. Then ϕt(x) must accumulate to ξ′, and the
previous argument shows that ξ′ must belong to an ε-neighborhood of the pe-
riodic trajectory. Since ε is arbitrary, it follows that ξ′ belongs to the periodic
trajectory, that is, ω(x) is just one periodic trajectory. □

4.3 Equations on the Torus

The conclusion of our previous chapters is that a generic family of vector
fields in R2 can have a very limited choice of bounded invariant sets: either a
fixed point and the associated stable and unstable manifolds, or (by Poincaré-
Bendixon) a periodic orbit. Yet, one can have a differential equation on
different manifolds, notably the torus T2 = R2/Z2.

Problem 4.10 Consider the vector fields V (x) = ω ∈ R2 on T2 and show
that the orbit of the associated flow can be everywhere dense.

The above problem shows that on T2 it is possible to have a new ω-limit
set: T2 itself! Can such a situation take place for an open set or a dense set
of vector fields? To understand the situation, it is useful to generalize the
setting of Problem 4.10.

3For a slighly more detailed argument, see [HS74].
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Definition 4.3.1 A closed non self-intersecting curve γ ∈ Cr(S1,T2), r ≥ 1,
is called a global (cross) section for the flow associated to V if

a) γ′ is always transversal to V .4

b) for each x ∈ T2 there exists t ∈ R+ such that ϕt(x) ∈ γ.

Given a cross section γ we can define the return time τ : γ → R+ as the first
t > 0 such that ϕt(x) ∈ γ and the Poincaré map f : γ → γ as f(x) = ϕτ(x)(x).

Problem 4.11 Show that if γ ∈ Cr(S1,T2) is a global cross section and f is
the associate Poincaré map, then f ∈ Cr and (γ, f) is a Dynamical Systems
that describe the dynamics of the flow when it returns to γ.

Lemma 4.3.2 (Siegel) Let V ∈ Cr(T2,R2) be a nowhere zero vector field.
If the associated flow has no periodic orbits, then there exists a global section
γ ∈ Cr. In addition, if f : γ → γ is the Poincaré map associated to the flow,
then f ∈ Cr(γ, γ).

Proof. The (nice) idea is to construct a section close to an orbit. Let
ϕt be the flow associated with the vector field V . Note that Corolalry 4.1.3
implies NW ̸= ∅. Let x ∈ NW and consider an open segment, of length less
than 1/2, Σ, x ∈ Σ, transversal to the vector field (similar to the construc-
tion in the Flow Box Theorem 2.1.1). Since x is non-wandering and due to
Theorem 2.1.1, there exists z ∈ Σ, z ̸= x, and t ∈ R such that ϕt(z) ∈ Σ, this
being the first return to Σ. Since there are no periodic orbits z ̸= ϕt(z).

We will construct a global section close to {ϕs(z)}ts=0 ∪ Σ. Note that the
closed curve that one obtains joining z to ϕt(z) along Σ cannot be homotopic
to a point. Otherwise, the curve would have an interior homeomorphic to a
disk in R2 from which the orbits cannot escape either in the future or the
past. By the Poincaré-Bendixon theorem, this would imply the existence of a
periodic orbit, contrary to the hypothesis. To properly explain the construc-
tion it is convenient to introduce a flow box type system of coordinates near
such an orbit.

For s ∈ [−1/2, 1/2] let φ(s) = z + s(x − z)∥x − z∥−1 ⊂ Σ. Clearly
φ(0) = z, φ(∥x − z∥) = x, and holds φ([−1/2, 1/2]) ⊃ Σ. Next, for each
y ∈ Σ let s ∈ [−1/2, 1/2] be the unique number such that y = φ(s) and
τ(s) = inf{t > 0 : ϕt(y) ∈ Σ} be the first return time to the section. By
Theorem 2.1.1 and Corollary 1.1.14 there exists δ ∈ (0, 2∥x − z∥) such that
τ ∈ Cr([−δ, δ],R+). For A := {(s, t) ∈ R2 : s ∈ [−δ, δ], t ∈ [0, τ(s))} let us
define the map Ξ : A → T2 by Ξ(s, t) = ϕt(φ(s)). Note that this map is Cr

and invertible (provided δ is chosen small enough), hence it can be used as a
change of coordinates. Note that this are essentially the coordinates used in

4That is, the vectors {γ′(t), V (γ(t))} span R2 for all t ∈ S1.
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the flow box theorem, only now they are used in a long neighborhood of an
orbit.

The next step is to understand how the orbit comes back. Indeed, if
we use standard flow box coordiantes (s′, t′) in a neighborhood of Σ, then
(s, t) = (s′, t′) for t ≥ 0 but for t close to τ(s) we are again in the neighborhood
of Σ corresponding to t′ < 0. The change of coordinates can then be described
by the function θ such that ϕτ(s)φ(s) = φ(θ(s)). Then (s, t) corresponds to
(θ(s), t− τ(s)).

Problem 4.12 Let τ0 = τ(0), then ⟨x− z, d
dsϕτ0(φ(s))|s=0⟩ > 0.5

The above problem means simply that θ′ > 0.
To conclude we must analyze two possibilities: either ϕτz is closer to x

than z or vice versa. The two cases are treated exactly in the same way so
we discuss only the first, that is θ(0) > 0. We can then chose ε ∈ (0, δ)
such that θ(−ε) > 0. Consider a line (ε − 2ετ−1

0 t, t), t ∈ [0, τ0], obviously it
is always transversal to the flow. If we look at it in the standard flow box
coordinates in a neighborhood of Σ we see that it start as a decreasing curve
and, since θ′ > 0, it reappears (for t′ < 0) as a still decreasing curve. It is then
easy to see that it can be smoothly deformed, in a neighborhood of Σ, into a
closed curve that is always transversal to the flow. We have thus constructed
a smooth transversal section it remains to show that it is global.

Problem 4.13 Consider a piecewise smooth closed curve Γ in T2. Show that
T2 \ Γ is either disconnected (and one connected component is isomorphic to
an open set in R2) or it is isomorphic to a cylinder.

If the above section would not be global, then there would be trajectories
that stay forever in a set (either a piece of R2 or a cylinder) to which Poincaré-
Bendixon applies. But this would imply the presence of a periodic orbit,
contrary to the asumption. □

Problem 4.14 Show that, in the setting of the above theorem, the sign of f ′

cannot change and that the condition f ′ ̸= 0 is generic.

It is important to notice that, given a topological Dynamical System
(M,f) and a function τ ∈ C0(M,R+ \ {0}) (called roof function) one can
always see them as a Poincaré section and a return time of a flow. The re-
sulting object is called a suspension or standard flow and is constructed as
follows.

Consider the set Ω̃ = {(x, s) ∈M ×R+ : s ∈ [0, τ(x)]} with the topology
induced by M × R+ equipped with the product topology.

5This is really a consequence of the fact that the torus is orientable, yet it can be proven
directly in several ways.
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Problem 4.15 Consider the relation (x, s) ∼ (y, t) iff x = y and s = t or
s = τ(x), t = 0 and y = f(x) or t = τ(y), s = 0 and x = f(y). Prove that it
is an equivalence relation.

One can then consider the space of the equivalence classes Ω = Ω̃/ ∼ with the
induced topology, this is the space on which the flow is defined: let t ≤ inf τ ,
define

ϕt(x, s) =

{
(x, s+ t) if t < τ(x)− s

(f(x), t+ s− τ(x)) if t ≥ τ(x)− s

and extend ϕt by the group property.

Theorem 4.3.3 Let V ∈ C2(T2,R2) be a nowhere zero generic vector field
with no periodic orbits. Then for each point y ∈ T2, ω(y) = T2.

Proof. By Lemma 4.3.2 we have a smooth global section γ with a
Poincaré map g. Let h : S1 → γ be a parametrization of γ. If we set
f = h−1 ◦ g ◦ h, we can consider the return map as C2 map on the unit circle
such that f ′ ̸= 0 at each point. Note that a periodic point for the map f
corresponds to a periodic orbit for the flow, hence f cannot have periodic
orbits. The claim follows then by Lemma 4.5.2 in which it is proven that a
smooth circle map with no periodic orbits has dense orbits. □

The final natural question is:
In the hypotheses of Theorem 4.3.3, is it possible to conjugate the flow to
a rigid rotation of the torus? if yes, to which one and how smooth is the
conjugation?

Motivated by the above question and results, we will now study orientation-
preserving circle maps. It turns out to be interesting and helpful to study their
properties in relation to their increasing smoothness.

4.4 Circle maps: topology

Here, and in the following, we study a Dynamical System (S1, f) where f
is an orientation-preserving homeomorphism of S1 (i.e., f is invertible and
f(S1) = S1).

To begin with, we assume continuity only.
First of all, note that one can lift the map f to the universal cover R of

the circle, that is defining π : R → S1 as π(x) = x mod 1, it is possible to
find F ∈ C0(R,R) such that

f ◦ π = π ◦ F.
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Problem 4.16 Construct explicitly such an F . Show that

F (x+ 1) = F (x) + 1.

Problem 4.17 If there exists L > 0 such that −L ≤ am+n ≤ an + am + L
for all n,m ∈ N, then the limit limn→∞

an

n exists.

Lemma 4.4.1 Let f : S1 → S1 be an homeomorphism and F ∈ C0(R,R) a
lift of f . Then the limit

τ(f) := lim
|n|→∞

Fn(x)

n
mod 1

exists and is independent both from the point and the lift.

Proof. Applying Problem 4.17 to the sequence Fn(x) the existence of
the limit follows. The other assertions depend on the already mentioned
equality F (x+ 1) = F (x) + 1. □

Lemma 4.4.2 Show that τ(f) ∈ Q if and only if f has a periodic orbit.

Proof. If fq(x) = x and F is a lift then it must be F q(x) = x+p for some
p ∈ N. This immediately implies F kq(x) = x + kp and hence τ(f) = p

q ∈ Q.

On the other hand, if τ(f) = p
q ∈ Q, we have τ(fq) = p mod 1 = 0. It thus

suffices to prove that τ(f) = 0 implies f has a fixed point. Let us do a proof
by contradiction: we suppose that f has no fixed points. Note that this is
the same than saying that G(R) ∩ Z = ∅ where G(x) = F (x) − x. Since G
is continuous this implies maxG − minG < 1. Let α = minG, β = maxG.
Note that, by properly choosing the lift F , one can insure tat [α, β] ⊂ (0, 1).
Then

Fn(x) = G(Fn−1(x)) + Fn−1(x) ≥ α+ Fn−1(x) ≥ nα

hence τ(f) ≥ α, analogously τ(f) ≤ β which contradicts τ(f) = 0. □

Problem 4.18 Given f ∈ C0(S1, S1), for any interval I ⊂ S1, if f(I) ⊂ I,
then f has a fixed point in I.

Problem 4.19 If τ(f) ̸∈ Q, then for each n ∈ N \ {0} and x, y ∈ S1,
{fk(y)}k∈N ∩ [x, fn(x)] ̸= ∅.

Problem 4.20 If τ(f) ̸∈ Q, then for each x ∈ S1 there exist infinitely many
n ∈ Z such that {fkx}|k|<n ∩ [x, fnx] = ∅.

Lemma 4.4.3 For any homomorpfism f : S1 → S1 with τ(f) ̸∈ Q and any
x, y ∈ S1 holds ω(x) = ω(y).
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Proof. If z ∈ ω(x), then there exists {nj} such that limj→∞ fnj (x) = z.
But then Problem 4.19 implies that for each j ∈ N there exists kj ∈ N such
that fkj (y) ∈ [fnj (x), fnj+1(x)]. Clearly limj→∞ fkj (y) = z, thus z ∈ ω(y).
Reversing the role of x and y the Lemma follows. □

Problem 4.21 Let f be a homeomorphism of S1 with irrational rotation
number show that for each ε > 0 there exists a homeomorphism fε, ∥f −
fε∥∞ ≤ ε, with τ(fε) ∈ Q.

Problem 4.22 Note that τ is a map from circle homomorphisms to [0, 1].
Show that it is a continuous map.

Problem 4.23 Let fλ be a one parameter family of homeomorphisms such
that τ(f0) < τ(f1). Suppose that τ(fλ) is increasing, what can you say on the
possible intervals in which it is not strictly increasing?

4.5 Circle maps: differentiable theory

In this section we investigate the consequences of assuming that the map
enjoys some regularity.

Lemma 4.5.1 Assume f ∈ C2(S1, S1) and ln f ′ ∈ C1(S1,R).6 If τ(f) ̸∈ Q
and x0 ̸∈ ω(x0), then

∞∑
n=0

(fn)′(x0) <∞.

Proof. Let U(x0) ∋ x0 be the largest open interval not intersecting
ω(x0), call K(x0) its closure. First of all, the invariance of the ω-limit set im-
plies {fn(∂K(x0))}∞n=1 ⊂ ω(x0). This implies that either fnK(x0)∩U(x0) =
∅ or fnK(x0) ⊃ K(x0) but the latter would imply the existence of a fixed
point for fn, which is impossible, hence all the sets {fnU(x0)}n∈Z must be
disjoint. We can now conclude thanks to a typical distortion estimate: let

Kn(x0) := fn(K(x0)), then, setting D :=
∣∣∣ f ′′

f ′

∣∣∣
∞
,

1 >
∑
n∈N

|Kn(x0)| =
∑
n∈N

∫
K(x0)

(fn)′(x)dx =
∑
n∈N

(fn)′(x0)

∫
K(x0)

(fn)′(x)

(fn)′(x0)
dx

≥
∑
n∈N

(fn)′(x0)

∫
K(x0)

e−
∑n−1

k=0 | ln f ′(fk(x))−ln f ′(fk(x0))|dx

≥
∑
n∈N

(fn)′(x0)

∫
K(x0)

e−
∑n−1

k=0 D|Kk(x0)|dx ≥ |K(x0)|e−D
∑
n∈N

(fn)′(x0).

6These hypotheses can be slightly weakened, see [HK95].
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□

Lemma 4.5.2 If τ(f) ̸∈ Q, then, for all x ∈ S1, ω(x) = S1.

Proof. We use the same notation as in Lemma 4.5.1. If the Lemma is
false then there exists x ∈ S1 such that ω(x) ̸= S1. But by Lemma 4.4.3
all the omega limit sets are equal, hence there exists x0 ∈ S1 such that
x0 ̸∈ ω(x0). Note that if there exists n ∈ N, n ̸= 0, such that fn(x0) ∈ K(x0)
then, by the invariance of ω(x0), it must be fn(x0) ̸= ∂K(x0) ⊂ ω(x0) and
then Problem 4.19 implies that there are infinitely many k such that fk(x0) ∈
[x0, f

n(x0)] ⊂ K(x0), but this is impossible since such an interval does not
contain accumulation points of the forward trajectory. Thus, for each n ∈ Z,
n ̸= 0, fn(x0) ̸∈ K(x0), accordingly there exist δ > 0 such that each interval
[x0, f

n(x0)] has length at least δ.
Next, choose L > 0, by Lemma 4.5.1 there exists m ∈ N such that

(fn)′(x0) < L−1, for all n > m. We can then apply Problem 4.20 to find an
|n| > m such that {fkx}|k|<n ∩ [x0, f

n(x0)] = ∅. Suppose n < 0 and let J− =

[x0, f
n(x0)], then for each k ∈ {1, . . . ,−n− 1}, fkJ− = [fkx0, f

n+kx0], since
the extreme of such an interval do not belong to J it follows that fkJ−∩J− = ∅
(otherwise the first would be contained in the second and there would be a
fixed point). Thus, setting J = [x0, f

|n|(x0)], for all k ∈ {1, . . . ,−n − 1},
holds fkJ ∩ J = ∅. The same result follows, setting J− = [x0, f

−n(x0)] , for
n > 0. Finally we conclude with another distortion argument

|f−|n|J | =
∫
J

(f−|n|)′(x)dx =
1

(f |n|)′(x0)

∫
J

(f |n|)′(f−|n|(f |n|(x0))

(f |n|)′(f−|n|x)
dx

≥ 1

(f |n|)′(x0)

∫
J

e−
∑|n|−1

k=0 D|fkJ|dx ≥ Le−Dδ.

Then choosing L > eDδ−1 leads a length of |f−|n|J | larger than one, which
contradicts the fact that f is an homeomorphism. □

The above fact can be used to prove the following result (due to Poincaré).

Theorem 4.5.3 If τ(f) = ω ̸∈ Q, then f is C0-conjugate to Rω(x) = x + ω
mod 1.

Proof. See [HK95] Theorem 11.2.7. □

4.6 Circle maps: smooth theory

We have seen that the qualitative behavior of smooth circle maps with ir-
rational rotation number is similar to the behavior of the rigid rotation in
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Problem 4.10. What it is not clear is if the two dynamics can be smoothly
conjugated (i.e. in the spirit of the flow box theorem, but globally). This
latter problem turns out to be extremely subtle and to require much finer
number theoretical consideration than distinguishing between rational and
irrationals.

Since we have seen that more smoothness allows to obtain stronger results,
it is natural to start by considering analytic functions.

To make the following easier, we will limit ourselves to the case of a maps
close to the identity. That is maps with a covering F : R → R of the form
F (x) = x+ ω + f(x), where f(x+ 1) = f(x) is “small”.

4.6.1 Analytic KAM theory

To define the sense in which f is small we assume first that f is an analytic
function. That is f is a restriction to the real axes of a function, that abusing
notation we will still call f , holomorphic in a strip. Let Dα = {z ∈ C :
|ℑ(z)| ≤ α

2π} and consider the function space

Bα = {g ∈ C0(Dα,C) : g(z + 1) = g(z) ∀z ∈ Dα , g holomorphic in D̊α}.

This is a Banach space when equipped with the norm ∥g∥α = supz∈Dα
|g(z)|.

Theorem 4.6.1 If τ(F ) = ω and there exist α0 ∈ (0, 1), C0 > 0 such that if
∥f −

∫
S1 f∥α0

≤ C0α
3
010

−10 and ω > 0 satisfies∣∣∣∣ω − p

q

∣∣∣∣ ≥ C0

q2

for each p, q ∈ N, then there exists h ∈ Bα0/2 such that, setting H(x) =

x+ h(x), ∥h∥α0/2 ≤ 3C
− 1

3
0 ∥f∥

1
3
α0 and, for all x ∈ R,

H−1 ◦ F ◦H(x) = x+ ω. (4.6.1)

A natural question is: do irrational numbers with the above properties exist?
The answer is yes (for example, all the quadratic irrationals satisfy such in-
equalities), but a bit of theory is needed to see it. For a quick introduction
to these problems solve the Problems 4.28, 4.29, 4.30, 4.31, 4.32, 4.33, 4.34.

Remark 4.6.2 Note that we can always reduce to the case
∫
f = 0 by sub-

tracting the average to f and adding it to ω. As an exercise, you can show
that given the map F (x) = x + ω + ξ + f(x), with f zero average and norm
small as in Theorem 4.6.1, there exists a ξ for which the map is conjugated
to x+ ω.
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Remark 4.6.3 The unaware reader can be horrified by the 10−10 in the state-
ment of the above theorem. Such a ridiculous number is partly due to my
prioritizing readability over optimality, but it is also inherent to the method.
It is well known among specialists that obtaining optimal estimates for KAM-
type theorems is a very challenging problem. Indeed, it is a field of research
currently active.

Proof of Theorem 4.6.1. First of all remark that, setting f̂0 =
∫
S1 f ,

we have
ω + f̂0 − ∥f − f̂0∥α0

≤ τ(F ) ≤ ω + f̂0 + ∥f − f̂0∥α0

thus, since τ(F ) = ω,

|f̂0| ≤ ∥f − f̂0∥α0
. (4.6.2)

Next, note that if H is invertible, then equation (4.6.1) is equivalent to, for
each z ∈ Dα0/2,

h(z + ω)− h(z) = f(z + h(z)). (4.6.3)

In fact, we are interested to solving the above equation only for real z. In the
following to avoid confusion I will use z for a complex variable and x for a
real one.

It is natural to introduce the linear operator Lωg(x) = g(x+ω)− g(x). If
such an operator were invertible, then we could write

h = L−1
ω f ◦H, (4.6.4)

that looks like a fixed point problem and hopefully can be studies with known
techniques.

We have thus to study the operator Lω. The best is to compute it in
Fourier series:

Lωg(x) =
∑
k∈Z

e2πikx(e2πiωk − 1)ĝk

where g(x) =
∑

k∈Z e
2πikxĝk. Thus, provided ĝ0 = 0,

L−1
ω g(x) =

∑
k∈Z\{0}

e2πikx
ĝk

e2πiωk − 1
.

Thanks to the fact that ω ̸∈ Q, the coefficients in the above formula are well
defined. Yet, it remains the issue of the convergence of the series. Indeed, the
coefficients can be very large since,7∣∣e2πiωk − 1

∣∣ ≥ 2 inf
p∈N

|ωk − p| ≥ 2C0|k|−1.

7Note that |eix − 1| ≥ | sinx| ≥ 2x
π
, provided x ∈ [0, π/2]. On the other hand if

x ∈ [π/2, π], then |eix − 1| ≥ |1 − cosx| ≥ 1. Hence we can use the simple, but not very
sharp, estimate |e2πix − 1| ≥ infp∈Z 2|x− p|.
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This is the main difficulty of the present problem: the infamous small divisors.
Clearly, due to the small divisors L−1

ω is not a bounded operator. This makes
it very hard to study directly (4.6.4). To bypass this problem we need an
idea.

The idea that we will use if due to Kolomogorov and goes as follows:
instead of solving (4.6.4) consider the change of variables H0(x) = x+ h0(x)

where h0 = L−1
ω (f − f̂0). Of course such a change of variable it is not the

right one since

h0(x+ ω)− h0(x) = f(x)− f̂0, (4.6.5)

yet one can try to write

H−1
0 ◦ F ◦H0(x) = x+ ω + f1(x) (4.6.6)

and hope that f1 is much smaller that f . If this is the case one can iterate the
procedure and hope that it converges to a limiting change of variables that is
the one we are looking for.

To implement the above idea the first thing we need is to connect the
analysis via Fourier series to the analytic properties of the functions.

Consider the norm

|g|α :=
∑
k∈Z

eα|k||ĝk|.

Let us call Bα the Banach space of the periodic functions (of period one) on
R equipped with the above norm.

Note that, for β < α,8

|L−1
ω g|β ≤

∑
k∈Z

|k|
2C0

eβ|k||ĝk| ≤
|g|α
2C0

sup
k∈Z

|k|e−(α−β)|k|

≤ |g|α
2eC0(α− β)

(4.6.7)

Thus L−1
ω : Bα → Bβ is a bounded operator for each α > β.

8Here we use that, for each n ∈ N and σ > 0,

sup
k∈N

kne−σk ≤ sup
x∈R+

xne−σx =
(n
σ

)n
e−n ≤ e−1σ−nn!.

The last inequality is an application of Stirling formula. If you do not remember it, here is
the baby version used above,

n! = e
∑n

k=1 ln k ≥ e
∫n
1 ln xdx = en lnn−n+1 = nne−n+1.
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The point is that there is a connection between the above Banach spaces,
namely we can define Ξ : Bβ → Bα, by Ξg(x) = g(x), for all x ∈ R.9 To see
the relation between the norms, let us compute the Fourier coefficients

[Ξ̂g]k =
1

i

∫ 1

0

e2πikxg(x)dx

Problem 4.24 Show that |[Ξg]k| ≤ e−α|k|∥g∥α.

Hence, for α > β, ∥Ξ∥Bα→Bβ
≤ 2(1 − eβ−α)−1. Note also that we can easily

define the inverse: if g ∈ Bα, then define

Ξ−1g(z) =
∑
k∈Z

e2πikz ĝk

Problem 4.25 Verify that the above is really the inverse of Ξ.

If g ∈ Bα, then

∥Ξ−1g∥α ≤
∑
k∈Z

e|k|α|ĝk| = |g|α.

Thus ∥Ξ−1∥Bα→Bα ≤ 1.

Problem 4.26 Show that, for each α > β, α−β < 2, setting h0 = Ξ−1L−1
ω Ξ(f−

f̂0), holds

∥h0∥β ≤ 4∥f − f̂0∥α
C0(α− β)2

∥h′0∥β ≤ 64π

C0(α− β)3
∥f − f̂0∥α.

The point of the spaces Bα is that the equation (4.6.6) for f1 reads

f1(x) = h0(x)− h0(x+ ω + f1(x)) + f(x+ h0(x)). (4.6.8)

To study such equation in Bα is highly non trivial, while Bα is much better
suited to estimate the norms of composition of functions.

To study (4.6.8) in Bα the first step is to verify that it makes sense.
Obviously one can see it as the restriction to the real axes of an equation
involving functions defined on the complex plane, yet it is necessary to check
that the composition is well defined, that is we have to carefully analyze
domains and ranges of the various functions. For later use we carry out all
the needed estimates in the following Lemma.

9In other words we simply take the restriction of the function to the real axis.
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Lemma 4.6.4 Given functions f ∈ Bα and h ∈ Bβ, α > β > α/2 such that,

setting F (z) = z + ω + f(z), we have τ(F ) = ω, ∥f − f̂0∥α ≤ α−β
2π and h

satisfies (4.6.5), it follows that ∥h∥β ≤ α−β
16π , ∥h′∥β ≤ 1

16 , H(z) = z + h(z) is
invertible, H−1 ∈ Bγ , γ ≤ 2β − α, and there exists a function f1 ∈ Bγ with
∥f1 −

∫
S1 f1∥γ ≤ 1

2∥f −
∫
S1 f∥α satisfying

H−1 ◦ F ◦H(z) = z + ω + f1(z) =: F1(z).

Proof. First of all H is invertible when restricted to the real axis since
H ′ ≥ 1

2 . Let H
−1(z) = z + ψ(z), clearly

ψ(z) = −h(z + ψ(z)).

So the inverse is the fixed point of the operator K(ψ)(z) = −h(z + ψ(z))
which is well defined on the set A = {ψ ∈ Bγ : ∥ψ∥γ ≤ α−β

2π }. It is easy to
verify that such a fixed point exists and is unique.

Note that the function f1 must satisfy equation (4.6.8). To solve (4.6.8)
we must look for a fixed point for the operator

K(φ)(z) = h(z)− h(z + ω + φ(z)) + f(z + h(z))

on the set A = {φ ∈ Bγ : ∥φ − f̂0∥γ ≤ 1
4∥f − f̂0∥α}. Note that the

composition of functions is well defined, hence so is K.
Let us check that K(A) ⊂ A.

K(φ)(z)− f̂0 = h(z)− h(z + ω) + h(z + ω)− h(z + ω + φ(z)) + f(z + h(z))− f̂0

= f(z + h(z))− f(z) + h(z + ω)− h(z + ω + φ(z)).

Thus, using the estimate in Problem 4.35 and recalling (4.6.2),

∥K(φ)−f̂0∥γ ≤ ∥f ′∥β∥h∥γ+∥h′∥β∥φ∥γ ≤ 1

8
∥f∥α+

1

16
∥φ−f̂0∥γ+

1

16
|f̂0| ≤

1

4
∥f∥α.

In addition, if φ, φ̃ ∈ A, then

∥K(φ)−K(φ̃)∥γ ≤ ∥h′∥β∥φ− φ̃∥γ ≤ 1

16
∥φ− φ̃∥γ .

Thus, by the usual contraction argument, there exists f1 ∈ A such that
K(f1) = f1. On the other hand F1 is conjugated to F and hence it has
rotation number ω. Thus (4.6.3) implies |

∫
S1 f1| ≤ ∥f1 −

∫
S1 f1∥γ and∥∥∥∥f1 − ∫

S1

f1

∥∥∥∥
γ

≤
∥∥∥∥f1 − ∫

S1

f0

∥∥∥∥
γ

+

∣∣∣∣∫
S1

f0 − f1

∣∣∣∣ ≤ 1

2
∥f − f̂0∥α.

□
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Since we need to restrict the domain several time it is convenient to do
it in a systematic fashion. Let ρk := e−kτα, and apply Lemma 4.6.4 with
β = ρ2 and γ = ρ4. A simple computation shows that the condition on β, γ
are satisfied if e−τ ≥ 2

3 . Then, setting ε = ∥f − f̂0∥α, Lemma 4.6.4 applies

provided ε ≤ min{ τα
πe ,

C0τ
3α3

128e3π }.10 We then choose τ0 = α−1C
− 1

3
0 ε

1
3 . Hence

min{ τα
πe ,

C0τ
3α3

128e3π } = C0τ
3α3

128e3π provided ε ≤ 103e3
√
C0.

We now implement an iterative procedure by setting: f0 = f ,

hn(z + ω)− hn(z) = fn(z) , Hn(z) = z + hn(z) , Fn(z) = z + ω + fn(z),

H−1
n ◦ Fn ◦Hn(z) = z + ω + fn+1(z).

In addition, we set α0 = α, αn+1 = e−4τnαn, εn+1 = εn
2 and τn = α−1

n C
− 1

3
0 ε

1
3
n .

Note that this choices imply that Lemma 4.6.4 can be applied at each stage

of the iteration. Now, if αn ≥ 1
2α0, holds εn = 2−nε, τn ≤ 2α−1

0 2−n/3C
− 1

3
0 ε

1
3 .

This implies αn = α0e
−4

∑n−1
k=0 τk ≥ e−40α−1

0 C
− 1

3
0 ε

1
3 α0 which is always larger

than α0/2 provided ε ≤ C0

[
α0 ln 2

40

]3
. Note that all our condition on ε are

satisfied if ε ≤ 1
5C0α

3
010

−5.

We have thus a sequence of changes of variables Hn(z) = z + hn(z), the
next question is if it exists H(z) = limn→∞H0 ◦H1 ◦ · · · ◦Hn(z). It suffices
to prove that the sequence is uniformly bounded on Dα0/2

|H0 ◦H1 ◦ · · · ◦Hn(z)− z| ≤
n∑

k=0

∥hk∥αk
≤

n∑
k=0

e2εk
C0τ2kα

2
k

≤
∞∑
k=0

2−k/3ε
1
3 e2C

− 1
3

0 ≤ ε
1
3 5e2C

− 1
3

0

Similarly it follows that the Hn form a Chauchy sequence, hence they have

a limit H ∈ Bα0/2 with ∥id−H∥α0/2 ≤ ε
1
3 5e2C

− 1
3

0 . From this it follows also
(see Problem 4.35)

∥1−H ′∥α0/4 ≤ 40πe2ε
1
3

α0C
1
3
0

≤ 1

2
, (4.6.9)

provided ε ≤ 10−10C0α
3. Hence H is invertible and this concludes the proof.

□

10Just use Problem 4.26 and the fact that 1− e−x =
∫ x
0 e−ydy ≥ e−1x, for x ∈ (0, 1), to

check the hypotheses of the Lemma.
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4.6.2 Smooth KAM theory

The final question is: do similar results hold assuming less smoothness? The
answer is yes, yet to explore optimal results it is not an easy task. Here we
content ourselves with a partial, but enlightening, result.

Theorem 4.6.5 For each r > 4,11 if τ(F ) = ω, ∥f−f̂0∥Cr ≤ 10−17C0(r−4)9

and ω > 0 satisfies ∣∣∣∣ω − p

q

∣∣∣∣ ≥ C0

q2

for each p, q ∈ N, then there exists h ∈ C1 such that, setting H(x) = x+ h(x),
H is invertible and

H−1 ◦ F ◦ H(x) = x+ ω.

Proof. The basic idea is to write f = f̂0 +
∑∞

m=0 f̃m where

f̃m(x) =
∑

eam≤|k|<ea(m+1)

f̂ke
2πikx

and a > 1 is a parameter to be chosen later.12 Then one can apply Theorem
4.6.1 one f̃m at a time. Indeed, let αm = b(m+1)e−a(m+1), for some a, b > 0
to be chosen later, where then

∥f̃m∥αm
≤

∑
eam≤|k|<ea(m+1)

|f̂k|eαm|k| ≤
∑

eam≤|k|<ea(m+1)

|f |Cr (2π)−r|k|−reαm|k|

≤
∑

eam≤k<ea(m+1)

2|f |Cr (2π)−re−rameb(m+1)

≤ 2|f |Cre−(ar−a−b)m+a.

If |f |Cr is small enough, we can apply Theorem 4.6.1 to f̃0. Indeed, let F̃0(z) =
z+ω+ ξ0 + f̃0(z), then ξ0 −∥f̃0∥∞ ≤ τ(F0)−ω ≤ ξ0 + ∥f̃0∥∞, so there exists
|ξ0| ≤ ∥f̃0∥∞ such that τ(F0) = ω. Hence, there exist h̃0 such that, setting
H̃0(z) = z + h̃0(z) and F̃0(z) = z + ξ0 + f̃0(z),

H̃−1
0 ◦ F̃0 ◦ H̃0(z) = z + ω =: Rω(z).

The obvious next step is to compute f1 such that, for each n ∈ N,

H̃−1
0 ◦

(
Rω +

1∑
k=0

f̃k

)
◦ H̃0(z) = z + ω + f1(z).

11In fact, by a more sophisticated proof, r > 3 suffices [Her83].
12This choice (a la Panley Wiener) for the decomposition of f is not optimal, yet it makes

the latter computations simpler.
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This is possible if |f |Cr is small enough. We can then try to iterate the above
procedure by applying Theorem 4.6.1 to f1 and so on.

To this end we set up the following iterative scheme: f0 = f̃0, H−1 = id.

For k ∈ N0 let Fk(z) = z + ω + ςk + f̂0 +
∑k

j=0 f̃j(z), τ(Fk) = ω,
∫
S1 fk = 0

Fk(z) = z + ω + ξk + fk(z) ; τ(Fk) = ω (4.6.10)

H−1
k ◦ Fk ◦Hk(z) = z + ω ; Hk(z) = z + hk(z) (4.6.11)

Hk = Hk−1 ◦Hk (4.6.12)

H−1
k ◦ Fk+1 ◦ Hk = Fk+1. (4.6.13)

Note that, for each k ∈ N0,

H−1
k ◦ Fk ◦ Hk(z) = H−1

k ◦ H−1
k−1 ◦ Fk ◦ Hk−1 ◦Hk(z)

= H−1
k ◦ Fk ◦Hk = Rω.

(4.6.14)

The rest of the proof consists in a rather tedious verification that the induction
is well posed and in estimating the norms of the objects involved.

Let us assume by induction that there exists B > 1 such that, for each
k ∈ N and j < k, ∥fj∥αj/2 ≤ B∥f̃j∥αj

. In addition, we writeHk(z) = z+hk(z)
and, setting 3δ := a(r − 4)− b, assume that

∥hk−1∥αk−1/4 ≤ 10−3
k−1∑
j=0

e−δjαj =: 10−3Ak−1

∥h′k−1∥αk/8 ≤ 1

4
− 1

2k + 1
.

Note that this is obviously true for k = 0. Remark that Theorem 4.6.1 implies
that there exists a solution hk ∈ Bαk/4 to (4.6.11) provided ∥fk∥αk/2 ≤ C⋆α

3
k,

with C⋆ = C010
−11. Under the above hypotheses,

∥fk∥αk/2 ≤ B∥f̃k∥αk
≤ 2B|f |Cre−(ar−a−b)k+a

≤ 2B|f |Crb−3(k + 1)−3e−3δk+4aα3
k ≤ C⋆δ

6e−3δkα3
k ≤ C⋆δ

6e−3δkα3
k

provided δ > 0 and |f |Cr ≤ 1
2C⋆B

−1b3e−4aδ6. Thus, by Theorem 4.6.1,

∥hk∥αk/4 ≤ 3C
− 1

3
0 ∥fk∥

1
3
αk/2

≤ 3C
− 1

3
0 C

1
3
⋆ δ

2e−δkαk ≤ 10−3δ2e−δkαk.

Moreover (see Problem 4.35)

∥h′k∥αk/8 ≤ 16π∥hk∥αk/4α
−1
k ≤ 4 · 10−2δ2e−δk < 1/4.

By (4.6.12) it follows

hk(z) = hk(z) + hk−1(z + hk(z)),
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which is well posed in Bαk/4 provided a ≥ 2, since this implies that αk(1+ 4 ·
10−3δ2e−δk) ≤ αk−1. Moreover ∥hk∥αk/4 ≤ 10−3Ak

∥h′k∥αk/8 ≤
[
1

4
− 1

2k + 1

]
(1+ 4 · 10−2δ2e−δk)+ 4 · 10−2δ2e−δk ≤ 1

4
− 1

2k + 2
.

Equation (4.6.13), also recalling (4.6.14), is equivalent to

f̃k+1(z) = fk+1(z) + ξk+1

f̃k+1(z) = ςk+1 − ςk + hk(z + ω)− hk(z + ω + f̃k+1(z))

+ f̃k+1(x+ hk(x)).

(4.6.15)

Since Hk is invertible this implies that f̃k+1 is well defined on the real line.
This implies that

Fk+1(x) =x+ ω + ςk+1 − ςk + hk(x+ ω)− hk(x+ ω + f̃k+1(x)) + f̃k+1(x+ hk(x))

=:x+ ω + g(x).

By induction it follows that, for all q ∈ N,

Fq
k+1(z) = z + nω +

n−1∑
j=0

g(Fj
k+1(x)).

As usual remark that Fq
k+1(z) − z cannot be an integer since otherwise we

would have a periodic point and we would have τ(Fk+1) =
p
q ∈ Q, contrary

to the hypothesis. It follows that for each q ∈ N there exists p ∈ N such that,
for all x ∈ R,

p− 1 ≤ x+ qω +

q−1∑
j=0

g(Fj
k+1(x)) ≤ p.

Since, τ(F ) = ω it follows ∣∣∣∣∣∣1q
q−1∑
j=0

g(Fj
k+1(x))

∣∣∣∣∣∣ ≤ 1

q

hence, by the arbitrariness of q,

|ςk+1 − ςk| ≤
1

4
∥f̃k+1∥∞ + ∥f̃k+1∥∞

Using the above estimate in equation (4.6.15) yields ∥fk+1∥∞ ≤ 4∥f̃k+1∥∞,
hence

|ςk+1 − ςk| ≤ 2∥f̃k+1∥∞. (4.6.16)
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To obtain an estimate of the ∥ · ∥αk+1
norm of f̃k+1 from equation (4.6.15) we

consider the operator K : D → Bαk+1/2, where

D = {φ ∈ Bαk+1/2 : ∥φ∥αk+1/2 ≤ 1

2
B∥f̃k+1∥αk+1

},

defined by

K(φ) = ςk+1 − ςk + hk(z + ω)− hk(z + ω + φ(z)) + f̃k+1(x+ hk(x)).

The operator is well defined if e−a ≤ 1
4 and |f |Cr ≤ e−2a b

4B . Moreover
K(D) ⊂ D provided B ≥ 8. By the usual contraction theorem it follows
∥f̃k+1∥αk+1/2 ≤ 1

2B∥f̃k+1∥αk+1
. Thus ∥fk+1∥αk+1/2 ≤ ∥f̃k+1−

∫
S1 f̃k+1∥αk+1/2 ≤

B∥f̃k+1∥αk+1
, whereby concluding the induction.

The last thing we must prove is that the change of coordinate Hn is con-
vergent. Note that

|H′
n(x)| ≤

n∏
k=0

∥H̃ ′
k∥αk

8
≤

n∏
k=0

e4·10
−2δ2e−δk

≤ e4·10
2δ.

It is then easy to see that the Hn form a Chauchy sequence in C1. The
theorem follows by collecting all the above inequalities and setting B = 8,
a = 2, b = (r−4)/3 and recalling the condition |f |Cr ≤ 1

2C⋆B
−1b3e−4aδ6. □

Problems

4.27. If M is a Cr manifold, f ∈ Cr(M,M) is a diffeomorphism and τ ∈
Cr(M, (0,∞)), show that the associated suspension flow is defined on a
Cr manifold and is Cr.

4.28. Consider the Dynamical System ([0, 1], T ) where

T (x) =
1

x
−
⌊
1

x

⌋
=

1

x
mod 1

(⌊a⌋ is the integer part of a). This is called the Gauss map. Prove that
for each x ∈ Q ∩ [0, 1] holds limn→∞ Tn(x) = 0.

4.29. Prove that any infinite continuous fraction of the form

a0 +
1

a1 +
1

a2 +
1

a3 + ...

with ai ∈ N defines a real number.
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4.30. Prove that, for each a ∈ N,

x =
1

a+
1

a+
1

a+ ...

=
−a+

√
a2 + 4

2
.

4.31. Prove that, for all s > 2, for Lebesgue almost all numbers x ∈ [0, 1]
there exists C > 0 such that13∣∣∣∣x− p

q

∣∣∣∣ ≥ C

qs

for all p, q ∈ N.

4.32. Let fa(x) =
1

a+x . Given a sequence [a0, a1, . . . , an] show that

fa0
◦ · · · ◦ fan

(x) =
1

a0 +
1

a1 + ... 1

an + x

=
pn + pn−1x

qn + qn−1x
,

where pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1, p−1 = 0,
q−1 = 1, p0 = 1, q0 = a0. In addition, show that, for all n ∈ N,
pnqn−1 − qnpn−1 = (−1)n and decude that pn, qn have no common
divisor different from one. Finally, verify that

fa0
◦ · · · ◦ fan

(x)− fa0
◦ · · · ◦ fan+1

(x) =
(−1)n+1[x2 + an+1x− 1]

(qn + qn−1x)(qn+1 + qnx)
.

4.33. Let ω ∈ [0, 1). Show that there exists infinitely many p, q ∈ N such that∣∣∣∣ω − p

q

∣∣∣∣ ≤ 1

q2
.

4.34. Let ω ∈ [0, 1) have the continuous fraction expansion given by [a0, a1 . . . ].
Suppose that infn an > 0 and supn an <∞.14 Show that there exists a
constant c > 0 such that for all p, q ∈ N∣∣∣∣ω − p

q

∣∣∣∣ ≥ c

q2
.

13The composition below is often called iterated function system, it can be naturally
viewed as a time dependent dynamical system.

14Such numbers ω are called of constant type.
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4.35. For each φ ∈ Bα and β < α show that ∥φ′∥β ≤ 2π∥φ∥α

α−β .

4.36. Let us consider an holomorphic function f : U ⊂ C → C where U is an
open set containing zero. Assume that f(0) = 0, f ′(0) = e2πiω. Prove
that, if ω is Diophantine, then it is possible to find an open set D ⊂ U
on which f is conjugated to the map fω(z) = e2πiωz.

Hints to solving the Problems

4.2 Consider a system ([0, 1], T ) such that T is piecewise linear, it has an
unstable fixed point at x0 and an attracting fixed point at z ∈ (0, x0) so
that the set [z, x0] is forward invariant. Finally arrange so that T (0) =
x0 and T (x) ≤ x0 for x near zero.

4.10 The equation ẋ = ω = (ω1, ω2) on T2 has the solution x(t) = (x1(t), x2(t)) =
x0 + ωt mod 1. If one looks at the flow only at the times τn = nω−1

1 ,
then x(nτ) = x0+(0, αn) mod 1 where α := ω2

ω1
. One can then consider

the circle map f : S1 → S1 defined by f(z) = z + α mod 1. Clearly,
if the orbits of such a map are dense in S1 the original flow will be
dense in T2. The density follows in the case α ̸∈ Q. In fact this implies
that f has no periodic orbits. Then {fn(0)} is made of distinct points
and contains a converging subsequence (by compactness) hence for each
ε > 0 exists n̄ ∈ N such that |z − f n̄(z)| ≤ ε, that is f n̄ is a rotation by
less than ε. Hence the orbit {fkn̄(z)} enters in the ε-neighborhood of
each point of S1.

4.11 By assumption the return time τ is well defined for all x ∈ γ. We want
thus to solve the equation ϕt(γ(s)) = γ(r) with s, r ∈ S1, t ∈ R. Thus, if
we set F (s, r, τ) = ϕt(γ(s))− γ(r), we are reduced to solve the equation
F = 0. To do so we can apply the implicit function theorem B.1.1.
Note that, by Theorem 1.1.14 and the assumptions, F ∈ Cr. Since, by
hypothesis, there exists r̄ such that ϕτ(x)(γ(s̄)) = γ(r̄), where γ(s̄) = x,
we have F (s̄, τ(x), r̄) = 0. To apply Theorem B.1.1 we need that ∂r,sF
be invertible, thi is true since

∂r,sF =
(
−γ′(r) V (ϕτ (γ(s))

)
and the section is transversal to the flow. Hence, the result follows from
Problem B.2.

4.13 Suppose that there exists φ(r, s), φ ∈ C0([0, 1]×T1,R), such that φ(1, ·)
is a parametrization of Γ and φ(0, s) = y for some fixed y ∈ T2 (i.e. Γ
is homotopic to y).
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4.12 First of all notice that if ξ(t) is the derivative with respect to the initial
condition and ξ(0) = λV (x(0)), for some λ, then ξ(t) = λV (x(t)) for
all t. Define then ω(x, y) = x1y2 − x2y1 and verify that x, y ̸= 0 and
ω(x, y) = 0 imply that there exists λ ∈ R such that x = λy.15 This
means that ω(ξ(t), V (x(t))) cannot change sign. Hence the result.

4.17 Let lim infn→∞
an

n = a > −∞, then for each ε,m > 0 exists n̄ ∈ N,
n̄ > m, such that |an̄−an̄| ≤ εn̄. Let l ∈ N, l > n̄, and write l = kn̄+r,
r < n̄, then

a− ε ≤ al
l
≤ kan̄ + kL+ ar

l
≤ kn̄(a+ ε) + kL+ ar

l

= a+ ε+
L

m
+
ar
l
.

From which the claim follows.

4.18 Stetting I = [a, b] note that g(x) = f(x)− x has a zero in I.

4.19 This is the same than saying
⋃

k∈N f
−k[x, fn(x)] = S1. Argue by con-

tradiction. Consider f−kn[x, fn(x)], this are contiguous intervals. If
they do not cover all S1, then their length must go to zero. Choose a
subsequence f−kjnx which has a limit, call it z. Then

z = lim
j→∞

f−kjn(x) = lim
j→∞

f−kjn(fn(x)) = lim
j→∞

fn(f−kjn(x)) = fn(z).

Hence f must have a periodic point contradicting τ(f) ̸∈ Q.

4.20 Since τ(f) ̸∈ Q, for each x ∈ S1, fk(x) ̸= f j(x) for all k ̸= j ∈ Z.
By compactness {fk(x)}k∈N has accomulation points, let z be one such
point. Consider the subseguence {fnj (x)}j∈N, such that |fnj (x)− z| ≤
|fk(x) − z| for all k < nj+1 and |fnj+1(x) − z| < |fnj (x) − z|. Then
fk(x) ̸∈ [x, fnj+1−nj (x)] for all k ≤ nj+1 − nj , otherwise there would
exists l ≤ nj+1 such that f l(x) ∈ [fnj (x), fnj+1(x)], but this would
imply that f l(x) is closer to z than fnj (x) which is not possible by the
defintion of nj .

4.26 For the second inequality use Problem 4.35.

4.28 If x = p0

q0
, p0 ≤ q0, then q0 = k1p0 + p1, with p1 < p0, and T (x) =

p1

p0
.

Let q1 = p0 and go on noticing that pi+1 < pi.
16

15By the way, ω is a symplectic form and its existence implies that the manifold is
orientable.

16This is nothing else that the Euclidean algorithm to find the greatest common divisor
of two integers [Euc78, Elements, Book VII, Proposition 1 and 2]. The greatest common
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4.29 Note that if you fix the first n {ai}, this corresponds to specifying
which elements of the partition {[ 1

i+1 ,
1
i ]} are visited by the trajec-

tory of {T ix}, T being the Gauss map. By the expansivity of the map
readily follows that x must belong to an interval of size λ−n for some
λ > 1.

4.30 Note that T (x) = x, where T is the Gauss map. Study periodic contin-
uous fractions of period two.

4.31 To see it consider the sets Ip,q := [pq − Cq−s, pq − Cq−s]. If p ≤ q, then

Ip,q ⊂ [0, 1]. Clearly if α ̸∈ Ip,p for all q ≥ p ∈ N, then α satisfies
the Diophantine condition. But

∑
q≥p | Ip,q| ≤ C

∑∞
q=1 q

−s+1 which
converges provided s > 2 and can be made arbitrarily small by choosing
C small. Accordingly, almost all numbers are Diophantine for any s > 2.

4.32 By induction.

4.33 The result is trivial for rational numbers. By Problem 4.29, ω =
limn→∞ fa0 ◦ · · · ◦ fan(0). Moreover, fa([0,∞)) ⊂ [0, a−1]. Thus for
each n ∈ N there exists xn ∈ [0, a−1

n+1] such that ω = fa0
◦ · · · ◦ fan

(xn).
Thus, be the monotonicity of the fa it follows that either ω ∈ [fa0

◦ · · · ◦
fan

(0), fa0
◦ · · · ◦ fan+1

(0)] or ω ∈ [fa0
◦ · · · ◦ fan+1

(0), fa0
◦ · · · ◦ fan

(0)].
One can then use the equalities of Problem 4.32 to conclude all the
rationals fa0 ◦ · · · ◦ fan(0) satisfy

|ω − fa0 ◦ · · · ◦ fan(0)| ≤
1

an+1q2n
.

You did not like this argument? Here is an interesting alternative. Prob-
lem 4.32 implies that

fa0
◦ · · · ◦ fan

(0) =

n∑
k=0

(−1)k

qkqk−1
.

Since the odd and even partial sum of an alternating series form mono-
tone sequences that converge to the limit from opposite sides, it follows

divisor is clearly the last non-zero pi. This provides also a remarkable way of writing
rational numbers: continuous fractions

p0

q0
=

1

k1 +
1

k2 + ...
+

1

kn

.
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that

|ω − fa0
◦ · · · ◦ fan

(0)| ≤ |fa0
◦ · · · ◦ fan

(0)− fa0
◦ · · · ◦ fan+1

(0)|

≤ 1

an+1q2n
.

4.34 As we have argued at the end of the hint of Problem 4.33, ω ∈ [fa0 ◦
· · · ◦ fan(0), fa0 ◦ · · · ◦ fan+1(0)] =: In. Note that if q < qn then∣∣∣∣pq − pn

qn

∣∣∣∣ ≥ 1

qnq
;

∣∣∣∣pq − pn
qn

∣∣∣∣ ≥ 1

qn+1q
.

But |In| = 1
qnqn+1

so it cannot contain any rational number with de-

nominator strictly less than qn. Accordingly, p
q ̸∈ In and thus |ω− p

q | ≥
1

qn+1q
> 1

qn+1qn
. In other words the fraction determined by [a0, . . . , an]

are the best approximation of ω among all the numbers with denomi-
nator smaller than qn. Since,

|ω − fa0
◦ · · · ◦ fan

(0)| ≥ |fa0
◦ · · · ◦ fan

(0)− fa0
◦ · · · ◦ fan+2

(0)|

≥ 1

(an+1 + 2)q2n
.

the result follows by simple computations.

4.35 Since φ is holomorphic by Rienmann formula we have

φ′(z) =
1

2πi

∫
γ

φ(ζ)

(z − ζ)2
dζ

where γ is a simple closed curve in Dα surrounding z ∈ Dβ . For γ we

chose the curve {z + α−β
2π eiθ}θ∈[0,2π]. Hence

∥φ′∥β ≤ 1

2π

∫ 2π

0

2π|φ|α
α− β

dθ =
2π|φ|α
α− β

.

4.36 Mimic Theorem 4.6.1.

Notes

Lemma 4.3.2 is due to Siegel [Sie45], see [NZ99] for a detailed treatment
of flows on surfaces. A detailed treatment of circle rotations can be found in
[Her83, Her86]. A general treatment of KAM theory for Hamiltonian Systems,
with an emphasis on concrete applications, can be found in [CC95].



Chapter 5

Global behavior: more
stuff is out there

Every Dynamical System studied so far exhibited fairly simple motions,
allowing for a detailed understanding of its behavior. Yet, we have not yet
addressed the problem of long time predictions in systems with more than two
dimensions.

Although this is not the proper occasion for a historical excursus, it is
worthwhile to stress that the first Dynamical Systems were widely investi-
gated have been the planetary motions. Not surprisingly, the main emphasis
in such investigations was accurate prediction of future positions. Neverthe-
less, exactly from the effort of accurately predicting future motions stemmed
the consciousness of the existence of very serious obstructions to such a pro-
gram. Specifically, in the work of Poincaré [Poi87] appeared for the first time
the phenomena of instability with respect to initial conditions, a central con-
cept in the understanding of modern Dynamical Systems. In fact, we will see
briefly that such Instability phenomena can already be observed in very sim-
ple systems–such as a periodically forced pendulum–that exhibit a so called
“homoclinic tangle” [Mos01, PT93].

The realization that many relevant systems are very sensitive with respect
to the initial conditions dealt a strong blow to the idea that it is always possible
to predict the future behavior of a system,1 yet the work of many physicists

1Without going to the extreme of some authors of the eighteenth century arguing that,
given the present state of the universe, a sufficiently powerful mind (maybe God) could
predict all the future. Think, more modestly, of an isolated system and imagine to use
some numerical scheme to try to solve the equations of motion for an arbitrarily long time
with an arbitrary precision.

87
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(and we must mention at least Boltzmann) and mathematicians (in particular,
the so called Russian School with people like Kolmogorov, Anosov, Sinai, but
also some western mathematicians, like Birkhoff, Smale, Ruelle and Bowen,
gave important contributions) led to the understanding that, although precise
predictions were not possible, it was possible and, at times, even easy to make
statistical predictions. The concept of statistical properties of a Dynamical
System will be addressed in the following chapters. This chapter is dedicated
to making precise, in a simple example, the nature of the above mentioned
instability.

5.1 A pendulum–The model and a question

We will study a seemingly trivial example: a forced pendulum. To be more
concrete, let us imagine a pendulum of length l = 1 meter, mass m = 1 kilo-
gram and remember that the gravitational constant (on the Earth’s surface)
is approximately g = 9.8 meters per second squared. The Hamiltonian of the
system reads [Gal83]

H =
1

2l2m
p2 −mgl cos θ, (5.1.1)

where θ is the angle, counted counterclockwise, formed by the pendulum with
the vertical direction (θ = 0 corresponds to the configuration in which the
pendulum assumes the lowest possible position) and p = l2mθ̇ is the associated
momentum. Thus, (θ, p) are the coordinates of the pendulum. The phase
space M where the motion takes place consists of T1 × R.

The equations of motion associated with the Hamiltonian (5.1.1) represent
the motion of an ideal pendulum in a vacuum, feeling only the force of gravity.
Clearly, this is a highly idealized situation with no counterpart in reality.
Every system interacts with the rest of the universe. Thus, the only hope
for the idea of isolated systems to be fruitful is that the interaction with the
exterior does not significantly affect the behavior of the system. Let us try to
see what this can mean in reality.

The first issue is clearly friction. Let us imagine that we have set up the
pendulum in a reasonable vacuum and reduced the friction at the suspension
point so that the loss of energy is negligible on the time scale of a few minutes.
Does such a system behave as an isolated pendulum within such a time frame?
One problem is that the suspension point is still in contact with the rest
of the world. If the pendulum is in a lab not so distant from a street (a
rather common situation), then the traffic will induce some vibrations. It is
then natural to ask: what happens if the suspension point of the pendulum
vibrates?
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In fact, nothing much happens for small pendulum oscillations (this is a
consequence of Komogorv-Arnold-Moser theory, a highly non trivial fact), but
if we start close to the vertical configuration, it is conceivable that a motion
that would be oscillatory for the unperturbed pendulum could gather enough
energy from the external force as to change its nature and become rotatory,
this would create a substantial difference between the unperturbed (ideal) and
the perturbed (more realistic) case.

This is exactly the question we want to address:

Question: Can we really predict the motion for a reasonable time if the initial
condition is close to the vertical ?

We will assume that the frequency of vibration ω is of the order of one
hertz2 and the amplitude of the oscillations is very, very small. Hence, as
good mathematicians, we will call such an amplitude ε. In other words, the
suspension point moves vertically according to the law ε cosωt.

The Hamiltonian of the vibrating pendulum is then given by (see Problem
5.1)

Hε(θ, p, t) =
1

2l2m
p2 −mgl cos θ − εmω2l cosωt cos θ. (5.1.2)

Accordingly, the equation of motion are (see Problem 5.1)3

θ̇ =
∂Hε

∂p
=

p

l2m

ṗ = −∂Hε

∂θ
= −mgl sin θ − εmω2l cosωt sin θ.

(5.1.3)

It is well known that the function H is an integral of motion for the
solutions of (5.1.3) for ε = 0, that is: H computed along the solutions of the
associated equations of motion is constant.4 The physical meaning of H is
the energy of the system. Clearly, the energy Hε is not constant in general
since the vibration can add or subtract energy to the pendulum.

5.2 Instability–unperturbed case

Let us first recall a few basic facts about the unperturbed pendulum. The
equations of motion are given by the (5.1.3) setting ε = 0. It is obvious that

2One hertz corresponds to one oscillation every second, and it can be the order of
magnitude for the frequency of a vibration transmitted through the ground (R waves) at a
reasonable distance. Thus we are assuming ω = 2π.

3Here we write the Hamilton equations associated with the Hamiltonian, see [Arn99,
Gal83] for the general theory.

4See [Arn99, Gal83] for this general fact or do Problem 5.4 for the simple case at hand.
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there exist two fixed points: (0, 0) which corresponds to the pendulum at rest
and is clearly stable , and (π, 0), which corresponds to the pendulum in the
vertical position and is certainly unstable. Our interest here is to analyze the
motions that start close to the unstable equilibrium and to make more precise
what it is meant by instability.

5.2.1 Unstable equilibrium

If we want to have an idea of how the motion looks near a fixed point the
natural first step is to study the linearization of the equation of motion near
such a point. In our case, using the coordinates (θ0, p) = (θ− π, p), they look
like

θ̇0 =
p

l2m
ṗ = mglθ0.

(5.2.4)

Let ωp =
√

g
l , the general solution of (5.2.4) is

(θ0(t), p(t)) = (αeωpt + βe−ωpt,ml2ωp{αeωpt − βe−ωpt}),

where α and β are determined by the initial conditions. Note that if the
initial condition has the form α(1, ml

√
gl) it will evolve as αeωpt(1, ml

√
gl).

While if the initial condition is of the form β(1, −ml
√
gl) it will evolve as

βe−ωpt(1, −ml
√
gl). In other words the directions (1, ml

√
gl) and (1, −ml

√
gl)

are invariant for the linear dynamics. The first direction is expanded (and be-
cause of this is called unstable direction) while the second is contracted (stable
direction).
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Figure 5.1: Unstable fixed point (phase portrait)
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Let us imagine starting the motion from an initial condition of the type
(π + θ0, 0), θ0 ∈ [−δ, δ], where δ ≤ 10−4 represents the precision with which
we are able to set the initial condition (one tenth of a millimeter); what will
happen under the linear dynamics?

Our initial condition corresponds to choosing, at time zero, α = β ≤ δ
2 .

As time goes on, the coefficient of β becomes exponentially small while the
coefficient of α increases exponentially, thus a good approximation of the
position of the pendulum after some time is given by

θ0(t) ≈ αeωpt. (5.2.5)

Since ωp ≈ 3.13 seconds−1, it follows that after about 2.5 seconds the position
of the pendulum can be anywhere up to a distance of about 10 centimeters
from the unstable position.

This means that the unstable position is really unstable, and if we tray,
as best as we can, to put the pendulum in the unstable equilibrium (always
imagining that the friction has been properly reduced) it will typically fall
after a few seconds, and it will fall in a direction that we are not able to predict
(since it depends on the sign of δ, our unknown mistake). Nevertheless, after
the ideal pendulum starts falling in one direction, the subsequent motion is
completely predictable, as we will see shortly.

An obvious objection to the above analysis is that I did not show that the
linearized equation describes a motion really close to the one of the original
equations. The answer to this question is particularly simple in this setting
and is addressed in the next subsection.

5.2.2 The unstable trajectories (separatrices)

Given the already noted fact that, for ε = 0, H is a constant of motion, the
phase space M is naturally foliated in the level curves of H, on which the
motion must take place. This allows us to obtain a fairly accurate picture of
the motions of the unperturbed pendulum. In fact, the level curves are given
by the equations

p2

2l2m
−mgl cos θ = E

where E is the energy of the motion. It is easy to see that E = −mgl corre-
sponds to the stable fixed point (θ, p) = (0, 0); −mgl < E < mgl corresponds

to oscillations of amplitude arccos
[

E
mgl

]
; E > mgl corresponds to rotatory

motions of the pendulum. The last case E = mgl is of particular interest to
us: obviously, it corresponds to the unstable fixed point (π, 0), yet there are
two other solutions that travel on the two curves

p = ±ml
√

2lg(1 + cos θ).
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Figure 5.2: Unperturbed pendulum (phase portrait)

These two curves are the ones that separate the oscillatory motions from
the rotatory ones and, for this reason, are called separatrices. It is very
important to understand the motion along such trajectories, luckily the two
differential equations

θ̇ = ±
√
2
g

l
(1 + cos θ). (5.2.6)

can be integrated explicitly (see Problem 5.5) yielding, for θ(0) = 0,

θ(t) = 4 arctan e±ωpt − π. (5.2.7)

These orbits are asymptotic to the unstable fixed point both at t → +∞
and at −∞ and, for |t| large, agree with the linear behaviour of section 5.2.1.
This situation is somewhat atypical, as we will see briefly.

5.3 The perturbed case

5.3.1 Reduction to a map

The motion of the above system takes place on the cylinder M = S1 × R.
By the theorem of existence and uniqueness for the solutions of differential
equations follows immediately the possibility to define the maps ϕtε : M → M
associating to the point (θ, p) the point reached by the solution of (5.1.3) at
time t, when starting at time 0 from the initial condition (θ, p). In such a
way, we define the flow ϕtε associated to the (5.1.3).



5.3. THE PERTURBED CASE 93

Clearly ϕ0ε(θ, p) = (θ, p), that is, the map corresponding to time zero is
the identity. Moreover, if ε = 0 the system is autonomous (the vector field
does not depend on the time) hence the flow defines a group: for each t, s ∈ R

ϕt+s
0 (θ, p) = ϕt0(ϕ

s
0(θ, p)).

This corresponds to the obvious fact that the motion for a time t+ s can be
obtained first as the motion from time 0 to time s, and then pretending that
the time s is the initial time and following the motion for time t.

Of course, the above fact does not hold anymore when ε ̸= 0. In this case,
the maps ϕtε depend on our choice of the initial time (if we define them by
starting from time 1 instead then time 0, in general we obtain different maps).
Nevertheless, due to the fact that the external force is periodic something can
be saved of the above nice property.

Let us define the map Tε : M → M by

Tε = ϕ
2π
ω
ε ,

then (see Problem 5.3), for each n ∈ Z,

Tn
ε = ϕ

2nπ
ω

ε . (5.3.8)

The interest of (5.3.8) is that, for many purposes, we can study the map Tε
instead than the more complex object ϕtε. Morally, it means that if we look at
the system stroboscopically, that is only at the times 2π

ω n with n ∈ Z, then it
behaves like an autonomous (time independent) system.5 Another interesting
fact is that the flow ϕtε (and hence also the map Tε) is area preserving (see
Problem 5.7).6

5.3.2 Perturbed pendulum, ε ̸= 0

The situation for the case ε ̸= 0 is more complex, and no easy way exists to
study these motions.

As a general strategy, to study the behavior of a system (in our case, the
map Tε) it is a good idea to start by investigating simple cases and then move
on from there. In our systems, the simplest motion consists of the equilibrium
solutions. These are the time independent solutions.7 Because of the special

5Another instance of a very simple case of a very fruitful and general strategy: to look
at the system only when some special event happens–in our case, at each time in which the
suspension point has its maximum height.

6This also is a special instance of a more general fact: the Hamiltonian nature of the
system, see [Arn99, Gal83] if you want to know more.

7That is, equilibrium solutions for the map Tε. These are periodic solutions for the flows

of period 2π
ω
. In fact, Tεx = x means ϕ

2π
ω x = x.
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type of perturbation chosen, the fixed points of the system for the case ε = 0
remain unchanged when ε ̸= 0 (see Problem 5.8 for a brief discussion of a
more general case).

Next, we can study the infinitesimal nature of the fixed points. It is natural
to expect that the nature of the two fixed points does not change if ε is small,
yet to verify this requires some checking. We will discuss explicitly only the
fixed point (π, 0).

The first step is to make precise the sense in which the case ε ̸= 0 is a
perturbation of the case ε = 0. This can be achieved by obtaining an explicit
estimate of the size of

Rε = ε−1(T0 − Tε).

Let z(t) = (z1(t), z2(t)) = ϕt0(x) − ϕtε(x), then substituting in (5.1.3) and
subtracting the general case from the case ε = 0 it yields

|ż1| ≤
|z2|
ml2

|ż2| ≤ mgl|z1|+ εmω2l.

In order to get better estimates, it is convenient to define the new variables
ζ1 = z1 and ml2ωpζ2 = z2. In these new variables, the preceding equations
read

|ζ̇1| ≤ ωp|ζ2|

|ζ̇2| ≤ ωp|ζ1|+ ε
ω2

ωpl
.

(5.3.9)

Which implies ∥ζ̇∥ ≤ ωp∥ζ∥ + εmω2l. Taking into account that, in our
situation, ml2ωp > 1, it follows (see Problem 5.9)

∥R∥C0 ≤ mω2

lωp
(e2π

ωp
ω − 1) ≤ 69.

Unfortunately, the above norm does not suffice for our future needs. We
will see quite soon that it is necessary to estimate also the first derivatives of
R, that is the C1 norm.

To do so, the easiest way is to use the differentiability with respect to
the initial conditions of the solutions of our differential equation. Fixing any
point x ∈ M and calling ξε(t) = dxϕ

t
εξ(0) we readily obtain:8

8The vector ξε(t) is nothing else than the derivative
dϕt

ε(x+sξ(0))

ds
|s=0, the following

equation is then obtained by exchanging the derivative with respect to t with the derivative
with respect to s.
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ξ̇ε1 =
ξε2
l2m

ξ̇ε2 = −mgl cos θ ξε1 − εmω2l cosωt cos θ ξε1

(5.3.10)

One can then estimate the C1 norm of R by estimating ∥ξε( 2πω )− ξ0( 2πω )∥,
since ξε( 2πω ) = D(θ,p)Tεξ

ε(0). Doing so, one obtains9

∥R∥C1 ≤ 2mω2

lωp
e3π

ωp
ω := d1 ≤ 690. (5.3.11)

5.4 Infinitesimal behavior (linearization)

As a first application of the above considerations, let us study the linearization
of Tε at xf = (π, 0). From (5.3.10) follows (see Problem 5.12)

Dxf
T0 =

(
cosh

2πωp

ω

sinh
2πωp

ω

ml2ωp

ml2ωp sinh
2πωp

ω cosh
2πωp

ω

)
Dxf

Tε = Dxf
T0 +O(d1ε) (5.4.12)

The eigenvalues of Dxf
Tε are then λε = e

2πωp
ω + O(d2ε),

10 λ−1
ε , where

d2 = 2d1ωpml
2 ≃ 4400. In addition, calling vε, ⟨vε, v0⟩ = 1, the eigenvector

associate to λε, holds true ∥v0 − vε∥ ≤ d3ε, d3 = 4λ−1
0 ω2

pω
2l4d1 ≃ 1200.11

Clearly, if ε is sufficiently small, then λε > 1. This means that the hy-
perbolic nature of the unstable fixed point remains unchanged under small
perturbations (see Problem 5.13 for a case when the perturbation is not so
small).12

If one does a similar analysis at the fixed point (0, 0) one finds that the
eigenvalues have modulus one: that is, the infinitesimal motion is a rotation
around the fixed point, exactly as in the ε = 0 case.

Hence, the comments made at the end of subsection 5.2.1 for the unper-
turbed pendulum hold for the perturbed pendulum as well. Only now the is no

9The following bounds are not sharp, working more, one can obtain better estimates,
but this would not make much of a difference in the sequel.

10In this chapter we will adopt the strict convention that O(x) means a quantity bounded,
in absolute value, by x.

11This follows by the fact that the eigenvalues of Dxf T0 are e±
2πωp

ω ≃ (23)±1, a simple
perturbation theory of matrices (see Problems 5.10, 5.11) and the already mentioned fact
that the map Tε is area preserving, thus the determinant of its derivative must be one.

12As we will see later in detail, hyperbolicity means that there is a direction in which the
maps expand (the eigenvector vuε associated to the eigenvalue λε) and a direction in which
the map contracts (the eigenvector vsε associated to the eigenvalue λ−1

ε )
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longer an integral of motion (the energy) that controls globally the behavior
of the system.

Imagining that the map is linear (which is clearly false but, as we will
see, qualitatively not so wrong) this would mean that the distance between
two trajectories can be expanded by almost a factor 23 in a second. Initial
conditions that are δ close at time zero will be about 23δ far apart after 1
second. If such a state of affair could persist (and we will see it may) after one
minute the two configurations would differ roughly by a factor 1080δ, which
means that not even knowing the initial condition plus or minus a quark could
we predict the final one. This is certainly a rather worrisome perspective, but
much more work it is needed to decide if this may indeed be the case.

5.5 Local behavior (Hadamard-Perron Theo-
rem)

The next step is to try to go from the above infinitesimal analysis to a local
picture in a small neighborhood of the fixed points.

It is natural to expect that the two fixed points are still stable and unstable
respectively, yet this is a far from trivial fact.

The stability of the point (0, 0) can be proven by invoking the so called
KAM Theorem (this exceeds the scope of the present book and we will not
discuss such matters, see [Gal83] for such a discussion).13

The study of the local behavior around the point xf is instead a bit
easier and can be performed by applying the Hadamard-Perron Theorem
2.4.2 to conclude that, in a neighborhood of (π, 0), there exists two curves
xuε (s) = (θuε (s), p

u
ε (s)), x

s
ε(s) that are invariant with respect to the map Tε.

Namely, there exists δε > 0 such that Tεx
s
ε([−δε, δε]) ⊂ xsε([−δε, δε]) and

T−1
ε xuε ([−δε, δε]) ⊂ xuε ([−δε, δε]); these are called the local stable and unstable

manifold of zero, respectively. Essentially δε is determined by the requirement
that the non-linear part of Tε be smaller than the linear part.

Clearly, for ε = 0 xs0 = xu0 = x0 and it coincides with the homoclinic
orbit of the unperturbed pendulum. In addition, by Hadarmd-Perron and the
estimates of the previous section, we can choose δε such that

∥xuε − x0∥ ≤ 2d3ε∥x0∥. (5.5.13)

13In some sense this implies that we can indeed predict the motion for an extremely long
time if we consider only oscillations close to the configuration (0, 0), so in that case the
assumption that the pendulum is isolated is legitimate. Yet, this depends on the precision
we are interested in and tends to degenerate if the amplitude of the oscillations is rather
large. A complete analysis would be a very complicated matter but we will have an idea of
the type of problems that can arise by considering extremely large oscillations, close to a
full rotation of the pendulum.
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and the analogous for the stable manifold. We have obtained a local picture
of the behavior of the map Tε, yet this does not suffice to answer our original
question. To do so, we need to follow the motion for at least a full oscillation:
this requires global information.

To gain a more global knowledge, we can try to construct a larger invariant
set for the map Tε. A natural way to do so is to iterate: define Wu =
∪∞
n=0T

n
ε x

u([−δε, δε]). Since Tεx
u([−δε, δε]) ⊃ xu([−δε, δε]), it is clear that

each time we iterate, we get a longer and longer curve. The set Wu is then
clearly a manifold, and it is called the global unstable manifold.14

The global manifold, as the name clearly states, is a global object: it carries
information on the dynamics for arbitrarily long times. Yet, the procedure
by which it has been defined is far from constructive, and the truth is that,
besides the sketchy considerations above, at the moment we know very little
of it. The next step is to gain a more detailed understanding of a large portion
of Wu.

5.6 A more global understanding (Melnikov)

From the above considerations follows that the stable and unstable manifolds
(θsε(s), p

s
ε(s)), (θ

u
ε (s), p

u
ε (s)), |s| ≤ δε, of Tε at 0, are ε close to the homoclinic

orbit of the unperturbed pendulum, (θ0(t), p0(t)), θ0(0) = 0.

Note, however, that while x0 = (θ0, p0) is invariant under the unperturbed
flow, the same does not apply to (θs,uε (s), ps,uε (s)) under ϕtε. The invariant
object is the time-space surface (τ, xs,uε (s, τ)) := (τ, ϕτε (θ

s
ε(s), p

s
ε(s))) where

(s, τ) ∈ [−δε, δε]× [0, 2πω ] and and τ = t mod 2π
ω .15

We can choose freely the parameterization of our curves in such a surface,
and some are more convenient than others. The separatrix of the unperturbed
pendulum is most conveniently parametrized by time, hence ϕt(θ0(s), p0(s)) =
(θ0(s+ t), p0(s+ t)). Note that the separatrix can be visualized as a graph of
(θ,G(θ)). Analogously, for ε small enough, the perturbed unstable manifold
of Tε will be the graph of (θ,Gu

ε (θ)), for θ ∈ [0, 32π]. Given θ ∈ [0, 32π],
let Sn = 2πω−1n. Let zn := (θn, G

u
ε (θn)) = ϕ−Sn

ε (θ,Gu
ε (θ)), by Hadamrad-

Perron we know that |Gu
ε (θ)−G(θ)| ≤ Cθ for θ ∈ [0, δ], also |θn| ≤ Ce−an for

14Applying the above procedure to the unperturbed problem yields the full separatrix.
15A standard way to bring the present non-autonomous setting into the more familiar

autonomous one is to introduce the fake variables (φ, η) ∈ S1 × R and the new, time
independent, Hamiltonian H̄ε(θ, p, φ, η) := Hε(θ, p, φ) +

2π
ω
η. The Hamilton equations

yield φ(t) = 2π
ω
t+φ(0) and hence the equations for θ, p reduce to (5.1.3). Since H̄ε is now

conserved under the motion we can restrict the system to the three dimensional manifold
H̄ε = 0. In such a manifold, we have the weak stable and unstable manifolds (now flow
invariant) (xs,u

ε (s, φ), φ,− 2π
ω
Hε((x

s,u
ε (s, φ), φ)).
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some C, a > 0. The basic idea is to compute

H0(θ,G
u
ε (θ)) = H0(θn, G

u
ε (θn)) +

∫ Sn

0

dH0 ◦ ϕsε(θn, Gu
ε (θn))

ds
ds

= H0(zn) +

∫ Sn

0

⟨∇H0, J∇H0 + εJ∇H1⟩ ◦ ϕs−Sn
ε (z)ds

= H0(zn) + ε

∫ 0

−Sn

⟨∇H0, J∇H1⟩ ◦ ϕsε(z)ds.

The results of section 5.4 implies that, for some C > 0, α > 0,

∥ϕ−s
ε (θ,Gu

ε (θ))∥ ≤ Ce−αs,

for all s ≥ 0. In addition, by (5.5.13), setting (θ(s), p(s)) = ϕ−s
0 (θ,G(θ))

∥ϕ−s
ε (θ,Gu

ε (θ))− ϕ−s
0 (θ,G(θ))∥ ≤ Cmin{εeβs, e−αs},

for some β > 0. Thus, taking the limit n→ ∞, yields

H0(θ,G
u
ε (θ)) = H0(0) + ε

∫ 0

−∞
⟨∇H0, J∇H1⟩ ◦ ϕs0(z) + o(ε).

Consequently,

Gu
ε (θ)−G0(θ) =

Gu
ε (θ)

2 −G0(θ)
2

Gu
ε (θ) +G0(θ)

=
2(H0(θ,G

u
ε (θ))−H0(θ,G0(θ)))

Gu
ε (θ) +G0(θ)

=
2(H0(θ,G

u
ε (θ))−H0(0))

Gu
ε (θ) +G0(θ)

= 2ε

∫ 0

−∞⟨∇H0, J∇H1⟩ ◦ ϕs0(θ,G(θ))ds+O(ε)

Gu
ε (θ) +G0(θ)

This allows us to conclude

Gu
ε (θ)−G0(θ) = ε

∫ 0

−∞⟨∇H0, J∇H1⟩ ◦ ϕs0(θ,G(θ))ds
G0(θ)

+ o(ε)

Arguing analogously for the stable manifold yields

Gu
ε (θ)−Gs

ε(θ) = ε

∫
R⟨∇H0, J∇H1⟩ ◦ ϕs0(θ,G(θ))ds

G0(θ)
+ o(ε). (5.6.14)

The separatrix of the unperturbed pendulum is most conveniently parametrized
by time, hence

ϕt(θ0(s), p0(s)) = (θ0(s+ t), p0(s+ t)) = (θ0(s+ t), G(θ0(s+ t)) =: x0(s+ t).
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Setting ∆(s) = ε−1[Gu
ε (θ0(s))−Gs

ε(θ0(s))]G0(θ0(s)), one can compute

∆(σ) =

∫ ∞

−∞
{H1, H}x0(t+σ)dt+ o

(
d4e

2ωp|σ|
)
, (5.6.15)

where and explcit computation yields d4 ≃ 4 · 106, and the curly brackets
stand for the so called Poisson brackets ({f, g}x = ⟨J∇xf, ∇xg⟩).
The integral in (5.6.15) is called Melnikov integral and provides an expres-
sion, at first order in ε, of the distance between the stable and the unstable
manifold. All we are left with is to compute the integrals in (5.6.15). This
turns out to be an exercise in complex analysis, and it is left to the reader
(see Problem 5.15), the result is:16∫ ∞

−∞
{H1(·, t), H}x0(t+σ)dt = 8πml

ω4e
− πω

2ωp

ω2
p(e

πω
ωp − 1)

sinωσ.

We have thus gained a very sharp control on the shape of the above mani-
folds.17 In particular, ∆(±1/4) ≃ ±76+O(4·107ε) ̸= 0 provided ε ≤ 1.5·10−6,
that is the two manifolds intersect. To understand a bit better such an in-
tersection (we would like to know that in the region σ ∈ [−1/4, 1/4] there is
only one transversal intersection) it suffices to notice that (5.6.14) provides a
control on the angle between xuε and x0.

This intersections are called homoclinic intersection and their very exis-
tence is responsible for extremely interesting phenomena as can be readily
seen by trying to draw the stable and unstable manifolds (see Figure 5.3 for
an approximate first idea); we will discuss this issue in detail shortly.18

We have gained much more global information on the map Tε, yet it does
not suffice to answer to our question. The next section is devoted to obtaining

16A simple computation yields:

{H1, H}x0(t+s) = −
ω2

l
p(t+ s) cosωt sin θ(t+ s).

Then, by using (5.2.7) and looking at Problem 5.6, one readily obtains:

{H1, H}x0(t) = 4
ω2

l

cosω(t− s) sinhωpt

(coshωpt)3
.

Finally, use Problem 5.15.
17Note that ε must be exponentially small with respect to ω. In many concrete problems

(notably the so-called Arnold diffusion it happens that this it is not the case. One can
try to solve such an obstacle by computing the next terms of the ε expansion of ∆. In
fact, it turns out that it is possible to express ∆ as a power series in ε with all the terms
exponentially small in ω . Yet this is a quite complex task far beyond our scope.

18Note that the intersection corresponds to a homoclinic orbit for the map Tε (that is,
an orbit which approaches the fixed point xf both in the future and in the past). This is
what it is left of the homoclinic orbit of the unperturbed pendulum.
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Figure 5.3: Perturbed pendulum

a really global picture. Up to now, we have used mainly analytic tools. Next,
geometry will play a much more significant rôle.19

5.7 Global behavior (an horseshoe)

We want to explicitly construct trajectories with special properties. A stan-
dard way to do so is to start by studying the evolution of appropriate regions
and to use judiciously the knowledge so gained. Let us see what this means
in practice.

The starting point is to note that we understand the shape of the invariant
manifolds, but not very well the dynamics on them, this is our next task.
Since points on the unstable manifolds are pulled apart by the dynamics, the
estimate must be done with a bit of care. In fact, we will use a way of arguing
that is typical when instabilities are present, we will see many other instances
of this type of strategy in the sequel.

For each x in the unstable manifold (zero included) let us call Du
xTε :=

DxTεv
u(x), where vu(0) = vu and if x = xuε (t) then v

u(x) = ∥ẋuε (t)∥−1ẋuε (t),
that is the derivative of the map computed along the unstable manifold. A
useful idea in the following is the concept of fundamental domain. Define
α : R+ → R+ by xuε (t) = xuε (α(t)). Then [t, α(t)] is a fundamental domain
and has the property that, setting ti := αi(t), the sets αi[t0, t1] intersect only
at the boundary.

19What comes next is the first example in this book of what is loosely called a dynamical
argument.
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Lemma 5.7.1 (Distortion) For each x, y in the same fundamental domain
of the unstable manifold, δ0 > 0, and n ∈ N such that ∥Tn

ε x∥ ≤ δ0, holds
20

e−δ0C2 ≤
∣∣∣∣Du

xT
n
ε

Du
yT

n
ε

∣∣∣∣ ≤ eδ0C2 ,

where C2 = supt≤0

∣∣∣ α̈(t)α̇(t)

∣∣∣.
Proof. The proof is a direct application of the chain rule:∣∣∣∣Du
xT

n
ε

Du
yT

n
ε

∣∣∣∣ = n∏
i=1

∣∣∣∣∣Du
T ixTε

Du
T iyTε

∣∣∣∣∣ ≤ Exp

[
n∑

i=1

| log(|Du
T ixTε)− log(|Du

T iyTε|)|

]

≤ Exp

[
n∑

i=1

C2∥T ix− T iy∥

]
= Exp

[
n∑

i=1

C2∥xuε (ti)− xuε (ti−1)∥

]
≤ eC2δ0 .

The other inequality is obtained by exchanging the rôle of x and y. □

Next, we would like to consider the evolution of a small box constructed
around the fix point.

Consider the following small parallelogram: Qδ := {ξ ∈ R2 | ξ = avu +
bvs for some a, b ∈ [− δ

2 ,
δ
2 ]}, δ ≪ δ0. Next, consider the first n ∈ N such that

Tn
ε Qδ ∩ {θ = 0} ≠ ∅. Our first task is to understand the shape of Tn

ε Qδ near
{θ = 0}. Since a fundamental domain in the latter region is of order one, while
at the boundary of Qε is of order δ, Lemma 5.7.1 implies that the expansion
is proportional to Cδ−1. By the area preserving of the map, it follows that
Tn
ε Qδ must be contained din a Cδ2 neighborhood of the unstable manifold,

see Figure 5.4.
By the previous section’s considerations on the shape of the invariant

manifolds TnQδ ∩ TnQδ ̸= ∅, moreover they intersect transversally.21

This is all that is needed to construct a horseshoe (see section ???). In
particular, in our case, it means that T 2n0Qδ∩Qδ ̸= ∅, in fact the intersection
is transversal and consists of three strips almost parallel to the unstable sides.
One contains zero, and it is the least interesting for us, the other two cross
above and below the unstable manifold, respectively. The width of such a
strip is about δ−3. We will discuss in the next chapters all the implications of

20This quantity is commonly called Distortion because it measures how much the map
differs from a linear one (notice that if T is linear then DxT

DyT
= 1). Although apparently an

innocent quantity, it is hard to overstate its importance in the study of hyperbolic dynamics.
21The meaning of transversally is the following: the square Qδ has two sides parallel to

vu (the unstable direction), which we will call unstable sides, and two sides parallel to vs

(the stable direction), which we will call stable sides. Then the intersection is transversal
if it consists of a region with again four sides: two made of the image of the unstable sides
and two made of images of the stable sides of Qδ.
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Figure 5.4: The evolution of the small box Qδ

this situation, here it suffices to notice that if we have two initial conditions
in T−2n0Qδ ∩Qδ at a distance h, after 2n0 iterations the two points will be in
Qδ again but at a distance hε−1. Since to decide if after that there will be a
rotation or an oscillation we need to know the final position with a precision of
order δ, we need to know the initial position with a precision O(δε) = O(δ3).

Note that in the above construction, we have lost almost all the points, only
the ones that come back to Qδ at time 2n0 are under control. Nevertheless, we
can consider the set Λ := ∪k∈Z

⋂
T 2kn0
ε Qδ. This is clearly a measure zero set,

yet it is far from empty (it contains uncountably many points) and it is made
of points that at times multiples of 2n0 are always in Qδ. When they arrive in
Qδ they will rotate if they are above the separatrices and oscillate otherwise.
Let us call these two subsets of Qδ R and O. Given a point ξ ∈ Qδ, we can
associate to it the doubly infinite sequence σ ∈ {0, 1}Z by the rule σi = 1 iff
T 2n0iξ ∈ R. The reader can check that the correspondence is onto.

5.8 Conclusion–an answer

If ε = 10−6 and δ is a millimeter then we need to know the initial condition
with a precision of 10−9 meters if we want to decide if the point will come back
or rotate when it will get almost vertical again (this will happen in about 6
seconds). By the same token if we want to answer the same question, but for
the second time, the pendulum gets close to the unstable position, we need
to know the initial condition with a precision of the order 10−15 meters, and
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Figure 5.5: Horseshoe construction

this just to predict the motion for about 12 seconds.22

We can finally answer to our original question:

Answer: NO!

Nevertheless, as we mentioned at the beginning, the above answer it is not
the end of the story. In fact, there exist many other very relevant questions
that can be answered.23 The rest of the book deals with a particular type of
question: can we meaningfully talk about the statistical behavior of a system?

Problems

5.1. Derive the Lagrangian, Hamiltonian and equations of motion for a pen-
dulum attached to a point vibrating with frequency ω and amplitude ε.
(Hint: see [LL76, Gal83] on how to do such things. Remember that two
Lagrangian that differ by a total time derivative give rise to the same
equation of motion and are thus equivalent.)

22Remark that it is not just a matter of precision on the initial condition, it is also a
matter of how one actually does the prediction. If the method is to integrate numerically
the equation of motion, then one has to insure that the precision of the algorithm is of the
order of 10−15. This maybe achieved by working in double precision but if one wants to
make predictions of the order of one minute, it is quite clear that the numerical problem
becomes very quickly intractable.

23For example: which type of motions are possible? This is a qualitative question. Such
types of questions give rise to the qualitative theory of Dynamical Systems [PT93, HK95],
an extremely important part of the theory of dynamical systems, although not the focus
here.
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5.2. Consider the systems of differential equations ẋ = f(x), x ∈ Rn and
f smooth and bounded. Prove that the associated flow form a group.
(Hint: use the uniqueness of the solutions of the ordinary differential
equation)

5.3. Consider the systems of differential equations ẋ = f(x, t), x ∈ Rn and f
smooth, bounded and periodic in t of period τ . Let ϕt be the associated
flow. Define T = ϕτ , prove that Tn = ϕnτ .

5.4. Show that the Hamiltonian is a constant of motion for the pendulum.
(Hint: Compute the time derivative)

5.5. Prove (5.2.7). (Hint: Write (5.2.6) in the integral form

t =

∫ t

0

θ̇(s)√
2g
l (1 + cos θ(s))

ds.

Using some trigonometry and changing variable, obtain

t =

∫ θ(t)

0

1

2ωp cos
θ
2

dθ.

and compute it.)

5.6. If θ(t) is the motion obtained in the previous problem, show that

sin θ(t) = 2
sinhωpt

(coshωpt)2
; cos θ(t) =

2

(coshωpt)2
− 1;

cos2
θ(t) + π

4
=

1

1 + e2ωpt
.

5.7. Consider the systems of differential equations ẋ = f(x, t), x ∈ Rn and
f smooth. Suppose further that divf = 0 (that is

∑n
i=1

∂fi
∂xi

= 0). Show
that the associated flow preserves the volume. (Hint: note that this is
equivalent to saying that |det dϕt| = 1, moreover by the group property
and the chain rule for differentiating it suffices to check the property
for small t. See that dϕt = 1 + Dft + O(t2) = eDft+O(t2). Finally,
remember the formula det eA = eTrA.)

5.8. Let T, T1 : R2 → R2 be a smooth maps such that T0 = 0 and det(1 −
D0T ) ̸= 0. Consider the map Tε = T + εT1 and show that, for ε
small enough, there exists points xε ∈ R2 such that Tεxε = xε. (Hint:
Consider the function F (x, ε) = x−Tεx and apply the Implicit Function
Theorem to F = 0.)
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5.9. Let x(t) ∈ Rn be a smooth curve satisfying ∥ẋ(t)∥ ≤ a(t)∥x(t)∥ + b(t),
x(0) = x0, a, b ∈ C0(R,R+), prove that

∥x(t)− x0∥ ≤
∫ t

0

e
∫ t
s
a(τ)dτ [a(s)∥x0∥+ b(s)] ds.

(Hint: Note that ∥x(t)−x0∥ ≤
∫ t

0
∥ẋ(s)∥ds. Transform then the differen-

tial inequality into an integral inequality and apply Gronwall inequality,
Lemma 1.1.8.)

5.10. Given two by two matrices A,B such that A has eigenvalues λ ̸= µ,
show that the matrix Aε = A+ εB, for ε small enough, has eigenvalues
λε, µε analytic as functions of ε. Show that the same holds for the
eigenvectors. (Hint:24 consider z in the resolvent of A, that is (z−A)−1

exists. Then (z − Aε) = (z − A)(1 − ε(z − A)−1B). Accordingly, if
ε is small enough, (z − Aε)

−1 =
{∑∞

n=0 ε
n
[
(z −A)−1B

]n}
(z − A)−1.

Finally, if γ, γ′ are curves on the complex plane containing λ and µ,
respectively, verify that

Πε :=
1

2πi

∫
γ

(z −Aε)
−1dz Π′

ε :=
1

2πi

∫
γ′
(z −Aε)

−1dz

are commuting projectors and Aε = λεΠε + µεΠ
′
ε. Finally verify that

λεΠε :=
1

2πi

∫
γ

z(z −Aε)
−1dz µεΠ

′
ε :=

1

2πi

∫
γ′
z(z −Aε)

−1dz.

The statement follows then from the fact that the right-hand side of the
above equalities is written as a power series in ε.25)

5.11. Given two by two matrices A,B such that A has eigenvalues λ ̸= µ,
show that the matrix Aε = A + εB has eigenvalues λε, µε such that
|λε − λ| ≤ Cε∥B∥ and |µε − µ| ≤ Cε∥B∥ . Compute C. (Hint: By
Problem 5.10 we know that λε, µε are differentiable function of ε and
the same holds for the corresponding eigenvector vε, ṽε. Let us discuss
λε since the other eigenvalues can be treated in the same way. One
possibility is to use the above formula for λεΠε to obtain the wanted
estimates.

In alternative, let v, w, ⟨w, v⟩ = 1 and ∥v∥ = 1, be the eigenvectors of A,
with eigenvalue λ and of A∗, with eigenvalue λ̄, respectively. Hence Π0 =

24Of course, for matrices one could argue more directly by looking at the characteristic
polynomial. Yet the strategy below has the advantage to work even in infinitely many
dimensions (that is, for operators over Banach spaces).

25This is a very simple case of the very general problem of perturbation of point spectrum,
see [Kat66] if you want to know more.
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v⊗w and ∥Π0∥ = ∥w∥. Normalize vε such that ⟨vε, w⟩ = 1. Differentiate
then the above constraint and the defining equation (A+ εB)vε = λεvε,
obtaining (the prime refers to the derivative with respect to ε)

Av′ε +Bvε + εBv′ε = λ′εvε + λεv
′
ε

⟨v′ε, w⟩ = 0.

Multiplying the first for w yields λ′ε = ⟨w,Bvε⟩ + ε⟨w,Bv′ε⟩. Setting
Ã := A− λΠ0 we have

v′ε = (λ− Ã)−1 [Bvε + εBv′ε − λ′εvε − (λ− λε)v
′
ε] .

Next, consider ε0 such that, for ε < ε0 holds

∥v′ε∥ ≤ 4∥(λ− Ã)−1∥ ∥B∥ ∥w∥ = 4∥(λ− Ã)−1∥ ∥B∥ ∥Π0∥ =: C0,
(5.8.16)

then ∥vε − v∥ ≤ εC0 and |λ′ε| ≤ ∥B∥ ∥w∥(1+ 2εC0). If 4ε0C0 < 1, then,
indeed, (5.8.16) holds true. )

5.12. ComputeD0T . (Hint: solve (5.3.10) for ε = 0, θ = π, p = 0 and t = 2π
ω .)

5.13. Compute D0Tε and see that, if ω is sufficiently large, the eigenvalues
have modulus one (the unstable point becomes stable!). (Hint: setting

ξ := ξ1 equation (5.3.10) yields ξ̈ = ω2
pξ + εω

2

l cosωtξ. It is then conve-

nient to write ξ := ξ̄+εη+ε2ζ where ¨̄ξ = ω2
p ξ̄ and η̈ = ω2

pη+
ω2

l cosωt ξ̄.
One can look for a solution of the latter equation of the form

η̄ = Aeωpt cosωt+Beωpt sinωt+ Ce−ωpt cosωt+De−ωpt sinωt.

This allows to compute D0Tε(α, β) = (ξ1(
2π
ω ), ξ2(

2π
ω )) + O(ε2), where

(ξ1(0), ξ2(0)) = (α, β). Finally, one can verify that, for ε small and ω
large enough the eigenvalues of D0Tε are imaginary, hence the equilib-
rium is linearly stable. )

5.14. Given an Hamiltonian H : R2 → R, for each solution x(t) of the associ-
ated equations of motion show that ⟨∇x(t)H, ẋ(t)⟩ = 0.

5.15. Compute the following integrals (5.6.15):∫
R
eiat(cosh t)−n sinh t dt,

a ∈ R and n ∈ N, n > 1.26 (Hint: By a change of variable, one can
consider only the case a > 0. Consider the integral on the complex

26The result, for a > 0, is:∫
R
eiat(cosh t)−n sinh t = 2πi

∞∑
k=0

ϕ
(n−1)
n,k (i 2k+1

2
π)

(n− 1)!
,
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plane, show that the integral on the half circle Reiϕ, ϕ ∈ [0, π], goes
to zero as R → ∞, then check that the poles of the integrand, on the
complex plane, lie on the imaginary axis, finally use the residue theorem
to compute the integrals.)

5.16. Do the same analysis carried out for the pendulum with a vibrating
suspension point in the case of a pendulum subject to an external force
ε cosωt and in presence of a small friction −ε2γθ̇.

Notes

As already mentioned in the text, the first to realize that the motions arising
from differential equations can be very complex was probably Poincaré [Poi87].
At that time, the main problem in celestial mechanics (the famous n-body
problem) was to find all the integrals of motion. Dirichlet and Weierstrass
worked on this problem, but Poincaré was the first to raise serious doubt on
the existence of such integrals (which would have implied regular motions).
For more historical remarks, see [Mos01]. In fact, all the content of this
chapter is inspired by the more sophisticated, but more qualitative, analysis
in [Mos01].

where

ϕn,k(z) = eiza sinh z

(
z − i 2k+1

2
π

cosh z

)n

.

For n = 3, the above formula yields∫
R
eiat(cosh t)−3 sinh t = πa2e−

π
2
a(1− e−πa)−1.



Chapter 6

Qualitative statistical properties:
general facts

From the previous chapter, we learned that long-time predictions may be
impossible even for seemingly simple Dynamical Systems. Yet, surprisingly, it
is exactly such an unpredictability that makes statistical predictions possible.
In this chapter, we explain how to make sense of sentences like: such and such
will happen with probability p.

For simplicity, we will mainly consider Discrete Dynamical Systems, even
though we will briefly comment on flows.

6.1 Dynamical systems

Before diving into the specific situation we aim to discuss, let us make a few
general comments on the general concept of dynamical systems. This can be
stated in very general terms, to give an example, let us consider the following
definition

Definition 6.1.1 By Dynamical Systems we mean the action of a group G
on a set X. More precisely, il M(X) is the group of morphisms of X where
the group operation is the composition, then the action of G on X is simply
a group homomorphism f from G to X.

The dynamics is given by x→ f(g)(x) for x ∈ X and g ∈ G. To substan-
tiate this very abstract definition, let us give some examples.

1. G = N, X = Z, f(n)(z) = z + n.

2. G = N, X = ZN , f(n)(z)i = zi+ωin, for some ω ∈ ZN .

108
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3. G = Z, X = T, f(n)(x) = x+ ωn mod 1, for some ω ∈ R.

4. G = Z, X = C0(T), f(n)(g)(x) = g(x+ ωn), for some ω ∈ R.

5. G = Z, X = (C0)′(T),
∫
T h(x)[f(n)(µ)](dx) =

∫
h(x + ωn)µ(dx), for

some ω ∈ R.

6. G = N, X = RN , f(n)(v) = Anv, for some N ×N matrix A.

7. G = R, X = C2N , f(n)(v) = eAtv, for some N ×N matrix A.

8. G = ZN , X = ZN , f(n)(z)i = zi+ni .

9. G = SL(2,Z), X = SL(2,Z), f(g)(x) = gx.

Note that 3, 4, 5 are the same dynamical system, seen from different points of
view: the first follows the evolution of points, the second of observables, and
the last of measures. In the case in which Ai,j ≥ 1 and

∑
iAi,j = 1, example

6 describes a Markov chain. In the case in which A is self-adjoint, A = A∗,
example 7 describes a system of N quantum spins. In 8 we can interpret G
as translations, then the dynamical system can be used to describe a classical
static mechanical spine model. The last model is the left multiplication by a
group element, an operation that is extremely common in many mathematical
fields.

Here we will restrict to the case in which G ∈ {N,Z,R+,R} and X is often
a Riemannian manifold. In the following, we will be interested in the point of
view illustrated by example 5: the evolution of measures. Namely, let X be
a topological space, M1(x) the space of its probability Borel measures, and
f : X → X a measurable map. Then we are interested in µ → f∗µ, where
f∗µ(A) = µ(f−1(A)) for all measureble sets A ⊂ X.
Note that f∗δx = δf(x), so the dynamical system (M1(x), f∗) contains, as a
invariant subset, the dynamical system (X, f). It thus seems quite useless
to look at the infinite-dimensional system (M1(x), f∗) if we are ultimately
interested in the finite-dimensional dynamical system (X, f), which is often
the case. Nevertheless, (M1(x), f∗) has at least two critical advances

1. the map f∗ is linear while f is often nonlinear. It is well known that
trading infinite dimensions for linearity is often a good bargain.

2. (M1(x), f∗) contains other important invariant sets that bring a new
perspective on the properties of (X, f).

In the following, we will exemplify point (2) above. Suppose that µ∗ ∈ M1(X)
has the property that f∗µ∗ ≪ µ∗, that is, f is a regular map with respect to
µ∗.
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Lemma 6.1.2 If f∗µ∗ ≪ µ∗, then the set M∗ = {µ ∈ M1(X) : µ≪ µ∗} is
a forward invariant set (that is f∗M∗ ⊂ M∗).

Proof. Let µ ∈ M∗, then we can write dµ = hdµ∗ for some h ∈
L1(X,µ∗). Thus, for each φ ∈ L∞(X,µ∗),∣∣∣∣∫

X

φdf∗µ

∣∣∣∣ = ∣∣∣∣∫
X

φ ◦ fdµ
∣∣∣∣ = ∣∣∣∣∫

X

φ ◦ fhdµ∗

∣∣∣∣
≤ ∥φ∥L∞(X,µ∗)∥h∥L1(X,µ∗).

(6.1.1)

This implies that f∗µ ≪ µ∗. If not there would exists a measurable set A
such that f∗µ(A) > 0 but µ∗(A) = 0, which would lead to a contradiction
choosing φ = 1A in (6.1.1). □

The above lemma implies that for all h ∈ L1(X,µ∗) there exists h1 ∈ L1(X,µ∗)
such that, setting dµ = hdµ∗ and df∗µ = h1dµ∗. Clearly the relation between
h and h1 is lienar, hence the exists a linear operator L : dµ0 = L1(X,µ∗) →
L1(X,µ∗) such that h1 = Lh. In additon, equation (6.1.1) implies that L is an
L1 isometry. We have thus obtained the new dynamical system (L1(X,µ∗),L)
which describes the evolution of the densities.

Remark 6.1.3 If µ∗ is non atomic, the dynamical system (L1(X,µ∗),L) is
not trivially reducible to (X, f). We will see that it enlightens interesting and
non-trivial properties of the dynamics.

The operator L has some general properties that will be useful in the following.

Lemma 6.1.4 The operator L is positive (sends positive functions in positive
functions) and, for all φ ∈ L∞(X,µ∗) and h ∈ L1(X,µ∗),

φLh = L(φ ◦ T h).

Proof. If φ, h ≥ 0, φ ∈ L∞(X,µ∗) and h ∈ L1(X,µ∗), then φ ◦ T ≥ 0
and

0 ≤
∫
φ ◦ Thdµ =

∫
X

φLhdµ

which implies Lh ≥ 0, µ-a.s. . Indeed, if A = {x ∈ X : Lh(x) < 0} then∫
X
1ALhdµ < 0, unless µ(A) = 0. Next, we have, for all ψ ∈ L∞(X,µ∗),∫

X

ψφLhdµ∗ =

∫
X

ψ ◦ T (φ ◦ Th) dµ∗ =

∫
X

ψL(φ ◦ Th)

from which the Lemma follows by the arbitrariness of ψ. □
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The first object that one typically studies when presented with a new
dynamic system are fixed points. To start with, note that if Lh = h, then
dµ∗ is an invariant measure since∫

X

φ ◦ Thdµ∗ =

∫
X

φLhdµ∗ =

∫
X

φhdµ∗.

However, it may happen that Lh = h has no solution in L1(X,µ∗). Consider
for example X = [−1, 1], f(x) = x

2 and µ∗ be the Lebesgue measure. Then if
µ is an invariant probability measure, we have, for each φ ∈ C0([−1, 1],R),∫ 1

−1

φ(x)µ(dx) = lim
n→∞

∫ n

−1

φ(fn(x))µ(dx) = φ(0).

That is, the only invariant measure is δ0 which does no belog to L1([−1, 1],R).

6.2 Measurable Dynamical Systems

We will start considering the case in which (L1(X,µ∗),L) has a fixed point
h, Lh = h. This means that the measure dµ = hdµ∗ is invariant. It is then
natural to consider µ as the reference measure. The idea to consider (X,T )
together with the measure µ naturally leads to the notion of a Measurable
Dynamical System.

Definition 6.2.1 By a Measurable Dynamical System with discrete time, we
mean a triplet (X, T, µ) where X is a measurable space,1 µ is a measure
and T is a measurable map from X to itself that preserves the measure (i.e.,
µ(T−1A) = µ(A) for each measurable set A ⊂ X).

An equivalent characterization of invariant measure is µ(f ◦T ) = µ(f) for
each f ∈ L1(X, µ) since, for each measurable set A, µ(χA ◦T ) = µ(χT−1A) =
µ(T−1A), where χA is the characteristic function of the set A.

Remark 6.2.2 In the following we will always assume µ(X) <∞ (and quite
often µ(X) = 1, i.e. µ is a probability measure). Nevertheless, the reader
should be aware that there exists a very rich theory pertaining to the case
µ(X) = ∞, see [Aar97].

Definition 6.2.3 By Dynamical System with continuous time we mean a
triplet (X, ϕt, µ) where X is a measurable space, µ is a measure and ϕt is a
measurable group (ϕt(x) is a measurable function for each t, ϕt(x) is a mea-
surable function of t for almost all x ∈ X; ϕ0 =identity and ϕt ◦ ϕs = ϕt+s

for each t, s ∈ R) or semigroup (t ∈ R+) from X to itself that preserves the
measure (i.e., µ((ϕt)−1A) = µ(A) for each measurable set A ⊂ X).

1By measurable space we simply mean a set X together with a σ-algebra that defines
the measurable sets.
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The above definitions are very general, this reflects the wideness of the
field of Dynamical Systems. In the present book we will be interested in
much more specialized situations.

In particular, X will always be a topological compact space. The measures
will alway belong to the class M1(X) of Borel probability measures on X.2

For future use, given a topological space X and a map T let us define MT as
the collection of all Borel measures that are T invariant.3

Often X will consist of finite unions of smooth manifolds (eventually with
boundaries). Analogously, the dynamics (the map or the flow) will be smooth
in the interior of X.

Let us see few examples to get a feeling of how a Dynamical System can
look like.

6.2.1 Examples

Rotations

Let T be R mod 1. By this we mean R quotiented with respect to the equivalence
relations x ∼ y if and only if x − y ∈ Z. T can be though as the interval [0, 1]
with the points 0 and 1 identified. We put on it the topology induced by the
topology of R via the defined equivalence relation. Such a topology is the usual
one on [0, 1], apart from the fact that each open set containing 0 must contain
1 as well. Clearly, from the topological point of view, T is a circle. We choose
the Borel σ-algebra. By µ we choose the Lebesgue measure m, while T : T → T
is defined by

Tx = x+ ω mod 1,

for some ω ∈ R. In essence, T translates, or rotates, each point by the same
quantity ω. It is easy to see that the measure µ is invariant (Problem 6.9).

Bernoulli shift

A Dynamical System needs not live on some differentiable manifold, more abstract
possibilities are available.

Let Zn = {1, 2, ..., n}, then define the set of two sided (or one sided) se-

quences Σn = ZZ
n (Σ+

n = ZZ+
n ). This means that the elements of Σn are se-

quences σ = {..., σ−1, σ0, σ1, ......} (σ = {σ0, σ1, ......} in the one sided case)
where σi ∈ Zn. To define the measure and the σ-algebra a bit of care is necessary.
To start with, consider the cylinder sets, that is the sets of the form

Aj
i = {σ ∈ Σn | σi = j}.

2Remember that a Borel measure is a measure defined on the Borel σ-algebra, that is
the σ-algebra generated by the open sets.

3Obviously, for each µ ∈ MT , (X,T, µ) is a Dynamical System.
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Such sets will be our basic objects and can be used to generate the algebra
A of the cylinder sets via unions and complements (or, equivalently, intersections
and complements). We can then define a topology on Σn (the product topology,
if {1, . . . , n} is endowed by the discrete topology) by declaring the above algebra
made of open sets and a basis for the topology. To define the σ-algebra we could
take the minimal σ-algebra containing A, yet this it is not a very constructive
definition, neither a particular useful one, it is better to invoke the Carathèodory
construction.

Let us start by defining a measure on Zn, that is n numbers pi > 0 such that∑n
i=1 pi = 1. Then, for each i ∈ Z and j ∈ Zn,

µ(Aj
i ) = pj .

Next, for each collection of sets {Ajl
il
}sl=1, with il ̸= ik for each l ̸= k, we define

µ(Aj1
i1
∩Aj2

i2
∩ ... ∩Ajs

is
) =

s∏
l=1

pjl .

We now know the measure of all finite intersection of the sets Aj
i . Obviously

µ(Ac) := 1 − µ(A) and the measure of the union of two sets A, B obviously
must satisfy µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B). We have so defined µ on
A. It is easy to check that such a µ is σ-additive on A; namely: if {Ai} ⊂ A
are pairwise disjoint sets and ∪∞

i=1Ai ∈ A, then µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai). The

next step is to define an outer measure4

µ∗(A) := inf
B∈A
B⊃A

µ(B) ∀A ⊂ Σn.

Finally, we can define the σ-algebra as the collection of all the sets that satisfy
the Carathèodory’s criterion, namely A is measurable (that is belongs to the σ-
algebra) iff

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) ∀E ⊂ Σn.

The reader can check that the sets in A are indeed measurable.
The Carathèodory Theorem then asserts that the measurable sets form a σ-

algebra and that on such a σ-algebra µ∗ is numerably additive, thus we have our
measure µ (simply the restriction of µ∗ to the σ-algebra).5 The σ-algebra so
obtained is nothing else than the completion with respect to µ of the minimal
σ-algebra containing A (all the sets with zero outer measure are measurable).

4An outer measure has the following properties: i) µ∗(∅) = 0; ii) µ∗(A) ≤ µ∗(B) if
A ⊂ B; iii)µ∗(∪∞

i=1Ai) ≤
∑∞

i=1 µ
∗(Ai). Note that µ∗ need not be additive on all sets.

5See [LL01] if you want a quick look at the details of the above Theorem or consult
[Roy88] if you want a more in depth immersion in measure theory. If you think that the
above construction is too cumbersome see Problem 6.19.
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The map T : Σn → Σn (usually called shift) is defined by

(Tσ)i = σi+1.

We leave to the reader the task to show that the measure is invariant (see Problem
6.17).

To understand what’s going on, let us consider the function f : Σ → Zn

defined by f(σ) = σ0. If we consider T t, t ∈ N, as the time evolution and f as
an observation, then f(T tσ) = σt. This can be interpreted as the observation of
some phenomenon at various times. If we do not know anything concerning the
state of the system, then the probability to see the value j at the time t is simply
pj . If n = 2 and p1 = p2 = 1

2 , it could very well be that we are observing the
successive outcomes of tossing a fair coin where 1 means head and 2 tail (or vice
versa); if n = 6 it could be the outcome of throwing a dice and so on.

Dilation

Again X = T and the measure is Lebesgue. T is defined by

Tx = 2x mod 1.

This map it is not invertible (similarly to the one sided shift). Note that, in
general, µ(TA) ̸= µ(A) (e.g., A = [0, 12 ]).

Toral automorphism (Arnold cat)

This is an automorphism of the torus and gets its name by a picture draw by
Arnold [AA68]. The space X is the two dimensional torus T2. The measure is
again Lebesgue measure and the map is

T

(
x
y

)
=

(
1 1
1 2

)(
x
y

)
mod 1 := L

(
x
y

)
mod 1.

Since the entries of L are integers numbers it is clear that T is well defined on the
torus; in fact, it is a linear toral automorphism. The invariance of the measure
follows from detL = 1.

Hamiltonian Systems

Up to now we have seen only examples with discrete time. Typical examples of
Dynamical Systems with continuous time are the solutions of an ODE or a PDE.
Let us consider the case of an Hamiltonian system. The simplest case is when
X = R2n, the σ-algebra is the Borel one and the measure µ is the Lebesgue
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measure m. The dynamics is defined by a smooth function H : X → R via the
equations

dx

dt
= JgradH(x)

where grad(H)i = (∇H)i =
∂H
∂xi

and J is the block matrix

J =

(
0 1

−1 0

)
.

The fact that m is invariant with respect to the Hamiltonian flow is due to the
Liouville Theorem (see [Arn99] or Problem 5.7).

Such a dynamical system has a natural decomposition. Since H is an integral
of the motion, for each h ∈ R we can consider Xh = {x ∈ X | H(x) = h}.
If Xh ̸= ∅, then it will typically consist of a smooth manifold,6 let us restrict
ourselves to this case. Let σ be the surface measure on Xh, then µh = σ

∥gradH∥
is an invariant measure on Xh and (Xh, ϕt, µh) is a Dynamical System (see
Problem 6.11).

Geodesic flow

Along the same lines any geodesic flow on a compact Riemannian manifold nat-
urally defines a dynamical system.

6.3 Return maps and Poincaré sections

Normally in Dynamical Systems there is a lot of emphasis on the discrete case.
One reason is that there is a general device that allows to reduce the study
of many properties of a continuous time Dynamical System to the study of
an appropriate discrete time Dynamical System: Poincaré sections (we have
already seen an instance of this in the introduction). Here we want to make
few comments on this precious tool that we will largely employ in the study
of billiards.

Let us consider a smooth Dynamical System (X,ϕt, µ) (that is a Dynam-
ical Systems in continuous time where X is a smooth manifold and ϕt is a

smooth flow). Then we can define the vector field V (x) := dϕt(x)
dt |t=0.

7

Consider a smooth compact submanifold (possibly with boundaries) Σ of
codimension one such that TxΣ (the tangent space of Σ at the point x) is

6By the implicit function theorem this is locally the case if ∇H ̸= 0.
7Very often it is the other way around: the vector field is given first and then the flow–as

we saw in the introduction.
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transversal to V (x).8 We can then define the return time τΣ : Σ → R+∪{∞}
by

τΣ = inf{t ∈ R+\{0} | ϕt(x) ∈ Σ},

where the inf is taken to be ∞ if the set is empty. Next we define the return
map TΣ : D(T ) ⊂ Σ → Σ, where D(T ) = {x ∈ Σ|τΣ(x) <∞}, by

TΣ(x) = ϕτΣ(x)(x).

It is easy to check that there exists c > 0 such that τΣ ≥ c (Problem 6.14).
To define the measure, the natural idea is to project the invariant measure

along the flow direction: for all measurable sets A ⊂ Σ, define9

νΣ(A) := lim
δ→0

1

δ
µ(ϕ[0, δ](A)). (6.3.2)

See Problem 6.13 for the existence of the above limit; see Problem 6.14 for
the proof that τΣ is finite almost everywhere and Problem 6.15 for the proof
that (Σ, TΣ, νΣ) is a dynamical system. The reader is invited to meditate on
the relation between this Dynamical System and the original one.

6.4 Suspension flows

A natural question is if it is possible to construct a flow with a given Poincaré
section, the answer is that there are infinitely many flows with a given section.
Let us construct some of them. Given a dynamical system (Σ, T, ν) consider
X̃ := Σ × R+. Define the flow ϕt((x, s)) = (x, s + t). We then define in X̃
the equivalence relation (x, t) ∼ (y, s) iff s = t+ n and y = Tnx or t = s+ n
and x = Tny for some n ∈ N. A moment of reflection shows that the set X
of equivalence classes is nothing else than the set Σ × [0, 1] with the points
(x, 1) and (Tx, 0) identified. Clearly the flow is naturally quotiented over the
equivalence classes and yields a quotient flow on X, such a flow is called a
suspension flow.

A more general construction can by obtained by applying a time change
to the above example. Alternatively, one can can choose any smooth function
τ : Σ → R+, that will be called a ceiling function and consider the set Xτ =
{(x, t) ∈ Σ×R+ | t ∈ [0, τ(x)]} with the points (x, τ(x)) and (Tx, 0) identified.
A moment of reflection should show that the topology of Xτ does not depend
on τ and is then the same than the suspension defined above. The flow is
again defined by ϕt(x, s) = (x, s + t) for t ≤ τ(x) − s. Such flows are called
special flows.

8That is TxΣ⊕ V (x) form the full tangent space at x.
9We use the notation: ϕI(A) := ∪t∈Iϕ

t(A) for each I ⊂ R.
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6.5 Invariant measures

A very natural question is: given a space X and a map T does there always
exists an invariant measure µ? A non exhaustive, but quite general, answer
exists: Krylov-Bogoluvov Theorem.

First of all we need a useful characterization of invariance.

Lemma 6.5.1 Given a compact metric space X and Borel measurable map
T continuous apart from a compact set K,10 a Borel measure µ, such that
µ(K) = 0, is invariant if and only if µ(f ◦ T ) = µ(f) for each f ∈ C0(X).

Proof. To prove that the invariance of the measure implies the invari-
ance for continuous functions is obvious, since each such function can be
approximated uniformly by simple functions–that is, a sum of characteristic
functions of measurable sets–for which the invariance is immediate.11 The
converse implication is not so obvious.

The first thing to remember is that the Borel measures, on a compact
metric space, are regular [RS80]. This means that for each measurable set A
the following holds12

µ(A) = inf
G⊃A

G=
◦
G

µ(G) = sup
C⊂A
C=C

µ(C). (6.5.3)

Next, remember that for each closed set A and open set G ⊃ A, there exists
f ∈ C0(X) such that f(X) ⊂ [0, 1], f |Gc = 0 and f |A = 1 (this is Urysohn
Lemma for Normal spaces [Roy88]). Hence, setting BA := {f ∈ C(0)(X) | f ≥
χA},

µ(A) ≤ inf
f∈BA

µ(f) ≤ inf
G⊃A

G=
◦
G

µ(G) = µ(A). (6.5.4)

Accordingly, for each A closed, we have

µ(T−1A) ≤ inf
f∈BA

µ(f ◦ T ) = inf
f∈BA

µ(f) = µ(A).

In addition, using again the regularity of the measure, for each A Borel holds13

10This means that, if C ⊂ X is closed, then T−1C ∪K is closed as well.
11This is essentially the definition of integral.
12This is rather clear if one thinks of the Carathéodory construction starting from the

open sets.
13Note that, by hypothesis, if C is compact and C ∩K = ∅, then TC is compact.
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µ(T−1A) = sup
U⊃K

U=
◦
U

µ(T−1A\U) ≤ sup
U⊃K

U=
◦
U

sup
C⊂T−1A\U

C=C

µ(T−1(TC))

≤ sup
U⊃K

U=
◦
U

sup
C⊂A
C=C

µ(T−1C) ≤ sup
C⊂A
C=C

µ(C) = µ(A).

Applying the same argument to the complement Ac of A it follow that it must
be µ(T−1A) = µ(A) for each Borel set. □

Proposition 6.5.2 (Krylov–Bogoluvov) If X is a metric compact space
and T : X → X is continuous, then there exists at least one invariant (Borel)
measure.

Proof. Consider any Borel probability measure ν and define the follow-
ing sequence of measures {νn}n∈N:

14 for each Borel set A

νn(A) = ν(T−nA).

The reader can easily see that νn ∈ M1(X), the sets of the probability
measures. Indeed, since T−1X = X, νn(X) = 1 for each n ∈ N. Next, define

µn =
1

n

n−1∑
i=0

νi.

Again µn(X) = 1, so the sequence {µi}∞i=1 is contained in a weakly compact
set (the unit ball) and therefore admits a weakly convergent subsequence
{µni

}∞i=1; let µ be the weak limit.15 We claim that µ is T invariant. Since µ is
a Borel measure it suffices to verify that for each f ∈ C0(X) holds µ(f ◦ T ) =
µ(f) (see Lemma 6.5.1). Let f be a continuous function, then by the weak
convergence we have16

14Intuitively, if we chose a point x ∈ X at random, according to the measure ν and we ask
what is the probability that Tnx ∈ A, this is exactly ν(T−nA). Hence, our procedure to
produce the point Tnx is equivalent to picking a point at random according to the evolved
measure νn.

15This depends on the Riesz-Markov Representation Theorem [RS80] that states that
M(X) is exactly the dual of the Banach space C0(X). Since the weak convergence of
measures in this case correspond exactly to the weak-* topology [RS80], the result follows
from the Banach-Alaoglu theorem stating that the unit ball of the dual of a Banach space
is compact in the weak-* topology. But see 1.6.22 if you want a more elementary proof.

16Note that it is essential that we can check invariance only on continuous functions: if
we would have to check it with respect to all bounded measurable functions we would need
that µn converges in a stronger sense (strong convergence) and this may not be true. Note
as well that this is the only point where the continuity of T is used: to insure that f ◦ T is
continuous and hence that µnj (f ◦ T ) → µ(f ◦ T ).
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µ(f ◦ T ) = lim
j→∞

1

nj

nj−1∑
i=0

νi(f ◦ T ) = lim
j→∞

1

nj

nj−1∑
i=0

ν(f ◦ T i+1)

= lim
j→∞

1

nj

{
nj−1∑
i=0

νi(f) + ν(f ◦ Tnj )− ν(f)

}
= µ(f).

□

The reason why the above theorem is not completely satisfactory is that
it is not constructive and, in particular, does not provide any information
on the nature of the invariant measure. On the contrary, in many instances
the interest is focused not just on any Borel measure but on special classes of
measures, for example measures connected to the Lebesgue measure which, in
some sense, can be thought as reasonably physical measures (if such measures
exists).

In the following examples we will see two main techniques to study such
problems: on the one hand it is possible to try to construct explicitly the mea-
sure and study its properties in the given situations (expanding maps, strange
attractors, solenoid, horseshoe); on the other hand one can try to conjugate17

the given problem with another, better understood, one (logistic map, circle
maps). In view of the second possibility the last example is very important
(Markov measures). Such an example gives just a hint to the possibility to
construct a multitude of invariant measures for the shift which, as we will see
briefly, is a standard system to which many other can be conjugated.

6.5.1 Examples

Contracting maps

Let X ⊂ Rn be compact and connected, T : X → X differentiable with ∥DT∥ ≤
λ−1 < 1 and T0 = 0 ∈ X. In this case 0 is the unique fixed point and the delta
function at zero is the only invariant measure.18

Expanding maps

The simplest possible case is X = T, T ∈ C2(T) with |DT | ≥ λ > 1, (see Figure
6.1 for a pictorial example).19

17See Definition 6.9.2 for a precise definition and Problem 6.41 and 6.42 for some insight.
18The reader will hopefully excuse this physicist language, naturally we mean that the

invariant measure is defined by δ0(f) = f(0). The property that there exists only one
invariant measure is called unique ergodicity, we will see more of it in the sequel, e.g. see
example 6.6.1.

19Note that this generalizes Examples 6.2.1.
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1

1

Figure 6.1: Graph of an expanding map on T

We would like to have an invariant measure absolutely continuous with re-
spect to Lebesgue. Any such measure µ has, by definition, the Radon-Nikodym
derivative h = dµ

dm ∈ L1(T, m), [Roy88]. In Proposition 6.5.2 we saw how a
measure evolves by defining the operator

T∗µ(f) = µ(f ◦ T ) (6.5.5)

for each f ∈ C0 and µ ∈ M(X) (see also footnote 15 at page 118). If we want to
study a smaller class of measures we must first check that T∗ leaves such a class
invariant. Indeed, if µ is absolutely continuous with respect to Lebesgue then
T∗µ has the same property. Moreover, if h = dµ

dm and h1 = dT∗µ
dm then (Problem

6.20)

h1(x) =: Lh(x) =
∑

y∈T−1(x)

|DyT |−1h(y).

The operator L : L1(T, m) → L1(T, m) is called Transfer operator or Ruelle-
Perron-Frobenius operator, and has an extremely important rôle in the study of
the statistical properties of the system. Notice that ∥Lh∥1 ≤ ∥h∥1.20 The key
property of L, in this context, is given by the following inequality (this type of
inequality is commonly called of Lasota-York type) (Problem 6.21): if f ′ ∈ L1,
then ∣∣∣∣ ddxLh(x)

∣∣∣∣ ≤ λ−1|Lh′(x)|+ C|Lh(x)| (6.5.6)

20Here ∥f∥1 :=
∫
|h(x)|dx is the standard norm in L1.
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where C = ∥D2T∥∞
∥DT∥2

∞
.

The above inequality implies ∥(Lh)′∥1 ≤ λ−1∥h′∥1 + C∥h∥1. Iterating such
a relation yields

∥(Lnh)′∥1 ≤ λ−n∥h′∥1 +
C

1− λ−1
∥h∥1,

for all n ∈ N. This, in turn, implies that the supn∈N ∥Lnh∥∞ <∞. Consequently,

the sequence hn := 1
n

∑n−1
i=0 Lih is compact in L1 (this is a consequence of

standard embedding theorems21 [LL01] but see Problem 6.22 for an elementary
proof). In analogy with Lemma 6.5.2, we have that there exists h∗ ∈ L1 such
that Lh∗ = h∗. Thus dµ := h∗dm is an invariant measure of the type we are
looking for.

In fact, it is possible to obtain some more information on such measure.
Equation (6.5.6) implies that L is a well defined operator also when restricted to
C0 or C1. Moreover, for each h ∈ C0 and n ∈ N,

|Lnh|∞ ≤ |Ln1|∞|h|∞ ≤ |h|∞(∥Ln1∥1 + ∥(Ln1)′∥1) ≤ |h|∞
C + 1

1− λ−1

=: C1|h|∞.

Using the above equation and iterating (6.5.6) yields, for each h ∈ C1 and n ∈ N,

|(Lnh)′|∞ ≤ λ−nC1|h′|∞ + C2
1 |h|∞.

In other words we have a Lasota-Yorke type inequality for L acting on C0, C1

instead of L1,W 1,1. In particular note that one can apply the above inequalities
to the average hn := 1

n

∑n−1
i=0 Lih, when h ∈ C1. Then the compactness follows

by Ascoli-Arzelá Theorem and it follows that the invariant density is continuous
(in fact, Lipschitz as already argued in the Perron-Frobenius Theorem).

Logistic maps

Consider X = [0, 1] and
T (x) = 4x(1− x).

This map is not an everywhere expanding map (D 1
2
T = 0), yet it can be conjugate

with one, [UvN47].
To see this consider the continuous change of variables Ψ : [0, 1] → [0, 1]

defined by

Ψ(x) =
2

π
arcsin

√
x,

21Indeed the space C1 closed with respect to the norm ∥f∥ = ∥f∥1+∥f ′∥1 is a well known
Banach space: the Sobolev space W 1,1.
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thus Ψ−1(x) =
(
sin π

2x
)2
. Accordingly,

T̃ (x) := Ψ ◦ T ◦Ψ−1(x) = Ψ(4 sin2 π
2x cos

2 π
2x)

= Ψ([sinπx]2) = 2
π arcsin[sinπx]

which yields22

T̃ (x) =

{
2x for x ∈ [0, 12 ]

2− 2x for x ∈ [ 12 , 1].

The map T̃ is called tent map for its characteristic shape, see figure 6.2. What
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Figure 6.2: Graph of tent map

is more interesting is that the Lebesgue measure is invariant for T̃ , as the reader
can easily check. This means that, if we define µ(f) := m(f ◦Ψ−1), it holds true

µ(f ◦ T ) = m(f ◦ T ◦Ψ−1) = m(f ◦Ψ−1 ◦ T̃ ) = m(f ◦Ψ−1) = µ(f).

Hence, ([0, 1], T, µ) is a Dynamical System. In addition, a trivial computation
shows

µ(dx) =
1

π
√
x(1− x)

dx,

thus µ is absolutely continuous with respect to Lebesgue.

22Remember that the range of arcsin is [−π
2
, π
2
] and sinπx = sinπ(1− x).
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Circle maps

A circle map is an order preserving continuous map of the circle. A simple way
to describe it is to start by considering its lift. Let T̂ : R → R, such that
T̂ (0) ∈ [0, 1], T̂ (x+1) = T̂ (x) + 1 ad it is monotone increasing. The circle map
is then defined as T (x) = T̂ (x) mod 1. Circle maps have a very rich theory
that we do not intend to develop here, we confine ourselves to some facts (see
[HK95] for a detailed discussion of the properties below). The first fact is that
the rotation number

ρ(T ) = lim
n→∞

1

n
T̂n(x).

is well defined and does not depend on x.
We have already seen a concrete example of circle maps: the rotation Rω by

ω. Clearly ρ(Rω) = ω. It is fairly easy to see that if ρ(T ) ∈ Q then the map has
a periodic orbit. We are more interested in the case in which the rotation number
is irrational. In this case, with the extra assumption that T is twice differentiable
(actually a bit less is needed) the Denjoy theorem holds stating that there exists
a continuous invertible function h such that Rρ(T ) ◦ h = h ◦ T , that is T is
topologically conjugated to a rigid rotation. Since we know that the Lebesgue
measure is invariant for the rotations, we can obtain an invariant measure for T
by pushing the Lebesgue measure by h, namely define

µ(f) = m(f ◦ h−1).

The natural question if the measure µ is absolutely continuous with respect to
Lebesgue is rather subtle and depends, once again, on KAM theory. In essence
the answer is positive only if T has more regularity and the rotation number is not
very well approximated by rational numbers (in some sense it is ‘very irrational’).

Strange Attractors

We have seen the case in which all the trajectories are attracted by a point. The
reader can probably imagine a case in which the attractor is a curve or some
other simple set. Yet, it has been a fairly recent discovery that an attractor may
have a very complex (strange) structure. The following is probably the simplest
example. Let X = Q = [0, 1]2 and

T (x, y) =

{
(2x, 1

8y +
1
4 ) if x ∈ [0, 1/2]

(2x− 1, 1
8y +

3
4 ) if x ∈]1/2, 1].

We have a map of the square that stretches in one direction by a factor 2 and
contract in the other by a factor 8.

Note that T it is not continuous with respect to the normal topology, so
Proposition 6.5.2 cannot be applied directly. This problem can be solved in at
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least two ways: one is to code the system and we will discuss it later (see Examples
6.9.1), the other is to study more precisely what happens iterating a measure in
special cases.

In our situation, since TnQ consists of a multitude of thinner and thinner
strips, it is clear that there can be no invariant measure absolutely continuous
with respect to Lebesgue.23 Yet, it is very natural to ask what happens if we
iterate the Lebesgue measure by the operator T∗. It is easy to see that T∗m is
still absolutely continuous with respect to Lebesgue. In fact, T∗ maps absolutely
continuous measures into absolutely continuous measures. Once we note this, it
is very tempting to define the transfer operator. An easy computation yields

Lh(x) = χTQ(x)
∑

y∈T−1(x)

|det(DyT )|−1h(y) = 4χTQ(x)h(T
−1(x)).

Since the map expands in the unstable direction, it is quite natural to inves-
tigate, in analogy with the expanding case, the unstable derivative Du, that is
the derivative in the x direction, of the iterate of the density.

∥DuLh∥1 ≤ 1

2
∥Duh∥1 ∀h ∈ C1(Q) (6.5.7)

To see the consequences of the above estimate, consider f ∈ C(1)(Q) with
f(0, y) = f(1, y) = 0 for each y ∈ [0, 1], then if µ is a measure obtained by
the measure hdm (h ∈ C1) with the procedure of Proposition 6.5.2,24 we have

µ(Duf) = lim
j→∞

1

nj

nj−1∑
i=0

(T∗)
im(hDuf) = lim

j→∞

1

nj

nj−1∑
i=0

m(LihDuf)

= − lim
j→∞

1

nj

nj−1∑
i=0

m(fDuLih)

where we have integrated by part. Remembering (6.5.7) we have

µ(Duf) = 0,

for all f ∈ C(1)
per(Q) = {f ∈ C(1)(Q) | f(0, y) = f(1, y)}. The enlargement of the

class of functions is due to the obvious fact that, if f ∈ C(1)
per(Q), then f̃(x, y) =

f(x, y)− f(0, y) is zero on the vertical (stable) boundary and Duf̃ = Duf .

23In fact, if µ is an invariant measure, T∗µ = µ, it follows

µ(χTnQ) = Tn
∗ µ(χTnQ) = µ(χQ) = 1,

so µ must be supported on Λ = ∩∞
n=0T

nQ.
24As we noted in the proof of Proposition 6.5.2, the only part that uses the continuity

of T is the proof of the invariance. Thus, in general we can construct a measure by the
averaging procedure but its invariance is not automatic.
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This means that the measure µ, when restricted to the horizontal direction, is
µ-a.e. constant (see Problem 6.36). Such a strong result is clearly a consequence
of the fact that the map is essentially linear, one can easily imagine a non linear
case (think of dilations and expanding maps) and in that case the same argument
would lead to conclude that the measure, when restricted to unstable manifolds,
is absolutely continuous with respect to the restriction of Lebesgue (these type
of measures are commonly called SRB from Sinai, Ruelle and Bowen).

We can now prove that indeed the measure µ is invariant. The discontinuity
line of T is {x = 1

2}. Points close to {x = 1
2} are mapped close to the boundary

of Q, so if f(0, y) = f(1, y) = 0, then f ◦ T is continuous. Hence, the argument
of Proposition 6.5.2 proves that µ(f ◦ T ) = µ(f) for all f that vanish at the
stable boundary. Yet, the characterization of µ proves that µ({(x, y) ∈ Q | x ∈
{0, 1}}) = 0, thus we can obtain µ(f ◦ T ) = µ(f) for all continuous functions
via the Lebesgue dominated convergence theorem and the invariance follows by
Lemma 6.5.1.

Horseshoe

This very famous example consists of a map of the square Q = [0, 1]2, the map
is obtained by stretching the square in the horizontal direction, bending it in the
shape of an horseshoe and then superimposing it to the original square in such a
way that the intersection consists of two horizontal strips.25 Such a description
is just topological, to make things clearer let us consider a very special case:

T (x, y) =

{
(5x mod 1, 1

4y) if x ∈ [1/5, 2/5]

(5x mod 1, 1
4y +

3
4 ) if x ∈ [3/5, 4/5].

Note that T is not explicitly defined for x ∈ [0, 1/5[∪[ 23 ,
3
5 [∪]4/5, 1] since for

this values the horseshoe falls outside Q, so its actual shape is irrelevant. Since
the map from Q to Q is not defined on the full square, we can have a Dynamical
System only with respect to a measure for which the domain of definition of T ,
and all of its powers, has measure one. We will start by constructing such a
measure.

The first step is to notice that the set

Λ = ∩n∈ZT
nQ (6.5.8)

of the points which trajectories are always in Q is ̸= ∅. Second, note that
Λ = TΛ = T−1Λ, such an invariant set is called hyperbolic set as we will see in
???. We would like to construct an invariant measure on Λ. Since Λ is a compact
set and T is continuous on it we know that there exist invariant measures; yet, in

25We have already seen something very similar in the introduction.
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analogy with the previous examples, we would like to construct one coming from
Lebesgue.

As already mentioned we must start by constructing a measure on Λ− =
∩n∈N∪{0}T

−nQ since T kΛ− ⊂ Λ−. To do so it is quite natural to construct a
measure by subtracting the mass that leaks out of Q. namely, define the operator
T̃ : M(X) → M(X) by

T̃ µ(A) := µ(TA ∩Q).

Again we consider the evolution of measures of the type dµ = hdm. For each
continuous f with supp(f) ⊂ Q holds

T̃ µ(f) = µ(f ◦ T−1χQ) =

∫
T−1Q

fh ◦ T |detDT |dm.

We can thus define the operator L that evolves the densities:

Lh(x) = 5

4
χT−1Q∩Q(x)h(Tx).

Clearly T̃ µ(f) = m(fLh).
Note that T̃m(1) = 1

2 , thus T̃ does not map probability measures into prob-
ability measures; this is clearly due to the mass leaking out of Q. Calling Ds

(stable derivative) the derivative in the y direction, follows easily

∥DsLh∥1 ≤ 1

4
∥Dsh∥1

for each h differentiable in the stable direction.
On the other hand, if ∥Dsh∥1 ≤ c and ∆ = [0, 1/4] ∪ [3/4, 1],

|T̃ µ(1)| =
∫
Q∩TQ

h =

∫
∆

dy

∫ 1

0

dxh(x, y)

=

∫
∆

dy

∫ 1

0

dx

∫ 1

0

dξh(x, ξ) +O(∥Dsh∥1)

=|∆|∥h∥1 +O(∥Dsh∥1) =
1

2
µ(1) +O(∥Dsh∥1).

It is then natural to define L̂h := 2Lh and T̂ = 2T̃ . Thus ∥DsL̂h∥1 ≤
1
2∥D

sh∥1. This means that { 1
n

∑n−1
i=0 T̂

iµ} are probability measures. Accord-
ingly, there exists an accumulation point µ∗ and µ∗(D

sf) = 0 for each f periodic
in the y direction. By the same type of arguments used in the previous examples,
this means that µ∗ is constant in the y direction, it is supported on Λ− by con-
struction and T̃ µ∗ = 1

2µ∗ (conformal invariance) : just the measure we where
looking for.
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We can now conclude the argument by evolving the measure as usual:

T∗µ∗(f) = µ∗(f ◦ T )

for all continuous f with the support in Q. Now the standard argument applies.
In such a way we have obtained the invariant measure supported on Λ.

Markov Measures

Let us consider the shift (Σ+
n , T ). We would like to construct other invariant

measures bedside Bernoulli. As we have seen it suffices to specify the measure
on the algebra of the cylinders. Let us define

A(m; k1, . . . , kl) = {σ ∈ Σ+
n | σi+m = ki ∀ i ∈ {1, . . . , l}};

this are a basis for the algebra of the cylinders.
For each n × n matrix P , Pij ≥ 0,

∑
j Pij = 1 by the Perron-Frobenius

theorem (see Secion (A.3.2)) there exists {pi} such that pP = p. Let us define

µ(A(m; k1, . . . , kl)) = pk1
Pk1k2

Pk2k3
. . . Pkl−1kl

.

The reader can easily verify that µ is invariant over the algebra A and thus extends
to an invariant measure. This is called Markov because it is nothing else than a
Markov chain together with its stationary measure.26

These last examples (strange attractor, solenoid, horseshoe) show only a
very dim glimpse of a much more general and extremely rich theory (the study
of SRB measures) while the last (Markov measures) points toward another
extremely rich theory: Gibbs (or equilibrium) measures. Although this it is
not the focus here, we will see a bit more of this in the future.

One of the main objectives in dynamical systems is the study of the long
time behavior (that is the study of the trajectories Tnx for large n). There
are two main cases in which it is possible to study, in some detail, such a
long time behavior. The case in which the motion is rather regular27 or
close to it (the main examples of this possibility are given by the so called
KAM [Arn92] theory and by situations in which the motions is attracted by
a simple set); and the case in which the motion is very irregular.28 This last
case may seem surprising since the irregularity of the motion should make its
study very difficult. The reason why such systems can be studied is, as usual,

26The probabilistic interpretation is that the probability of seeing the state k at time
one, given that we saw the state l at time zero, is given by Plk. So the process has a bit of
memory: it remembers its state one time step before. Of course it is possible to consider
processes that have a longer–possibly infinite–memory. Proceeding in this direction one
would define the so called Gibbs measures.

27Typically, quasi periodic motion, remember the small oscillation in the pendulum.
28Remember the example in the introduction.
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because we ask the right questions,29 that is we ask questions not concerning
the fine details of the motion but only concerning its statistical or qualitative
properties.

The first example of such properties is the study of the invariant sets.

6.6 Ergodicity

Definition 6.6.1 A measurable set A is invariant for T if T−1A ⊂ A.

A dynamical system (X, T, µ) is ergodic if each invariant set has measure
zero or one.

The definition for continuous dynamical systems being exactly the same.

Note that if A is invariant then µ(A\T−1A) = µ(A) − µ(T−1A) = 0,
moreover Λ = ∩∞

n=0T
−nA ⊂ A is invariant as well. In addition, by definition,

Λ = TΛ, which implies Λ = T−1Λ and µ(A\Λ) = 0. This means that, if A
is invariant, then it always contains a set Λ invariant in the stronger (maybe
more natural) sense that TΛ = T−1Λ = Λ. Moreover, Λ is of full measure in
A. Our definition of invariance is motivated by its greater flexibility and the
fact that, from a measure theoretical point of view, zero measure sets can be
discarded.

In essence, if a system is ergodic then most trajectories explore all the avail-
able space. In fact, for any A of positive measure, define Ab = ∪n∈N∪{0}T

−nA
(this are the points that eventually end up in A), since Ab ⊃ A, µ(Ab) > 0.
Since T−1Ab ⊂ Ab, by ergodicity follows µ(Ab) = 1. Thus, the points that
never enter in A (that is, the points in Ac

b) have zero measure. Actually, if
the system has more structure (topology) more is true (see Problem 6.26).

The reader should be aware that there are many equivalent definitions of
ergodicity. In the following, we give a relevant one, but see Problems 6.31,
6.32 and Theorem 6.7.5 for other possibilities.

Lemma 6.6.2 Show that a Dynamical Systems (X,T, µ) is ergodic if and
only if the transfer operator L acting on L1(X,µ) has 1 as a simple eigen-
value.30

Proof. Since we want to connect the concept of ergodicity to the spectral
properties of L, it is natural to consider L1(X,µ) as a space of complex
functions. Since µ is invariant, we have L1 = 1.
Let us suppose that 1 is a simple eigenvalue and assume that there exists a
measurable invariant set A, µ(A) ̸∈ {0, 1}. By invariance f−1(A) ⊂ A; that is

29Of course, the “right questions” are the ones that can be answered.
30That is, there are no other invariant measures absolutely continuous with respect ot µ.
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1A ◦ T = 1f−1(A) ≤ 1A. But the invariance of µ implies µ(A) = µ(T−1(A)),
hence 1A ◦ T = 1A, µ-a.s.. Recalling Lemma 6.1.4 we have

L1A = L1A ◦ T = 1AL1 = 1A

which contradicts the assumption that 1 is a simple eigenvalue.
Next, suppose that (X,T, µ) is ergodic. We start to notice that Lh = h, with
h = h1 + ih2, with hi real, then by linearity,

h1 + ih2 = Lh1 + iLh2

which implies Lhi = hi. We can then restrict ourselves to real invariant
functions. Hence, let h ∈ L1(X,µ) be real and Lh = h, then by Lemma 6.1.4,

L(|h| ± h) ≥ 0

which implies L|h| ≥ ±Lh = ±h, that is L|h| ≥ |h|. Yet,

0 ≤
∫
X

(L|h| − |h|)dµ = 0

implies L|h| = |h|. Suppose now that |h| = 1, then

L1 = 1 = h2 = hLh = L(h ◦ T h).

This allows us to write

0 =

∫
X

L(1− h ◦ T h)dµ =

∫
X

(1− h ◦ T h)dµ.

But 1−h◦T h ≥ 0, thus it must be 1−h◦T h = 0 or h = h◦T . By ergodicity,
this implies h is constant, hence proportional to 1. We are thus left with the
possibility of multiple positive eigenvectors. Let h ≥ 0, Lh = h, then for each
a ∈ R let Γa(x) = max{a, h(x)}, then

LΓa ≥ Lh = h LΓa ≥ La = a,

which implies LΓa ≥ Γa. But since
∫
X
(LΓa−Γa)dµ = 0, it must be LΓa = Γa.

Next, let A = {x ∈ X : h(x) ≥ a} and notice that x ∈ A iff Γa(x) = h(x).
We have

0 =

∫
A

(Γa − h)dµ =

∫
X

1AL(Γa − h)dµ =

∫
X

1A ◦ T (Γa − h)dµ.

Since Γa − h ≥ 0 it must be 1T−1(A)(Γa − h) = 0. This is possible if either
µ(A) = 0 or T−1(A) ⊂ A. Consequently h is µ=a.s. constant and hence
proportional to 1. That is 1 is a simple eigenvalue of L. □
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6.6.1 Examples

Rotations

The ergodicity of a rotation depends on ω. If ω ∈ Q then the system is not
ergodic. In fact, let ω = p

q (p, q ∈ N), then, for each x ∈ T T qx = x + p
mod 1 = x, so T q is just the identity. An alternative way of saying this is to
notice that all the points have a periodic trajectory of period q. It is then easy
to exhibit an invariant set with measure strictly larger than 0 but strictly less
than 1. Consider [0, ε], then A = ∪q−1

i=1T
−i[0, ε] is an invariant set; clearly

ε ≤ µ(A) ≤ qε, so it suffices to choose ε < q−1.
The case ω ̸∈ Q is much more interesting. First of all, for each point x ∈ T

we have that the closure of the set {Tnx}∞i=0 is equal to T, which is to say that
the orbits are dense.31 The proof is based on the fact that there cannot be any
periodic orbit. To see this suppose that x ∈ T has a periodic orbit, that is there
exists q ∈ N such that T qx = x. As a consequence there must exist p ∈ Z
such that x + p = x + qω or ω ∈ Q contrary to the hypothesis. Hence, the set
{T k0}∞k=0 must contain infinitely many points and, by compactness, must contain
a convergent subsequence ki. Hence, for each ε > 0, there exists m > n ∈ N:

|Tm0− Tn0| < ε.

Since T preserves the distances, calling q = m− n, holds

|T q0| < ε.

Accordingly, the trajectory of T jq0 is a translation by a quantity less than ε,
therefore it will get closer than ε to each point in T (i.e., the orbit is dense).
Again by the conservation of the distance, since zero has a dense orbit the same
will hold for every other point.

Intuitively, the fact that the orbits are dense implies that there cannot be a
non trivial invariant set, henceforth the system is ergodic. Yet, the proof it is not
trivial since it is based on the existence of Lebesgue density points [Roy88] (see
Problem 6.44). It is a fact from general measure theory that each measurable set
A ⊂ R of positive Lebesgue measure contains, at least, one point x̄ such that for
each ε ∈ (0, 1) there exists δ > 0:

m(A ∩ [x̄− δ, x̄+ δ])

2δ
> 1− ε.

Hence, given an invariant set A of positive measure and ε > 0, first choose δ
such that the interval I := [x̄−δ, x̄+δ] has the propertym(I∩A) > (1−ε)m(I).
Second, we know already that there exists q,M ∈ N such that {T−kqx}Mk=1

31A system with a dense orbit called Topologically Transitive.
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divides [0, 1] into intervals of length less that ε
2δ. Hence, given any point x ∈ T

choose k ∈ N such that m(T−kqI ∩ [x− δ, x+ δ]) > m(I)(1− ε) so,

m(A ∩ [x− δ, x+ δ]) ≥ m(A ∩ T−kqI)−m(I)ε

≥ m(A ∩ I)−m(I)ε ≥ (1− 2ε)2δ.

Thus, A has density everywhere larger than 1− 2ε, which implies µ(A) = 1 since
ε is arbitrary.

The above proof of ergodicity it is not so trivial but it has a definite dynamical
flavor (in the sense that it is obtained by studying the evolution of the system).
Its structure allows generalizations to contexts whit a less rich algebraic structure.
Nevertheless, we must notice that, by taking advantage of the algebraic struc-
ture (or rather the group structure) of T, a much simpler and powerful proof is
available.

Let ν ∈ M1
T , then define

Fn =

∫
T
e2πinxν(dx), n ∈ N.

A simple computation, using the invariance of ν, yields

Fn = e2πinωFn

and, if ω is irrational, this implies Fn = 0 for all n ̸= 0, while F0 = 1. Next,
consider f ∈ C(2)(T1) (so that we are sure that the Fourier series converges
uniformly, see Problem 6.35), then

ν(f) =

∞∑
n=0

ν(fne
2πin·) =

∞∑
n=0

fnFn = f0 =

∫
T
f(x)dx.

Hence m is the unique invariant measure (unique ergodicity). This is clearly
much stronger than ergodicity (see Problem 6.6.2)

Expanding maps

Next, we prove that any smooth invariant map has a unique invariant measure
absolutely continuos with respect to Lebesgue and hence it is ergodic with respect
to such a measure. Let h ∈ L1 be the density of an invariant measure and A, of
positive measure, an invariant set. For each ε > 0 there exists fε ∈ C1 such that
∥fε − 1A∥1 ≤ ε. Calling fε,n = 1

n

∑n−1
i=0 Lifε and noting that, by invariance,

φn := 1
n

∑n−1
i=0 Li1A = 1A

1
n

∑n−1
i=0 Li1, we have, by taking subsequeces, that fn

converges in C0 to some invariant density f̄ε while φn converges to 1Ah, where
h is the invariant density to which converges 1

n

∑n−1
i=0 Li1 (or rather the chosen
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subsequence). On the other hand ∥f̄ε−1Ah∥1 ≤ ε. Since the f̄ε are all uniformly
Lipschitz, hence equicontinuous, (see the end of Example 6.5.1, Expanding maps)
by Ascoli-Arzelá we can extract a converging subquence. This means that 1A is
the uniform limit of continuos functions, hence it is continuos hence A is either
empty of everything, thus the map is ergodic. The uniqueness of the invariant
measure follows by similar arguments.

Baker

This transformation gets its name from the activity of bread making, it bears
some resemblance with the horseshoe. The space X is the square [0, 1]2, µ is
again Lebesgue, and T is a transformation obtained by squashing down the square
into the rectangle [0, 2] × [0, 1

2 ] and then cutting the piece [1, 2] × [0, 1
2 ] and

putting it on top of the other one. In formulas

T (x, y) =


(2x,

1

2
y) mod 1 if x ∈ [0,

1

2
)

(2x,
1

2
(y + 1)) mod 1 if x ∈ [

1

2
, 1].

This transformation is ergodic as well, in fact much more. We will discuss it later.

Translations (T1)

Let us consider the flow (T1, ϕt,m) where ϕt(x) = x + ωt mod 1, for some
ω ∈ R \ {0}. This is just a translation on the unit circle. The proof of ergodicity
is trivial and it is left to the reader.

We conclude the chapter with a theorem very helpful to establish the
ergodicity of a flow.

Theorem 6.6.3 Consider a flow (X,ϕt, µ) and a Poincarè section Σ such
that the set {x ∈ X | ∪t∈R ϕt(x) ∩ Σ = ∅} has zero measure. Then the
ergodicity of the flow (X,ϕt, µ) is equivalent to the ergodicity of the section
(Σ, TΣ, µΣ).

The proof, being straightforward, is left to the reader.

6.6.2 Examples

Translations (T2)

Let us consider the flow (T2, ϕt,m) where ϕt(x) = x + ωt mod 1, for some
ω ∈ R2 \ {0}. This is a translation on the two dimensional torus. To investigate
we will use Theorem 6.6.3. Consider the set Σ := {(x, y) ∈ T2 | x = 0}, this
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is clearly a Poincaré section, unless ω1 = 0 (in which case one can choose the
section y = 0). Obviously Σ is a circle and the Poincaré map is given by

T (y) = y +
ω2

ω1
mod 1.

The ergodicity of the flow is then reduced to the ergodicity of a circle rotation,
thus the flow is ergodic only if ω1 and ω2 have an irrational ratio.

The properties of the invariant sets of a dynamical systems have very
important reflections on the statistics of the system, in particular on its time
averages. Before making this precise (see Theorem 6.7.5) we state few very
general and far reaching results.

6.7 Some basic Theorems

In this section, we present some basic theorems and constructions fundamental
in Ergodic theory.

6.7.1 Ergodic Theorems

Theorem 6.7.1 (Birkhoff) Let (X, T, µ) be a dynamical system, then for
each f ∈ L1(X, µ)

lim
n→∞

1

n

n−1∑
j=0

f(T jx)

exists for almost every point x ∈ X. In addition, setting

f+(x) = lim
n→∞

1

n

n−1∑
j=0

f(T jx),

holds ∫
X

f+dµ =

∫
X

fdµ.

Proof
Since the task at hand is mainly didactic, we will consider explicitly only

the case of positive bounded functions, the completion of the proof is left to
the reader.

Let f ∈ L∞(X, dµ), f ≥ 0, and

Sn(x) ≡
1

n

n−1∑
i=0

f(T ix).
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For each x ∈ X, there exists

f
+
(x) = lim sup

n→∞
Sn(x)

f+(x) = lim inf
n→∞

Sn(x).

The first remark is that both f
+
and f+ are invariant functions. In fact,

Sn(Tx) = Sn(x) +
1

n
f(Tnx)− 1

n
f(x)

so, tacking the limit the result follows.32

Next, for each n ∈ N and k, j ∈ Z we define

Dn,l,j =

{
x ∈ X

∣∣∣∣ f+(x) ∈ [ ln , l + 1

n

)
; f+(x) ∈

[
j

n
,
j + 1

n

)}
,

by the invariance of the functions follows the invariance of the sets Dn,l,j .
Also, by the boundedness, follows that for each n exists n0 such as⋃

j,l∈{−n0, ..., n0}

Dn,l,j = X.

The key observation is the following.

Lemma 6.7.2 For each n ∈ N and l, j ∈ Z, setting A = Dn,l,j, holds

l + 1

n
µ(A) <

∫
A

fdµ+
3

n
µ(A)

j

n
µ(A) >

∫
A

fdµ− 3

n
µ(A)

From the Lemma follows

0 ≤
∫
X

(f
+ − f+)dµ =

n0∑
l, j=−n0

∫
Dn,l,j

(f
+ − f+)dµ

≤
n0∑

l, j=−n0

[
l + 1

n
− j

n

]
µ(Dn,l,j) <

6

n

n0∑
l, j=−n0

µ(Dn,l,j) =
6

n
.

Since n is arbitrary we have∫
X

(f
+ − f+)dµ = 0

32Here we have used the boundedness, this is not necessary. If f ∈ L1(X, dµ) and

positive, then Sn(Tx) ≥ Sn(x) − f(x), so f
+
(Tx) ≥ f

+
(x) and it is and easy exercise to

check that any such function must be invariant.
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which implies f
+

= f+ almost everywhere (since f
+ ≥ f+ by definition)

proving that the limit exists. Analogously, we can prove∫
X

(f − f+)dµ = 0.

Proof of the Lemma 6.7.2 We will prove only the first inequality, the
second being proven in exactly the same way.

For each x ∈ A we will call k(x) the first m ∈ N such that

Sm(x) >
l − 1

n
,

by construction k(x) must be finite for each x ∈ A. Hence, setting Xk = {x ∈
A | k(x) = k}, ∪kXk = A, and for each ε > 0 there exists N ∈ N such that

µ

(
N⋃

k=1

Xk

)
≥ µ(A)(1− ε).

Let us call

Y = A\
N⋃

k=1

Xk.

Then µ(Y ) ≤ µ(A)ε, also set L = supx∈A |f(x)|. The basic idea is to follow,
for each point x ∈ A, the trajectory {T ix}Mi=0, where M > N will be chosen
sufficiently large. If the point would never visit the set Y , we could group the
sum SM (x) in pieces all, in average, larger than l−1

n , so the same would hold
for SM (x). The difficulties come from the visits to the set Y .

For each n ∈ {0, ..., M} define

f̃n(x) =


f(Tnx) if Tnx ̸∈ Y

l

n
if Tnx ∈ Y

and

S̃M (x) =
1

M

M−1∑
n=0

f̃n(x).

By definition y ∈ Y implies y ̸∈ X1, i.e. f(y) ≤ l−1
n . Accordingly, f̃(x) ≥

f(Tnx) for each x ∈ A. Note that for each n we change the function f ◦ Tn

only at some points belonging to the set Y and l
n can be taken less or equal

than L ( otherwise µ(A) = 0), consequently∫
A

fdµ =

∫
A

SMdµ ≥
∫
A

S̃Mdµ− Lµ(Y ) ≥
∫
A

S̃Mdµ− Lµ(A)ε.
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We are left with the problem of computing the sum. As already mentioned
the strategy consists in dividing the points according to their trajectory with
respect to the sets Xn. To be more precise, let x ∈ A, then by definition it
must belong to some Xn or to Y . We set k1(x) equal to j is x ∈ Xj and
k1(x) = 1 if x ∈ Y . Next, k2(x) will have value j if T k1(x)x ∈ Xj or value 1 if
T k1(x) ∈ Y . If k1(x) + k2(x) < M , then we go on and define similarly k3(x).
In this way, to each x ∈ A we can associate a number m(x) ∈ {1, ..., M} and

indices {ki(x)}m(x)
i=1 , ki(x) ∈ {1, ..., N}, such that M −N ≤

∑m(x)−1
i=1 ki(x) <

M ,
∑m(x)

i=1 ki(x) ≥M . Let us call Kp(x) =
∑p

j=1 kj(x). Using such a division
of the orbit in segments of length ki(x) we can easily estimate

S̃M (x) =
1

M


m(x)−1∑

i=1

ki(x)

 1

ki(x)

Ki(x)−1∑
j=Ki−1(x)

f̃j(x)

+

M−1∑
i=Km(x)−1(x)

f̃(T ix)


≥ 1

M

m(x)−1∑
i=1

ki(x)
l − 1

n
≥ M −N

M

l − 1

n
.

Putting together the above inequalities we get

∫
A

fdµ ≥
{
(M −N)(l − 1)

Mn
− Lε

}
µ(A)

≥ l + 1

n
µ(A)−

{
2

n
+
N(l − 1)

Mn
+ Lε

}
µ(A).

which, by choosing first ε sufficiently small and, after,M sufficiently large,
concludes the proof. □

To prove the result for all function in L1(X, µ) it is convenient to deal
at first only with positive functions (which suffice since any function is the
difference of two positive functions) and then use the usual trick to cut off
a function (that is, given f define fL by fL(x) = f(x) if f(x) ≤ L, and
fL(x) = L otherwise) and then remove the cut off. The reader can try it as
an exercise. □

Birkhoff theorem has some interesting consequences.

Corollary 6.7.3 For each f ∈ L1(X, µ) the following holds

1. f+ ∈ L1(X, µ);

2. f+(Tx) = f+(x) almost surely.

The proof is left to the reader as an easy exercise (see Problem 6.23).
Another interesting fact, that starts to show some connections between

averages and invariant sets, emerges by considering a measurable set A and
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its characteristic function χA. A little thought shows that the ergodic average
χ+
A(x) is simply the average frequency of visit of the set A by the trajectory

{Tnx} (Problem 6.32).

Birkhoff theorem implies also convergence in L1 and L2 (see also Problem
6.30). Yet, it is interesting to note that convergence in L2 can be proven in a
much more direct way.

Theorem 6.7.4 (Von Neumann) Let (X,T, µ) be a Dynamical System, then
for each f ∈ L2(X, µ) the ergodic average converges in L2(X, µ).

Proof. We have already seen that it can be useful to lift the dynamics
at the level of the algebra of function or at the level of measures. This game
assumes different guises according to how one plays it, here is another very
interesting version.

Let us define U : L2(X,µ) → L2(X,µ) as

Uf := f ◦ T.

Then, by the invariance of the measure, it follows ∥Uf∥2 = ∥f∥2, so U is
an L2 contraction (actually, and L2-isometry). If T is invertible, the same
argument applied to the inverse shows that U is indeed unitary, otherwise we
must content ourselves with

∥U∗f∥22 = ⟨UU∗f, f⟩ ≤ ∥UU∗f∥2∥f∥2 = ∥U∗f∥2∥f∥2,

that is ∥U∗∥2 ≤ 1 (also U∗ is and L2 contraction).

Next, consider V1 = {f ∈ L2 | Uf = f} and V2 = Rank(1 − U). First of
all, note that if f ∈ V1, then

∥U∗f − f∥22 = ∥U∗f∥22 − ⟨f, U∗f⟩ − ⟨U∗f, f⟩+ ∥f∥22 ≤ 0.

Thus, f ∈ V ∗
1 := {f ∈ L2 | U∗f = f}. The same argument applied to f ∈ V ∗

1

shows that V1 = V ∗
1 . To continue, consider f ∈ V1 and h ∈ L2, then

⟨f, h− Uh⟩ = ⟨f − U∗f, h⟩ = 0.

This implies that V1 ⊂ V ⊥
2 and V ⊥

2 ⊂ V1, that is V
⊥
2 = V1.

Problem 6.1 Let V be a linear subspace of an Hilbert space H, prove that
H = V ⊕ V ⊥.

Problem 6.2 Let V be a linear subspace of an Hilbert space H, prove that
(V ⊥)⊥ = V .
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Due to the above problems, since V1 is a closed space, we have

L2 = V1 ⊕ V ⊥
1 = V1 ⊕ (V ⊥

2 )⊥ = V1 ⊕ V2.

Finally, if g ∈ V2, then there exists h ∈ L2 such that g = h− Uh and

lim
n→∞

1

n

n−1∑
i=0

U ig = lim
n→∞

1

n
(h− Unh) = 0.

On the other hand if f ∈ V1 then limn→∞
1
n

∑n−1
i=0 U

if = f . The only function
on which we do not still have control are the g belonging to the closure of V2
but not in V2. In such a case there exists {gk} ⊂ V2 with limk→∞ gk = g.
Thus,∥∥∥∥∥ 1n

n−1∑
i=0

U ig

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1n
n−1∑
i=0

U igk

∥∥∥∥∥
2

+ ∥g − gk∥2 ≤

∥∥∥∥∥ 1n
n−1∑
i=0

U igk

∥∥∥∥∥
2

+
ε

2
,

provided we choose k large enough. Then, by choosing n sufficiently large we
obtain ∥∥∥∥∥ 1n

n−1∑
i=0

U ig

∥∥∥∥∥
2

≤ ε.

We have just proven that

lim
n→∞

1

n

n−1∑
i=0

U i = P

where P is the orthogonal projection on V1. □

Let us investigate the relationship between ergodicity and averages a bit fur-
ther. From an intuitive point of view, a function from X to R can be thought
as an “observable,” since to each configuration it associates a value that can
represent some relevant property of the configuration (the property that we
observe). So, if we observe the system for a long time via the function f , what
we see should be well represented by the function f+. Furthermore, notice
that there is a simple relations between invariant functions and invariant sets.
More precisely, if a measurable set A is invariant, then its characteristic func-
tion χA is a measurable invariant function; if f is an invariant function then
for each measurable set I ∈ R the set f−1(I) is a measurable invariant set (if
the implications of the above discussions are not clear to you, see Problem
6.31).

As a byproduct of the previous discussion, it follows that if a system is
ergodic then for each function f ∈ L1(X, µ) the function f+ is almost every-
where constant and equal to

∫
X
f . We have just proven another interesting

characterization of the ergodic systems:



6.7. SOME BASIC THEOREMS 139

Theorem 6.7.5 A Dynamical System (X, T, µ) is ergodic if and only if for
each f ∈ L1(X, µ) the ergodic average f+ is constant; in fact, f+ = µ(f)
a.e..

In other words, if we observe the time average of some observable for a
sufficiently long time then we obtain a value close to its space average. The
previous observation is very important especially because the space average
of a function does not depend on the dynamics. This is exactly what we were
mentioning previously: the fact that the dynamics is sufficiently ‘complex’
allows us to ignore it completely, provided we are interested only in knowing
some average behavior. The relevance of ergodic theory for physical systems
is largely connected to this fact.

6.7.2 Recurrence Theorems

Next, we discuss another very general result, of a somewhat disturbing nature,
is Poincaré return theorem.

Theorem 6.7.6 (Poincaré) Given a dynamical systems (X, T, µ) and a
measurable set A, with µ(A) > 0, there exists infinitely many n ∈ N such
that

µ(T−nA ∩A) ̸= 0.

The proof is rather simple (by contradiction) and the reader can certainly find
it out by herself (see Problem 6.24).33

A natural question is how long it takes, on average, to come back to a set
A. Let A ⊂ X be a measurable set, and let us define the return time

τA(x) = inf{n ∈ N : fn(x) ∈ A}. (6.7.9)

Problem 6.3 Check that τ : A→ N ∪ {∞} is a measurable function.

Lemma 6.7.7 (Kač) Given a dynamical systems (X, T, µ) and a measur-
able set A, with µ(A) > 0,∫

A

τA(x)µ(dx) = 1− µ(Y ),

where Y = {x ∈ X : Tn(x) ̸∈ A∀n ∈ N}.
33 An unsettling aspect of the theorem is due to the following possibility. Consider a

room full of air, the motion of the molecules can be thought to happen accordingly to
Newton equations, i.e. it is an Hamiltonian systems, hence a dynamical system to which
Poincaré theorem applies. Let A be the set of configurations in which all the air is in the
left side of the room. Since we ignore, in general, the past history of the room, it could
very well be that at some point in the past the system was in a configuration belonging to
A–maybe some silly experiment was performed. So there is a positive probability for the
system to return to the same state. Therefore, the disturbing possibility of sudden death
by decompression.
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Proof. Consider the set X̃A = ∪∞
n=1T

−n(A), clearly T−1(X̃A) ⊂ X̃A.
This means that X̃A \ T−1(X̃A) has zero measure. We can then define
XA = ∩∞

n=0T
−nX̃A, clearly X̃A \XA has zero measure and T (XA) = XA =

T−1(XA). Also, B = A \ XA, must have zero measure, otherwise Poincarè
theorem would imply that there exists m ∈ N such that T−mB ∩B ̸= ∅, but
T−mB ⊂ Tm(A) ⊂ XA, which is a contradiction. The same argument shows
that τA is everywhere finite on A∗ = A ∩ XA. We can thus resctrict to the
dynamical systems (XA, T, µ̄), where µ̄ = µ(XA)

−1µ. By construction, τA
is almost everywhere finite on XA. Let En = {x ∈ A∗ : τA(x) = n} and
Rn = {x ̸∈ A∗ : τA(x) = n}. Note that all these sets are disjoint, hence their
measure must tend to zero as n→ ∞. Then

T−1Rn = En+1 ∪Rn+1.

Consequently,

µ(Rn) = µ(En+1) + µ(Rn+1) =

∞∑
k=n+1

µ(Ek).

It follows

1− µ(Y ) = µ(XA) =

∞∑
n=1

µ(En) + µ(Rn) =

∞∑
n=1

∞∑
k=n

µ(Ek)

=

∞∑
k=1

kµ(Ek) =

∫
A

τA(x)µ(dx).

□

The above result is somewhat comforting as far as the comment in footnote
33 is concerned. The reader can easily calculate the average time for a catas-
trophic event to occur and see that it is extremely large.

6.7.3 Kakutani Towers

To conclude the section, we present a construction that is often very useful in
ergodic theory: the Kakutani tower associated to a positive measure set A of
a measurable dynamical system (X,T, µ).
Let Ak = {x ∈ A : τA(x) = k}, and consider the set Y = {(x, j) ∈
A× N ∪ {0} : j < τA(x)} and the map S : Y → Y defined by

S((x, j)) =

{
(x, j + 1) if j + 1 < τA(x)

(T τ(x)(x), 0) if j = τA(x)− 1.
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The index, j stands for the floor in the tower. The σ-algebra on each floor
is simply the σ-algebra on X. Also, define the measure on Y . For each
measurable set B ⊂ Y ,

ν(B) =

∞∑
k=0

µ ({x ∈ A : (x, k) ∈ B}) .

Consider the map π : Y → X defined by

π(x, k) = T k(x).

Let τA be as in (6.7.9), and Ak = {x ∈ A : τA(x) = k}, k ∈ N, and A0 = A.
Note that, for each measurable set B ⊂ X,

π−1(B) = ∪k≥0 ∪j<k {(x, j) ∈ Y : x ∈ Ak ∩ T−jB},

which is the union of measurable sets, hence π is measurable. The main
property of Kakutani towers rests in the following Theorem that establishes
the relation between the tower and the original dynamical system.

Theorem 6.7.8 Given the above definitions, we have

T ◦ π = π ◦ S,

π∗ν = µ, ν(Y ) = 1, and (A,S, ν) is a measurable dynamical system.
Conversely, if (A,S, ν) is a measurable dynamical system for some measure
ν, then (Y, T, µ) is a measurable dynamical system for the measure

µ(B) = ν((A ∩B, 0)) +
∞∑
j=1

∞∑
n=j+1

ν
(
(An ∩ T−jB, 0)

)
.

Proof. Let (x, l) ∈ Y , with l < τA(x)− 1, then

π ◦ S(x, l) = π(x, l + 1) = T l+1(x) = T ◦ π(x, l).

If l = τA(x)− 1, then

T ◦ π(x, l) = T τA(x)(x) = π(T τA(x)(x), 0) = π ◦ S(x, l).

It remains to compute π∗ν.
Let B ⊂ X be a measurable set, then (x, 0) ∈ π−1(B) iff x ∈ A ∩ B; while,
for k > 0, (x, k) ∈ π−1B iff π(x, j) = T j(x) ∈ B with j < τA(x), that is
x ∈ An = {x ∈ A : τA(x) = n} with n > j. Accordingly,

π−1(B) = (A ∩B, 0)
⋃[

∪∞
j=1(∪n>jAn ∩ T−j(B), j)

]
. (6.7.10)
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Let Rn = {x ̸∈ A : τA(x) = n}. Since T−1Rn = Rn+1 ∪An+1 we have

ν(π−1(B)) =µ(B ∩A) +
∞∑
j=1

∑
n>j

µ
(
An ∩ T−j(B)

)
=µ(B ∩A) +

∞∑
j=1

∑
n>j

[
µ
(
T−1Rn−1 ∩ T−j(B)

)
− µ

(
Rn ∩ T−j(B)

)]
=µ(B ∩A) +

∞∑
j=0

∑
n>j

µ
(
Rn ∩ T−j(B)

)
−

∞∑
j=1

∑
n>j

µ
(
Rn ∩ T−j(B)

)
= µ(B ∩A) +

∞∑
n=1

µ (Rn ∩B)

=µ(B ∩A) + µ(B ∩Ac) = µ(B).

In particular, ν is a probability measure, since 1 = µ(X) = ν(π−1X) = ν(Y ).
To conclude the proof, note that, for each measurable set B ∈ Y we have

ν(S−1(B)) = ν(π−1 ◦ T−1 ◦ π(B)) = µ(T−1 ◦ π(B)) = µ(π(B))

= ν(π−1 ◦ π(B)) ≥ ν(B).

Since ν(S−1(B)) = 1− ν(S−1(Bc)) ≤ 1− ν(Bc) ≥ ν(B). Thus, ν is invariant
for S, and the first statement of the Lemma follows.
To prove the last part, for B ⊂ A let µ̄(B) = ν((B, 0)). By (6.7.10) we can
write, for all B ⊂ X,

µ(B) = µ̄(A ∩B) +

∞∑
j=1

∞∑
n=j+1

µ̄
(
An ∩ T−jB

)
.

Then

µ(T−1B) = µ̄(A ∩ T−1B) +

∞∑
n=2

µ̄
(
An ∩ T−nB

)
+

∞∑
j=2

∞∑
n=j+1

µ̄
(
An ∩ T−jB

)
=

∞∑
n=2

ν
(
(An ∩ T−nB,n− 1)

)
+

∞∑
n=1

µ̄(An ∩ T−1B) +

∞∑
j=2

∞∑
n=j+1

µ̄
(
An ∩ T−jB

)
=

∞∑
n=1

ν
(
(An ∩ T−nB,n− 1)

)
+

∞∑
j=1

∞∑
n=j+1

µ̄
(
An ∩ T−jB

)
= ν(S−1(A ∩B, 0)) +

∞∑
j=1

∞∑
n=j+1

µ̄
(
An ∩ T−jB

)
= ν((A ∩B, 0)) +

∞∑
j=1

∞∑
n=j+1

µ̄
(
An ∩ T−jB

)
= µ(B).
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□

Kakutami towers are a powerful tool for investigating measurable systems.
To get a feeling, solve the following two problems.

Problem 6.4 Prove Kač theorem using Kakutani towers.

Problem 6.5 Given the measurable dynamical system (X,T, µ), prove that,
calling TA the return map to a set A, µ(A) > 0, the tripe (A, TA, µ) is a
measurable dynamical system.

6.8 Mixing

We have argued the importance of ergodicity, yet from a physical point of
view ergodicity may be relevant only if it takes places at a sufficiently fast
rate (i.e., if the time average converges to the space average on a physically
meaningful time scale). This has prompted the study of stronger statistical
properties of which we will give a brief, and by no mean complete, account in
the following.

Definition 6.8.1 A Dynamical System (X, T, µ) is called mixing if for every
pairs of measurable sets A, B we have

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

Obviously, if a system is mixing, then it is ergodic. In fact, if A is an
invariant set for T , then T−nA ⊂ A, so, calling Ac the complement of A, we
have

µ(A)µ(Ac) = lim
n→∞

µ(T−nA ∩Ac) = 0,

and the measure of A is either one or zero.
An equivalent characterization of mixing is the following:

Proposition 6.8.2 A Dynamical System (X, T, µ) is mixing if and only if

lim
n→∞

∫
X

f ◦ Tngdµ =

∫
X

fdµ

∫
X

gdµ

for every f, g ∈ L2(X, µ) or for every f ∈ L∞(X,µ) and g ∈ L1(X,µ).34

The proof is rather straightforward and it is left as an exercise to the
reader (see Problem 6.33) together with the proof of the next statement.

34The quantity
∫
X f ◦Tg−

∫
X f

∫
X g is called “correlation,” and its tending to zero–which

takes places always in mixing systems–it is called “decay of correlation.”
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Proposition 6.8.3 A Dynamical System (X, T, µ), with X a compact metric
space, T continuous and µ Borel, is mixing if and only if for each probability
measure λ absolutely continuous with respect to µ

lim
n→∞

λ(f ◦ Tn) = µ(f)

for each f ∈ C0(T2).

This last characterization is interesting from a mathematical point of view.
Define, as usual, the evolution of a measure via the equation

(T∗λ)(f) ≡ λ(f ◦ T )

for each continuous function f . If for each measure, absolutely continuous
with respect to the invariant one, the evolved measure converges weakly to the
invariant measure, then the system is mixing (and thus the evolved measures
converge strongly). This has also a very important physical meaning: if the
initial configuration is known only in probability, the probability distribution
is absolutely continuous with respect to the invariant measure, and the system
is mixing, then, after some time, the configurations are distributed according
to the invariant measure. Again the details of the evolution are not important
to describe relevant properties of the system.

6.8.1 Examples

Rotations

We have seen that the translations by an irrational angle are ergodic. They are
not mixing. The reader can easily see why.

Bernoulli shift

The key observation is that, given a measurable set A, for each ε > 0 there
exists a set Aε ∈ A, thus depending only on a finite subset of indices,35 with the
property36

µ(Aε\A) ≤ ε.

Then, given A, B measurable, and for each ε > 0, let Aε, Bε be such an approx-
imation, and IA, IB the defining sets of indices, then∣∣µ(T−mA ∩B)− µ(A)µ(B)

∣∣ ≤ 4ε+
∣∣µ(T−mAε ∩Bε)− µ(Aε)µ(Bε)

∣∣.
35Remember, this means that there exists a finite set I ⊂ Z such that it is possible to

decide if σ ∈ Σn belongs or not to Aε only by looking at {σi}i∈I .
36This follows from our construction of the σ-algebra and by the definition of outer

measure, see Examples 6.2.1–Bernoulli shift.
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If we choosem so large that (IA+m)∩IB = ∅, then by the definition of Bernoulli
measure we have

µ(T−mAε ∩Bε) = µ(T−mAε)µ(Bε) = µ(Aε)µ(Bε),

which proves
lim

m→∞
µ(T−mA ∩B) = µ(A)µ(B).

Dilation

This system is mixing. In fact, let f, g ∈ C1(T), then we can represent them
via their Fourier series f(x) =

∑
k∈Z e

2πikxfk, f−k = fk. It is well known that∑
k∈Z |fk| <∞ and |fk| ≤ c

|k| , for some constant c depending on f . Therefore,

f(Tnx) =
∑
k∈Z

e2πi2
nkxfk,

which implies that the only Fourier coefficients of f ◦ Tn different from zero are
the {2nk}k∈Z. Hence,∣∣∣∣∫

T
f ◦ Tng −

∫
T
f

∫
T
g

∣∣∣∣ =
∣∣∣∣∣∑
k∈Z

fkg2nk − f0g0

∣∣∣∣∣ ≤ c2−n
∑
k∈Z

|fk|.

The previous inequalities imply the exponential decay of correlations for each
smooth function. The proof is concluded by a standard approximation argument:
given f, g ∈ L2(X, dµ), for each ε > 0 exists fε, gε ∈ C1(X): ∥f − fε∥2 < ε
and ∥g − gε∥2 < ε. Thus,∣∣∣∣∫

T
f ◦ Tng −

∫
T
f

∫
T
g

∣∣∣∣ ≤ ∣∣∣∣∫
T
fε ◦ Tngε −

∫
T
fε

∫
T
gε

∣∣∣∣+ 2(∥f∥2 + ∥g∥2)ε,

which yields the result by choosing first ε small and then n sufficiently large.

6.9 Stronger statistical properties

One very fruitful idea in the realm of measurable dynamical systems is the
idea of entropy . In some sense the entropy measure the complexity of the
motions from a measure theoretical point of view.

To define it one starts by considering a partition of the space into measur-
able sets ξ := {A1, . . . An} and defines37

Hµ(ξ) = −
∑
i

µ(Ai) logµ(Ai).

37The case of a countable partition, or even an uncountable partition, can be handled and
it is very relevant, but outside the aims of this book, see [Roh67] for a complete treatment
of the subject.
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Given two partitions ξ = {Ai}, η = {Bj} we define ξ ∨ η := {Ai ∩ Bj}. Let
then be

ξT−n := ξ ∨ T−1(ξ) ∨ · · · ∨ T−n+1(ξ).

It is then possible to prove that the sequence Hµ(ξ
T
−n) is sub-additive, hence

the limit

hµ(T, ξ) := lim
n→∞

1

n
Hµ(ξ

T
−n)

exists.

Definition 6.9.1 The entropy of T with respect to µ is defined as

hµ(T ) := sup{hµ(T, ξ) | H(ξ) <∞}

If a system has positive metric entropy this means that the motion has
a high complexity and it is very far from being regular. One of the main
property of entropy is that it is a metric invariant, that is if two systems
are metrically conjugate (see the following), then they have the same metric
entropy.

Even more extreme form statistical behaviors are possible, to present them
we need to introduce the idea of equivalent systems. This is done via the
concept of conjugation that we have already seen informally in Example 6.5.1
(logistic map, circle map).

Definition 6.9.2 Two Dynamical Systems (X1, T1, µ1), (X2, T2, µ2) are (mea-
surably) conjugate if there exists a measurable map ϕ : X1 → X2 almost
everywhere invertible38 such that µ1(A) = µ(ϕ(A)) and T2 ◦ ϕ = ϕ ◦ T1.

Clearly, the conjugation is an equivalence relation. Its relevance for the
present discussion is that conjugate systems have the same ergodic properties
(Problem 6.42).39

We can now introduce the most extreme form of stochasticity.

Definition 6.9.3 A dynamical system (X, T, µ) is called Bernoulli if there
exists a Bernoulli shift (M, ν, σ) and a measurable isomorphism ϕ : X →M
(i.e., a measurable map one one and onto apart from a set of zero measure
and with measurable inverse) such that, for each A ∈ X,

ν(ϕ(A)) = µ(A)

and
T = ϕ−1 ◦ σ ◦ ϕ.

38This means that there exists a measurable function ϕ−1 : X2 → X1 such that ϕ◦ϕ−1 =
id µ2-a.e. and ϕ−1 ◦ ϕ = id µ1-a.e..

39Of course the reader can easily imagine other forms of conjugacy, e.g. topological or
differential conjugation.
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That is a system is Bernoulli if it is isomorphic to a Bernoulli shift. Since
we have seen that Bernoulli systems are very stochastic (remind that they
can be seen as describing a random event like coin tossing) this is certainly
a very strong condition on the systems. In particular it is immediate to see
that Bernoulli systems are mixing (Problem 6.42).

6.9.1 Examples

Dilation

We will show that such a system is indeed Bernoulli. The map ϕ is obtained by
dividing [0, 1) in [0, 1

2 ) and [ 12 , 1). Then, given x ∈ T, we define ϕ : T → Σ+
2 by

ϕ(x)i =


1 if T ix ∈ [0,

1

2
)

2 if T ix ∈ [
1

2
, 1)

the reader can check that the map is measurable and that it satisfy the required
properties. Note that the above shows that the Bernoulli measure with p1 =
p2 = 1

2 is nothing else than Lebesgue measure viewed on the numbers written in
basis two. This may explain why we had to be so careful in the construction of
the Bernoulli measure.

Baker

Let us define ϕ−1; for each σ ∈ Σ2

x =

∞∑
i=0

σ−i

2i+1
,

y =

∞∑
i=1

σi
2i
.

Again the rest is left to the reader.

Forced Pendulum

In the introduction we have seen that there exists a square Q with stable and
unstable sides such that, calling T the map introduced by the flow at a proper
time, TQ∩Q ⊃ Qu

0 ∪Qu
1 . Where Qu

i are rectangles that go from one stable side
of Q to the other and, in analogy, T−1Q ∩Q ⊃ Qs

0 ∪Qs
1.

We can use this fact to code the dynamics similarly to what we have done
for the Backer map. Namely, given the set Λ =

⋂
n∈Z T

nQ (this set it is non
empty–see Example 6.5.1–Horseshoe) and ϕ : Λ → Σ2 define by
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[ϕ(x)]k =

{
i ∈ {0, 1} if k ≥ 0 and T kx ∈ Qu

i

i ∈ {0, 1} if k < 0 and T kx ∈ Qs
i .

It is easy to verify that ϕ is onto and that it is a.e. invertible. It remains to specify
the measure on the Horseshoe, we can just pull back any invariant measure on
the shift and we will get an invariant measure on the set Λ.

Let us conclude with a final remark on the physical relevance of the concept
just introduced. As we mentioned, if f is an observable, then its ergodic
average represents the result of an observation over a very long time (the
time scale being determined by the mixing properties of the system). Yet, in
reality, it may happen that we look for too short a time or, after studying a
certain quantity, we can get a grant to buy the needed apparatus to perform
more precise measurements. What would we see in such a case? Clearly, we
would not see a constant, even for an ergodic system, and we would interpret
the non constant part as fluctuations. In many cases it may happen that this
fluctuations have a very special nature: they are Gaussian. In such a case
we say that the system satisfies the Central Limit Theorem (CLT). Let us be

more precise: define Snf := 1√
n

∑n−1
i=0 f ◦ T i.

Definition 6.9.4 Given a Dynamical System (X,T, µ) and a class of observ-
ables A ⊂ L2(X,µ) we say that the class A satisfies the CLT if ∀f ∈ A,
µ(f) = 0,

lim
n→∞

µ({x | Snf ≥ t}) = 1√
2π

∫ t

−∞
e−

x2

2σ2 dx,

where (the variance) σ is defined by σ2 = µ(f) + 2
∑∞

i=1 µ(f ◦ T if).40

The relevance of the above theorem is the following: if the system is ergodic
and satisfies the CLT, then 1

n

∑n−1
i=0 f ◦T i −µ(f) = O( 1√

n
), we have thus the

precise scale on which the fluctuations should appear.

In this book we will be mainly interested in the question of how to establish
if a given system is ergodic or not.

Unfortunately, neither ergodicity is a typical property of dynamical sys-
tems, nor is regular motion. It is a frustrating fact of life that generically
dynamical systems present some kind of mixed behavior. Nevertheless, there
are some class of systems that are known to be ergodic and among them the
hyperbolic systems are probably the most relevant. We will discuss them in
the next chapters.

40This definition is a bit stricter than usual because, in general, there may be cases in
which the fluctuations are Gaussian but the formula for the variance does not hold as
written.
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Problems

6.6. Given a measurable Dynamical Systems (X,T, µ) verify that, for each
measurable set A, if T (A) is measurable, then µ(TA) ≥ µ(A).

6.7. Set M1(X) = {µ ∈ M | µ(X) = 1} and M1
T (X) = M1(X) ∩MT (X).

Prove that M1
T (X) and M1(X) are convex sets in M(x).

6.8. Call Me(X) ⊂ M1(X) the set of ergodic probability measures. Show
that Me(X) consists of the extremal points of MT (X).

6.9. Prove that the Lebesgue measure is invariant for the rotations on T.

6.10. Consider a rotation by ω ∈ Q, find invariant measures different from
Lebesgue.

6.11. Prove that the measure µh defined in Examples 6.2.1 (Hamiltonian sys-
tems) is invariant for the Hamiltonian flow.

6.12. Given a Poincaré section prove that there exists c > 0 such that inf τΣ ≥
c > 0.

6.13. Show that νΣ, defined in (6.3.2) is well defined.

6.14. Show that the return time τΣ is finite νΣ-a.e. .

6.15. Show that νΣ is TΣ invariant. Verify that, collecting the results of the
last exercises, (Σ, TΣ, νΣ) is a Dynamical System.

6.16. something about holomorphic dynamics?

6.17. Prove that the Bernoulli measure is invariant with respect to the shift.

6.18. Let Σp be the set of periodic configurations of Σ. If µ is the Bernoulli
measure prove that µ(Σp) = 0

6.19. Consider the Bernoulli shift on Z and define the following equivalence
relation: σ ∼ σ′ iff there exists n ∈ Z such that Tnσ = σ′ (this means
that two sequences are equivalent if they belong to the same orbit).
Consider now the equivalence classes (the space of orbits) and choose41

a representative from each class, call the set so obtained K. Show that
K cannot be a measurable set.

6.20. Compute the transfer operator for maps of T. Prove that ∥Lh∥1 ≤ ∥h∥1.

6.21. Prove the Lasota-York inequality (6.5.6).

41Attention !!!: here we are using the Axiom of choice.
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6.22. Prove that for each sequence {hn} ⊂ C(1)(T), with the property supn∈N ∥h′n∥1+
∥hn∥1 <∞, it is possible to extract a subsequence converging in L1.

6.23. Prove Corollary 6.7.3.

6.24. Prove Theorem 6.7.6

6.25. Let U ⊂ X of positive measure, consider

fU (x) = lim
1

n

n−1∑
i=0

χU (T
ix).

Show that the limit exists and that the set A0 := {x ∈ U | fU (x) = 0}
has zero measure.

6.26. A topological Dynamical System (X,T ) is called Topologically transi-
tive, if it has a dense orbit. Show that if (Td, T,m) is ergodic and T is
continuous, then the system is topologically transitive.

6.27. Give an example of a system with a dense orbit which it is not ergodic.

6.28. Give an example of an ergodic system with no dense orbit.

6.29. Give an example of a Dynamical Systems which does not have any
invariant probability measure.

6.30. Prove that Birkhoff theorem implies Von Neumann theorem.

6.31. Prove that if (X,T, µ) is ergodic, then all f ∈ L1(X,µ) such that f ◦T =
f are a.e. constant. Prove also the converse.

6.32. For each measurable set A, let

FA,n(x) =
1

n

n−1∑
i=0

χA(T
ix).

be the average number of times x visits A in the time n. Show that
there exists FA = limn→∞ FA,n a.e. and prove that, if the system is
ergodic, FA = µ(A).

6.33. Prove Proposition 6.8.2 and Proposition 6.8.3.

6.34. Show that the irrational rotations are not mixing.

6.35. Prove that if f ∈ C2(T), then its Fourier series converges uniformly.
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6.36. Let ν be a Borel measure on Q = [0, 1]2 such that ν(∂xf) = 0 for all
f ∈ C1

per(Q) = {f ∈ C1(Q) | f(0, y) = f(1, y) ∀ y ∈ [0, 1]}. Prove that
there exists a Borel measure ν1 on [0, 1] such that ν = m× ν1.

6.37. Prove that is a flow is ergodic (mixing) so is each Poincarè section.
Prove that is a map is ergodic so is any suspension on the map. Give
an example of a mixing map with a non-mixing suspension (constant
ceiling).

6.38. Consider ([0, 1], T ) where

T (x) =
1

x
−
[
1

x

]
([a] is the integer part of a), and

µ(f) =
1

ln 2

∫ 1

0

f(x)
1

1 + x
dx.

Prove that ([0, 1], T, µ) is a Dynamical System.42

6.39. In view of the two previous exercises explain why it is problematic to
study the statistical properties of the Gauss map on a computer.

6.40. Choose a number in [0, 1] at random according to Lebesgue distribution.
Assuming that the Gauss map is mixing (which it is, see ???) compute
the average percentage of numbers larger than n in the associated con-
tinuous fraction.

6.41. Let (X0, T0, µ0) be a Dynamical System and ϕ : X0 → X1 an homeo-
morphism. Define T1 := ϕ ◦ T0 ◦ ϕ−1 and µ1(f) = µ0(f ◦ ϕ−1). Prove
that (X1, T1, µ1) is a Dynamical System.

6.42. Let (X0, T0, µ0) be measurably conjugate to (X1, T1, µ1), then show that
one of the two is ergodic if and only if the other is ergodic. Prove the
same for mixing.

6.43. Show that the systems described in Examples ??–strange attractor and
horseshoe, are Bernoulli.

6.44. Prove Lebesgue density theorem: for each measurable set A, m(A) > 0,
there exists x ∈ A such that for each ε > 0 exists δ > 0 such that
m(A ∩ [x− δ, x+ δ]) > (1− ε)2δ.

42The above map is often called Gauss map since to him is due the discovery of the above
invariant measure.
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Hints to solving the Problems

6.1 The first point is to define an orthogonal projection on the closed sub-
space V . For each h ∈ H, let α = infv∈V ∥h− v∥. Let {vn}n∈N ⊂ V be
such that limn→∞ ∥h− vn∥ = α. For each w ∈ V , and t ∈ R, we have

α2 ≤ ∥h− vn + tw∥2 = ∥h− vn∥2 − 2⟨h− vn, w⟩t+ t2∥w∥2.

For each ε > 0, there exists nε ∈ N such that, for all n ≥ nε, we have
∥h− vn∥2 ≤ α2 + ε. Hence, for n ≥ nε,

∥w∥2t2 − 2⟨h− vn, w⟩t+ ε ≥ 0.

The above can happen for all t ∈ R only if |⟨h − vn, w⟩| ≤
√
ε∥w∥ for

each w ∈ V . Accordingly, for n,m ≥ nε,

∥vn − vm∥2 ≤ |⟨vn − h, vn − vm⟩|+ |⟨vm − h, vn − vm⟩|
≤ 2

√
ε∥vn − vm∥.

That it, {vn} is Chauchy, let v ∈ V be its limit, then h − v ∈ V ⊥. We
can then write h = v + (h− v) which shows that H = V ⊕ V ⊥.

6.2 It follows from Problem 6.1 which implies

H = V ⊥ ⊕ V = V ⊥ ⊕ (V ⊥)⊥.

6.3 If x ∈ τ−1
A (n) for some n ∈ N, than Tn(x) ∈ A, and T k(x) ̸∈ A, that is

Tk(x) ∈ Ac, for all k ∈ {1, . . . , n− 1}. Thus

τ−1
A (n) ∈ T−n(A) ∩

[
n−1⋂
i=1

T−iAc

]
,

which is measurable once T is measurable.

6.4 Simply note that,∫
A

τA(x)µ(dx) =

∞∑
n=1

n−1∑
j=0

µ(An) =

∞∑
n=1

n−1∑
j=0

ν((An, j)) = ν(Y ) = 1.

6.5 Let TA(x) = T τA(x)(x) be the first return map; it suffices to check the
invariance of µ. For each measurable set B ⊂ A,

S−1(B, 0) = ∪∞
n=1(T

−nB ∩An, n− 1),
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and
∪∞
n=1T

−nB ∩An = T−1
A B.

Thus,

µ(B) = ν((B, 0)) = ν(S−1(B, 0)) =

∞∑
n=0

ν((T−nB ∩An, n− 1))

=

∞∑
n=0

µ(T−nB ∩An) = µ(T−1
A B).

6.8 Use Krein-Milman Theorem [DS88].

6.11 Use the properties of H to deduce ⟨∇ϕtxH, dxϕ
t∇xH⟩ = ∥∇xH∥2, and

thus dxϕ
t∇xH = ∥∇xH∥2

∥∇ϕtxH∥2∇ϕtxH + v where ⟨∇ϕtxH, v⟩ = 0. Then

study the evolution of an arbitrarily small parallelepiped with one side
parallel to ∇xH–or look at the volume form if you are more mathemat-
ically incline–remembering the invariance of the volume with respect to
the flow.

6.13 Use the invariance of µ and the fact that, by Problem 6.12, if A ⊂ Σ
then µ(ϕ[0,δ](A) ∩ ϕ[nδ, (n+1)δ]A) = 0 provided (n+ 1)δ ≤ c.

6.14 Let δ < c and Σδ := ϕ[0,δ]Σ, apply Poincaré return theorem to Σδ.

6.17 Check it on the algebra A first.

6.18 Σp is the countable union of zero measure sets.

6.19 Show that K ∩ TnK ⊂ Σp, then by using Problem 6.18 show that if
K is measurable

∑∞
i=−∞ µ(TnK) = 1 which, by the invariance of µ, is

impossible.

6.20 Use the equivalent definition
∫
gLfdm =

∫
fg ◦ Tdm.

6.22 Consider partitions Pn of T in intervals of size 1
n . Define the condi-

tional expectation E(h|Pn)(x) = 1
m(I(x)

∫
I(x)

hdm, where x ∈ I(x) ∈
Pn. Prove that ∥E(h|Pn) − h∥1 ≤ 1

n∥h
′∥1. Notice that the functions

E(hn|Pm) have only m distinct values and, by using the standard di-
agonal trick, construct an subsequence hnj such that all the E(hnj |Pm)
are converging. Prove that hnj

converges in L1.

6.24 Note that µ(T−nA∩T−mA) ̸= 0 then, supposing without loss of gener-
ality n < m, µ(A ∩ T−m+nA) ̸= 0. Then prove the theorem by absurd
remembering that µ(X) <∞.
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6.25 The existence follows from Birkhoff theorem, it also follows that A0 is
an invariant set, then

0 =

∫
A0

fU =

∫
A0

χU = µ(A0).

6.26 For each n ∈ N, x ∈ Td consider B 1
m
(x)–the ball of radius 1

m centered

at x. By compactness, there are {xi} such that ∪iB 1
m
(xi) = Td. Let

Am,i = {y ∈ Td | T ky ∩B 1
M
(XI) = ∅ ∀k ∈ N},

clearly Am,i = ∩k∈NT
−kB 1

m
(xi)

c has the property T−1Am,i ⊃ Am,i.

It follows that Ãm,i = ∪n∈NT
−nAm,i ⊃ Am,i is an invariant set and

it holds µ(Ãm,i\Am,i) = 0. Since Am,i it is not of full measure, Ãm,i,
and thus Am,i, must have zero measure. Hence, Ām = ∩iAm,i has zero
measure. This means that ∪m∈NĀm has zero measure. Prove now that,
for each y ∈ Td, the trajectories that never get closer than 2

m to y are
contained in Ām, and thus have measure zero. Hence, almost every
point has a dense orbit.)
Extend the result to the case in which X is a compact metric space and
µ charges the open sets (that is: if U ⊂ X is open, then µ(U) > 0.

6.27 A system with two periodic orbits, and the measure supported on them.
Along such lines more complex examples can be readily constructed.

6.28 A non transitive system with a measure supported on a periodic orbit.

6.29 X = Rd, Tx = x+ v, v ̸= 0.

6.30 Note that the ergodic average is a contraction in L∞, an isometry in L2

and that L1 ⊂ L2 (since the measure is finite). Use Lebesgue dominate
convergence theorem to prove convergence in L2 for bounded functions.
Use Fatou to show that if f ∈ L2 then f+ ∈ L2 and a 3-ε argument to
conclude.

6.32 Birkhoff theorem and Theorem 6.7.5.

6.33 Note that for each measurable set A and ε > 0 there exists f ∈ C0(X)
such that µ(|f − χA|) < ε –by Uryshon Lemma and by the regularity
of Borel measures. To prove that µ(T−nA ∩ B) → µ(A)µ(B) choose
dλ = µ(B)−1χBdµ and use the invariance of µ to obtain the uniform
estimate λ(|f ◦ Tn − χA ◦ Tn|) ≤ µ(B)−1µ(|f − χA|).

6.35 Remember that fn = 1
2π

∫
T e

2πinxf(x)dx. Thus

fn =
1

(2πin)22π

∫
T
e2πinxf (2)(x)dx.
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6.36 The measure ν1 is nothing else then the marginal with respect to x,
that is: for each continuous function f : [0, 1] → R define f̃ : Q → R
by f̃(x, y) = f(y), then ν1(f) = ν(f̃). To prove the statement use

Fourier series. If f is smooth enough f(x, y) =
∑

k∈Z f̂k(y)e
2πikx where

the Fourier series for f and ∂xf converge uniformly. Then notice that
0 = ν(∂xe

2πik·) = 2πikν(e2πik·) implies ν(f) = ν(f̂0) = m× ν1(f).

6.38 Write µ(f ◦ T ) =
∑∞

i=1

∫ 1
i
1

i+1

f ◦ T (x)µ(dx), change variable and use the

identity 1
a2+a = 1

a − 1
a+1 to obtain a series with alternating signs.

6.39 The computer uses only rational numbers. It is quite amazing that these
type of pathologies arises rather rarely in the numerical studies carried
out by so many theoretical physicist.

6.40 Define f(x) = [x−1], then the entries of the continuous fraction of x are

{f◦T i}. The quantity one must compute is thenm(limk→∞
i
k

∑k−1
i=0 χ[n,∞)◦

f ◦ T i) = µ([n,∞)).

6.44 We have seen in Examples 6.9.1-Dilations that Lebesgue measure is
equivalent to Bernoulli measure and that the cylinder correspond to
intervals. It then suffices to prove the theorem for the latter. Let A ⊂
Σ+ such that µ(A) > 0, then, for each ε > 0,there exists Aε ∈ A such
that Aε ⊃ A and µ(Aε) − µ(A) < εµ(A). Since Aε ∈ A, it exists
nε ∈ N such that it is possible to decide if σ ∈ Aε only by looking at
{σ1, . . . , σnε

}. Consider all the cylinders I{A(0; k1, . . . , knε
)}, clearly if

I ∈ I then I ∩ Aε is either I or ∅. Let I+ = {I ∈ I | I ∩ Aε = I} and
I+ = {I ∈ I | I ∩ Aε = ∅}. Now suppose that for each I ∈ I+ holds
µ(I ∩A) ≤ (1− ε)µ(I) then

µ(A) =
∑
I∈I+

µ(A ∩ I) ≤ (1− ε)µ(Aε) < µ(A),

which is absurd. Thus there must exists I ∈ I+: µ(A∩I) > (1−ε)µ(I).

Notes

Give references for SRB and Gibbs, mention entropy, K-systems. diffeo with
holes, strange attractors, history of the field

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Chapter 7

Quantitative Statistical Properties,
a class of 1-d examples

Given a Dynamical System it is in general very hard to study its ergodic
properties, especially if the goal is to have a quantitative understanding. To
make clear what is meant by a quantitative understanding and which type
of obstacles may prevent it, I devote this chapter to the study of a simple,
but highly non-trivial, class of examples: one dimensional smooth expanding
maps.

7.1 The problem

Recall from Examples 6.5.1 that a one dimensional smooth expanding map is
a map T ∈ C2(T1,T1) such that |DT | ≥ λ > 1.

We know already that such maps have a unique absolutely continuous
invariant measure (see sections 6.5.1, 6.6.1 Expanding maps).

We would like first to understand other invariant measures in order to have
a clearer picture of which measurable Dynamical Systems can be associated
with the topological Dynamical System (T1, T ). This is still at the qualitative
level. In addition, we would like to have tools to compute such invariant
measures with a given precision, which is a first quantitative issue.

Next, we would like to study statistical properties more in depth. To this
end, we will restrict to the case (T1, T, µ), where µ is the measure absolutely
continuous with respect to Lebesgue. The type of questions we would like to
address is

If we make finite time and precision measurements, what do we observe?

156
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Remember that a measurement is represented by the evaluation of a func-
tion. The fact that the measurement has a finite precision corresponds to
the fact that the function has some uniform regularity (otherwise, we could
identify the point with an arbitrary precision). The fact that the measure is
made for a finite time means we can only measure finite-time averages. In
other words, we would like to understand the behavior of

N−1∑
k=0

f ◦ T k

for large, but finite, N .

7.2 Invariant measures

Let M be the set of probability (Borel) measures on T1. We can then con-
sider the new Dynamical System (M, T ′), where T ′µ(f) = µ ◦ T for all
f ∈ C0(T1,R). The invariant measures are the fixed points of T ′, let us call
them Fix(T ′). If µ ∈ Fix(T ′) then for each h ∈ L∞(T1, µ), h ≥ 0, µ(h) = 1,
we can consider the new probability measure defined by µh(f) = µ(hf), for
all f ∈ C0(T1,R). Note that

|T ′µh(f)| = |µ(hf ◦ T )| ≤ |h|L∞(µ)µ(|f | ◦ T ) = |h|L∞(µ)µ(|f |).

Hence T ′µh is absolutely continuous with respect to µ and dT ′µh

dµ ∈ L∞(µ). We

can then define the operator Lµ : L∞(T1, µ) → L∞(T1, µ) by Lµh := dT ′µh

dµ .

Let {Ii} be a partition in interval of T1 such that T |Ii is invertible, T (Ii) =
T1 and ∪iIi = T1. Call Si the inverse of the i-th branch of T . Then, setting

ρi :=
dT ′µ1Ii

dµ

T ′µh(f) =
∑
i

µ(h1Iif ◦ T ) =
∑
i

µ(1Ii(h ◦ Sif) ◦ T )

= µ

([∑
i

ρih ◦ Si

]
f

)
.

Thus, setting ρ =
∑

i ρi ◦ T1Ii we have

dT ′µh

dµ
=
∑
i

(ρh) ◦ Si =: Lρ(h).

It follows that Lρ(1) = 1 and, for each h ∈ L∞(µ),

µ(Lρ(h)) = T ′µh(1) = µ(h).
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Problem 7.1 Compute ρ and Lρ, in the case in which µ is the unique in-
variant measure absolutely continuous with respect to Lebesgue.

The relevant fact is that one has the following (partial) converse.

Lemma 7.2.1 For ρ ∈ C0, ρ ≥ 0, let Lρ(h)(x) :=
∑

y∈T−1x ρ(y)h(y). If

there exists λ ∈ R, h ∈ C0, h > 0, such that Lρh = λh, then there exists a
measure µ ∈ M such that µ(Lρf) = λµ(f) for all f ∈ C0 and there exists an
invariant measure absolutely continuous with respect to µ.

Proof. By continuity there exists γ > 0 such that h ≥ γ > 0. Thus

|Ln
ρf | ≤ γ−1|f |∞Ln

ρh = λnγ−1|h|∞|f |∞.

Hence, calling m the Lebesgue measure, 1
n

∑n−1
k=0 λ

−k(L′
ρ)

km is a weakly com-
pact sequence. Accordingly the same arguments used in Krylov-Bogoliubov
Theorem 6.5.2 imply that there exists a measure µ such that λ−1L′

ρµ = µ.
Next, define ν(f) := µ(hf). Clearly ν is a measure absolutely continuous

with respect to µ, in addition

ν(f ◦ T ) = λ−1(L′
ρµ)(hf ◦ T ) = λ−1µ(fLρh) = µ(fh) = ν(f).

□

7.3 Absolutely continuous invariant measure:
revisited

We have already seen that there exists a unique invariant measure with re-
spect to Lebesgue. Here we study this issue by a slightly different technique.
Although the main idea is always to study the spectrum of the transfer oper-
ator, it is interesting to see how this can be achieved in many different ways,
each way having its own advantages and disadvantages. Consider the transfer
operator

Lh(x) :=
∑

y∈T−1x

|DyT |−1h(y) (7.3.1)

Problem 7.2 Show that if dµ = hdm, where m is the Lebesgue measure,
then µ(f ◦ T ) = m(fLh).

Problem 7.3 Show that, for each n ∈ N,

Lnh(x) :=
∑

y∈T−nx

|DyT
n|−1h(y)
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Notice that, since DT cannot be zero, then its sign is constant. We limit
ourselves, for simplicity, to the case DT ≥ λ.

Problem 7.4 Show that

d

dx
Lnh(x) =

∑
y∈T−1x

(DyT )
−2h′(y)−D2

yT (DyT )
−3h(y)

= L((DT )−1h′)− L(D2T (DT )−2h)

7.3.1 A functional analytic setting

Let us consider first the Sobolev space W 1,1 and the space L1.1 Then, for
each h ∈ L1(T1,m),∫

T1

|Lh|dm ≤
∫
T1

1 · L|h|dm =

∫
T1

1 ◦ T |h|dm =

∫
T1

|h|dm (7.3.2)

that is L is a bounded operator on L1 and its norm is bounded by one.
In addition, remembering Exercise 7.2,∫

T1

| d
dx

Lh|dm ≤ λ−1|h′|L1 +D|h|L1 , (7.3.3)

where D := supD2T (DT )−2.

Problem 7.5 Iterate the (7.3.2), (7.3.3) and prove, for all n ∈ N,

|Lnh|L1 ≤ |h|L1

|Lnh|W 1,1 ≤ λ−n|h|W 1,1 +B|h|L1

where B = 1 + (1− λ−1)−1D.

Since W1,1 controls the L∞ norm,2 then we have that there exists C > 0 such
that |Ln1|∞ < C for each n ∈ N.

Using such a fact we can obtain similar inequalities in the Hilbert spaces
L2 and W 1,2. Indeed

∥Lnh∥2L2 =

∫
T1

h(Lnh) ◦ Tn ≤ ∥h∥L2

[∫
T1

(Lnh)2 ◦ Tn

] 1
2

= ∥h∥L2[∫
T1

(Lnh)2Ln1

] 1
2

≤ C
1
2 ∥h∥L2∥Lnh∥L2

1For an open set U ⊂ R, the spaces W p,q(U) are the completion of C∞(U,C) with respect

to the norms
[
|f |qLq + |f ′|qLq + · · ·+ |f (p)|qLq

] 1
q . Note that they are all Banach spaces by

construction but the W p,2 are also Hilbert spaces (Exercise: write the scalar product).
2If f ∈ C∞, then the mean value theorem asserts

∫
h = h(ξ) for some ξ. Then h(x) =

h(ξ) +
∫ x
ξ h′(z)dz. Thus |h|∞ ≤ |h|L1 + |h′|L1 = |h|W1,1 . The result extends then to all

elements of W 1,1 by a standard approximation argument.
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Which implies ∥Lnh∥L2 ≤ C
1
2 ∥h∥L2 for each n ∈ N. Hence,

∥ d
dx

Lnh∥L2 ≤ λ−nC
1
2 ∥h′∥L2 +Dn∥h∥L2 .

Iterating as before we have, for all n ∈ N,

|Lnh|L2 ≤ C|h|L2

|Lnh|W 1,2 ≤ Aλ−n|h|W 1,2 +B|h|L2 ,
(7.3.4)

for some appropriate constants A,B,C depending only on the map T .
To prove the existence of an invariant measure absolutely continuous with

respect to Lebesgue we can try to mimic the Krylov-Bogolubov approach, but
to do so we need a compactness result to substitute the weak compactness of
the unit ball of the dual of a Banach space. This takes us in a very interesting
detour in some fact of functional analysis.

7.3.2 Deeper in Functional analysis

Since we are on a circle it is a good idea to use Fourier series. For each
function h ∈ C∞(T,C) let hk be its Fourier coefficients and define

(Anh)(x) =
∑

|k|≤m

hke
2πikx (7.3.5)

Clearly, for all m > 0,

|h− Am|2L2 =
∑

|k|>m

|hk|2 =
∑

|k|>m

|hk|2|k|−2|k|2 ≤ m−2
∑

|k|>m

|(h′)k|2

≤ m−2|h′|2L2 ≤ m−2|h|2W 1,2 .

(7.3.6)

Using the above fact we can prove.

Lemma 7.3.1 The unit ball of W 1,2 is (sequentially) compact in L2.

Proof. Consider a sequence {hm} ⊂ W 1,2, |hm|W 1,2 ≤ 1. Since Al are
all finite rank operators, {Alhm} for l fixed are contained in a bounded finite
dimensional (hence compact) set, thus there exists a converging subsequence
for all l while (7.3.6) shows that the sequences for fixed m are all conver-
gent. Using the usual diagonalization trick we can then extract a converging
subsequence. □

Consider now hn := 1
n

∑n−1
k=0 Lk1. By the above lemma {hn} is relatively

compact and thus we can extract a subsequence {hnj
} converging in L2. Let

h∗ be the limit. Note that
∫
hn = 1 for all n ∈ N, thus h∗ ̸≡ 0 and

∫
h∗ = 1.
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Problem 7.6 Show that Lh∗ = h∗, that is dµ := h∗dm is an invariant mea-
sure absolutely continuous with respect to Lebesgue and with L2 density.

Of course, at this point it is natural to ask if µ is the only measure with
such a property or there exist others. To answer such a question we need
some more facts.

7.3.3 Even deeper in Functional analysis

Since we have to do it, let us do in the following general setting.
Consider two Banach space (B, ∥ · ∥) and (B0, | · |) such that B ⊂ B0 and

i. |h| ≤ ∥h∥ for all h ∈ B,

ii. if h ∈ B and |h| = 0, then h = 0.

iii. There exists C > 0 : for each ε > 0 there exists a finite rank operator
Aε ∈ L(B,B) such that ∥Aε∥ ≤ C and |h−Aεh| ≤ ε∥h∥ for all h ∈ B.3

In addition consider a bounded operator L : B0 → B0, constants A,B,C ∈
R+, and λ > 1, such that

a. |Ln| ≤ C for all n ∈ N,

b. L(B) ⊂ B

c. ∥Lnh∥ ≤ Aλ−n∥h∥+B|h| for all h ∈ B and n ∈ N.

In particular L can be seen as a bounded operator on B.

Theorem 7.3.2 The spectral radius of the operator L ∈ L(B,B) is bounded
by 1 while the essential spectral radius is bounded by λ−1.4

We can now prove our main result.

Proof of Theorem 7.3.2. The first assertion is a trivial consequence
of (c), (a) and (i).

3In fact, this last property can be weakened to: The unit ball {h ∈ B : ∥h∥ ≤ 1} is
relatively compact in B0. We use the present stronger condition since, on the one hand, it
is true in all the applications we will be interested in and, on the other hand, drastically
simplifies the argument. Note also that, if one uses the Fredholm alternative for compact
operators rather than finite rank ones (Theorem E.0.1), then one can ask the Aε to be
compact instead than finite rank making easier their construction in concrete cases.

4The definition of essential spectrum varies a bit from book to book. Here we call essen-
tial spectrum the complement, in the spectrum, of the isolated eigenvalues with associated
finite dimensional eigenspaces (which is also called the Fredholm spectrum).
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The second part is much deeper. Let Ln,ε := LnAε, clearly such an oper-
ator is finite rank, in addition

∥Lnh−Ln,εh∥ ≤ Aλ−n∥(1−Aε)h∥+B|(1−Aε)h| ≤ A(1+C)λ−n∥h∥+Bε∥h∥.

By choosing ε = λ−n we have that there exists C1 > 0 such that

∥Ln − Ln,ε∥ ≤ C1λ
−n.

For each z ∈ C we can now write

1− zL = (1− z(L − Ln,ε))− zLn,ε.

Since

∥z(L − Ln,ε)∥ ≤ |z|C1λ
−n <

1

2
,

provided that |z| ≤ 1
2C1

λn. Thus, given any z in the diskDn := {|z| < 1
2C1

λn}
the operator B(z) := 1− z(L − Ln,ε) is invertible.

5 Hence

1− zL =
(
1− zLn,εB(z)−1

)
B(z) =: (1− F (z))B(z).

By applying Fredholm analytic alternative (see Theorem E.0.1 for the state-
ment and proof in a special case sufficient for the present purposes) to F (z)
we have that the operator is either never invertible or not invertible only in
finitely many points in the disk Dn. Since for |z| < 1 we have (1− zL)−1 =∑∞

n=0 z
nLn, the first alternative cannot hold hence the Theorem follows. □

7.3.4 The harvest

We are finally in the position to use all the above result to gain a deep un-
derstanding of the properties of the Dynamical Systems under consideration.

Problem 7.7 Show that Theorem 7.3.2 implies that there exists σ ∈ (0, 1),
{θk}pk=1 and L > 0 such that

L =

p∑
k=1

eiθkΠθk +R

where Πθk and R are operators on W 1,2 such that ΠθkΠθj = δjkΠθk and
RΠθk = ΠθkR = 0. Moreover |Rn| ≤ Lσn.(Hint: Read section 6 of the Third
Chapter of [Kat66] and recall that the operator is power bounded to exclude
Jordan blocks.)

5Clearly B(z)−1 =
∑∞

n=0 [z(L − Ln,ε)]
n.
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The above implies that

Πθ := lim
n→∞

1

n

n−1∑
k=0

e−iθkLk =

{
Πθi iff θ = θj

0 otherwise.
(7.3.7)

Problem 7.8 Using equations (7.3.4) show that, for each h ∈ L2

∥Πθh∥W 1,2 ≤ C∥h∥L2 .

(Hint: prove it first for h ∈W 1,2 and then do a density argument).

Next, note that Exercise 7.6 implies that h∗ = Π01 ̸= 0, that is one is in
the spectrum on L, this means that the spectral radius of L is one.

Accordingly, if Πθh = h we have h ∈W 1,2 ⊂ C0 and6

|h| = |Πθh| ≤ lim
j→∞

1

nj

nj−1∑
k=0

Lk|h| = Π0|h| ≤ |h|∞h∗.

This means that all the eigenvectors of the peripheral spectrum are of the
form h = gh∗ with g ∈ C0. Thus, if hi is an W

1,2 orthonormal a base of the
eigenspace associated to an eigenvalue θ, then the eigenprojector must have
the form

Πθh =
∑
i

hi

∫
ℓi · h,

with ℓi ∈ L2 and
∫
ℓihj = δij . Hence ΠθL = eiθΠθ implies

eiθ
∑
k

hk

∫
ℓk · h =

∑
k

hk

∫
ℓk · Lh =

∑
k

hk

∫
ℓk ◦ T · h.

That is eiθℓk = ℓk ◦ T . But then if we set fk := ℓ̄kh∗ ∈ L2, we have

Lfk = eiθL(ℓ̄k ◦ Th∗) = eiθ ℓ̄kLh∗ = eiθ ℓ̄kh∗ = eiθfk

By the above facts, this implies Πθfk = fk ∈W 1,2, that is ℓk ∈ C0. But then
for each p ∈ N we can set hp := ℓ̄pkh∗ obtaining

Lhp = eipθhp.

Since the the peripheral spectrum consists of finitely many eigenvalues it
follows that there must exist p ∈ N such that p θ = θ mod 2π, that is the

6Remember that exercise 7.8 implies that the sequence in (7.3.7) converges in L2, ac-
cordingly there exists a subsequence that converges almost everywhere with respect to
Lebesgue.
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spectrum on the unit circle must be the union of finitely many cyclic groups.
In turn this implies that there exists p̄ ∈ N such that p̄ θ = 0 mod 2π, hence
ℓp̄k = ℓp̄k ◦ T . But this implies that if we define the sets AL := {x ∈ T : |ℓp̄k| ≤
L}, L ∈ R, they are all invariant. So if χL is the characteristic function of
the set AL, then χL ◦ T = χL and L(χLh∗) = χLh∗. We can thus produce
a lot of eigenvalues of L, but we know that such eigenvalues form a finite
dimensional space. The only possibility is that only finitely many of the AL

are different. This is like saying that ℓk takes only finitely many values. But
ℓp̄k is a continuous function, so it must be constant. Hence ℓk can assume only
p̄ different values, thus, again by continuity, must be constant. Finally this
implies θ = 0.

The conclusion is that one is the only eigenvalue on the unit circle and
that the associated eigenprojector has rank one. So one is a simple eigenvalue
and h∗ is the only invariant density for the map.

7.3.5 conclusions

If we have any probability measure ν absolutely continuous with respect to
Lebesgue and with density h ∈ W 1,2, then setting dµ = h∗dm, for each
φ ∈W 1,2 we have

|µ(φ ◦ Tn)− ν(φ ◦ Tn)| =
∣∣∣∣∫ φLn(h− h∗)

∣∣∣∣ ≤ ∥φ∥1,2Cσn∥h− h∗∥1,2

where σ is the largest eigenvalue of modulus smaller than one (or λ−1 is no
such eigenvalue exist).

Remark 7.3.3 The above means that the evolution of the present chaotic sys-
tem, if seen at the level of the absolutely continuous measures, becomes simply
a dynamics with an uniformly attracting fixed point, the simplest dynamics of
all!

7.4 General transfer operators

In the previous sections we have been very successful in studying the measure
absolutely continuous with respect to Lebesgue. We have seen in §7.2 (crf.
Lemma 7.2.1) that to study other invariant measures one has to analyze more
general transfer operators. Here we will restrict ourselves to studying

Lϕh := L(eϕh)

where L is the usual transfer operator. This are called transfer operators with
weight and ϕ is sometime called the potential. We will consider first the case
of ϕ : T1 → C and specialize to real potential later on.



7.4. GENERAL TRANSFER OPERATORS 165

For convenience, and also for didactical purposes, we will use the Banach
spaces C1 and C0. Hence, form now on, we will assume T ∈ C2(T1,T1) and
ϕ ∈ C1(T1,C).

The first step is to compute the powers of Lϕ and study how they behave
with respect to derivation.

Problem 7.9 Show that, for each n ∈ N, holds true

Ln
ϕh = Ln

[
eϕnh

]
,

where ϕn =
∑n−1

k=0 ϕ ◦ T k.

Problem 7.10 Show that for each n ∈ N and h ∈ C1 holds true

d

dx
Ln
ϕh = Ln

ϕ

[
h′

(Tn)′
− (Tn)′′

[(Tn)′]2
h+

(ϕn)
′

(Tn)′
h

]
Note that |Ln

ϕh|∞ ≤ |h|∞Ln
ℜ(ϕ)1. In addition,7∣∣∣∣ (Tn)′′(y)

[(Tn)′(y)]2

∣∣∣∣ =
∣∣∣∣∣

d
dy

∏n−1
k=0 T

′(T ky)

[(Tn)′(y)]2

∣∣∣∣∣
≤

n−1∑
k=0

∣∣∣∣ T ′′(T ky)

(Tn−k)′(T ky)

∣∣∣∣ ≤ n−1∑
k=0

|T ′′|∞λ−n+k+1 ≤ |T ′′|∞
1− λ−1

.

Analogously, ∣∣∣∣ (ϕn)′(Tn)′

∣∣∣∣ ≤ |ϕ′|∞
1− λ−1

.

The above inequalities imply∣∣∣∣ ddxLn
ϕh

∣∣∣∣ ≤ λ−nLn
ℜ(ϕ)|h

′|+BLn
ℜ(ϕ)|h|. (7.4.8)

Which, taking the sup over x, yields∣∣∣∣ ddxLn
ϕh

∣∣∣∣
∞

≤ λ−n|h′|∞Ln
ℜ(ϕ)1 +B∗|h|∞Ln

ℜ(ϕ)1,

Note that the above inequality implies that the spectral radius is bounded

by ρ = limn→∞ ∥Ln
ℜ(ϕ)1∥

1
n

C0 while the essential spectral radius is bounded by

λ−1ρ. The reader should notice that for positive potentials the above bounds
are essentially sharp while for non positive, or complex, potential typically
there will be cancellations that induce a smaller spectral radius. To control
exactly such cancellations is, in general, a very hard problem.

7The quantity estimated here is usually called distortion. In fact, it measure how much
the maps distorts intervals.
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7.4.1 Real potential

In this section we will restrict to the case of ϕ ∈ C1(T1,R), i.e. real potentials.
If we define the cone Ca := {h ∈ C1 : h > 0 |h′(x)| ≤ ah(x)}, then

equation (7.4.8), for h > 0, implies that, for each σ ∈ (0, λ−1), LϕCa ⊂ Cσa

provided a ≥ B(σ − λ−1)−1.8 We can then apply the theory of Appendix A
to conclude the following.

Lemma 7.4.1 For each real potential ϕ ∈ C1(T1,R), the transfer operator
Lϕ has the Perron-Frobenius property, i.e. it has a simple strictly positive
maximal eigenvalue ϱ and all the other eigenvalues are strictly smaller in
modulus. In particular, the maximal eigenvalue ϱ(t) of Lτϕ, τ ∈ R, is analytic
in τ .9

The above, together with Lemma 7.2.1 imply that there exists µϕ, hϕ such
that L′

ϕµϕ = eϱµϕ, Lϕhϕ = eϱhϕ, hϕ ∈ Ca. Moreover, νϕ(φ) = µϕ(φhϕ) is the
invariant measure associated to the potentitial ϕ.

7.4.2 Variational principle

Given the above facts it is natural to ask what is the maximal eigenalue of Lϕ.
To answer this question, we have to introduce new concepts: the topological
entropy and the the topological pressure.

To this end let us define a dynamical ball

Bn(x, ε) = {z ∈ T : |T k(x)− T k(z)| ≤ ε, k ∈ {0, . . . , n}}.

We call Sε,n the set of (ε, n)-covering sets, that is the finite sets of points
E such that

⋃
x∈E Bn(x, ε) = T1. We call Nε,n the set of (ε, n)-separting

sets, that is the finite sets of points E such that, for all x, y ∈ E, x ̸= y,
Bn(x, ε) ∩Bn(y, ε) = ∅. We then set

S(T, ϕ, ε, n) = inf
E∈Sε,n

∑
x∈E

e
∑n−1

k=0 ϕ◦Tk(x)

N(T, ϕ, ε, n) = sup
E∈Nε,n

∑
x∈E

e
∑n−1

k=0 ϕ◦Tk(x)

We are now ready to introduce the topological pressure

Ptop(T, ϕ) = lim
ε→0

lim inf
n→∞

1

n
lnS(T, ϕ, ε, n)

= lim
ε→0

lim sup
n→∞

1

n
lnN(T, ϕ, ε, n).

(7.4.9)

8Note that this cone is almost the same than the one in Example 6.6.1, more precisely
is its infinitesimal version.

9This follows from the fact that the maximal eigenvalue must always be simple and the
results in Appendix C.4. This class of potentials is relevant in the so called thermodynamic
formalism.
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Problem 7.11 Prove that the limits in (7.4.9) are both well defined and equal.

It follows that, for each E ∈ Sε,n

1 = νϕ(1) ≤ Cµϕ(1) ≤ C
∑
x∈E

µϕ(Bn(x, ε)) = Ce−nϱ
∑
x∈E

µϕ(Ln
ϕ1Bn(x,ε)).

Note that, for ε < 1, the ball Bn(x, ε) can contain at most a preimmage,
under Tn, of a point z ∈ T1. Hence, by the usual distortion estimates,

Ln
ϕ1Bn(x,ε)(z) ≤ Ce

∑n−1
k=0 ϕ◦Tk(x),

which implies
S(T, ϕ, ε, n) ≥ ce−nϱ.

Analogously, if E ∈ Nε,n,

1 = νϕ(1) ≥ cµϕ(1) ≥ c
∑
x∈E

µϕ(Bn(x, ε)) ≥ ce−(n+m)ϱ
∑
x∈E

µϕ(Ln+m
ϕ 1Bn(x,ε)).

Note that, if λm ≥ ε−1, then each z ∈ T1 has at least a preimage, under
Tn+m in Bn(x, ε), thus

N(T, ϕ, ε, n) ≤ ce−(n+m)ϱ.

From the above facts and the definition (7.4.9) follows that

Ptop(T, ϕ) = ϱ.

We have thus identified the maximal eigenvalue of Lϕ. To have a more explicit
expression we need the following deep local characterization of the entropy.

Theorem 7.4.2 (Theorem [BK83]) For each invariant measure ν we have
that for ν almost all x ∈ T1

hν(T ) = lim
ε→0

lim sup
n→∞

− 1

n
ln (ν(Bn(x, ε)))

Arguing as before we have

ce−(n+m)ϱe
∑n+m−1

k=0 ϕ◦Tk(x) ≤ νϕ(Bn(x, ε)) ≤ Ce−nϱe
∑n−1

k=0 ϕ◦Tk(x)

thus, recalling Birkhoff theorem,

hνϕ
(T ) = ϱ− lim

ε→0
lim sup
n→∞

1

n

n−1∑
k=0

ϕ ◦ T k(x) = Ptop(T, ϕ)−
∫
T1

ϕdνϕ.

Finally, arguing as in [HK95, Theorem 20.3.7], we can establish the varitional
principle

Theorem 7.4.3 Let M(T ) be the set of invariant probability measures for
T , then

Ptop(T, ϕ) = sup
ν∈M(T )

hν(T ) +

∫
T1

ϕdν.
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7.5 Limit Theorems

Given f ∈ C1, n ∈ N and a ∈ R+ let

Aa,n(f) :=

{
x ∈ T1 :

∣∣∣∣∣ 1n
n−1∑
k=0

f ◦ T k(x)− µ(f)

∣∣∣∣∣ ≥ a

}
. (7.5.10)

By the ergodic theorem limn→∞ µ(Aa,n(f)) = 0. A natural question is:

Question 3 How large is m(Aa,n)?

Note that we can write 1
n

∑n−1
k=0 f ◦ T k(x)− µ(f) = 1

n

∑n−1
k=0 f̂ ◦ T k(x) where

f̂ := f − µ(f). So we can reduce the question to the study of zero average
function. A more refined question could be.

Question 4 Does it exists a sequence {cn} such that

1

cn

n−1∑
k=0

f̂ ◦ T k(x)

converges in some sense to a non zero finite object?

7.5.1 Large deviations. Upper bound

Note that it suffices to study the set

A+
a,n(f) :=

{
x ∈ T1 :

1

n

n−1∑
k=0

f ◦ T k(x)− µ(f + a) ≥ 0

}
.

since Aa,n(f) = A+
a,n(f)∩A+

a,n(−f). On the other hand, setting f̂ := f−µ(f),
for each λ ≥ 0 we have

m(A+
a,n(f)) = m({x : eλ

∑n−1
k=0 (f̂◦T

k(x)−a) ≥ 1}) ≤ e−nλam(eλ
∑n−1

k=0 f̂◦Tk

)

= e−nλam(eλ
∑n−1

k=0 f̂◦Tk

).

Accordingly,
m(A+

a,n(f)) ≤ e−nλam(Ln
λ1) (7.5.11)

where we have defined the operator Lλg := L(eλf̂g), L being the Transfer
operator of the map T .

By Lemma 7.4.1 Lλ has a maximal eigenvalue αλ depending analytically
on λ. Hence by the same argument used in Lemma 7.2.1 there exists c ∈ R
such that

m(A+
a,n(f)) ≤ e−n(λa−lnαλ)+c.
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Since λ has been chosen arbitrarily we have obtained

m(A+
a,n(f)) ≤ e−nĨ(a)+c (7.5.12)

where Ĩ(a) := supλ∈R+{λa− lnαλ}. The problem is then reduced to studying

the function I(a) which is commonly called rate function. Note that Ĩ is not

necessarily finite. Indeed if a > ∥f̂∥∞, then clearly m(A+
a,n(f)) = 0.

To better understand the rate function it is helpful to make a little digres-
sion into convex analysis.

Recall that a function f : Rd → Rd is convex if for each x, y ∈ Rd and
t ∈ [0, 1] we have f(ty + (1 − t)x) ≤ tf(y) + (1 − t)f(x) (if the inequality is
everywhere strict, then the function is stricly convex.

Problem 7.12 Show that if f ∈ C2(Rd,R), then f is convex iff ∂2f
∂x2 is a

positive matrix.10 Give a condition for strict convexity.

Problem 7.13 If a function f : D ⊂ Rd → R, D convex,11 is convex and
bounded, then it is continuous.

Given a function f : Rd → R let us define its Legendre transform as

f∗(x) = sup
y∈Rd

{⟨x, y⟩ − f(y)} (7.5.13)

Remark that f∗ can take the value +∞.

Problem 7.14 Prove that f∗ is convex.

Problem 7.15 Prove that f∗∗ ≤ f .

Problem 7.16 Prove that is f ∈ C2(Rd,R) is strictly convex, then the func-
tion h(y) := ∂f

∂y (y) is invertible and f∗ is strictly convex. Moreover, calling g
the inverse function of h, we have

f∗(x) = ⟨x, g(x)⟩ − f ◦ g(x).

Problem 7.17 Show that if f ∈ C2 is strictly convex, then f∗∗ = f .

Problem 7.18 Show that, for each x, y ∈ Rd, ⟨x, y⟩ ≤ f∗(x) + f(y), (Young
inequality).

10A matrix A ∈ GL(R, d) is called positive if AT = A and ⟨v,Av⟩ ≥ 0 for each v ∈ Rd.
11A set D is convex if, for all x, y ∈ D and t ∈ [0, 1], olds true ty + (1− t)x ∈ D.
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From the above discussion it follows that the rate function is defined
very similarly to the Legendre transform of the logarithm of the maximal
eigenvalue, which is commonly called pressure of f̂ . In fact, setting I(a) =
maxλ∈R(λa− lnαλ) we will se that, for a ≥ 0, I(a) = Ĩ(a). Unfortunately, to
see that the rate function is exactly a Legendre transform takes some work.
Let us start by studying the function αλ.

Lemma 7.5.1 There exists continuous functions Cλ > 0 and ρλ ∈ (0, 1) such
that, for λ ≤ 0, Lλ = αλΠλ + Qλ, ΠλQλ = QλΠλ = 0, ∥Qn

λ∥C1 ≤ Cλρ
n
λα

n
λ.

Also Πλ(g) = hλℓλ(g), ℓλ(hλ) = 1, ℓλ(h
′
λ) = 0. In addition, µλ(·) := ℓλ(hλ ·)

is an invariant probability measure. Moreover everything is analytic in λ.

Proof. As we have seen, there exists hλ ∈ C1 and a measure ℓλ, both
analytic in λ, such that the projection on the maximal eigenvalue of Lλ reads
Πλ(h) = hλℓλ(h). Obviously

Lλhλ = αλhλ, (7.5.14)

and α0 = 1, h0 = h and ℓ0 = m. Notice that hλ and ℓλ are not uniquely
defined: by Π2

λ = Πλ follows ℓλ(hλ) = 1 but one normalization can be chosen
freely.

Problem 7.19 Show that the normalization of ℓλ, hλ can be chosen so that
ℓλ(h

′
λ) = 0.

□

Lemma 7.5.2 The functions αλ and lnαλ are convex. Moreover,∣∣∣∣ ddλ lnαλ

∣∣∣∣ ≤ |f̂ |∞.

Proof. Note that

d2

dλ2
lnαλ =

α′′
λαλ − (α′

λ)
2

α2
λ

, (7.5.15)

thus the convexity of lnαλ implies the convexity of αλ.
In view of the above fact we can differentiate (7.5.14) obtaining

L′
λhλ + Lλh

′
λ = α′

λhλ + αλh
′
λ. (7.5.16)

Applying ℓλ yields

dαλ

dλ
= αλℓλ(f̂hλ)) = αλµλ(f̂). (7.5.17)
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Thus α′
0 = 0. Note that, as claimed,∣∣∣∣ ddλ lnαλ

∣∣∣∣ ≤ |µλ(f̂)| ≤ |f̂ |∞.

Differentiating again yields

d2αλ

dλ2
= αλµλ(f̂)

2 + αλℓ
′
λ(f̂ghλ) + αλℓλ(f̂h

′
λ). (7.5.18)

On the other hand, from (7.5.16) we have

(1αλ − Lλ)h
′
λ = Lλ(fλhλ),

where fλ = f̂ − µλ(f̂). Since, by construction, Πλh
′
λ = Πλ(fλhλ) = 0, the

above equation can be studied in the space Vλ = (1−Πλ)C1 in which 1αλ−Lλ

is invertible.
Setting L̂λ := α−1

λ Lλ, we have

h′λ = (1− L̂λ)
−1L̂λ(fλhλ). (7.5.19)

Doing similar considerations on the equation ℓλ(Lλ) = αλℓλ(g), we obtain

α′′
λ = αλµλ(f̂)

2 + αλℓλ(fλ(1− L̂λ)
−1(1+ L̂λ)(fλhλ))

= αλµλ(f̂)
2 + αλ

∞∑
n=1

ℓλ(fλL̂n
λ(1+ L̂λ)(fλhλ))

=
(α′

λ)
2

αλ
+

[
µλ(f

2
λ) + 2

∞∑
n=1

ℓλ(fλL̂n
λ(fλhλ))

]
αλ.

(7.5.20)

Finally, notice that

ℓλ(fλL̂n
λ(fλhλ)) = ℓλ(L̂n

λ(fλ ◦ Tnfλhλ)) = µλ(fλ ◦ Tnfλ)

and

lim
n→∞

1

n
µλ

[n−1∑
k=0

fλ ◦ T k

]2 = lim
n→∞

1

n

n−1∑
k,j=0

µλ(fλ ◦ T kfλ ◦ T j)

= µλ(f
2
λ) + lim

n→∞

2

n

n−1∑
k=1

(n− k)µλ(fλ ◦ T kfλ)

= µλ(f
2
λ) + 2

∞∑
k=1

µλ(fλ ◦ T kfλ).

(7.5.21)
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The above two facts and equations (7.5.15), (7.5.20) yield

d2

dλ2
lnαλ = lim

n→∞

1

n
µλ

[n−1∑
k=0

fλ ◦ T k

]2 ≥ 0. (7.5.22)

□

Note that equation (7.5.17) implies α′
0 = 0, hence α′

λ ≥ 0 for λ ≥ 0. Since
the maximum of λa − lnαλ is taken either at αλa = α′

λ or at infinity (if

a > supλ>0
α′

λ

αλ
), it follows that

Ĩ(a) = sup
λ≥0

(λa− lnαλ) = sup
λ
(λa− lnαλ) = I(a)

as announced. In fact, more can be said.

Lemma 7.5.3 Either the rate function I is strictly convex, or there exists
β ∈ R, ϕ ∈ C0 such that f − β = ϕ− ϕ ◦ T .

Proof. By Problem 7.16 it suffices to prove that lnαλ is strictly convex.
On the other hand equations (7.5.15) and (7.5.22) imply that if the second
derivative of lnαλ is zero for some λ, then

µλ

[n−1∑
k=0

fλ ◦ T k

]2 = n

[
µλ(f̂

2) + 2

n−1∑
k=1

n− k

n
µλ(fλ ◦ T k fλ)

]

= −2n

∞∑
k=n

ℓλ(fλL̂k
λ(fλ hλ))− 2

n−1∑
k=1

kℓλ(fλL̂k
λ(fλ hλ))− αλµλ(f̂)

2

≤ C(λ)

[
nρnλ +

∞∑
k=0

kρkλ

]

Accordingly, the sequence
∑n−1

k=0 fλ ◦ T k is bounded in L2(T1, µλ) and hence

weakly compact. Let
∑nj−1

k=0 fλ ◦T k a weakly convergent subsequence,12 that
is there exists ϕλ ∈ L2 such that for each φ ∈ L2 holds

lim
j→∞

µλ(φ

nj−1∑
k=0

fλ ◦ T k) = µλ(φϕλ).

12Such a subsequence always exists [LL01].
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It follows that, for each φ ∈ C1,

µλ(φ[fλ − ϕλ + ϕλ ◦ T ]) = µλ(φfλ) + lim
j→∞

nj−1∑
k=0

µλ(φfλ ◦ T k+1 − φfλ ◦ T k)

= lim
j→∞

µλ(φfλ ◦ Tnj ) = lim
j→∞

ℓλ(fλL̂
nj

λ (φhλ))

= µλ(φ)µλ(fλ) = 0.

thus, since C1 is dense in L2, it follows

fλ = ϕλ − ϕλ ◦ T , µλ − a.s. (7.5.23)

A function with the above property is called a coboundary, in this case an L2

coboundary since we know only that ϕλ ∈ L2(T, µλ). In fact, this it is not
not enough to conclude the Lemma: we need to show, at least, that ϕλ ∈ C0.

First of all notice that, since for each β ∈ R we have fλ = ϕλ + β − (ϕλ +
β) ◦ T , we can assume without loss of generality µλ(ϕλ) = 0. But then

L̂λ(fλ hλ) = L̂λ(ϕλ hλ)− ϕλ hλ = −(1− L̂λ)ϕλ hλ.

Hence

ϕλ = h−1
λ (1− L̂λ)

−1L̂λ(fλ hλ) ∈ C1.

□

Remark 7.5.4 The above result is quite sharp. Indeed, it shows that if I is
not strictly convex, then for each invariant measure ν holds ν(f) = β = µ(f).
So it suffices to find two invariant measures for which the average of f differs
(for example the average on two periodic orbits) to infer that I is strictly
convex.

Problem 7.20 Set σ := α′′(0). Show that, for a small, I(a) = a2

2σ + O(a3).
Show that if a > |f |∞, then I(a) = +∞.

The above discussion allows to conclude

m(A+
a,n(f)) ≤ m(Ln

λ−
h) ≤ Ce−

a2

2σ2 n+O(a3n).

Since similar arguments hold for the set A+
a,n(−f), it follows that we have

an exponentially small probability to observe a deviation from the average.
Moreover, the expected size of a deviation is of order n−

1
2 , to see if this is

really the case we a lower bound.
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7.5.2 Large deviations. Lower bound

Let I = (α, β), fix c ∈ (0, β−α
2 ) and let us consider a λ ∈ R such that

µλ(f̂) ∈ (α + c, β − c) = Ic. Let Sn =
∑n−1

k=0 f̂ ◦ T k, then µλ(Sn) = nµλ(f̂)
and, by (7.5.21)

µλ

[n−1∑
k=0

f̂ ◦ T k − nµλ(f̂)

]2 ≤ Cλn,

where Cλ depends continuously by λ. Thus, setting An,I = {x ∈ T1 :
1
nSn(x) ∈ I},

µλ(A
c
n,I) ≤ µλ

({∣∣∣∣∣
n−1∑
k=0

fλ ◦ T k

∣∣∣∣∣ ≥ cn

})

≤ c−2n−2µλ

∣∣∣∣∣
n−1∑
k=0

fλ ◦ T k

∣∣∣∣∣
2
 ≤ Cλc

−2n−1.

It follows that there exists nλ ∈ N such that, for all n ≥ nλ, µλ(An,I) ≥ 1
2 .

We can then write

1

2
≤ ℓλ(An,Ihλ) ≤ C#e

−(n+m) lnαλℓλ
(
Ln+m
λ (1An,I

)
)
. (7.5.24)

To conclude we must analyse a bit the characteristic function of An,I . First of
all, notice that if |T kx−T ky| ≤ ε for each k ≤ n, then |T kx−T ky| ≤ λ−n+kε
for all k ≤ n. Accordingly, for each z ∈ [x, y]

|DxT
n −DzT

n| ≤ |DxT
n| · (e

∑n−1
k=0 | lnD

Tkx
T−lnD

Tkz
T | − 1)

≤ |DxT
n|(eC#

∑n−1
k=0 λ−kε − 1) ≤ C#|DxT

n|.

By a similar estimate follows |DxT
n−DzT

n| ≥ C#|DxT
n| as well. Moreover,

|Sn(x)− Sn(y)| ≤
n−1∑
k=0

|f |C1C#λ
−kε ≤ C#ε.

We can then write An,I ⊃ ∪lJl ⊃ An,Ic where Jl are disjoint intervals such
that |TnJl| ≤ ε. Choosing ε small enough it follow that the oscillation of Sn

on each Jl is smaller than c. Moreover

∥Ln1Jl
∥BV = sup

|φ|∞≤1

∫
Jl

φ′ ◦ Tn ≤ sup
|φ|∞≤1

∫
Jl

d

dx

[
(DTn)−1φ ◦ Tn

]
+B|Jl|

≤ 2 sup
x∈Jl

|DxT
n|−1 +B|Jl| ≤ C#|Jl|.
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We can then continue our estimate started in (7.5.24),

1

2
≤ C#e

−(n+m) lnαλ+nλβ+mC#

∑
l

ℓλ
(
Ln+m(1Jl

)
)

= C#e
−(n+m) lnαλ+nλβ+mC#

∑
l

ℓλ (m(Jl)(1 +O(ρm))))

≤ C#e
−n(lnαλ−λβ)m(An,I),

where we have chosen m large but fixed. The above computations imply that,
for each L > 0,

m(An,I) ≥ CLe
−JL(I)n

where JL(I) = max{λ≤L : µλ(f)∈Ic} λa−lnαλ. Note that, if f is not a cobound-
ary and hence lnαλ is strictly convex, the maximum of λβ−lnαλ is attained at
some finite value, hence, for L large enough, JL(I) = sup{λ∈R : µλ(f)∈Ic} λβ −
lnαλ. This implies that

m(A+
a,n) ≥ C#e

−J(a)n

where J(a) = sup{λ : µλ(f)>a} λa− lnαλ.

The surprising fact is that the upper and lower bound are essentially the
same. To see this a little argument is needed.

7.5.3 Large deviations. Conclusions

In fact, it is possible to give a variational characterization of the rate function
in the spirit of general Large deviation theory [Var84, Str84, DZ98].

Lemma 7.5.5 Let MT be the set of invariant probability measures invariant
with respect to T . Then

I(a) = − sup
{ν∈MT : ν(f)≥a}

hν(T ) = J(a).

Proof. By section 7.4.2 we have that, for each ν ∈ MT , lnαλ = supν∈MT
{hν(T )+

λν(f)} = hµλ
(T ) + λµλ(f). Thus for each ν ∈ MT such that ν(f) ≥ a, we

can write

I(a) ≤ max
λ≥0

{λ(a− ν(f))− hν(T )} = −hν(T ).

On the other and

I(a) = sup
λ≥0

{λ(a− µλ(f))− hµλ
(T )}.
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If a > supµλ(f), then I(a) = +∞, otherwise let λ∗ be such that µλ∗(f) = a,13

then
I(a) ≥ −hµλ∗

(T ) ≥ − sup
{ν∈MT : ν(f)≥a}

hν(T ).

Finally, since µλ and hµλ
depend smoothly from λ,

J(a) = sup
{λ : µλ(f)>a}

λa− λµλ(f)− hµλ
(T ) = I(a).

□

7.5.4 The Central Limit Theorem

We can now address the second question we have posed. From the above
discussion is clear that we must chose cn =

√
n.

Let f ∈ BV and set f̂ := f − µ(f), then

lim
n→∞

1

n

n−1∑
k=0

f̂ ◦ T k(x) = 0 m− a.e.

Let us set Ψn := 1√
n

∑n−1
k=0 f̂ ◦ T k. We can consider Ψn a random variable

with distribution Fn(t) := µ({x : Ψn(x) ≤ t}). It is well known that, for
each continuous function g holds14

µ(g(Ψn)) =

∫
R
g(t)dFn(t)

where the integral is a Riemann-Stieltjes integral. It is thus clear that if we
can control the distribution Fn, we have a very sharp understanding of the
probability to have small deviations (of order

√
n) from the limit. From the

work in the previous section it follows that there exists δ > 0 such that, for
each |λ| ≤ δ

√
n,

φn(λ) := µ(eiλΨn) = µ(Ln
iλ/

√
nh) = (1− σ2λ2

2n
+O(λ3n−

3
2 + ρn)∥f∥BV )

n

= e−
σ2λ2

2 (1 +O(λ3n−
1
2 + nρn)∥f∥BV ).

(7.5.25)

13Actually one must show that the sup is a max.
14If g ∈ C1

0 , then∫
R
gdFn = −

∫
R
Fn(t)g

′(t)dt = −
∫
R
dt

∫
T1

dxχ{z : Ψn(z)≤t}(x)g
′(t).

Applying Fubini yields∫
R
gdFn = −

∫
T1

dx

∫
R
dtχ{z : Ψn(z)≤t}(x)g

′(t) = −
∫
T1

dx

∫ ∞

Ψn(x)
g′(t)dt =

∫
T1

dxg(Ψn(x)).
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The above quantity is called characteristic function of the random variable
and determines the distribution (at continuity points) via the formula

Fn(b)− Fn(a) = lim
Λ→∞

1

2π

∫ Λ

−Λ

e−iaλ − e−ibλ

iλ
φn(λ)dλ,

as can be seen in any basic book of probability theory.15

Formula (7.5.25) means in particular that

lim
n→∞

m(eλΨn) = e−
σ2λ2

2 =: φ(λ).

What can we infer from the above facts? First of all a simple computation
shows that

g(t) =
1

2π

∫
R
e−itλφ(λ)dλ =

1√
πσ

e−
t2

2σ2

a random variable with such a density is called a Gaussian random variable
with zero average and variance σ. Accordingly, formula (7.5.25) can be inter-
preted by saying that there exists a Gaussian random variable G such that

1

n

n−1∑
k=0

f̂ ◦ T k ∼ 1√
n
G(1 +O(n−

1
2 ))

in distribution. But what does this means concretely. Actual estimates are
made difficult by the fact that the distribution under study not necessarily
have a density, thus we are Fourier transforming function that behave quite
badly at infinity. To overcome such a problem we can smoothen the quantities
involved.

Let j ∈ C∞(R,R+) such that
∫
R j(t)dt = 1, j(t) = j(−t), and j(t) = 0 for

all |t| > 1, for each ε > 0 defined then jε(t) := ε−1j(ε−1t) and

Fn,ε(t) :=

∫
R
jε(t− s)Fn(s)ds. (7.5.26)

A simple computation shows that, for each a, b ∈ R, holds

Fn(b+ ε)− Fn(a− ε) ≥ Fn,ε(b)− Fn,ε(a) ≥ Fn(b− ε)− Fn(a+ ε)

that is: if the measurements have a precision worst than 2ε, then Fn,ε is as
good as Fn to describe the resulting statistics. On the other hand calling φn,ε

15In the case when there exists a density, that is an L1 function fn such that Fn(b) −
Fn(a) =

∫ b
a fn(t)dt, then the formula above becomes simply

fn(t) =
1

2π

∫
R
e−itλφn(λ)dλ,

and follows trivially by the inversion of the Fourier transform.
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the characteristic function associated to Fn,ε, holds φn,ε(λ) = φn(λ)ĵ(ελ),

where ĵ is the Fourier transform of j. Since now Fn,ε is the law of a smooth
random variable it has a density fn,ε and

fn,ε(t) =
1

2π

∫
R
e−iλtφn(λ)ĵ(ελ)dλ

since j is smooth it follows that there exists C > 0 such that |ĵ(λ)| ≤ C(1 +
λ2)−2. We can finally use formula (7.5.25) to obtain a quantitative estimate

fn,ε(t) =
1

2π

∫ ε
√
n

−ε
√
n

e−iλtφn(λ)ĵ(ελ)dλ+O(ε−5n−
3
2 )

=
1

2π

∫ ε
√
n

−ε
√
n

e−iλtφ(λ)ĵ(ελ)dλ+O(ε−5n−
3
2 + n−

1
2 )

= g(t) +O(ε+ ε−5n−
3
2 + n−

1
2 ) = g(t) +O(n−

1
2 )

provided we choose n−
1
2 ≥ ε ≥ n−5. Which, as announced, means that, if the

precision of the instrument is compatible with the statistics, the typical fluc-
tuations in measurements are of order 1√

n
and Gaussian. This is well known

by sperimentalists who routinely assume that the result of a measurement is
distributed according to a Gaussian.16

7.6 Perturbation theory

To answer the questions posed at the beginning we need some perturbation
theorems. Few such results are available (e.g., see [Kif88], [BY93] or [Bal00a]
for a review), here we will follow mainly the theory developed in [KL99, GL06]
adapted to the special cases at hand.

For simplicity let us work directly with the densities and in the case d = 1.
Then L is the transfer operator for the densities. We will start by considering
an abstract family of operators Lε satisfying the following properties.

Condition 1 Consider a family of operators Lε with the following properties

1. A uniform Lasota-Yorke inequality:

∥Ln
εh∥BV ≤ Aλ−n∥h∥BV +B|h|L1 , |Ln

εh|L1 ≤ C|h|L1 ;

2.
∫
Lh(x)dx =

∫
h(x)dx ;

16Note however that our proof holds in a very special case that has little to do with a
real experimental setting. To prove the analogous statement for a realistic experiment is a
completely different ball game.
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3. For L : BV → BV define the norm

|||L||| := sup
∥h∥BV ≤1

|Lf |L1 ,

that is the norm of L as an operator from BV → L1. Then we require
that there exists D > 0 such that

|||L − Lε||| ≤ Dε.

Condition 1-(3) specifies in which sense the family Lε can be considered
an approximation of the unperturbed operator L. Notice that the condition
is rather weak, in particular the distance between Lε and L as operators on
BV can be always larger than 1. Such a notion of closeness is completely
inadequate to apply standard perturbation theory, to get some perturbations
results it is then necessary to drastically restrict the type of perturbations
allowed, this is done by Conditions 1-(1,2) which state that all the approxi-
mating operators enjoys properties very similar to the limiting one.17

To state a precise result consider, for each operator L, the set

Vδ,r(L) := {z ∈ C | |z| ≤ r or dist(z, σ(L)) ≤ δ}.

Since the complement of Vδ,r(L) belongs to the resolvent of L it follows that

Hδ,r(L) := sup
{
∥(z − L)−1∥BV | z ∈ C \Vδ,r(L)

}
<∞.

By R(z) and Rε(z) we will mean respectively (z − L)−1 and (z − Lε)
−1.

Theorem 7.6.1 ([KL99]) Consider a family of operators Lε : BV → BV
satisfying Conditions 1. Let Hδ,r := Hδ,r(L); Vδ,r := Vδ,r(L), r > λ−1, δ > 0,
then, if ε ≤ ε1(L, r, δ), σ(Lε) ⊂ Vδ,r(L). In addition, if ε ≤ ε0(L, r, δ), there
exists a > 0 such that, for each z ̸∈ Vδ,r, holds true

|||R(z)−Rε(z)||| ≤ Cεa.

Proof.18 To start with we collect some trivial, but very useful algebraic
identities.

17Actually only Condition 1-(1) is needed in the following. Condition 1-(2) simply implies
that the eigenvalue one is common to all the operators. If 1-(2) is not assumed, then the
operator Lε will always have one eigenvalue close to one, but the spectral radius could vary
slightly, see [LMD03] for such a situation.

18This proof is simpler than the one in [KL99], yet it gives worst bounds, although
sufficient for the present purposes.
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For each operator L : BV → BV and n ∈ Z holds

1

z

n−1∑
i=0

(z−1L)i(z − L) + (z−1L)n = 1 (7.6.27)

R(z)(z − Lε) +
1

z

n−1∑
i=0

(z−1L)i(Lε − L) +R(z)(z−1L)n(Lε − L) = 1

(7.6.28)

(z − Lε)
[
Gn,ε + (z−1Lε)

nR(z)
]
= 1− (z−1Lε)

n(Lε − L)R(z) (7.6.29)[
Gn,ε + (z−1Lε)

nR(z)
]
(z − Lε) = 1− (z−1Lε)

nR(z)(Lε − L), (7.6.30)

where we have set Gn,ε :=
1
z

∑n−1
i=0 (z

−1Lε)
i.

Let us start applying the above formulae. For each h ∈ BV and z ̸∈ Vr,δ
holds

∥(z−1Lε)
n(Lε − L)R(z)h∥BV ≤ (rλ)−nA∥(Lε − L)R(z)h∥BV +

B

rn
|(Lε − L)R(z)h|L1

≤ [(rλ)−nA2C1 +Br−nDε]Hr,δ∥h∥BV < ∥h∥BV

Thus ∥(z−1Lε)
n(Lε − L)R(z)∥BV < 1 and the operator on the right hand

side of (7.6.29) can be inverted by the usual Neumann series. Accordingly,
(z − Lε) has a well defined right inverse. Analogously,

∥(z−1Lε)
nR(z)(Lε−L)h∥BV ≤ (rλ)−nA∥R(z)(Lε−L)h∥BV +Br

−n|R(z)(Lε−L)h|L1 .

This time to continue we need some informations on the L1 norm of the
resolvent. Let g ∈ BV , then equation (7.6.27) yields

|R(z)g|L1 ≤ 1

r

n−1∑
i=0

|(z−1L)ig|L1 + ∥R(z)(z−1L)ng∥BV

≤ 1

rn(1− r)
|g|L1 +Hδ,rA(rλ)

−n∥g∥BV +Hδ,rBr
−n|g|L1

≤ r−n(Hδ,rB + (1− r)−1)|g|L1 +Hδ,rA(rλ)
−n∥g∥BV

Substituting, we have

∥(z−1Lε)
nR(z)(Lε − L)h∥BV ≤ {(rλ)−nAHδ,r2C1[1 +Br−n]

+Br−2n[Hδ,rB + (1− r)−1]Dε}∥h∥BV < 1,

again, provided ε is small enough and choosing n appropriately. Hence the
operator on the right hand side of (7.6.30) can be inverted, thereby providing
a left inverse for (z−Lε). This implies that z does not belong to the spectrum
of Lε.
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To investigate the second statement note that (7.6.28) implies

R(z)−Rε(z) =
1

z

n−1∑
i=0

(z−1L)i(Lε − L)Rε(z)−R(z)(z−1L)n(Lε − L)Rε(z).

Accordingly, for each φ ∈ BV holds

|R(z)φ−Rε(z)φ|L1 ≤ {r−n(1−r)−1ε+Hδ,r(λr)
−n2AC1+Hδ,rBε}∥Rε(z)φ∥BV .

□

7.6.1 Deterministic stability

The Lε are Perron-Frobenius (Transfer) operators of maps Tε which are C1–
close to T , that is dC1(Tε, T ) = ε and such that dC2(Tε, T ) ≤ M , for some
fixed M > 0. In this case the uniform Lasota-Yorke inequality is trivial. On
the other hand, for all φ ∈ C1 holds∫

(Lεf − Lf)φ =

∫
f(φ ◦ Tε − φ ◦ T ).

Now let Φ(x) := (DxT )
−1
∫ Tεx

Tx
φ(z)dz, since

Φ′(x) = −(DxT )
−1D2

xTΦ(x) +DxTε(DxT )
−1φ(Tεx)− φ(Tx)

follows∫
(Lεf−Lf)φ =

∫
fΦ′+

∫
f(x)[(DxT )

−1D2
xTΦ(x)+(1−DxTε(DxT )

−1)φ(Tεx)].

Given that |Φ|∞ ≤ λ−1ε|φ|∞ and |1−DxTε(DxT )
−1|∞ ≤ λ−1ε, we have∫

(Lεf −Lf)φ ≤ ∥f∥BV λ
−1|φ|∞ε+ |f |L1λ−1(B+1)ε|φ|∞ ≤ D∥f∥BV ε|φ|∞.

By Lebesgue dominate convergence theorem we obtain the above inequality
for each φ ∈ L∞, and taking the sup on such φ yields the wanted inequality.

|Lεf − Lf |L1 ≤ D∥f∥BV ε.

We have thus seen that all the requirements in Condition 1 are satisfied. See
[Kel82] for a more general setting including piecewise smooth maps.
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7.6.2 Stochastic stability

Next consider a set of maps {Tω} depending on a parameter ω ∈ Ω. In
addition assume that Ω is a probability space and consider a measure P on
Ω. Consider the process xn = Tωn ◦ · · · ◦ Tω1x0 where the ω are i.i.d. random
variables distributed accordingly to P and let Eµ be the expectation of such
process when x0 is distributed according to µ. Then, calling Lω the transfer
operator associated to Tω, we have

E(f(xn+1) | xn) = LP f(xn) :=

∫
Ω

Lωf(xn)P (dω).

Then if

|Lωh|BV ≤ λ−1
ω |h|BV +Bω|h|L1

integrating yields

|LPh|BV ≤ E(λ−1
ω )|h|BV + E(Bω)|h|L1

And the operator LP satisfy a Lasota-Yorke inequality provided that E(λ−1) <
1 and E(B) <∞.

In addition, if for some map T and associated transfer operator L,

E(|Lωh− Lh|) ≤ ε|h|BV

then we can apply perturbation theory and obtain stochastic stability.

7.6.3 Computability

If we want to compute the invariant measure and the rate of decay of correla-
tions, we can use the operator Pt defined in (7.3.6) and define Lt,m = PtLm.
By a direct computation it follows

|Lt,mh|BV ≤ 4dσm|h|BV +B|h|L1 .

We can then chose the smallest m so that 4dσm = σ1 < 1. Moreover, we also
saw that

|Lt,mh− Lh| ≤ t−1|h|BV .

So we are again in the realm of our perturbation theory and we have that the
finite dimensional operator Lt,m has spectrum close to the one of the transfer
operator. We can then obtain all the info we want by diagonalizing a matrix.
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7.6.4 Linear response

Linear response is a theory widely used by physicists. In essence it says the
follow: consider a one parameter family of systems Ts and the associated
(e.g.) invariant measures µs, then, for a given observable f one want to study
the response of the system to a small change in s, and, not surprisingly, one
expects µs(f) = µ0(f) + sν(f) + o(s). That is one expects differentiability in
s. Yet differentiability is is not ensured by Theorem 7.6.1. Is it possible to
ensure conditions under which linear response holds? The answer is yes (for
example if holds if the maps are sufficiently smooth and the dependence on
the parameter is also smooth in an appropriate sense). To prove it one need
a sophistication of Theorem 7.6.1 that can be found in [GL06].

7.6.5 The hyperbolic case

One can wonder is the previous approach can be applied to uniformly hyper-
bolic systems and partially hyperbolic system. The answer is yes although
the work in this direction is still in progress and the price to pay is the need
to consider rather unusual functional spaces (space of anysotropic distribu-
tions). Just to give a vague idea let us look at a totally trivial example: toral
automorphisms.

Then one can consider the norms:

∥f∥p,q :=
∑

k∈Z2d\{0}

|fk|
|k|p

1 + |⟨vs, k⟩|p+q
+ |f0|,

where fk are the Fourier coefficients of f and vs is the unit vector in the stable
direction. Then

∥[Lf∥p,q ≤ C1∥f∥p,q,
∥[Lnf∥p,q ≤ C3µ

n∥f∥p,q +B∥f∥p−1,q+1.
(7.6.31)

we have thus the Lasota-Yorke inequality. Moreover on can easily check the
relative compactness of {∥f∥p,q ≤ 1} with respect to the topology induced by
the norm ∥ · ∥p−1,q+1, hence our previous theory applies almost verbatim.

To have a more precise idea of what can be done, see [GL06, BT07].

Hints to solving the Problems

7.19 Let ℓλ, hλ be analytic. Let us define zλ = e−
∫ λ
0

ℓξ(h
′
ξ)dξ, define ĥλ = zλhλ

and ℓ̂λ = z−1
λ ℓλ and check that they are normalized as required.
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Notes

Large deviations are taken from Lai-Sang article and Keller book.
The stochastic stability is reasonably well understood (Cowienson) but

what about the smooth dependence from a parameter (linear response)?
Counterexamples in d = 1 but unknown in higher dimensions. The uniformly
hyperbolic case is well understood but not much is know on how to apply the
present ideas to the partially hyperbolic case and to the case of systems with
discontinuities, although a concentrated effort is taking place to extend the
theory in such directions.



Chapter 8

Uniformly hyperbolic
systems

The concept of ergodicity is a very important one in dynamical systems,
yet it turns out to be surprisingly difficult to establish if a system is or not
ergodic and very few examples have been fully analyzed. Nonetheless, in this
chapter we will see that a very simple idea introduced by Hopf [Hop39, Hop40]
allows to discuss the ergodicity in some special cases. The relevance of Hopf’s
idea is that, properly generalized, it allows to prove ergodicity in a vast class of
systems. Much in the following chapters will deal with such a generalization.

8.1 A Basic Example

To explain the Hopf approach we will study a very simple case: a slight
generalization of Arnold’s cat, see Examples 6.2.1. Let T : T2 → T2 (here by
T2 we mean R2 mod 1) be defined by

T

(
x1
x2

)
=

(
1 a
a 1 + a2

)(
x1
x2

)
mod 1 (8.1.1)

It is obvious that if a ∈ Z, then T is well defined and it is a linear auto-
morphism of T2 . Moreover, for all x ∈ T2

DxT =

(
1 a
a 1 + a2

)
≡ L.

Since detL = 1, Lebesgue measure is preserved. It is immediate to see that

185
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there exists λ > 1; v+, v− ∈ R2:

Lv+ =λv+

Lv− =λ−1v−.

We will call v+ the unstable eigenvector (direction) and v− the stable eigen-
vector (direction). Remark that, since L∗ = L, ⟨v+, v−⟩ = 0.

The dynamical system just described is a basic model of hyperbolic sys-
tems (see next chapter) and will appear in various disguises in this book.

Proposition 8.1.1 The Arnold cat is ergodic.

Sections 8.1.1 and 8.2.1 contain two different proofs of the above proposi-
tion.

8.1.1 An algebraic proof

A first idea to studying the ergodic properties of this system is to imitate what
we have done for the Rotations (Examples 6.6.1) and the Dilations (Examples
6.8.1): use Fourier series. Let us see how such an approach would work.

Let f, g ∈ C(m)(T2), then1

f ◦ Tn(x) =
∑
k∈Z2

e2πi⟨k, L
nx⟩fk =

∑
k∈Z2

e2πi⟨k, x⟩fL−nk,

so ∫
T2

f ◦ T 2ng =

∫
T2

f ◦ Tng ◦ T−n =
∑
k∈Z2

fL−nkgLnk

= f0g0 +
∑

k∈Z2\{0}

fL−nkgLnk.

It is well known [RS80] that f ∈ C(m)(T2) implies2

|fk| ≤
∥f (m)∥1
∥k∥m

for k ̸= 0

hence ∣∣∣∣∣∣
∑

k∈Z2\{0}

fL−nkgLnk

∣∣∣∣∣∣ ≤
∑

k∈Z2\{0}

∥f (m)∥1∥g(m)∥1
∥L−nk∥m∥Lnk∥m

.

1Note that e2πi⟨k,Tnx⟩ = e2πi⟨k,Lnx⟩.
2Here for ∥f (m)∥1 we mean sup

i+j=m
i,j≥0

1
(2π)m

∫
T2 |∂i

x1
∂j
x2f |dx1dx2; and ∥k∥ =

√
k21 + k22 .
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For each k ∈ Z2 holds ∥k∥2 = ⟨k, v+⟩2 + ⟨k, v−⟩2 hence one of the two terms
must be larger than ∥k∥2/2.3 Moreover if k ̸= 0 ∥Lnk∥ ≥ 1 for each n ∈ Z.
Using the above facts it yields

∣∣∣∣∣∣
∑

k∈Z2\{0}

fL−nkgLnk

∣∣∣∣∣∣ ≤
∑

k∈Z2\{0}

∥f (m)∥1∥g(m)∥12m/2

λnm∥k∥m

≤ const.∥f (m)∥1∥g(m)∥1λ−nm,

where the constant does not depend on f or g and we have assumed m ≥ 3
to insure the convergence of the series.

Accordingly, for each f, g ∈ C(3)(T2) we have∣∣∣∣∫
T2

f ◦ Tng −
∫
T2

f

∫
T2

g

∣∣∣∣ ≤ const.∥f (3)∥1∥g(3)∥1λ−3n/2.

To obtain the final result we need an approximation argument. If f, g ∈
L2(T2) we can choose fn, gn ∈ C(3)(T2) such that they converge to f and g,
respectively, in L2.

Then, for each ε ≥ 0, choose m ∈ N such that

∥f − fm∥2 + ∥g − gm∥2 ≤ ε.

Accordingly,

∣∣∣∣∫
T2

f ◦ Tng −
∫
T2

f

∫
T2

g

∣∣∣∣ ≤ ∣∣∣∣∫
T2

fm ◦ Tngm −
∫
T2

fm

∫
T2

gm

∣∣∣∣
+ 2∥f − fm∥2∥g∥2 + 2∥fm∥2∥g − gm∥2

≤2(∥g∥2 + ∥f∥2)ε+ ε,

where we have chosen n large enough depending on m and ε. We have just
proven mixing.

The above result is certainly rather satisfactory: non only it proves the
mixing–hence the ergodicity–of the map but gives an explicit estimate on the
rate of decay and shows how such a rate depends on the regularity of the
functions.4 Therefore, an eventual critique can not concern the type of result
but only the method; indeed the method does have a shortcoming.

The use of Fourier series is strictly related to the group structure of T2

and the linearity of the map. Clearly, in more general systems, where both

3Here we have normalized the eigenvalues so that ∥v±∥ = 1.
4In fact, the obtained estimate it is not optimal: using the Diofantine properties of the

stable and unstable directions a better estimate can be obtained (see Problem 2.1).
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such properties may fail, such a technique has no hope whatsoever of being
applied.5 In some sense, much of the theory of hyperbolic systems may be
viewed as an attempt to find an alternative proof of the above facts. Such a
proof must be dynamical, meaning that it must use properties of the dynamics
and as little as possible of the structure of the space.

The best way to gain a real feeling of what is meant by dynamical is to
see such a type of argument in action.

8.2 An Idea by Hopf

The following argument, due to Hopf [Hop39, Hop40] is exactly such a dy-
namical proof of ergodicity. Let f : T2 → R be a continuous function. We
want to prove that for almost every x ∈ T2 the time averages converge as
n→ +∞ to the average value of f , i.e.,

∫
T2 fdµ. Once this is established one

can obtain the same property for all integrable functions by an approximation
argument, this proves ergodicity due to the characterization provided by The-
orem 6.7.5 (see also Problem 1.6.31). From Birkhoff Ergodic Theorem (BET)
we know that the time averages converge almost everywhere to a function
f+ ∈ L1(T2, µ) which is invariant on the orbits of T , i.e., f+ ◦ T = f+, and
has the same average value as f , i.e.,

∫
f+dµ =

∫
fdµ. Further, applying

BET to f and T−1 we obtain that the time averages in the past

f(x) + f(T−1x) + · · ·+ f(T−n+1x)

n

converge almost everywhere as n→ +∞ to f− ∈ L1(T2, µ), f− ◦T = f− and∫
f−dµ =

∫
fdµ.

The next Lemma is part of the usual magic of the ergodic theory.

Lemma 8.2.1 The functions f+ and f− coincide almost everywhere.

Proof. Let
A+ = {x ∈ T2 | f+(x) > f−(x)};

by definition A+ is an invariant set, hence∫
A+

[f+(x)− f−(x)] dµ(x) =

∫
A+

f(x)dµ(x)−
∫
A+

f(x)dµ(x) = 0

which implies µ(A+) = 0 and f+ ≤ f− µ-almost everywhere. The same
argument, this time applied to the set A− = {x ∈ T2 | f−(x) > f+(x)},
implies the converse inequality. □

5In fact, there are very few cases in which this type of idea has produced relevant results,
notably the case of geodesic flows on surfaces of constant negative curvature.
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8.2.1 A dynamical proof

For x ∈ T2 let us denote by Wu(x) (W s(x)) the line in T2 passing through x
and having the direction of the unstable eigenvector (the stable eigenvector),
i.e., the eigenvector with eigenvalue λ (λ−1). We call Wu(x) (W s(x)) the
unstable (stable) leaf (or manifold) of x. The leaves of x have the following
property. If y ∈ Wu(x) (y ∈ W s(x)) then the distance (computed along the
leaf)

d(Tny, Tnx) = λ−|n|d(y, x) → 0 as n→ −∞(+∞).

Hence for y, z ∈Wu(s)(x)

|f(Tny)− f(Tnz)| → 0 as n→ −∞(+∞).

It follows that for y, z ∈Wu)(x) either f−(y) and f−(z) are both defined and
equal or they are both undefined; the same can be said for f+(y) and f+(z)
if y, z ∈W s(x).

It is interesting to notice that Wu(x) is an infinitely long line in the di-
rection v+ that fills densely the torus (see Problem 2.6). This implies that
the collection (foliation) {Wu(x)}x∈T2 of this global manifolds has a quite
complex structure (see Problem 2.7). For this reason it turns out to be much
more convenient to deal only with local manifolds.

A local manifold of size δ is simply a piece of Wu(x) of size δ centered at
x. In the following by Wu(x) and W s(x) we will always mean local manifolds
(lines) of some length. The exact length is, most of the times, irrelevant an
often will not be specified (in the following it will be frequently chosen so that
the lines do not wrap around the torus more than once).

Up to now we have seen that f+ is constant along a.e. stable lines while f−

is constant along a.e. unstable line, since they are equal a.e. it seems obvious
that they must be equal and constant. Yet, in the last sentence there are a
lot of almost everywhere and, being measure theory a rather subtle subject,
it is better to spell out the reasoning in full detail.6

Let us choose any point x ∈ T2 and prove that there is a neighborhood
of x in which f+ is a.e. constant. Since x is arbitrary this implies that f+

is a.e. constant.7 Chose a square Qδ of size 2δ < 1
4 centered at x with

sides parallel to v+ and v− respectively. Let ϕ : [−δ, δ]2 → Qδ be defined
by ϕ(α, β) = x + αv+ + βv−, where we have chosen ∥v±∥ = 1. It is then
convenient to transport the problem in [−δ, δ]2 by ϕ: doing so the Lebesgue
measure is sent in the Lebesgue measure and that f+◦ϕ is a.e. constant in the
vertical direction (α constant), while f− ◦ ϕ is a.e. constant in the horizontal

6We have already seen in Examples 6.6.1–Rotations that these type of arguments must
employ measure theory in a non trivial way.

7Please, note this apparently näıve idea to look at the problem first locally and then
globally, we will see much more of it in the following.
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direction. This corresponds simply to a change of variables and from now on
we will confuse Qδ and [−δ, δ]2 since this does not create any ambiguity.

There are three full measure sets to consider:
B̃+ = {ξ ∈ Qδ | f+(ξ) is defined} ; B̃− = {ξ ∈ Qδ | f−(ξ) is defined} and

G = {ξ ∈ B̃+ ∩ B̃− | f+(ξ) = f−(ξ)}.
Let us call W s

α := {(a, b) ∈ Qδ | a = α} the segment in Qδ parallel to the
stable direction passing through the point (α, 0), andWu

β := {(a, b) ∈ Qδ | b =
β} the segment in Qδ parallel to the unstable direction passing through the
point (0, β). The previous discussion proves that there exist B± ∈ [−δ, δ] such
that B̃+ = ∪α∈B+

W s
α and B̃− = ∪β∈B−W

u
β .

Since m is the product of two one dimensional Lebesgue measures8 Fubini
theorem [Roy88] implies that B± are measurable sets of full measure. Again
by Fubini Theorem, it follows

4δ2 = m(Qδ) = m(B̃+ ∩G) =
∫
B+

dα

∫ δ

−δ

dβχW s
α∩G(α, β).

This implies immediately that there exists a set I ⊂ B+, of full measure, such
that, for each α ∈ I the set Jα = {β ∈ B− | (α, β) ∈ G} is measurable and
has full measure as well; the same holds for E = ∪α∈IW

s
α.

Finally, let z, y ∈ E, z = (a, b) and y = (c, d). If a = c, then z, y ∈ W s
a

and f+(z) = f+(y). On the other hand, if a ̸= c then by choosing β ∈ Ja∩Jc
it follows

f+(z) = f+(W s
a ) = f+(a, β) = f−(a, β)

= f−(Wu
β ) = f−(c, β) = f+(c, β) = f+(y).

That is, f+ is constant on E, hence f+ (and f−) is a.e. constant on Qδ. By
the arbitrariness of Qδ follows that f+ = f− =constant a.e..

Up to now we have proved that f+ is a.e. constant only if f ∈ C(0)(T2),
to prove ergodicity we need the same result for each f ∈ L1(T2). This can
be easily obtained by an approximation argument; yet, it is probably more
interesting to prove directly that all invariant sets have measure zero or one.

Let us consider a T -invariant measurable subset A. Let

fn → χA in L1(T2, µ)

be a sequence of uniformly bounded continuous approximations to the indi-
cator function.9 We will use the fact that the time average is continuous with

8Here, to have an unambiguous notation, we should use mn for the Lebesgue measure
in Rn, then we just said m2 = m1 ×m1. For simplicity, I have suppressed all the subscript
hoping not to confuse the reader too much.

9If the existence of such a sequence {fn} it is not obvious, consider the following: for
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respect to the L1 norm to establish that the time average of χA must be
constant on T2. Indeed, if we denote by ∥ · ∥

1
the L1(T2, m) norm, then

∥f+n − χ+
A

∥∥
1
=

∥∥∥∥ lim
N→∞

1

N

N∑
i=1

(
fn ◦ T i − χA ◦ T i

)∥∥∥∥
1

= lim
N→∞

1

N

∥∥∥∥ N∑
i=1

(
fn ◦ T i − χA ◦ T i

)∥∥∥∥
1

by the Lebesgue Dominated Convergence Theorem.
Using the invariance of the measure we obtain

∥f+n − χ+
A

∥∥
1
≤ lim

N→∞

1

N

N∑
i=1

∥∥fn − χA

∥∥
1
=
∥∥fn − χA

∥∥
1
.

Since the time averages f+n = m(fn) a.e. in T2 and limn→∞m(fn) = m(A),
the Lebesgue dominated convergence theorem implies ∥m(A)−χ+

A∥1 = 0, that
is χ+

A = m(A) a.e.. In addition, the invariance of A forces χ+
A = χA so that

either A or Ac has measure zero. In view of the arbitrariness of the invariant
set A it follows that T must be ergodic.

8.2.2 What have we done?

The question remains of how and if such an argument can be extended to
more general systems. The answer must lie in the possibility to generalize the
main ingredients of the previous proof. Such ingredients are essentially two:
a) the existence of two foliations on which f+ (f− respectively) are constant;
b) some regularity property of such foliations.

In general the foliations will be provided by the stable and unstable mani-
folds (the existence of which is the content of the next chapter). A careful look
at the previous proof should convince the reader that the needed regularity
is a property of the type: consider two manifolds W s

1 , W
s
2 and define a map

ϕ : W s
1 → W s

2 by ϕ(x) = Wu(x) ∩W s
2 (this is often called holonomy map or

Poincaré transformation10, we will use the first name), then ϕ is measurable
and absolutely continuous that is : if A ⊂ W s

2 has positive measure so has
ϕ−1A. The absolutely continuity property of stable and unstable foliations
will be the topic of chapter 7.

each ε > 0, by the regularity of the Lebesgue measure, there exists Cε ⊂ A ⊂ Gε (Cε

closed and Gε open) such that m(Gε) − m(Cε) ≤ ε. Then Uryshon lemma implies that
there exists fε ∈ C(0)(T2) such that fε(T2) ⊂ [0, 1], fε|Cε = 1 and fε|Gc

ε
= 0. Thus

∥fε − χA∥1 ≤ m(Gε\Cε) ≤ ε.
10Note that if one could define a flow along the unstable direction–and in our case it is

possible–then the above map would indeed be a Poincaré map with respect to such a flow.
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Of course, the above comments are very imprecise, their only aim is to
give an idea of what is coming next. In the mean time, to start building
some feeling for the foliations and their properties, see Problems 2.12, 2.13
and 2.14.

8.3 About mixing

We continue our investigations with a discussion of an other dynamical proofs
in which we will see the role of hyperbolicity and some basic ideas associated
to it at work. The final goal will be to obtain a dynamical proof of the
following.

Proposition 8.3.1 The Arnold cat is mixing.

We will start by proving Topological Mixing.

Definition 8.3.2 A smooth Dynamical System is topologically mixing if for
each two open sets U and V there exists an integer n ∈ N such that

T−mU ∩ V ̸= ∅ ∀m ≥ n.

Note that the all point in the above definition is that it holds for all n
large enough (see Problem 2.3).

Remark that it suffices to have the above property for any class of sets
that can be used as a basis for the topology. The most convenient choice is
given by the so called “rectangles.” Such sets are an extremely important tool
in hyperbolic theory and we have already met them several times–although I
will not insist on them in the present book–here they appear in the simplest
possible form.

Definition 8.3.3 By rectangle we mean a quadrilater (i.e. a region with
boundaries consisting of four segments) with sides parallel to the stable or
unstable directions.

Proposition 8.3.4 The Arnold cat is topologically mixing.

Proof. Let us consider two rectangles A and B. A first key observation
is that, for each m ∈ N, TmA and TmB are rectangles as well. The second
key observation is that they have a very special shape: in the stable direction
their size has contracted by a factor λm while in the unstable direction the size
has expanded by the same factor. Hence, provided m is chosen large enough,
TmA and TmB are very thin in the stable direction and very elongated in
the unstable direction. This property of stretching and squeezing, that we
are witnessing here, is the cornerstone of almost all arguments in hyperbolic



8.3. ABOUT MIXING 193

theory. Of course, similar, but symmetrical, arguments hold for T−mA and
T−mB. We can then choose m ∈ N so large that the length of the unstable
sides of TmB is larger than 2 and, at the same time, the same is true for
the stable side of T−mA. It is then a trivial geometric observation, best
seen on the covering of T2, that TnA ∩ T−nB ̸= ∅, for each n ≥ m, thus
T−2nA ∩B ̸= ∅, which suffices to prove the topological mixing. □

The reader who starts to appreciate the spirit of the game may be unhappy
about the previous proof. The problem is that we have used a bit too heavily
the structure of the foliation (straight lines) and of T2 (the covering).

It is then quite natural to wonder if a more flexible and dynamical proof
is available. Here it is.

Another proof of Proposition 8.3.4. Let us start by a preliminary
result.

Given any rectangle A let us call Ac a rectangle of half the size and situated
at its center.11

Lemma 8.3.5 If T−nAc ∩ Ac ̸= ∅ for some n ∈ N such that λn > 4, then
T−mnA ∩A ̸= ∅ for all m ∈ N.

Proof. By construction T−nA intersects A completely from one unstable
side to the other (see figure 8.1)

This means that T−2nA ⊃ T−n(T−nA∩A), which is a very thin rectangle
contained in T−nA and that crosses it from one unstable side to the other.
Accordingly T−2nA will intersect A completely (from one unstable side to the
other). By induction the result follows. □

Note that the n ∈ N required by the above statement always exists (see
Problem 2.3).

Next, let A,B ⊂ T2 be two rectangles and let nB ∈ N such that Lemma
8.3.5 applies to B. We then consider the Dynamical Systems (T2, TnB ,m),
this is ergodic as well (see Problem 2.2).12 Consequently, for each integer
i ∈ {1, . . . , nB − 1} there exists ki ∈ N such that

T−kinB (T−iAc) ∩Bc ̸= ∅,

and the unstable size of A times λ−kinB is smaller than one quarter of the
unstable size of B (see Problem 2.4). This implies immediately that

T−knB (T−iA) ∩B ̸= ∅ ∀k ≥ ki. (8.3.2)

11This may seem a silly construction but it is a rather general trick used to exploit
topological mixing and we will see it again under the name of core of a rectangle in chapter
8.

12This is the crucial property always needed to obtain mixing in hyperbolic systems:
ergodicity of all the powers of the map.
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Ac A

� T−nA

-T−nAc

Figure 8.1: Intersection between A and T−nA

In fact, T−kinB (T−iA) crosses B from one unstable side to the other and
touches Bc, thus (8.3.2) can be proved by the same type of arguments used
in Lemma 8.3.5.

Finally, set km := max{ki | i ∈ {1, . . . , nB}}. For each n > kmnB we can
write n = knB + i where 0 < i < nB , thus

T−nA ∩B = T knB (T−iA) ∩B ̸= ∅,

by (8.3.2). □

By the same arguments one can prove the following (see Problem 2.5).

Lemma 8.3.6 Given any stable segment W s of length δ, and any unstable
segment Wu of length L > λδ−1, then it holds W s ∩Wu ̸= ∅.

To start discussing the problem of mixing we need to adopt a point of
view among the many possible. We will take the one that looks at the mea-
sures (see Proposition 6.8.3 and Problem 1.6.33) which, by now, should be
rather familiar to the reader. Calling µ0 a measure absolutely continuous
with respect to Lebesgue we would like to study the asymptotic behavior of
µn := T∗

nµ0. Thanks to Proposition 6.8.3 we need to study only the weak
convergence. The first observation is that such a set of measures is compact
hence we can study the set of its limit points Γ (of course with the goal of
showing that it consists of only one point).13 Such a set is simply the set of

13Note that such accumulation points are not necessarily invariant measures, this is why
we considered accumulation points of averages in section 6.5.
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limits of convergent subsequences. Since the measure µ0 is absolutely con-
tinuous with respect to m there exists a function h ∈ L1(T2), h ≥ 0, such
that

µ0(f) = m(hf).

A lesson that we have learned from the computation in Fourier trans-
form and from the Hopf argument is that the regularity of the functions do
matter considerably and that it may be useful to consider, at first, regular
functions and then obtain the wanted result by an approximation argument.
Accordingly, we will restrict ourself to the case h ∈ C(1)(T2) and establish
two fundamental facts.14

Lemma 8.3.7 If µ̄ ∈ Γ then µ̄ is absolutely continuous with respect to Lebesgue.
In addition, h̄ = dµ̄

dm ∈ L∞(T2,m).

Proof. We notice that the sequence µn is uniformly absolutely continu-
ous with respect to Lebesgue, that is ∀f ∈ C(0)(T2) such that f ≥ 0

µn(f) =

∫
T2

h ◦ T−nf ≤ ∥h∥∞∥f∥1.

This implies µ̄(f) ≤ ∥h∥∞m(f) and

µ̄(A) = sup
C⊂A
C=C

µ̄(C) = sup
C⊂A
C=C

inf
{f∈C(0) | f>χC}

µ̄(f) ≤ ∥h∥∞m(A), (8.3.3)

where we have used (6.5.3) and (6.5.4). Clearly (8.3.3) implies the absolute
continuity. Hence, by the Radon-Nikodym theorem [Roy88], there exists h̄ ∈
L1(T2,m) such that dµ̄ = h̄dm.

Next, let A = {x ∈ T2 | h̄(x) > ∥h∥∞}. If m(A) ̸= 0, then

∥h∥∞m(A) <

∫
A

h̄dm = µ̄(A) ≤ ∥h∥∞m(A)

which is a contradiction, thus h̄ ≤ ∥h∥∞ a.e.. □

The next argument is very similar to what we have already seen in Ex-
amples 6.5.1–Strange Attractors. Let us call Du the derivative along the
unstable direction (if v+ is the normal vector in the unstable direction then
Duf := ⟨∇f, v+⟩).

Lemma 8.3.8 There exists c > 0 : for each f ∈ C(1)(T2)

|µn(D
uf)| ≤ λ−nc∥f∥∞.

14Actually, this regularity condition on h will be needed only in Lemma 8.3.8.
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Proof.

µn(D
uf) =

∫
T2

h(Duf) ◦ Tn =

∫
T2

h⟨(∇f) ◦ Tn, v+⟩

=

∫
T2

h⟨L−n∇(f ◦ Tn), v+⟩ = λ−n
2∑

i=1

∫
T2

h∂xi
(f ◦ Tn)v+i

= −λ−n

∫
T2

Duhf ◦ Tn,

where the last equality is obtained by integrating by parts with respect to
both coordinates. Accordingly,

|µn(D
uf)| ≤ λ−n∥∇h∥1∥f∥∞.

□

From the above results it follows that if µ̄ ∈ Γ then there exists h̄ ∈ L∞(T2)
such that, for each f ∈ L1(T2, m),

µ̄(f) =

∫
fh̄dm

and for each f ∈ C(1)(T2), µ̄(Duf) = 0. This two facts together imply that h̄
is constant almost everywhere.

To see this we start by a local argument showing that h̄ is constant along
the unstable direction. We have already done a similar argument, in Exam-
ples 6.5.1–Strange Attractors, by using Fourier series, let us see here a more
measure theoretical argument to convince the reader that the global structure
of T2 has nothing to do with the result.

Let us consider an arbitrary rectangle R of size smaller than 1/4. Con-

sider an arbitrary f ∈ C(1)(T2) with support contained in
◦
R. Then consider

coordinates in R parallel to its sides (since this is achieved by rotations and
rigid translations it leaves invariant the Lebesgue measure). As before, the
unstable sides are horizontal. Let us call x the coordinate along the stable
direction and y the one along the unstable direction. In such coordinates
R = [0, a] × [0, b] (we have translates the origin at the bottom left corner of
R). Given f ∈ C(1), we define

f̃(x, y) = f(x, y)− 1

a

∫ a

0

f(ξ, y)dξ,

F (x, y) =

∫ x

0

f̃(ξ, y)dξ.

Then F |∂R = 0 so F can be extended to a function on T2 by setting F = 0
outside R. Note, that F is continuous and differentiable everywhere apart
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from the boundary ∂R where the derivative can be discontinuous. In the new
coordinates Du becomes simply the derivative with respect to x.∫

T2

h̄f =

∫
R

h̄f =

∫ a

0

dx

∫ b

0

dyh̄f̃ +
1

a

∫ b

0

dy

∫ a

0

dxh̄(x, y)

∫ a

0

dξf(ξ, y),

and, setting h̃(y) = 1
a

∫ a

0
dξh̄(ξ, y), f̄(y) =

∫ a

0
dξf(ξ, y),∫

T2

h̄f =

∫ a

0

dy

∫ b

0

dxh̄∂xF +

∫ b

0

dyh̃(y)f̄(y) =

∫
T2

h̄DuF +

∫ b

0

dyh̃(y)f̄(y).

At this point a small obstacle appears, due to the fact that F is not C(1). The
problem is easily solved by approximating F by C(1) functions Fε such that
∥DuF −DuFε∥1 ≤ ε. Then∣∣∣∣∫

T2

h̄DuF

∣∣∣∣ = ∣∣∣∣∫
T2

h̄DuF −
∫
T2

h̄DuFε

∣∣∣∣ ≤ ∥h̄∥∞ε.

Hence,
∫
T2 h̄D

uF = 0 also if the derivative is not continuous, consequently∫
T2

h̄f =

∫
T2

h̃f. (8.3.4)

By the arbitrariness of f (8.3.4) implies that h̄ = h̃ almost everywhere in
◦
R. Since R is arbitrary it follows that h̄ is constant a.e. along the unstable
direction.

A global argument is now needed to show that h̄ must be constant.15

Proof of Proposition 8.3.1–a shortcut. Consider a line ℓa = {x =
a}. Clearly for each point p = (a, y) ∈ ℓa W

u
p intersects again ℓa at the point

(a, y + ω+ mod 1) where (1, ω+) is the unstable direction. Then we can
consider the Dynamical Systems (ℓa, Rω+ ,m), and the function ha = h̄(a, y).
By the previous discussion (and Fubini Theorem) it follows that, for almost
every a, the function ha is an L1(ℓa,m) invariant function for the rotation
Rω+

; but we know that the irrational rotations are ergodic (see Examples
6.6.1), thus ha =constant which implies immediately h̄ constant. □

The above proof is simple but uses quite heavily the global properties of
the foliation and of T2 to reduce the problem to one already studied (the
irrational rotations). Clearly it is not clear how such a trick could work in
more general situations. Again we would like a more flexible and dynamical
argument.

15The fact that the argument is global, i.e. uses some properties of T2, reflects the fact
that it is not as general has the Hopf argument which, instead, is of a completely local
nature, as we will see better later.
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Proof of Proposition 8.3.1–dynamical. We will use a strategy al-
ready employed to prove the ergodicity of irrational rotations based on the
existence of density points. Morally, this allows us to consider only rectangles.
By topological mixing we can ensure that any two rectangle are crossed by
the same unstable line (although it is more convenient to take preimmages of
the rectangle and show that they must intersect a given unstable segment),
so it is not possible that h̄ has values different in the two rectangles. This
very näıve argument can be made precise as follows.

If h̄ it is not a.e. constant then there exists two sets A and B of positive
measure such that h̄|A > h̄|B a.e.. Let xA and xB be density points, of A and
B respectively, and choose two rectangle RA and RB of the same size, smaller
than 1

4 , and such that

m(A ∩RA) ≥ αm(RA)

m(B ∩RB) ≥ αm(RB) (8.3.5)

where α ∈ [0, 1) will be chosen later.
Let us consider h◦Tn, clearly h◦Tn|T−nA > h◦Tn|T−nB and the relations

(8.3.5) hold for T−nA, T−nRA and T−nB, T−nRB .
Next, let R̂A ⊂ RA and R̂B ⊂ RB be two shorter rectangles obtained

by the original ones by chopping off a quarter of the length in the stable
direction from each side. Let n0 be so large that the stable length of the
rectangles time λn0 is larger than one. Now chose another rectangle R, of
size ρ ≤ 1

4 , as you please. By topological mixing it follows that there exists

n > n0 such that T−nR̂A ∩ R ̸= ∅ and T−nR̂B ∩ R ̸= ∅. In addition, by the
construction of R̂A and R̂B and the choice of n0, it follows that T

−nRA and
T−nRB cross R̃ completely from one unstable side to the other, where R̃ is a
rectangle containing R at its center and of double size. Moreover, the same
quantitative argument of Lemma 8.3.6 shows that it is possible to choose n
such that the stable length of T−nRA, T

−nRB is shorter than 8λ2.
Let LA, LB the two rectangles contained in T−nRA ∩ R̃ and T−nRB ∩ R̃,

respectively, that cross R̃ from an unstable side to the other. Chose

α = 1− m(LB)

4m(RB)
= 1− m(LA)

4m(RA)
.

The all point is that, on almost all the unstable lines in R̃, h̄ ◦Tn is constant,
so if one of this unstable lines intersects both T−nA and T−nB we have a
contradiction. Thus, it must be

m

([ ⋃
x∈T−nA

Wu
x ∩ LB

]⋂[ ⋃
x∈T−nB

Wu
x ∩ LB

])
= 0.
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Fubini theorem implies

m

( ⋃
x∈T−nA

Wu
x ∩ LB

)
= m

( ⋃
x∈T−nA

Wu
x ∩ LA

)
≥ m(T−nA ∩ LA),

and

m

( ⋃
x∈T−nB

Wu
x ∩ LB

)
≥ m(T−nB ∩ LB),

This yields:

m(LB) ≥ m(T−nA ∩ LA) +m(T−nB ∩ LB)

≥ m(T−nA ∩ T−nRA)−m(T−nRA\LA)

+m(T−nB ∩ T−nRB)−m(T−nRB\LB)

≥ 2{αm(T−nRB)−m(T−nRB) +m(LB)}

≥ 3

2
m(LB)

which is a contradiction. This shows that is not possible that the unstable
manifolds starting at T−nA systematically avoid T−nB.

Hence, h̄ is constant, but then h̄ =
∫
T2 h̄ = µ̄(1) = µ0(1). We have just

proved that Γ consists of only one measure: the Lebesgue measure. Thus

lim
n→∞

∫
T2

hf ◦ Tndm =

∫
T2

hdm

∫
T2

fdm,

for each g, f ∈ C(1)(T2). The mixing follows by the same approximation
argument used in the Fourier series analyses. □

8.4 Shadowing

In this section we explore the topological complexity of the dynamics of our
model systems. I have already remarked that when such a strong instability
with respect to the initial condition is present it is impossible to follow exactly
an orbit of the system. In fact if we compute (e.g. with a computer) the orbit
of the initial point x ∈ T2, due to round off errors we do not get an orbit but
rather a pseudo-orbit.

Definition 8.4.1 Give an systems (X,T ), X Riemannian manifold, an infi-
nite sequence {xi}i∈Z ⊂ T2 is called an ε-pseudo orbit if, for all i ∈ Z,

d(xi+1, Txi) ≤ ε.
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Which means exactly that at each step an error of order ε is allowed.
The following result, beside being very useful, is a partial replay to the

argument that it is not possible to follow orbits on a computer. Although the
result is quite general, we state, and prove, it in our special context.

Proposition 8.4.2 For each δ > 0 there exists and ε > 0 such that, if {xi}
is a ε-pseudo-orbit for the Arnold cat, then there exists ξ ∈ T2 such that

d(xi, T
iξ) ≤ δ ∀i ∈ Z.

That is, there exists an orbit that δ-shadows the pseudo-orbit, moreover such
an orbit is unique.

Proof. As usual we consider rectangular (better yet: square) neighbor-
hood of points. So, let Qε(x) be a square of size ε centered at x with sides
parallel to the stable and unstable direction, respectively.

Next, let us consider TQδ(x0), since d(Tx0, x) ≤ ε, if δ
2λ + ε < δ

2 and
λδ
2 − ε > δ

2 , then TQδ(x0) crosses Qδ(x1) completely from the stable side to

the other stable side. Thus, provided we choose δ ≥ 2λ
λ−1ε, we have the picture

of the intersection between rectangle that we have already learned to like.
Of course the same transversal intersection takes place for each TQδ(xi)

and Qδ(xi+1). This immediately implies that TnQδ(x0) crosses Qδ(xn) from
one stable side to the other (see figure 8.2)

Qδ(x0)

·
x0

ε δ

Qδ(x1)

·
x1

�
���

TQδ(x0)

Qδ(x2)

·
x2

�
�
��

TQδ(x1)

T 2Qδ(x0)
�
��

Figure 8.2: Intersection between TnQδ(x0) and Qδ(xn)

ThusKn = T−n(TnQδ(x0)∩Qδ(xn)) is a sequence of nested (Kn+1 ⊂ Kn)
vertical rectangles. The unstable side of Kn is of size λ−nδ while the stable
side is of size δ.

Clearly, if ξ ∈ Kn, then

d(T iξ, xi) < δ ∀i ∈ {0, . . . , n}.
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We can then consider the vertical line K∞ = ∩n∈NKn, by construction K∞
consists of points whose orbit δ shadows {xi}i∈N. By doing the same exact
construction in the past we obtain an horizontal line K̃∞ of points that δ
shadows {x−i}i∈N. The theorem is then proven by choosing {ξ} = K̃∞∩K∞.

the uniqueness should be obvious from the construction. In alternative
the reader can prove it by contradiction. □

The above theorem is not so helpful from the measure theoretical point of
view, since it could happen that the set of trajectories that shadow pseudo-
orbits are of measure zero. (say more)

Nevertheless, it is very useful from the topological point of view (see Prob-
lem 2.15 for a dim glimpse to such possibilities).

8.5 Markov partitions

In all the above constructions the concept of rectangle has played a key rôle.
In this section we present a construction that is the glorification of such a
point of view.

Consider the stable and unstable manifolds of zero and prolong them until
they meet (of course when they meet we meet an old friend: an homoclinic
intersection) few times.Prova

R1

R1

R2

R2
R3

1

Figure 8.3: Markov partition

Clearly in such a way we have obtained a partition of T2. Such a partition
consists of rectangles with sides that are either stable or unstable manifolds.
We call them respectively the stable and the unstable sides of the rectangles.
A partition is Markov if the preimage of each unstable side of a rectangle is
contained in the unstable side of a rectangle and the image of every stable
side is contained in the stable side of a rectangle. The reader can check that
it is possible to use the above construction to have a Markov partition with
(for example) three rectangles (see Figure 8.3 where the case a = 1 is drown).
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Problems

8.1 Use the Diofantine properties of the stable and unstable direction to
obtain better estimates of the decay of correlations. The Diofantine
property refers to the following fact: if we normalize the eigenvectors in
such a way that v± = (1, ω±), then ω± are irrational numbers that are
badly approximated by rationals: there exists c ≥ 0 such that |ω±− p

q | ≥
c
q2 for each p, q ∈ N.

8.2 Prove that the dynamical System (T2, Tn,m) (where T is the Arnold
cat map) is ergodic for each n ∈ N. (Hint: the same proof as for n = 1.)

8.3 Let (X,T, µ) be a Dynamical Systems where X is a compact metric
space, T is continuous, and µ charges the open sets (i.e. if U ⊂ X
is open, then µ(U) > 0). Prove that for each U ⊂ X open, there
exist infinitely many n ∈ N such that T−nU ∩ U ̸= ∅. (Hint: Poincaré
Theorem.)

8.4 Let (X,T, µ) be an ergodic Dynamical Systems where X is a compact
metric space, T is continuous, and µ charges the open sets. Prove that
for each U, V ⊂ X open, there exist infinitely many n ∈ N such that
T−nU ∩ V ̸= ∅. (Hint:For each k ∈ N, A = ∪n≤kT

−nU is an invariant
open set, if it does not intersect V , then m(A) < 1, thus, by ergodicity,
m(A) = 0 which implies U = ∅.)

8.5 Prove Lemma 8.3.6. (Hint: As in the proof of Topologically mixing
consider T−nW s, TnWu and chose n so large that λδ > 2 while the
length L of Wu must satisfy λ−nL > 2.)

8.6 Show that for each x ∈ T2 the global unstable manifold Wu(x) is dense
in T2. (Hint: An algebraic proof–Let us normalize v+ = (1, ω), then ω
is irrational. Clearly Wu(x) = {x + tv+ mod 1}t∈R. Consider a point
y = (y1, y2) and chose t0 = y1 − x1, then, for each n ∈ Z, x + (t0 +
n)v+1 mod 1 = (y1, R

n
ωξ mod 1) where ξ = x2 + (y1 − x1)ω mod 1. Now,

we know that Rω has dense orbits (see Examples 6.6.1–Rotations), thus
the result.
A dynamical proof–It follows Lemma 8.3.6 plus the fact that T−nWu is
shorter than Wu.)

8.7 Consider the global unstable foliation {Wu(x)} and choose an interval
of length (in the horizontal direction) one from each fiber.16 Let K be
the set obtained by the union of all such segments. Prove that K it
is not measurable. (Hint: Define R : T2 → T2 by R(x, y) = (x,Rωy).
Then, remember Problem 1.6.19.)

16The Axiom of choice again.
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8.8 Let Wu(x), W s(x) ⊂ U ⊂ R2, U =
◦
U and Ū compact, smooth mani-

folds (C(1) curves) such that, the {Wu(s)(x)}x∈U are pairwise disjoint,
∂Wu(s)(x) ⊂ ∂U , if z ∈Wu(x)∩W s(y), then the angle between Wu(x)
and W s(y) at z is larger than some θ > 0. In addition, assume that,
calling vu(s)(x) the unit tangent vector to Wu(s)(x) at x, vu(s) ∈ C(1).
We will call such two foliation “ C(1) uniformly transversal foliations.”
Show that to each such a foliation it is associated a change of variable
(a diffeomorphism Ψ : U → U) and that to each change of variables is
associated such a foliation. (Hint: . . . )

8.9 Consider two C(1) uniformly transversal foliations (as in Problem 2.8).
Prove that if f ∈ L∞ is constant along almost every fiber of the two fo-
liations, then it is constant almost everywhere. (Hint: Do the argument
locally and change variables so that the foliations becomes straight.)

8.10 Consider the Bernoulli measures µB
p defined on Σ+

2 (the one sided se-
quences with two symbols) by choosing p0 = p and p1 = 1 − p (see
Examples 6.2.1–Bernoulli shift). Show that, if p ̸= p′ then µB

p and µB
p′

are mutually singular. (Hint: All the dynamical systems (Σ+
2 , τ, µ

B
p ) are

ergodic–See Examples ?? and ??.)

8.11 Let µp be the measure on [0, 1] obtained from µB
p by the binary repre-

sentation of the real numbers let

Fp(x) := µp([0, x]).

Show that, for each p ∈ (0, 1), Fp : [0, 1] → [0, 1] is one one, onto,
continuous. In addition, show that there exists c ∈ R+ such that, for
each p, q ∈ [ 14 ,

3
4 ], holds

|Fp(x)− Fq(x)| ≤ c|p− q|.

(Hint: Note that the cylinder correspond to intervals with end points
made of binary rationals. It is then immediately clear that all the mea-
sures µp give positive measures to the open sets. To prove the last
inequality prove the representation

Fp(x) =

∞∑
n=0

σn

n∏
i=0

pσi(1− p)1−σi

where σ is the binary representation of x.)

8.12 Construct ϕ : [0, 1] → [0, 1], invertible and continuous, such that there
exists A ⊂ [0, 1] with m(A) = 0 while m(ϕ(A)) = 1. (Hint: Any of the
above Fp will do.)
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8.13 Construct a continuous foliation Ψ in [0, 1]2made of C∞ leaves (that
is Ψ is a isomomorphism of [0, 1]2 and Ψ(·, y) ∈ C∞). In addition,
the foliation must be made of straight lines in {(x, y) ∈ [0, 1]2 | x ∈
[0, 14 ] ∪ [ 34 , 1]} but is should not be absolutely continuous in the region

{(x, y) ∈ [0, 1]2 | x ∈ [ 14 ,
3
4 ]}. (Hint: Let φ ∈ C(∞)(R), φ(R) = [0, 1],

φ(x) = 0 for x < 0 and φ(x) = 1 for x > 1
2 . Then, using ϕ from Problem

2.12, define

Ψ(x, y) =


(x, y) if x ∈ [0, 14 ]
(x, [1− φ(x− 1

4 )]y + φ(x− 1
4 )ϕ(y)) if x ∈ [ 14 ,

3
4 ]

(x, ϕ(y)) if x ∈ [ 34 , 1].

Clearly the leaves Ψ(·, y) are C(∞), yet the foliation it is not absolutely
continuous.)

8.14 Find two C(0) uniformly transversal foliations in [0, 1]2, with C(∞) leaves,
such that the Hopf argument does not apply. (Hint: Call Ψp, p ∈ [ 14 ,

3
4 ]

the foliation constructed in the Problem 13 starting from the function
Fp defined in the Problem 11. Choose a sequence pn converging to one
quarter, e.g. pn = 1

4 + 1
4n , then let xn = 1

2 − 1
2n . Finally define the

foliation

Ψ(x, y) =

{
Ψpn

(xn + (xn+1 − xn)x, y) for x ∈ [xn, xn+1]
(x, F 1

4
(y)) for x ∈ [ 12 , 1]

Further define the function g : [0, 1] → [0, 1] to be one on a set of full
measure for µ 1

4
and of zero measure for µpn

and zero otherwise. The

functions f+, f− defined by

f−(x, y) =

{
0 for x ∈ [0, 12 )
1 for x ∈ [ 12 , 1]

and
f+(x,Ψ(x, y)) = g(x),

are then constant on the vertical and the Ψ foliation respectively. More-
over they clearly are equal Lebesgue almost everywhere, nevertheless
they are certainly not constant.)

8.15 Show (first without using Markov Partitions and then by using Markov
partitions) that the Arnold cat has at least ecn periodic orbits of pe-
riod n, for some c > 0. (Hint: If we have a rectangle R of size ε, then
T−nR ∩ R ̸= ∅ for some n ≤ c ln ε−1. Then, if x ∈ T−nR ∩ R we con-
sider the pseudo orbit xk = T ix where i = k mod n. Then Proposition
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8.4.2 implies the existence of a periodic orbit in an ε-neighborhood Rε

of R. On the other hand the boxed T−kRε, k ∈ {0, . . . , n} invade a
part of T2 of measure cε2 ln ε−1. The argument is then concluded tak-
ing boxes in the remaining space and continuing until all the available
space is exhausted. On the other hand, if one takes in account Markov
partions, then the number of periodic orbits is given–appart from the
non-invertibility of the coding–by the number of periodic simbolic se-
quences of period n.)

Notes

Hopf history and ref
Mention Young-Robinson example

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Chapter 9

Non-uniform hyperbolicity
an introduction

In this chapter, we discuss what is probably the simplest example of
non-uniform hyperbolic behaviour. This is not intended to be a discussion
of the general theory; it is just a taste of it. The theory of non-uniformly
hyperbolic systems is rather vast, starting with Pesin theory, till the results
on the Henon map and their generalizations.

9.1 Pomeau-Manneville map

Let us consider the map

f(x) =

{
f0(x) := x+ 2γx1+γ if x ∈ [0, 12 ]

f1(x) := 2x− 1 if x ∈ ( 12 , 1],
(9.1.1)

for some γ ∈ (0, 1]. Such a map was introduced as a model for the phenomena
of intermittency; indeed, the trajectory has a hyperbolic character away from
zero, but in a neighborhood of zero, the motion is very regular.
Let us first study the latter regime: consider the preimages of a point x under
the map f0.

Lemma 9.1.1 for x0 ∈ [0, 1] let xn = f−n
0 (x0). Then, for each n ∈ N,

(x−1
0 + 2γγn)−

1
γ ≤ xn ≤ 2−1γ−

1
γ n−

1
γ

206
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Proof. Let A = x−γ
0 consider the sequence an = (A+ 2γγn)−γ−1

, then

an−1 = an +
2γ

(A+ 2γγn)
1+γ
γ

+
2γ−1(γ−1 + 1)

(A+ 2γγn)γ−1+2
ξ2n

= an + 2γa1+γ
n + 2γ−1(γ−1 + 1)a2+γ

n ξ2n.

(9.1.2)

Accodringly, an−1 ≥ f0(an). Consequently,

an ≤ f−1
0 (an−1) ≤ f−n

0 (a0) = f−n
0 (x0) = xn.

Next, suppose that xk ≤ ck−
1
γ for all 1 ≤ k ≤ n, then

xn = f0(xn+1) = xn+1 + 2γx1+γ
n+1.

If xn+1 > c(n+ 1)−
1
γ , then

cn− 1
γ ≥ xn > c(n+ 1)−

1
γ + 2γc1+γ(n+ 1)−

1+γ
γ

≥ cn− 1
γ − c

γ
n−

1
γ −1 + 2γc1+γ(n+ 1)−

1+γ
γ

= cn− 1
γ +

c

γ
n−

1
γ −1

[
2γcγγ

(
1 +

1

n

)− 1+γ
γ

− 1

]
≥ cn− 1

γ +
c

γ
n−

1
γ −1 [2γcγγ − 1]

this is a contradiction if we choose c = 2−1γ−
1
γ ≥ 1

2 , which also ensures
x1 ≤ c. □

The basic ided is to study the return map F : [ 12 , 1] → [ 12 , 1]. That is, let
τ(x) = inf{n ∈ N : fn(x) ∈ [ 12 , 1]}, and

F (x) = fτ(x)(x).

If we choose x0 = 1, then x1 = 1
2 . So f

n([xn+1, xn]) = [12 , 1]. Accordingly, set-

ting zn = f−1
1 (xn), τ(x) = n for all x ∈ [zn, zn−1], and F ([zn, zn−1]) = [ 12 , 1].

That is, F is a Markov map with a countably infinite number of branches. To

study such a map, we need first to investigate the distortion D(x) = F ′′(x)
F ′(x)2 .

Lemma 9.1.2 There exists K > 0 such that for each x ∈ [ 12 , 1]

D(x) ≤ K.
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Proof. By a direct computation, for x ∈ [zn, zn−1],

Dn(x) =
(f ◦ fn−1)′′(x)

f ′(fn−1(x))2(fn−1)′(x)2

=
f ′′(fn−1)(x)(fn−1)′(x)2 + f ′(fn−1(x))(fn−1)′′(x)

f ′(fn−1(x))2(fn−1)′(x)2

= D1(f
n−1(x)) +

1

f ′(fn−1(x))
Dn−1(x)

=

n∑
k=1

D1(f
n−k(x))

k−1∏
j=1

1

f ′(fn−j(x))
=

n∑
k=1

D1(f
n−k(x))

(fk−1)′(fn−k(x))
.

In addition, for w, y ∈ [zn, zn−1], let wk = fk(w) and yk = fk(y), we have

(fn)′(w)

(fn)′(y)
= Exp

[
n−1∑
k=2

(ln(f ′0(wk))− ln(f ′0(yk))

]

≤ Exp

[
n−1∑
k=2

∥∥∥∥f ′′0f ′0
∥∥∥∥
∞

|wk − yk|

]

≤ Exp

[∥∥∥∥f ′′0f ′0
∥∥∥∥
∞

n−1∑
k=2

|xm−k − xm−k−1|

]
≤ Exp

[
1

2

∥∥∥∥f ′′0f ′0
∥∥∥∥
∞

]
=: C.

Since fk−1([xn−k−1, xn−k]) = [ 12 , 1], by the mean value theorem there must
exists ξk ∈ [xn−k−1, xn−k] such that (fk−1)′(ξk) = [2|xn−k−1 − xn−k|]−1. Let
ζk ∈ [zn, zn−1] be such that fn−kζk = ξk, then

1

(fk−1)′(fn−k(x))
= 2|xn−k−1−xn−k|

(fk−1)′(fn−k(ζk))

(fk−1)′(fn−k(x))
≤ 2C|xn−k−1−xn−k|,

from which the result readily follows. □

By Lemma 9.1.2, the first return map F has a unique invariant measure abso-
lutely continuous with respect to Lebesgue. Accordingly, so has the Kakutani
tower ([ 12 , 1], S). Let ν be such a measure. Then Theorem 6.7.8 implies that
there exists a measure µ = π∗ν which is absolutely continuous and ([0, 1], f, µ)
is a measurable dynamical system. In addition,∫ 1

0

g ◦ fnφdµ = π∗ν(g ◦ fn) = ν(φ ◦ πg ◦ fn ◦ π) = ν(g ◦ π ◦ Snφ ◦ π).

In other words, the decay of correlation for the map f and the map S coincide.

9.2 Young towers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Appendix A

Fixed Points Theorems
(an idiosincratic selection)

In this appendix, I provide some standard and less standard fixed-point theo-
rems. These constitute a very partial introduction to the subject. The choice
of the topics is motivated by the needs of the previous chapters.

A.1 Banach Fixed Point Theorem

Theorem A.1.1 (Fixed point contraction) Given a Banach space B, a
bounded closed set A ⊂ B and a map K : A→ B if

i) K(A) ⊂ A,

ii) there exists σ ∈ (0, 1) such that ∥K(v) − K(w)∥ ≤ σ∥v − w∥ for each
v, w ∈ A,

then there exists a unique v∗ ∈ A such that Kv∗ = v∗.

Proof. Since A is bounded supx,y∈A ∥x−y∥ = L <∞, i.e. it has a finite
diameter. Let a0 ∈ A and consider the sequence of points defined recursively
by an+1 = K(an) and the sequence of sets A0 = A and An+1 = K(An) ⊂ A.
Let dn := supx,y∈An

∥x − y∥ be the diameter of An. Then if x, y ∈ An, we
have

∥K(y)−K(x)∥ ≤ σ∥x− y∥ ≤ σdn.

That is dn+1 ≤ σdn ≤ σnL. This means that, for each n,m ∈ N, an, a0 ∈ A
and am, an+m ∈ Am, hence ∥an+m − am∥ ≤ σmL. That is, {an} ⊂ A is a
Cauchy sequence and, being B a Banach space, it must have an accumulation

210
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point v∗ ∈ B. Moreover, since A is closed, it must be v∗ ∈ A. Clearly

∥Kv∗ − v∗∥ = lim
n→∞

∥Kv∗ − an∥ = lim
n→∞

∥Kv∗ −Kan−1∥

≤ lim
n→∞

σ∥v∗ − an−1∥ = 0.

Hence, v∗ is a fixed point. Next, suppose there exists u ∈ A such thatKu = u.
Then

∥u− v∗∥ = ∥K(u− v∗)∥ ≤ σ∥u− v ∗ ∥

implies u = v∗. □

Corollary A.1.2 Given a Banach space B and a map K : B → B with the
property that there exists σ ∈ (0, 1) such that ∥K(v)−K(w)∥ ≤ σ∥v−w∥ for
each v, w ∈ B, then there exists a unique v∗ ∈ B such that Kv∗ = v∗.

Proof. To prove the theorem, for each L ∈ R+ consider the sets BL :=
{v ∈ B : ∥v∥ ≤ L}. Then ∥K(v)∥ ≤ ∥K(v) − K(0)∥ + ∥K(0)∥ ≤ σ∥v∥ +
∥K(0)∥ ≤ σL + ∥K(0)∥. Thus, for each L ≥ (1 − σ)−1∥K(0)∥ we have
that K(BL) ⊂ BL. The existence follows by applying Theorem A.1.1. The
uniqueness follows from the same argument used at the end of the proof of
Theorem A.1.1. □

A.2 Brouwer’s Fixed Point Theorems

The basic problem addressed in this section is to study the existence of fixed
points for continuous maps f : D → D, for some domain D. The remark-
able feature of the theorems that we are going to present is that they relate
the geometrical properties of the domain of a map to the existence of a fixed
point. However, one should note that the fixed point may not be unique. In
the following, I provide elementary proofs, which will also be constructive.
Other proofs based on algebraic topology exist, but are outside the scope of
this book.
We present a sequence of results that build on each other, progressively in-
creasing the level of generality.

A.2.1 Maps on a symplex

We start by recalling the definition of a simplex.
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∆0 v0 v1∆1 v0 v1

v2

∆2 v0 v1

v2

v3

∆3

Figure A.1: Low-dimensional examples

Definition A.2.1 (Geometric n-simplex) Let v0, v1, . . . , vn be affinely in-
dependent points in Rm, m ≥ n.1 The n-simplex spanned by these points is

∆n(v1, . . . , vn+1) =
{
x ∈ Rm : x =

n+1∑
i=1

λivi, λi ≥ 0,

n+1∑
i=1

λi = 1
}
.

The standard n-simplex in Rn+1 is

∆n := ∆n(e1, . . . , en+1) =
{
(x1, . . . , xn+1) ∈ Rn+1 : xi ≥ 0,

n+1∑
i=1

xi = 1
}
.

Definition A.2.2 (Coloring) Let ∆n be the standard n–simplex, and let T
be a simplicial subdivision (triangulation) of ∆n. We call V(T ) the set of
vertices of the simplicial decomposition of T . A s-coloring of T is a function
ℓ : V(T ) → {1, . . . , n+1} such that if v lies on the face of ∆n opposite ei (that
is, vi = 0), then ℓ(v) ̸= i. A simplex with vertices in V(T ) is fully colored if,
calling V the set of its vertices, ℓ|V is invertible on its image.

The basis tool that we will use is the following combinatorial lemma.

Lemma A.2.3 (Sperner’s Lemma) Let ∆n be the standard n–simplex. Let
T be a simplicial subdivision (triangulation) of ∆n. Any s-colouring of T con-
tains at least one fully colored simplex.

Proof. The proof is by induction on n.
Let us start with n = 1. Here ∆1 is the interval with endpoints e0, e1. The
labeling rule forces e0 to have label 0 and e1 to have label 1. If all the
subdivisions have vertices with the same color, then e0 and e1 would have the
same color, contrary to the assumption.
Assume the lemma is true for dimension n−1. Consider ∆n. By assumption,

1A set of points v0, v1, . . . , vn ∈ Rm is called affinely independent if the collection of
vectors v1 − v0, v2 − v0, . . . , vn − v0 are linearly independent.
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there is at least one fully colored (n − 1)–simplex ∆(v1, . . . vn), vi ∈ V(T ),
lying on the boundary ∂∆n. Let ∆1 := ∆(v1, . . . vn+1) ∈ T be the n-simplex
containing ∆(v1, . . . , vn). If ℓ(vn+1) ̸= ℓ(vi) for all i ≤ n, then we have a
fully colored simplex and we are done. Otherwise, there is a unique j such
that vn+1 = vj . We then consider the simplex ∆(v1, . . . , vj−1, vj+1, . . . , vn+1),
which is fully colored by construction. Note that each face of an element of
T belongs to two elements of T , unless it belongs to ∂∆n in which case it
belongs to a unique element of T . So there exists a unique vn+2 ∈ V(T ) such
that vn+2 ̸= vj and ∆2 := ∆(v1, . . . , vj−1, vj+1, . . . , vn+1, vn+2) ∈ T . Again,
either is fully colored, or we can erase the vertex with the same color as vn+2

and obtain another fully covered n− 1-simplex. In this way, we can construct
a sequence of simplices {∆k} ∈ T .
Next, we show that ∆k = ∆j =⇒ k = j. Suppose the contrary, and let k be
the smallest integer for which there exists j < k such that ∆k = ∆j . Let w

+
l ∈

V(T ) be the last vertex added to obtain ∆l and w
−
l ∈ V(T ) the unique vertex

in ∆l such that ℓ(w+
l ) = ℓ(w−

l ). Consequently, if V (∆) are the verteces of ∆,
we have V (∆k) = [V (∆k−1)\{w−

k−1}]∪{w
+
k } and V (∆j+1) = [V (∆j)\{w−

j }]∪
{w+

j+1}. By contruction ∆(V (∆k) \ {w+
k }), ∆(V (∆k) \ {w−

k }), ∆(V (∆j) \
{w−

j }), and ∆(V (∆j) \ {w+
j }) are all fully coloured. Since, by hypothesis,

V (∆k) = V (∆j), it must be w±
k ∈ {w−

j , w
+
j }, otherwise ∆(V (∆k) \ {w±

k })
could not be fully colored. So, either w±

k = w±
j , or w±

k = w∓
j . If w+

k =

w+
j , and j > 1, then it must be ∆k−1 = ∆j−1 contradicting the hypothesis

that k is the smaller integer for which this happens. If j = 1, then note
that w+

1 ̸∈ ∂∆n while w+
k ∈ ∂∆n since otherwise ∆k−1 would have a vertex

outiside ∆n. It remains the possibility w+
k = w−

j , this implies ∆k−1 = ∆j+1

again contradicting the hypothesis unless k = j + 2. But this would imply
∆j = ∆j+2 which is impossible, as one can check directly.
The above implies that all the ∆k are different, but they are only finitely many,
so the construction must eventually stop, and the only possibility to stop is
when a fully colored simplex appears, whereby concluding the proof. □

We are now ready to prove our first fixed-point Lemma in the simple case
where the domain is a simplex.

Theorem A.2.4 (Fixed Point Theorem for simplices) Every continuous
map f : ∆n → ∆n has a fixed point.

Proof. Let x ∈ ∆n such that fi(x) ≥ xi for each i ∈ {1, . . . , n+1}, then

0 = 1− 1 =

d+1∑
i=1

(fi(x)− xi), (A.2.1)

which implies f(x) = x. It thus suffices to show that such a point exists.
We argue by contradiction, assume that for every x there exists some i with
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fi(x) < xi.
For each k ∈ N, consider a triangulation Tk of ∆n with simplices of size
smaller than 2−k. For each vertex v of Tk, we set ℓ(v) = argmaxi{vi−fi(v)}.
By our assumption, we have vℓ(v) > fℓ(v)(v). If v lies on the face {xj = 0},
then clearly fj(v) ≥ 0 = vj , so ℓ(v) ̸= j. Thus, we have defined an s-
coloring of Tk. It follows that there exists a simplex ∆k ∈ Tk which is fully
colored. Let xk ∈ ∆k =: ∆(vk,1, . . . vk,n+1), by compactness the sequence
{xk} admits a convergent subsequence {xkj

}. Let x̄ = limj→∞ xkj
. It follows

that x̄ = limj→∞ vkj ,l, for each l ∈ {1, . . . , n + 1}. Since the ∆k are fully
colored, for each i and j there exists lj,i such that f(vkj ,li,j )i < (vkj ,li,j )i. By
the continuity of f , it follows

x̄i ≤ f(x̄)i

for each i ∈ {1, . . . , n+ 1}, hence the contradiciton. The lemma follows. □

A.2.2 Maps on finite-dimensional convex sets

To obtain a more general result, we need to recall a useful characterization of
convex sets.

Lemma A.2.5 Let K ⊂ Rn be a non-empty compact convex set with nonempty
interior. Then K is homeomorphic to the standard n–simplex ∆n.

Proof. Choose x0 ∈ int(K) and z0 = ( 1
n+1 , . . . ,

1
n+1 ) ∈ Rn+1. Let R

be a rotation that sends ed+1 into the vector [n + 1]−
1
2 (1, . . . , 1). Consider

the map Φ0(x) = z0 + R(x − x0, 0) and let K̃ = Φ0(K). By construction,
K̃ belongs to the same hyperplane containing ∆n. For each z ∈ K̃, the half
line {z0 + t(z − z0) : t ≥ 0} intersects the boundary ∂K at a unique point
a(z) and the boundary ∂∆n at a unique point b(z). Define a continuous map
ϕ1 : K̃ → ∆n by

ϕ1(x) = z0 +
∥b(z)∥
∥a(z)∥

(z − z0).

Clearly, ϕ = ϕ1 ◦ ϕ0 is the wanted homeomorphism. □

Theorem A.2.6 (Brouwer Fixed Point Theorem) For every non-empty
compact convex set K ⊂ Rn and continuous map f : K → K, f has a fixed
point.

Proof. By Lemma A.2.5, there exists a homeomorphism ϕ : K → ∆n.
Define F = ϕ ◦ f ◦ ϕ−1 : ∆n → ∆n. Theorem A.2.4 implies that there
exist x̄ ∈ ∆n such that F (n̄) = x̄. Hence, setting x∗ = ϕ−1(x̄) we have
f(x∗) = x∗. □
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A.2.3 Maps on compact convex sets

To conclude this survey, we show how Brouwer’s result can be extended to
the infinite-dimensional setting by an approximation procedure. Note that
this result is less constructive than the previous ones, as it is based on a
compactness argument.

Theorem A.2.7 (Schauder Fixed-Point Theorem) Let B be a Banach
space and K ⊂ B a nonempty, compact, convex subset. Let f : K → K be
continuous. Then f has a fixed point.

Proof. Since K is compact, for each ε > 0 there exists a finite set
{x1, . . . , xN} ⊂ K̊ such that

K ⊂
N⋃
i=1

Bε(xi),

where Bε(xi) denotes the open ball of radius ε around xi. Let

Kε := conv{x1, . . . , xN} ⊂ K

be the convex hull of the points {xi}. Then Kε is a compact, convex, and
finite-dimensional set since it is contained in span{x1, . . . , xN}. Next, define

ϕi(x) =

{
ε− ∥x− xi∥ for∥x− xi∥ ≤ ε

0 otherwise.

and

Pε(x) =

[
N∑
i=1

ϕi(x)

]−1 N∑
i=1

ϕi(x)xi.

Note that Pε(B) = Kε, Pε is continuos and, for all x ∈ K

∥Pε(x)− x∥ =

∥∥∥∥∥∥
[

N∑
i=1

ϕi(x)

]−1 N∑
i=1

ϕi(x)(xi − x)

∥∥∥∥∥∥ ≤ ε. (A.2.2)

We can then define the continuous function

fε := Pε ◦ f : Kε → Kε.

By Brouwer’s fixed-point theorem, there exists

xε ∈ Kε such that fε(xε) = xε.
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Since K is compact, there exists a convergent subsequence {xεj}, let x∗ be
the limit. Consequently, reacalling (A.2.2), we have

∥f(xεj )− xεj∥ = ∥f(xεj )− fεj (xεj )∥ = ∥f(xεj )− Pεj (f(xεj ))∥ ≤ εj .

Taking the limit j → ∞, by the continuity of f , we have the wanted fixed
point f(x∗) = x∗. □

A.3 Hilbert metric and Birkhoff theorem

One may wonder if there are cases in which the fixed point provided by the
Brower and Shauder theory is unique. In general, the answer is negative,
but much more can be said for linear maps. In particular, we will see that
the Banach fixed-point theorem can produce unexpected results if used with
respect to an appropriate metric. We thus start with a short digression on
projective metrics.
Projective metrics are widely used in geometry, not to mention the importance
of their generalizations (e.g. Kobayashi metrics) for the study of complex
manifolds [IK00]. It is quite surprising that they play a major rôle also in our
situation, [Liv95].

Here we limit ourselves to a few words on the Hilbert metric, a quite
important tool in hyperbolic geometry.

A.3.1 Projective metrics

Let C ⊂ Rn be a strictly convex compact set. For each two point x, y ∈ C
consider the line ℓ = {λx + (1 − λy) | λ ∈ R} passing through x and y. Let
{u, v} = ∂C ∩ ℓ and define2

Θ(x, y) =

∣∣∣∣ln ∥x− u∥∥y − v∥
∥x− v∥∥y − v∥

∣∣∣∣
(the logarithm of the cross ratio). By remembering that the cross ratio is a
projective invariant and looking at Figure A.2, it is easy to check that Θ is
indeed a metric. Moreover, the distance of an inner point from the boundary
is always infinite. One can also check that if the convex set is a disc, then the
disc with the Hilbert metric is nothing but the Poincaré disc.

The objects that we will use in our subsequent discussion are not convex
sets but rather convex cones, yet their projectivization is a convex set, and one
can define the Hilbert metric on it (whereby obtaining a semi-metric for the
original cone). It turns out that there exists a more algebraic way of defining
such a metric, which is easier to use in our context. Moreover, there exists

2Remark that u, v can also be ∞.
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Figure A.2: Hilbert metric

a simple connection between vector spaces with a convex cone and vector
lattices (in a vector lattice one can always consider the positive cone). This
justifies the next digression in lattice theory.3

Consider a topological vector space V with a partial ordering “⪯,” that is
a vector lattice.4 We require the partial order to be “continuous,” i.e. given
{fn} ∈ V lim

n→∞
fn = f , if fn ⪰ g for each n, then f ⪰ g. We call such vector

lattices “integrally closed.” 5

We define the closed convex cone 6 C = {f ∈ V | f ̸= 0, f ⪰ 0} (hereafter,
the term “closed cone” C will mean that C∪{0} is closed), and the equivalence

3For more details, see [Bir57], and [Nus88] for an overview of the field.
4We are assuming the partial order to be well-behaved with respect to the algebraic

structure: for each f, g ∈ V f ⪰ g ⇐⇒ f − g ⪰ 0; for each f ∈ V, λ ∈ R+\{0} f ⪰ 0 =⇒
λf ⪰ 0; for each f ∈ V f ⪰ 0 and f ⪯ 0 imply f = 0 (antisymmetry of the order relation).

5To be precise, in the literature “integrally closed” is used in a weaker sense. First, V
does not need a topology. Second, it suffices that for {αn} ∈ R, αn → α; f, g ∈ V, if
αnf ⪰ g, then αf ⪰ g. Here we will ignore these and other subtleties: our task is limited
to a brief account of the results relevant to the present context.

6Here, by “cone,” we mean any set such that, if f belongs to the set, then λf belongs
to it as well, for each λ > 0.
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relation “∼”: f ∼ g iff there exists λ ∈ R+\{0} such that f = λg. If we call C̃
the quotient of C with respect to ∼, then C̃ is a closed convex set. Conversely,
given a closed convex cone C ⊂ V, enjoying the property C ∩ −C = ∅, we can
define an order relation by

f ⪯ g ⇐⇒ g − f ∈ C ∪ {0}.

Henceforth, each time that we specify a convex cone, we will assume the
corresponding order relation and vice versa. The reader must therefore be
advised that “⪯” will mean different things in different contexts.

It is then possible to define a projective metric Θ (Hilbert metric),7 in C,
by the construction:

α(f, g) = sup{λ ∈ R+ | λf ⪯ g}
β(f, g) = inf{µ ∈ R+ | g ⪯ µf}

Θ(f, g) = log

[
β(f, g)

α(f, g)

]
where we take α = 0 and β = ∞ if the corresponding sets are empty.

The relevance of the above metric in our context is due to the following
Theorem by Garrett Birkhoff.

Theorem A.3.1 Let V1, and V2 be two integrally closed vector lattices; L :
V1 → V2 a linear map such that L(C1) ⊂ C2, for two closed convex cones
C1 ⊂ V1 and C2 ⊂ V2 with Ci ∩ −Ci = ∅. Let Θi be the Hilbert metric
corresponding to the cone Ci. Setting ∆ = sup

f, g∈L(C1)

Θ2(f, g) we have

Θ2(Lf, Lg) ≤ tanh

(
∆

4

)
Θ1(f, g) ∀f, g ∈ C1

(tanh(∞) ≡ 1).

Proof. The proof is provided for the reader’s convenience.
Let f, g ∈ C1, on the one hand if α = 0 or β = ∞, then the inequality is

obviously satisfied. On the other hand, if α ̸= 0 and β ̸= ∞, then

Θ1(f, g) = ln
β

α

where αf ⪯ g and βf ⪰ g, since V1 is integrally closed. Notice that α ≥ 0,
and β ≥ 0 since f ⪰ 0, g ⪰ 0. If ∆ = ∞, then the result follows from
αLf ⪯ Lg and βLf ⪰ Lg. If ∆ <∞, then, by hypothesis,

Θ2 (L(g − αf), L(βf − g)) ≤ ∆

7In fact, we define a semi–metric, since f ∼ g ⇒ Θ(f, g) = 0. The metric that we

describe corresponds to the conventional Hilbert metric on C̃.
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which means that there exist λ, µ ≥ 0 such that

λL(g − αf) ⪯ L(βf − g)

µL(g − αf) ⪰ L(βf − g)

with ln µ
λ ≤ ∆. The previous inequalities imply

β + λα

1 + λ
Lf ⪰ Lg

µα+ β

1 + µ
Lf ⪯ Lg.

Accordingly,

Θ2(Lf, Lg) ≤ ln
(β + λα)(1 + µ)

(1 + λ)(µα+ β)
= ln

eΘ1(f, g) + λ

eΘ1(f, g) + µ
− ln

1 + λ

1 + µ

=

∫ Θ1(f, g)

0

(µ− λ)eξ

(eξ + λ)(eξ + µ)
dξ ≤ Θ1(f, g)

1− λ
µ(

1 +
√

λ
µ

)2
≤ tanh

(
∆

4

)
Θ1(f, g).

□

Remark A.3.2 If L(C1) ⊂ C2, then it follows that Θ2(Lf, Lg) ≤ Θ1(f, g).
However, a uniform rate of contraction depends on the diameter of the image
being finite.

In particular, if an operator maps a convex cone strictly inside itself (in
the sense that the diameter of the image is finite), then it is a contraction in
the Hilbert metric. This implies the existence of a “positive” eigenfunction
(provided the cone is complete with respect to the Hilbert metric), and, with
some additional work, the existence of a gap in the spectrum of L (see [Bir79]
for details). The relevance of this theorem for the study of invariant measures
and their ergodic properties is obvious.

It is natural to wonder about the strength of the Hilbert metric compared
to other, more usual, metrics. While, in general, the answer depends on the
cone, it is nevertheless possible to state an interesting result.

Lemma A.3.3 Let ∥ · ∥ be a norm on the vector lattice V, and suppose that,
for each f, g ∈ V,

−f ⪯ g ⪯ f =⇒ ∥f∥ ≥ ∥g∥.
Then, given f, g ∈ C ⊂ V for which ∥f∥ = ∥g∥,

∥f − g∥ ≤
(
eΘ(f, g) − 1

)
∥f∥.
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Proof. We know that Θ(f, g) = ln β
α , where αf ⪯ g, βf ⪰ g. This

implies that −g ⪯ 0 ⪯ αf ⪯ g, i.e. ∥g∥ ≥ α∥f∥, or α ≤ 1. In the same
manner, it follows that β ≥ 1. Hence,

g − f ⪯(β − 1)f ⪯ (β − α)f

g − f ⪰(α− 1)f ⪰ −(β − α)f

which implies

∥g − f∥ ≤ (β − α)∥f∥ ≤ β − α

α
∥f∥ =

(
eΘ(f, g) − 1

)
∥f∥.

□

Many normed vector lattices satisfy the hypothesis of Lemma 1.3, e.g.
Banach lattices.8

A.3.2 An application: quantitative Perron-Frobenius

Consider a matrix L : Rn → Rn of all strictly positive elements: Lij ≥ γ > 0.
The Perron-Frobenius theorem states that there exists a unique eigenvector
v+ such that v+i > 0, in addition, the corresponding eigenvalue λ is simple,
maximal and positive. There are quite a few proofs of this theorem; one is
based on Birkhoff’s theorem. Consider the cone C+ = {v ∈ R2 | vi ≥ 0}, then
obviously LC+ ⊂ C+. Moreover an explicit computation (see

Problem A.1 shows that

Θ(v, w) = ln sup
ij

viwj

vjwi
. (A.3.3)

Then, setting M = maxij Lij , it follows that

Θ(Lv, Lw) ≤ 2 ln
M

γ
:= ∆ <∞.

We then have a contraction in the Hilbert metric, and the result follows from
the usual fixed points theorems. Note that, since Θ(v, λv) = 0, for all λ ∈ R+,
the fixed point v+ ∈ Rn is only projective, that is Lv+ = λv+ for some λ ∈ R;
in other words, we have an eigenvalue.

Remark that L∗ satisfies the same conditions as L, thus there exists w+ ∈
C+, µ ∈ R+, such that L∗w+ = µw+. Next, define ρ1(v) = |⟨w+, v⟩| and

8A Banach lattice V is a vector lattice equipped with a norm satisfying the property
∥ |f | ∥ = ∥f∥ for each f ∈ V, where |f | is the least upper bound of f and −f . For this
definition to make sense it is necessary to require that V is “directed,” i.e. any two elements
have an upper bound.



NOTES 221

ρ2(v) = ∥v∥. It is easy to check that there are two homogeneous forms of
degree one adapted to the cone.

In addition, if ρ1(v) = ρ2(v), then ρ1(L
nv) = ρ1(L

nw). Hence, by Lemma
A.3.3

∥Lnv − Lnw∥ ≤
(
eΘ(Lnv,Lnw) − 1

)
min{∥Lnv∥, ∥Lnw∥}

≤ KΛn min{∥Lnv∥, ∥Lnw∥},
(A.3.4)

for some constant K depending only on v, w. The estimate A.3.4 means that
all the vectors in the cone grow at the same rate. In fact, for all v ∈ intC,

∥λ−nLnv − λ−nLnw∥ ≤ KΛn.

Hence, limn→∞ λ−nLnv = v+.
Finally, consider V1 = {v ∈ V | ⟨w+, v⟩ = 0}. Clearly LV1 ⊂ V1 and

V1 ⊕ span{v+} = V. Let w ∈ V1, clearly there exists α ∈ R+ such that
αv+ + w ∈ C,9 thus

∥Lnw∥ ≤ ∥Ln(αv+ + w)− αLnv+∥ ≤ LΛnλn.

This immediately implies that L restricted to the subspace V1 has spectral
radius less than λΛ. In other words, λ is the maximal eigenvalue; it is simple,
and any other eigenvalue must be smaller than λΛ. We have thus obtained
an estimate of the spectral gap between the first and the second eigenvalue.

Notes

For more details on Hilbert metrics see [Bir79], and [Nus88] for an overview
of the field.

9this is a special case of the general fact that any vector can be written as the linear
combination of two vectors belonging to the cone.



Appendix B

Implicit function theorem
(a quantitative version)

In this appendix we recall the implicit function Theorem. We provide an
explicit proof because we use in the text a quantitative version of the theorem
so it is important to keep track of the various constants.

B.1 The theorem

Let n,m ∈ N and F ∈ C1(Rm+n,Rm) and let (x0, λ0) ∈ Rn × Rm such that
F (x0, λ0) = 0. For each δ > 0 let Vδ = {(x, λ) ∈ Rn+m : ∥x − x0∥ ≤
δ, ∥λ− λ0∥ ≤ δ}.

Theorem B.1.1 Assume that ∂xF (x0, λ0) is invertible and choose δ > 0 such
that sup(x,λ)∈Vδ

∥1−[∂xF (x0, λ0)]
−1∂xF (x, λ)∥ ≤ 1

2}. Let Bδ = sup(x,λ)∈Vδ
∥∂λF (x, λ)∥

and M = ∥∂xF (x0, λ0)−1∥. Set δ1 = (2MBδ)
−1δ and Λδ1 := {λ ∈ Rm : ∥λ−

λ∥ < δ1}. Then there exists g ∈ C1(Λδ1 ,Rm) such that all the solutions of the
equation F (x, λ) = 0 in the set {(x, λ) ∈ B1×B2 : ∥λ−λ0∥ < δ1, ∥x−x0∥ < δ}
are given by (g(λ), λ). In addition,

∂λg(λ) = −(∂xF (g(λ), λ))
−1∂λF (g(λ), λ).

We will do the proof in several steps.

B.1.1 Existence of the solution

Let A(x, λ) = ∂xF (x, λ), M = ∥A(x0, λ0)−1∥.
We want to solve the equation F (x, λ) = 0, various approaches are possi-

ble. Here we will use a simplification of Newton method, made possible by the

222
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fact that we already know a good approximation of the zero we are looking for.
Let λ be such that ∥λ−λ0∥ < δ1 ≤ δ. Consider Uδ = {x ∈ Rn : ∥x−x0∥ ≤ δ}
and the function Θλ : Uδ → Rn defined by1

Θλ(x) = x−A(x0, λ0)
−1F (x, λ). (B.1.1)

Problem B.1 Prove that, for x ∈ U(λ), F (x, λ) = 0 is equivalent to x =
Θλ(x).

Next,

∥Θλ(x0)−Θλ0
(x0)∥ ≤M∥F (x0, λ)∥ ≤MBδδ1.

In addition, ∥∂xΘλ∥ = ∥1−A(x0, λ0)
−1A(x, λ)∥ ≤ 1

2 . Thus,

∥Θλ(x)− x0∥ ≤ 1

2
∥x− x0∥+ ∥Θλ(x0)− x0∥ ≤ 1

2
∥x− x0∥+MBδδ1 ≤ δ.

The existence of x ∈ Uδ such that Θλ(x) = x follows then by the standard
fixed point Theorem A.1.1. We have so obtained a function g : {λ : ∥λ −
λ0∥ ≤ δ1} = Λδ1 → Rn such that F (g(λ), λ) = 0. it remains the question of
the regularity.

B.1.2 Lipschitz continuity and Differentiability

Let λ, λ′ ∈ Λδ1 . By (B.1.1)

∥g(λ)− g(λ′)∥ ≤ 1

2
∥g(λ)− g(λ′)∥+MBδ|λ− λ′|

This yields the Lipschitz continuity of the function g. To obtain the differ-
entiability we note that, by the differentiability of F and the above Lipschitz
continuity of g, for h ∈ Rm small enough,

∥F (g(λ+ h), λ+ h)− F (g(λ), λ) + ∂xF [g(λ+ h)− g(λ)] + ∂λFh∥ = o(∥h∥).

Since F (g(λ+ h), λ+ h) = F (g(λ), λ) = 0, we have that

lim
h→0

∥h∥−1∥g(λ+ h)− g(λ) + [∂xF ]
−1∂λFh∥ = 0

which concludes the proof of the Theorem, the continuity of the derivative
being obvious be the obtained explicit formula.

1The Newton method would consist in finding a fixed point for the function x −
A(x, λ)−1F (x, λ). This gives a much faster convergence and hence is preferable in ap-
plications, yet here it would make the estimates a bit more complicated.
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B.2 Generalization

First of all note that the above theorem implies the inverse function theorem.
Indeed if f : Rn → Rn is a function such that ∂xf is invertible at some point
x0, then one can consider the function F (x, y) = f(x) − y. Applying the
implicit function theorem to the equation F (x, y) = 0 it follows that y = f(x)
are the only solution, hence the function is locally invertible.

The above theorem can be generalized in several ways.

Problem B.2 Show that if F in Theorem B.1.1 is Cr, then also g is Cr.

Problem B.3 Verify that if B1,B2 are two Banach spaces and in Theorem
B.1.1 we have B1 instead of Rn and B2 instead of Rm the Theorem remains
true and the proof remains exactly the same.

As I mentioned the statement of Theorem B.1.1 is suitable for quantitative
applications.

Problem B.4 Suppose that in Theorem B.1.1 we have F ∈ C2, then show
that we can chose

δ = [2∥D∂xF∥∞]
−1
.



Appendix C

Perturbation Theory
(a super-fast introduction)

The following is really super condensate (although self-consistent). If you
want more details see [RS80, Kat66] in which you probably can find more
than you are looking for.

C.1 Bounded operators

In the following we will consider only separable Banach spaces, i.e. Banach
spaces that have a countable dense set.1

Given a Banch space B we can consider the set L(B,B) of the linear
bounded operators from B to itself. We can then introduce the norm ∥B∥ =
sup∥v∥≤1 ∥Bv∥.

Problem C.1 Show that (L(B,B), ∥ · ∥) is a Banach space. That is that ∥ · ∥
is really a norm and that the space is complete with respect to such a norm.

Problem C.2 Show that the n× n matrices form a Banach Algebra.2

Problem C.3 Show that L(B,B) form a Banach algebra.3

1Recall that a Banach space is a complete normed vector space (in the following we will
consider vector spaces on the field of complex numbers), that is a normed vector space in
which all the Cauchy sequences have a limit in the space. Again, if you are uncomfortable
with Banach spaces, in the following read Rd instead of B and matrices instead of operators,
but be aware that we have to develop the theory without the use of the determinant that,
in general, is not defined for operators on Banach spaces.

2A Banach Algebra A is a Banach space where the multiplication between elements is
defined with the usual properties of an algebra and, in addition, for each a, b ∈ A holds
∥ab∥ ≤ ∥a∥ · ∥b∥.

3The multiplication is given by the composition.
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To each A ∈ L(B,B) are associated two important subspaces: the range
R(A) = {v ∈ B : ∃ w ∈ B such that v = Aw} and the kernel N(A) = {v ∈
B : Av = 0}.

Problem C.4 Prove, for each A ∈ L(B,B), that N(A) is a closed linear
subspaces of B. Show that this is not necessarily the case for R(A) if B is not
finite dimensional.

A very special, but very important, class of operators is the set of projec-
tors.

Definition C.1.1 An operator Π ∈ L(B,B) is called a projector iff Π2 = Π.

Note that if Π is a projector, so is 1 − Π. We have the following interesting
fact.

Lemma C.1.2 If Π ∈ L(B,B) is a projector, then N(Π)⊕R(Π) = B.

Proof. If v ∈ B, then v = Πv+(1−Π)v. Notice that R(1−Π) = N(Π)
and R(Π) = N(1 − Π). Finally, if v ∈ N(Π) ∩ R(Π), then v = 0, which
concludes the proof. □

Another, more general, very important class of operators are the compact
ones.

Definition C.1.3 An operator K ∈ L(B,B) is called compact iff for any
bounded set B the closure of K(B) is compact.

Remark C.1.4 Note that not all the linear operator on a Banach space are
bounded. For example consider the derivative acting on C1((0, 1),R).

C.2 Functional calculus

First of all recall that all the Riemannian theory of integration works verbatim
for function f ∈ C0(R,B), where B is a Banach space. We can thus talk of

integrals of the type
∫ b

a
f(t)dt.4 Next, we can talk of analytic functions for

functions in C0(C,B): a function is analytic in an open region U ⊂ C iff at
each point z0 ∈ U there exists a neighborhood B ∋ z0 and elements {an} ⊂ B
such that

f(z) =

∞∑
n=0

an(z − z0)
n ∀z ∈ B. (C.2.1)

4This is special case of the so called Bochner integral [Yos95].
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Problem C.5 Show that if f ∈ C0(C,B) is analytic in U ⊂ C, then given
any smooth closed curve γ, contained in a sufficiently small disk in U , holds5∫

γ

f(z)dz = 0 (C.2.2)

Then show that the same hold for any piecewise smooth closed curve with
interior contained in U , provided U is simply connected.

Problem C.6 Show that if f ∈ C0(C,B) is analytic in a simply connected
U ⊂ C, then given any smooth closed curve γ, with interior contained con-
tained in U and having in its interior a point z, hods the formula

f(z) =
1

2πi

∫
γ

(ξ − z)−1f(ξ)dξ. (C.2.3)

Problem C.7 Show that if f ∈ C0(C,B) satisfies (C.2.3) for each smooth
closed curve in a simply connected open set U , then f is analytic in U .

C.3 Spectrum and resolvent

Given A ∈ L(B,B) we define the resolvent, called ρ(A), as the set of the
z ∈ C such that (z1−A) is invertible and the inverse belongs to L(B,B). The
spectrum of A, called σ(A) is the complement of ρ(A) in C.

Problem C.8 Prove that, for each Banach space B and operator A ∈ L(B,B),
if z ∈ ρ(A), then there exists a neighborhood U of z such that (z1 − A)−1 is
analytic in U .

From the above exercise follows that ρ(A) is open, hence σ(A) is closed.

Problem C.9 Show that, for each A ∈ L(B,B), σ(A) ̸= ∅.

Problem C.10 Show that if Π ∈ L(B,B) is a projector, then σ(Π) = {0, 1}.

Up to now the theory for operators seems very similar to the one for
matrices. Yet, the spectrum for matrices is always given by a finite number
of points while the situation for operators can be very dfferenct.

5Of course, by
∫
γ f(z)dz we mean that we have to consider any smooth parametrization

g : [a, b] → C of γ, g(a) = g(b), and then
∫
γ f(z)dz :=

∫ b
a f ◦ g(t)g′(t)dt. Show that the

definition does not depend on the parametrization and that one can use piecewise smooth
parametrizations as well.
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Problem C.11 Consider the operator L : C0([0, 1],C) → C0([0, 1],C) defined
by

(Lf)(x) = 1

2
f(x/2) +

1

2
f(x/2 + 1/2).

Show that σ(L) = {z ∈ C : |z| ≤ 1}.

Problem C.12 Show that, if A ∈ L(B,B) and p is any polynomial, then for
each n ∈ N and smooth curve γ ⊂ C, with σ(A) in its interior,

p(A) =
1

2πi

∫
γ

p(z)(z1−A)−1dz.

Problem C.13 Show that, for each A ∈ L(B,B) the limit

r(A) = lim
n→∞

∥An∥ 1
n

exists.

The above limit is called the spectral radius of A. A useful fact concerning
the spectral radius is the following.

Lemma C.3.1 For each A,B ∈ L(B,B) and k ∈ N, we have

r(AB) = r(BA) r(Ak) = r(A)k

Proof. Using Problem C.13 yields

r(AB) = lim
n→∞

∥(AB)n∥ 1
n = lim

n→∞
∥A(BA)n−1B∥ 1

n

≤ lim
n→∞

∥A∥ 1
n ∥(BA)n−1∥ 1

n ∥B∥ 1
n = r(BA).

By the same argument, exchanging A and B, we obtain r(AB) = r(BA).
Next,

r(Ak) = lim
n→∞

∥Akn∥ k
kn = r(A)k.

□

Lemma C.3.2 For each A ∈ L(B,B) we have supz∈σ(A) |z| = r(A).

Proof. Since we can write

(z1−A)−1 = z−1(1− z−1A)−1 = z−1
∞∑

n=0

z−nAn,

and since the series converges if it converges in norm, from the usual criteria
for the convergence of a series follows supz∈σ(A) |z| ≤ r(A). Suppose now
that the inequality is strict. That is, there exists 0 < η < r(A) and a curve
γ ⊂ {z ∈ C : |z| ≤ η} which contains σ(A) in its interior. Then applying
Problem C.12 yields ∥An∥ ≤ Cηn, which contradicts η < r(A). □
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Note that if f(z) =
∑∞

n=0 fnz
n is an analytic function in all C (entire), then

we can define

f(A) =

∞∑
n=0

fnA
n.

Problem C.14 Show that, if A ∈ L(B,B) and f is an entire function, then
for each smooth curve γ ⊂ C, with σ(A) in its interior,

f(A) =
1

2πi

∫
γ

f(z)(z1−A)−1dz.

In view of the above fact, the following definition is natural:

Definition C.3.3 For each A ∈ L(B,B), f analytic in a region U containing
σ(A), then for each smooth curve γ ⊂ U , with σ(A) in its interior, define

f(A) =
1

2πi

∫
γ

f(z)(z1−A)−1dz. (C.3.4)

Problem C.15 Show that the above definition does not depend on the curve
γ.

Problem C.16 For each A ∈ L(B,B) and functions f, g analytic on a do-
main D ⊃ σ(A), show that f(A) + g(A) = (f + g)(A) and f(A)g(A) =
(f · g)(A).

Problem C.17 In the hypotheses of the Definition C.3.3 show that f(σ(A)) =
σ(f(A)) and [f(A), A] = 0.

Problem C.18 Consider f : C → C entire and A ∈ L(B,B). Suppose that
{z ∈ C : f(z) = 0} ∩ σ(A) = ∅. Show that f(A) is invertible and f(A)−1 =
f−1(A).

Problem C.19 Let A ∈ L(B,B). Suppose there exists a semi-line ℓ, starting
from the origin, such that ℓ ∩ σ(A) = ∅ and that 0 ̸∈ σ(A). Prove that it is
possible to define an operator lnA such that elnA = A.

Remark C.3.4 Note that not all the interesting functions can be constructed

in such a way. In fact, A =

(
0 1
−1 0

)
is such that A2 = −1, thus it can

be interpreted as a square rooth of −1 but it cannot be obtained directly by a
formula of the type (C.3.4).

Problem C.20 Suppose that A ∈ L(B,B) and σ(A) = B ∪ C, B ∩ C = ∅,
suppose that the smooth closed curve γ ⊂ ρ(A) contains B, but not C, in its
interior, prove that

PB :=
1

2πi

∫
γ

(z1−A)−1dz (C.3.5)

is a projector that does not depend on γ.
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Note that by Problem C.17 follows that PBA = APB . Hence, AR(PB) ⊂
R(PB) and AN(PB) ⊂ N(PB). Since, by Lemma C.1.2, B = R(PB)⊕N(PB)
we have obtained an invariant decomposition for A.

Problem C.21 In the hypotheses of Problem C.20, prove that A = PBAPB+
(1− PB)A(1− PB).

Problem C.22 In the hypotheses of Problem C.20, prove that, calling A1 the
resriction of A to R(PB) we have σ(A1) = B. Moreover, if dim(R(PB)) =
D <∞, then the cardinality of B is less or equal D.

C.4 Perturbations

Let us consider A,B ∈ L(B,B) and the family of operators Aν := A+ νB.

Lemma C.4.1 For each δ > 0 there exists νδ ∈ R such that, for all |ν| ≤ νδ,
ρ(Aν) ⊃ {z ∈ C : d(z, σ(A)) > δ}.

Proof. Let d(z, σ(A)) > δ, then

(z1−Aν) = (z1−A)
[
1− ν(z1−A)−1B

]
(C.4.6)

Now ∥(z1 − A)−1B∥ is a continuous function in z outside σ(A), moreover it
is bounded outside a ball of large enough radius, hence there exists Mδ > 0
such that

∑
d(z,σ(A))>δ ∥(z1−A)−1B∥ ≤Mδ. Choosing νδ = (2Mδ)

−1 yields
the result. □

Suppose that z̄ ∈ C is an isolated point of σ(A), that is there exists δ > 0 such
that {z ∈ C : |z − z̄| ≤ δ} ∩ (σ(A) \ {z̄}) = ∅, then the above Lemma shows
that, for ν small enough, {z ∈ C : |z − z̄| ≤ δ} still contains an isolated part
of the spectrum of σ(Aν), let us call it Bν , clearly B0 = {z̄}.

Problem C.23 Let PBν
be defined as in Problem C.20. Prove that, for ν

small enough, it is an analytic function of ν.

Problem C.24 If P,Q are two projectors and ∥P−Q∥ < 1, then dim(R(P )) =
dim(R(Q)).

The above two exercises imply that the dimension of the eigenspace R(PBν
)

is constant.
Next, we consider the case in whichB0 consist of one point and dim(R(PB0

)) =
1, it follows that also Bν must consist of only one point, let us set Pν := PBν .

Lemma C.4.2 If dim(R(P0)) = 1, then Aν has a unique eigenvalue zν in a
neighborhood of z̄, z0 = z̄. In addition zν is an analytic function of ν.
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Proof. From the previous exercises it follows that Pν is a rank one
operator which depend analytically on ν. In addition, since Pν is a rank
one projector it must have the form Pνw = vνℓν(w), where ℓν ∈ B′.6 Then
zνPν = PνAνPν . Next, setting a(ν) := ℓ0(Pνv0) = ℓν(v0)ℓ0(vν), we have
that a is analytic and a(0) = 1. Thus a ̸= 0 in a neighborhood of zero and
zν = a(ν)−1ℓ0(PνAνPνv0) is analytic in such a neighborhood. □

Problem C.25 If dim(R(P0)) = 1, then there exists hν ∈ B and ℓν ∈ B′

such that Pνf = hνℓν(f) for each f ∈ B. Prove that hν , ℓν can be chosen to
be analytic functions of ν.

Hence in the case of A ∈ L(B,B) with an isolated simple7 eigenvalue z̄
we have that the corresponding eigenvalue zν of Aν = A+ νB, B ∈ L(B,B),
for ν small enough, depend smoothly from ν. In addition, using the notation
of the previous Lemma, we can easily compute the derivative: differentiating
Aνvν = zνvν with respect to ν and then setting ν = 0, yields

Bv +Av′0 = z′0v + z̄v′0.

But, for all w ∈ B, Pw = vℓ(w), with ℓ(Aw) = z̄ℓ(w) and ℓ(v) = 1, thus
applying ℓ to both sides of the above equation yields

z′0 = ℓ(Bv).

Problem C.26 Compute v′0.

Problem C.27 What does it happen if the eigenspace associated to z̄ is finite
dimensional, but with dimension strictly larger than one?

Hints to solving the Problems

C.1. The triangle inequality follows trivially from the triangle inequality of
the norm of B. To verify the completeness suppose that {Bn} is a
Cauchy sequence in L(B,B). Then, for each v ∈ B, {Bnv} is a Cauchy
sequence in B, hence it has a limit, call it B(v). We have so defined
a function from B to teself. Show that such a function is linear and
bounded, hence it defines an element of L(B,B), which can easily be
verified to be the limit of {Bn}.

C.2. Use the norm ∥A∥ = supv∈Rn
∥Av∥
∥v∥ .

6By B′, the dual space, we mean the set of bounded linear functionals on B. Verify that

is a Banach space with the norm ∥ℓ∥ =
∑

w∈B
|ℓ(w)|
∥w∥ .

7That is with the associated eigenprojector of rank one.
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C.3. Use the same norm as in Problem C.2.

C.4. The first part is trivial. For the second one can consider the vector
space ℓ2 = {x ∈ RN :

∑∞
i=0 x

2
i < ∞}. Equipped with the norm

∥x∥ =
√∑∞

i=0 x
2
i it is a Banach (actually Hilbert) space. Consider now

the vectors ei ∈ ℓ2 defined by (ei) = δik and the operator (Ax)k = 1
kxk.

Then R(A) = {x ∈ ℓ2 :
∑∞

k=0 k
2x2k < ∞}, which is dense in ℓ2 but

strictly smaller.

C.5. Check that the same argument used in the well-known case B = C works
also here.

C.6. Check that the same argument used in the well-known case B = C works
also here.

C.7. Check that the same argument used in the well-known case B = C works
also here.

C.8. Note that

(ζ1−A) = (z1−A− (z − ζ)1) = (z1−A)
[
1− (z − ζ)(z1−A)−1

]
and that if ∥(z− ζ)(z1−A)−1∥ < 1 then the inverse of 1− (z− ζ)(z1−
A)−1 is given by

∑∞
n=0(z−ζ)n[(z1−A)−1]n (the Neumann series–which

really is just the geometric series).

C.9. If σ(A) = ∅, then (z1 − A)−1 is an entire function, then the Neumann
series shows that (z1−A)−1 = z−1(1− z−1A)−1 goes to zero for large
z, and then (C.2.3) shows that (z1−A)−1 = 0 which is impossible.

C.10. Verify that (z1−Π)−1 = z−1
[
1− (z − 1)−1Π

]
.

C.11. The idea is to look for eigenvalues by using Fourier series. Let f =∑
k∈Z fke

2πikx and consider the equation Lf = zf ,∑
k∈Z

fk
1

2

{
eπikx + eπikx+πik

}
= z

∑
k∈Z

fke
2πikx.

Let us then restrict to the case in which f2k+1 = 0, then∑
k∈Z

f2ke
2πikx = z

∑
k∈Z

fke
2πikx.

Thus we have a solution provided f2k = zfk, such conditions are satisfied
by any sequence of the type

fk =

{
zj if k = 2jm, j ∈ N
0 otherwise
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form ∈ N. It remains to verify that
∑∞

j=0 z
je2πi2

jx belong to C0. This is
the case if the series is uniformly convergent, which happens for |z| < 1.
Thus all the points in {z ∈ C : |z| < 1} are point spectrum of infinite
multiplicity. Since the spectrum is closed, the statement of the Problem
follows.

C.12. First note that

1

2πi

∫
γ

(z1−A)−1dz =
1

2πi

∫
γ

z−1(1− z−1A)−1dz.

By analiticity we can choose γ = {Reiθ} for R > ∥A∥, hence

1

2πi

∫
γ

(z1−A)−1dz =
1

2π

∫ 2π

0

(1−R−1e−iθA)−1dθ

=
1

2π

∫ 2π

0

∞∑
n=0

R−ne−inθAndθ = 1.

Next, let p(z) = zn, n ∈ N, then

1

2πi

∫
γ

zn(z1−A)−1dz = An +
1

2πi

∫
γ

(zn −An)(z1−A)−1dz

= An +

n−1∑
k=0

1

2πi

∫
γ

zkAn−kdz = An.

The statement for general polynomials follows trivially.

C.13. Let α = lim infn→∞ ∥An∥ 1
n . Then for each ε > 0 exists nε ∈ N such

that
∥Anε∥ ≤ (α+ ε)nε .

Then, for each n ∈ N we can write n = m+ knε, with m < nε.
Consequently,

∥An∥ 1
n ≤

[
∥Am∥∥Anε∥k

] 1
m+knε ≤ ∥Am∥

1
m+knε (α+ ε)

knε
m+knε ,

which implies lim supn→∞ ∥An∥ 1
n ≤ α + ε. The claim follows from the

arbitrariness of ε.

C.14. Approximate by polynomials.

C.17. For z ̸∈ f(σ(A)) it is well defined

K(z) :=
1

2πi

∫
γ

(z − f(ζ))−1(ζ1−A)−1 dζ,
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with γ containing σ(A) in its interior. By direct computation, using def-
inition C.3.3, one can verify that (z1− f(A))K(z) = 1, thus σ(f(A)) ⊂
f(σ(A)). On the other hand if, if f is not constant, then for each z ∈ C
f(z)−f(ξ) = (z−ξ)g(ξ). Hence, applying Definition C.3.3 and Problem
C.16 it follows f(z)1−f(A) = (z−A)g(A) which shows that if z ∈ σ(A),
then f(z) ∈ σ(A) (otherwise (z −A)

[
g(A)(f(z)1− f(A))−1

]
= 1).

C.19. Since one can define the logarithm on C\(ℓ∩{0}), one can use Definition
C.3.3 to define lnA. It suffices to prove that if f : U → C and g : V → C,
with σ(A) ⊂ U , f(U) ⊂ V , then g(f(A)) = g ◦ f(A). Whereby show-
ing that the definition C.3.3 is a reasonable one. Indeed, rememebring
Problems C.17, C.18,

g(f(A)) =
1

2πi

∫
γ

g(z)(z1− f(A))−1dz

=
1

(2πi)2

∫
γ1

∫
γ

g(z)

z − f(ξ)
(ξ1−A)−1dzdξ

=
1

2πi

∫
γ1

g(f(ξ))(ξ1−A)−1dξ = f ◦ g(A).

From this imediately follows elnA = A.

C.20. The non dependence on γ is obvious. A projector is characterized by
the property P 2 = P . Thus

P 2
B :=

1

(2πi)2

∫
γ1

∫
γ2

(z1−A)−1(ζ1−A)−1dzdζ

=
1

(2πi)2

∫
γ1

dz

∫
γ2

dζ(z − ζ)−1
[
(z1−A)−1 − (ζ1−A)−1

]
.

If we have chosen γ1 in the interior of γ2, then (z − ζ)−1(ζ1 − A)−1

is analytic in the interior of γ1, hence the corresponding integral gives
zero. The other integral gives PB , as announced.

C.21. Use the decomposition 1 = PB + (1− PB), the fact that PB , (1− PB)
are projectors and that they commute with A.

C.22. Since

(z1−A)−1 = PB(z1−A)−1PB + (1− PB)(z1−A)−1(1− PB).

Calling A1 the restrction of A to R(PB) and A2 the restriction toN(PB),
we have σ(A) ⊂ σ(A1) ∪ σ(A2). Next, for z ̸∈ B, define the operator

K(z) :=
1

2πi

∫
γ

(z − ξ)−1(ξ1−A)−1 dξ,
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where γ contains B, but no other part of the spectrum nor z, in its
interior. Then

(z1−A)K(z) =
1

2πi

∫
γ

[(z − ξ) + (ξ −A)] (z−ξ)−1(ξ1−A)−1 dξ = PB .

Restricting the above equality to R(PB) we have that σ(A1) ⊂ B. Anal-
ogously σ(A1) ⊂ C, hence it must be σ(A1) = B and σ(A1) = C.

The second property follows from the fact that PBAPB , when restricted
to the space R(PB) is described by a D×D matrix AB and the equation
det(z1−AB) = 0 is a polynomial of degree D in z and hence has exactly
D solutions (counted with multiplicity).8

C.22. Use the representation in Problem C.20 and formula (C.4.6).

C.23. Note that Q(1 + P − Q) = QP , then Q = QP (1 − (Q − P ))−1, hence
dim(R(P )) ≥ dim(R(Q)), exchanging the role of P and Q the result
follows.

C.25. Note that ℓν(hν) = 1 since Pν is a projector, hence they are unique
apart from a noralization factor. Then we can chose the normalization
ℓν(h0) = 1 for all ν small enough. Thus Pνf = hν , that is hν is analytic.
Hence, for each g ∈ B and ν small, ℓν(g)ℓ0(hν) = ℓ0(Pνg), which implies
ℓν analytic for ν small.

C.27 Think hard.9

8This is the real reason why spectral theory is done over the complex rather than the
real. You should be well aquatinted with the fact that a polynomial p of degree D has
D root over C but, in case you have forgotten, consider the following: first a polynomial
of degree larger than zero must have at least a root, otherwise 1

p(z)
would be an entire

function and hence
1

p(z)
= lim

r→∞

1

2π

∫ 2π

0
dθ

1

p(z + reiθ)
= 0.

Let z1 be a root. By the Taylor expansion in z1 follows the decomposition p(z) = (z −
z1)p1(z) where p1 has degree D − 1. The result follows by induction.

9A good idea is to start by considering concrete examples, for instance(
1 0
0 1

)
+ µ

(
0 1
1 0

)
;

(
1 1
0 1

)
+ µ

(
0 1
1 0

)
.



Appendix D

More on perturbation
theory

This section contains some useful perturbation results. We follow and extend
the ideas in [Liv03, Theorem 3.2]. Several such results are available (e.g., see
[Kif88], [BY93] or [Bal00b] for a review). Here we provide a simplification
of the theory developed in [KL99, GL06], see the original works for the full
story.

We start by stating the setting in which we work.

D.1 Setting

Hypothesis D.1.1 Let X ⊂ Xw be two Banach spaces, ∥ · ∥ and | · |w being
the respective norms, satisfying | · |w ≤ ∥ · ∥. Also assume that the unit ball
of X is weakly compact in Xw. Consider a family of operators Lε with the
following properties.

1. A uniform Lasota–Yorke inequality: There exist λ⋆ > 1 and A,B,C > 0
such that,

∥Ln
εh∥ ≤ Aλ−n

⋆ ∥h∥+B|h|w, |Ln
εh|w ≤ C|h|w ;

2. For L : X → X define the norm

|||L||| := sup
∥h∥≤1

|Lf |w,

that is the norm of L as an operator from X → Xw. Then we require
that there exists D > 0 such that

|||L − Lε||| ≤ Dε.

236
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To state a precise result consider, for each operator L, the set

Vδ,r(L) := {z ∈ C | |z| ≤ r or dist(z, σ(L)) ≤ δ}.
Since the complement of Vδ,r(L) belongs to the resolvent of L it follows that

Hδ,r(L) := sup
{
∥(z − L)−1∥ | z ∈ C \Vδ,r(L)

}
<∞.

D.2 Perturbation of Lasota-Yorke operators

By R(z) and Rε(z) we will mean respectively (z − L)−1 and (z − Lε)
−1.

Theorem D.2.1 ([KL99]) Consider a family of operators Lε : X → X
satisfying D.1.1. Let Vδ,r := Vδ,r(L), r > λ−1

⋆ , δ > 0, then, if ε ≤ ε1(L, r, δ),
σ(Lε) ⊂ Vδ,r(L). In addition, if ε ≤ ε0(L, r, δ), there exists a > 0 such that,
for each z ̸∈ Vδ,r,

|||R(z)−Rε(z)||| ≤ Cεa.

In addition, for each r > λ−1
⋆ and δ > 0 there are constants a, b > 0, such

that a depends only on r and b depends also on δ, such that, for all h ∈ X
and ε ≤ ε0(L, r, δ),

∥Rε(z)h∥ ≤ a∥h∥+ b|h|w.
Proof.1 To start with we collect some trivial, but very useful algebraic

identities.
For each operator L : X → X and n ∈ Z holds

1

z

n−1∑
i=0

(z−1L)i(z − L) + (z−1L)n = 1 (D.2.1)

R(z)(z − Lε) +
1

z

n−1∑
i=0

(z−1L)i(Lε − L) +R(z)(z−1L)n(Lε − L) = 1

(D.2.2)

(z − Lε)
[
Gn,ε + (z−1Lε)

nR(z)
]
= 1− (z−1Lε)

n(Lε − L)R(z) (D.2.3)[
Gn,ε + (z−1Lε)

nR(z)
]
(z − Lε) = 1− (z−1Lε)

nR(z)(Lε − L), (D.2.4)

where we have set Gn,ε :=
1
z

∑n−1
i=0 (z

−1Lε)
i.

Let us start applying the above formulae. For each h ∈ X and z ̸∈ Vr,δ,
and n large and ε small enough,

∥(z−1Lε)
n(Lε − L)R(z)h∥ ≤ (rλ⋆)

−nA∥(Lε − L)R(z)h∥

+
B

rn
|(Lε − L)R(z)h|w

≤ [(rλ⋆)
−nA2C1 +Br−nDε]Hδ,r(L)∥h∥ < ∥h∥

1This proof is simpler than the one in [KL99], yet it gives worse bounds, although
sufficient for the present purposes.
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To obtain the last inequality, choose n ∈ N such that n = ⌊− ln ε
lnλ⋆

⌋. Then

assuming r < 1 without loss of generality, we have r−n ≤ ε
ln r
lnλ⋆ , so that both

terms are bounded by Cε1+
ln r
lnλ⋆ , and ln r

lnλ⋆
> −1 since rλ⋆ > 1 by hypothesis.

The claimed inequality follows for ε > 0 sufficiently small.
Thus ∥(z−1Lε)

n(Lε − L)R(z)∥ < 1 and the operator on the right hand
side of (D.2.3) can be inverted by the usual Neumann series. Accordingly,
(z − Lε) has a well defined right inverse. Analogously,

∥(z−1Lε)
nR(z)(Lε − L)h∥ ≤ (rλ⋆)

−nA∥R(z)(Lε − L)h∥
+Br−n|R(z)(Lε − L)h|w.

This time to continue we need some information on the Xw norm of the
resolvent. For g ∈ X equation (D.2.1) yields

|R(z)g|w ≤ 1

r

n−1∑
i=0

|(z−1L)ig|w + ∥R(z)(z−1L)ng∥

≤ C

rn(1− r)
|g|w +Hδ,r(L)A(rλ⋆)−n∥g∥+Hδ,r(L)Br−n|g|w

≤ r−n(Hδ,r(L)B + C(1− r)−1)|g|w +Hδ,r(L)A(rλ⋆)−n∥g∥ .
(D.2.5)

Substituting, we have

∥(z−1Lε)
nR(z)(Lε − L)h∥ ≤ {(rλ⋆)−nAHδ,r(L)2C1[1 +Br−n]

+Br−2n[Hδ,r(L)B + (1− r)−1]Dε}∥h∥ < 1,

again, provided ε is small enough and choosing n appropriately. Hence the
operator on the right hand side of (D.2.4) can be inverted, thereby providing
a left inverse for (z−Lε). This implies that z does not belong to the spectrum
of Lε.

To investigate the second statement note that (D.2.2) implies

R(z)−Rε(z) =
1

z

n−1∑
i=0

(z−1L)i(Lε − L)Rε(z)−R(z)(z−1L)n(Lε − L)Rε(z).

Accordingly, for each φ ∈ X,

|R(z)φ−Rε(z)φ|w ≤ {r−n(1−r)−1ε+Hδ,r(L)(λ⋆r)−n2AC1+Hδ,r(L)Bε}∥Rε(z)φ∥.

To complete the argument, choose n = ⌊− ln ε
lnλ⋆

⌋ as before and note that by
our previous bounds on the inverse of z − Lε, we have ∥Rε(z)φ∥ ≤ Cε0∥φ∥,
for all ε ≤ ε0 and ε0 > 0 small enough. The first inequality of the theorem
follows with a = 1 + ln r

lnλ⋆
.
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To prove the second inequality, for |z| = r > λ−1
⋆ , we use D.2.1 to write

∥(z − Lε)
−1h∥ =

∥∥∥∥∥
m−1∑
k=0

z−k−1Lk
ε + (z−1Lε)

m(z − Lε)
−1h

∥∥∥∥∥
≤A(1− r−1λ−1

⋆ )−1∥h∥+ Cr,m|h|w
+ λ−m

⋆ r−m∥(z − Lε)
−1h∥+ r−mB|(z − Lε)

−1h|w,

for some constant Cr,m depending on r and m. We can thus choose m such
that Aλ−m

⋆ r−m < 1
2 and, recalling the first inequality of the Theorem, write

∥(z − Lε)
−1h∥ ≤ Cr∥h∥+ Cr,m|h|w + Cεar−mB∥h∥+ r−mB|(z − L)−1h|w.

To conclude, we can use D.2.5 and write, for all n ∈ N,

∥(z − Lε)
−1h∥ ≤ C♯[Cr + εar−m +AHδ,r(L)(rλ⋆)−nr−m]∥h∥+ Cr,m,n,δ|h|w.

Choosing n and ε so that Hδ,r(L)(rλ⋆)−nr−m ≤ 1 and εar−m ≤ 1 yields the
statement. □

D.2.1 shows that the point spectrum is stable. Yet, in applications it is also
important to control the multiplicity of the spectrum. This can be done
thanks to the following Lemma.

Lemma D.2.2 Consider a family of operators Lε : X → X satisfying D.1.1.
Let ν ∈ σ(L), |ν| > λ⋆, and letm be the dimension of the eigenspace associated
to ν. Then, for each δ small enough there exists ε2(L, ν, δ) such that, for all
ε ≤ ε2(L, ν, δ), σ(Lε)∩{z ∈ C : |z− ν| < δ} contains at most m eigenvalues
and the total dimension of their eigenspaces is m.

Proof. Since |ν| > λ⋆, F.4.2 implies that ν belongs to the point spec-
trum. Hence, there exists δ0 such that {z ∈ C : |z − ν| < δ0} ∩ σ(L) = {ν}.
Then D.2.1 implies that, for each δ < δ0/2 and ε ≤ ε0(L, r, δ), we can split the
spectrum as σ(Lε) = σ1∪σ2 where σ1∩σ2 = ∅ and σ1 ⊂ {z ∈ C : |z−ν| < δ}.
Accordingly, by (C.3.5) we can define the eigenprojectors

Πε :=
1

2πi

∫
γδ

(z1− Lε)
−1dz, (D.2.6)

where γδ(t) = ν + δeit, and σ(ΠεLε) = [σ(Lε) ∩ {z ∈ C : |z − ν| < δ}]∪ {0}.
Note that the first inequality of D.2.1 implies, for ε ≤ ε0(L, r, δ), where we
can choose r = {λ−1

⋆ + |ν|}/2,

|(Πε −Π0)h|w ≤ Cδε
a∥h∥,
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for some constant Cδ, depending on the choice of δ. While the second inequal-
ity of D.2.1 implies that there exist constants a and bδ, the latter depending
on δ, such that

∥Πεh∥ ≤ aδ∥h∥+ bδ|h|w.

Since Πε is independent of δ (see (C.3.5)) we have

∥Πεh∥ ≤ (aδ0 + bδ0)∥h∥ =: c0∥h∥.

The above inequalities imply

∥(Πε −Π0)
2h∥ ≤ 2aδ∥(Πε −Π0)h∥+ 2bδ∥(Πε −Π0)h∥

≤ [4ac0δ + 2bδCδε
a] ∥h∥.

Accordingly, if we choose δ such that 8ac0δ ≤ 1 and ε2 such that 2bδCδε
a < 1

2 ,
we obtain

∥(Πε −Π0)
2∥ < 1. (D.2.7)

This concludes the Lemma due to the following general fact.

Problem D.1 Let Π1,Π2 ∈ L(X,X) be two projectors. Assume that

∥(Π1 −Π2)
2∥ < 1,

then dim(Π1(X)) = dim(Π2(X)).

□

The above two results are rather effective to study perturbations of transfer
operators. The reader can verify this directly by solving the next problem.

Problem D.2 Consider the maps fn : T1 → T1 defined by

f(x) = 2x+
1

2n
sin 2π

√
nx mod 1

and use D.2.1 and D.2.2 to study the spectrum of the operators Lnh(x) =∑
y∈f−1

n (x)
h(y)
f ′
n(y)

, for n large. In particular, show that, for n large enough, Ln

has a spectral gap close to 1
2 .

Given the above results, it is natural to ask if the spectral data have
some more regular dependence on the change in the operator. These types of
questions are related to linear response.
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D.3 Linear Response

In order to have a linear response, one needs more control on the operators
Lε than that provided by D.1.1. Here we provide the simplest possibility, see
[GL06, Section 8] and [KL09] for more details.2

Hypothesis D.3.1 Let X2 ⊂ X1 ⊂ X0 be three Banach spaces, equipped with
the norms ∥·∥i, respectively, satisfying ∥·∥0 ≤ ∥·∥1 ≤ ∥·∥2. Also assume that
the unit ball of Xi is weakly compact in Xi+1. Consider a family of operators
Lε with the following properties.

1. A uniform Lasota–Yorke inequality: There exist λ⋆ > 1 and A,B,C > 0
such that,

∥Ln
εh∥i ≤ Aλ−n

⋆ ∥h∥i +B∥h∥i−1, for i > 0 and for all h ∈ Xi

∥Ln
εh∥i ≤ C∥h∥i , for i ≥ 0 and for all h ∈ Xi.

2. We require that there exists an operator A ∈ L(Xj , Xi), for each j > i,
such that

∥(Lε − L− εA)h∥0 ≤ Dε∥h∥1, for all h ∈ X1

∥(Lε − L− εA)h∥1 ≤ Dε∥h∥2, for all h ∈ X2

∥(Lε − L− εA)h∥0 ≤ Dε1+α∥h∥2, for all h ∈ X2,

for some α > 0 and each h ∈ X2.

Remark D.3.2 The D.3.1 are a bit different from the ones in [GL06]. This
is made in order to present a simplified proof.

Remark D.3.3 Note that the D.3.1 imply D.1.1 for L,Lε both with respect
to the norms ∥ · ∥0, ∥ · ∥1 and with respect to the norms ∥ · ∥1, ∥ · ∥2.

We will need the following well-known fact.

Problem D.3 Prove that for any A,B ∈ L(X,X) and z ̸∈ σ(A) ∪ σ(B) we
have

(z1−A)−1 − (z1−B)−1 = (z1−A)−1(A−B)(z1−B)−1,

which is called the resolvent identity.

Finally, let us define

Vδ,r(L) := {z ∈ C | |z| ≤ r or dist(z, σX1
(L)) ≤ δ},

where σX(L) is the spectrum of L seen as an operator in L(X,X).

2Note that [GL06, Section 8] contains an imprecision which is fixed in [Gou10, Theorem
3.3].
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Remark D.3.4 Note that
[
σX2(L) ∩ {|z| ≥ λ−1

⋆ }
]
⊂
[
σX1(L) ∩ {|z| ≥ λ−1

⋆ }
]

since by F.4.2 this part of the spectrum belongs to the point spectrum. Ac-
cordingly, if ν ∈ σX2

(L) ∩ {|z| ≥ λ−1
⋆ }, then there exists h ∈ X2 such that

Lh = νh and hence ν ∈ σX1
(L).

We are then ready to provide the last result of this section.

Remark D.3.5 D.3.6 says that (z − Lε)
−1, when seen as a function from

R to L(X2, X0) is differentiable at zero. But then also the eigenprojectors
Πε defined in D.2.6 are differentiable and so is ΠεLε. In particular, if the
projector Πε is associated with a simple eigenvalue νε, and hence has the
form Πε = ℓε ⊗ hε, then ΠεLε = νεΠε. It follows that νε is differentiable and
ε→ hε is differentiable as a function from R to X0.

Theorem D.3.6 Consider a family of operators Lε : X0 → X0 satisfying
D.3.1. Let r > λ−1

⋆ and δ > 0. If ε ≤ ε2(L, r, δ), then σX1(Lε) ⊂ Vδ,r(L) and
σX2

(Lε) ⊂ Vδ,r(L). Moreover, there exists η > 0 such that, for all z /∈ Vδ,r(L)
and h ∈ X2,

∥[R(z)−Rε(z)− εR(z)AR(z)]h∥0 ≤ Cδε
1+η∥h∥2.

Proof. The fact that σXi
(Lε) ⊂ Vδ,r(L) follows from D.2.1 and D.3.4.

Let Qε = Lε − L − εA and, as before R(z) = (z1 − L)−1 and Rε(z) =
(z1− Lε)

−1. By D.3 we can write

Rε(z)−R(z) = Rε(z)(Lε − L)R(z).

Thus if we define Ξ = Rε(z)AR(z), we have that

∥(Rε(z)−R(z)− εΞ)h∥0 = ∥Rε(z)QεR(z)h∥0.

Arguing as in D.2.5, recalling D.3.3 and the second inequality of D.2.1, we
can show that there exists Cr,δ > 0 such that for all g ∈ X1,

∥Rε(z)g∥0 ≤ Cδ,r

[
r−m∥g∥0 + (rλ∗)

−m∥g∥1)
]
.

Accordingly, using D.3.1-(2) and recalling σX2
(L) ⊂ Vδ,r(L), we have, for each

h ∈ X2,

∥(Rε(z)−R(z)− εΞ)h∥0 ≤ Cδ,r

[
r−m∥QεR(z)h∥0 + (rλ⋆)

−m∥QεR(z)h∥1)
]

≤ Cδ,rD
[
r−mε1+α + (rλ⋆)

−mε)
]
∥R(z)h∥2

≤ C ′
δ,r

[
r−mε1+α + (rλ⋆)

−mε)
]
∥h∥2
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for some constant C ′
δ,r. Choosing m so that εα = λ−m

⋆ , the above implies

that, setting η0 = α(1− ln r−1

lnλ ) > 0, we have

∥(Rε(z)−R(z)− εΞ)h∥0 ≤ Cδε
1+η0∥h∥2.

On the other hand, D.2.1 implies

∥ [Rε(z)AR(z)−R(z)AR(z)]h∥0 ≤ Cδε
a∥AR(z)h∥1

≤ Cδε
a∥R(z)h∥2 ≤ C ′

δε
a∥h∥2.

Which concludes the proof with η = min{η0, a}. □



Appendix E

Analytic Fredholm Theorem

Here I provide a proof of the Analytic Fredholm alternative in Banach spaces.

Theorem E.0.1 (Analytic Fredholm alternative)1 Let D be an open con-
nected subset of C. Let F : C → L(B,B) be an analytic operator-valued func-
tion such that F (z) is compact for each z ∈ D. Then, one of the following
two alternatives holds true

• (1− F (z))−1 exists for no z ∈ D

• (1 − F (z))−1 exists for all z ∈ D\S where S is a discrete subset of D
(i.e. S has no limit points in D). In addition, if z ∈ S, then 1 is an
eigenvalue for F (z) and the associated eigenspace has finite multiplicity.

Proof. First of all notice that, for each z0 ∈ D there exists r > 0 such
that Dr(z0)(z0) := {z ∈ C : |z − z0| < r(z0)} ⊂ D, and

sup
z∈Dr(z0)(z0)

∥F (z)− F (z0)∥ ≤ 1

4
.

If we can prove the theorem in each such disk, we are done.2 We can ap-
proximate F (z0) by a finite rank operator K such that ∥F (z0) − K∥ ≤ 1

4 .
Then

sup
z∈Dr(z0)(z0)

∥F (z)−K∥ ≤ 1

2
.

1The present proof is patterned after the proof of the Analytic Fredholm alternative for
compact operators (in Hilbert spaces) given in [RS80, Theorem VI.14].

2In fact, consider any connected compact set K contained in D. Let us suppose that
for each z0 ∈ K we have a disk Dr(z0)(z0) in which the theorem holds. Since the disks
Dr(z0)/2(z0) form a covering for K we can extract a finite cover. If the first alternative
holds in one such disk then, by connectness, it must hold on all K. Otherwise each S ∩
Dr(z0)/2(z0), and hence K ∩ S, contains only finitely many points. The Theorem follows
by the arbitrariness of K.
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Note that

1− F (z) =
(
1−K(1− [F (z)−K])−1

)
(1− [F (z)−K]).

Thus the invertibility of 1 − F (z) in Dr(z0) depends on the invertibility of
1−K(1− [F (z)−K])−1. Let us set F0(z) := K(1− [F (z)−K])−1 and note
that F0(z) is a finite rank operator.

Let us start by looking at the equation

(1− F0(z))h = 0. (E.0.1)

Clearly if a solution exists, then h ∈ Range(F0(z)) = Range(F (z0)) := V0.
Since V0 is finite dimensional there exists a basis {hi}Ni=1 such that h =∑

i αihi. On the other hand there exists an analytic matrix G(z) such that3

F0(z)h =
∑
ij

G(z)ijαjhi.

Thus (E.0.1) is equivalent to

(1−G(z))α = 0,

where α := (αi).
The above equation can be satisfied only if det(1 − G(z)) = 0 but the

determinant is analytic hence it is either always zero or zero only at isolated
points.4

Suppose the determinant different from zero, and consider the equation

(1− F0(z))h = g.

Let us look for a solution of the type h =
∑

i αihi + g. Substituting yields

α−G(z)α = β

where β := (βi) with F0(z)g =:
∑

i βihi. Since the above equation admits a
solution, we have Range(1−F0(z)) = B, Thus we have an everywhere defined
inverse, hence bounded by the open mapping theorem.

3To see the analyticity notice that we can construct linear functionals {ℓi} on V0 such
that ℓi(hj) = δij and then extend them to all B by the Hahn-Banach theorem. Accordingly,
G(z)ij := ℓj(F0(z)hi), which is obviously analytic.

4The attentive reader has certainly noticed that this is the turning point of the theorem:
the discreteness of S is reduced to the discreteness of the zeroes of an appropriate analytic
function: a determinant. A moment thought will immediately explain the effort made by
many mathematicians to extend the notion of determinant (that is to define an analytic
function whose zeroes coincide with the spectrum of the operator) beyond the realm of
matrices (the so called Fredholm determinants).
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We are thus left with the analysis of the situation z ∈ S in the second
alternative. In such a case, there exists h such that (1 − F (z))h = 0, thus
one is an eigenvalue. On the other hand, if we apply the above facts to the
function Φ(ζ) := ζ−1F (z) analytic in the domain {ζ ̸= 0} we note that the first
alternative cannot take place since for |ζ| large enough 1− Φ(ζ) is obviously
invertible. Hence, the spectrum of F (z) is discrete and can accumulate only
at zero. This means that there is a small neighborhood around one in which
F (z) has no other eigenvalues, we can thus surround one with a small circle
γ and consider the projector

P :=
1

2πi

∫
γ

(ζ − F (z))−1dζ =
1

2πi

∫
γ

[
(ζ − F (z))−1 − ζ−1

]
dζ

=
1

2πi
F (z)

∫
γ

ζ−1(ζ − F (z))−1dζ.

By standard functional calculus, it follows that P is a projector and it projects
on the eigenspace of the eigenvector one. But the last formula shows that P
equals a compact operator times a bounded one, hence it is compact, therefore
finite-dimensional. □



Appendix F

Hennion–Neussbaum Theory

I provide a self-contained proof of Hennion–Neussbaum’s theory.
While such results are routinely used in many papers devoted to the study

of the statistical properties of dynamical systems, as far as we know, no self-
contained account of the theory is available. Our goal here is to present such
a complete account in a manner accessible to a reader with basic knowledge of
functional analysis and to reduce technicalities to a minimum. We start with
some needed preliminary functional analytic facts, then we discuss the essen-
tial spectrum. There exist many alternative definitions of essential spectrum;
here, we use the most convenient for our goals. The reader interested in more
details can have a look at the first chapter of [EE18]. Next, we introduce the
measures of noncompactness, which form the basis for Neussbaum’s essential
spectral characterization. After that we are finally able to state and prove
Hennion’s theorem.

F.1 A bit of functional analysis preliminaries

In the following, we will need some facts from functional analysis that are not
necessarily common knowledge; hence, we state them here together with their
proofs. The goal is to establish Theorem F.1.3.

Lemma F.1.1 Let X be a Banch space, if V,W ⊂ X are closed and finite
dimensional, respectively, then V +W is closed.

Proof. The Lemma follows if we can prove it for the case dimW = 1,
and W ̸⊂ V . Let x ∈ W , ∥x̄∥ = 1, then V +W = {ξx+ v : ξ ∈ R , ξ ∈ V }.
Suppose that {ηn := xξn + vn} converges to some η, we want to show that
η = xξ∗ + v∗ for some ξ∗ ∈ R and v∗ ∈ V ; that is, V +W is closed.
Since V is closed and x ̸∈ V , it must be d(x, V ) =: d > 0. In addition, for

247
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each ξ ∈ R, v ∈ V , we have

∥ξx+ v∥ ≥ d(ξx+ v, V ) = ξd(x, V ) = |ξ|d.

Hence,

∥ηn − ηm∥ = ∥(ξn − ξm)x+ (vn − vm)∥ ≥ d|ξn − ξm|.

It follows that {ξn} is Cauchy and then it has a limit ξ∗. But the vn = ηn−ξnx
converges as well to some v∗ and, since V is closed, v∗ ∈ V . This proves the
Lemma. □

Lemma F.1.2 Let X be a Banach space and T ∈ L(X,X) such that R(T )
is closed and dim(N(T )) <∞, then R(Tn) is closed for all n ∈ N.

Proof. It suffices to prove that if V ⊂ X is closed, the TV is closed.
Let {xn} ⊂ V be such that Txn is Chauchy. Since R(T ) is close, there esists
y ∈ TX such that limn→∞ Txn = y, we have to show that y ∈ TV . Consider
the quotient space X̃ = X/N(T ), and the quotient map T̃ ∈ L(X̃,X). We
have that Y := T̃ X̃ = R(T ) is closed and T̃ is injective and surjective from
X̃ to Y . Then the bounded inverse theorem implies that T̃−1 ∈ L(Y, X̃),
that is, it is bounded.1 Accordingly, there exists {zn} ⊂ N(T ) such that
{xn+zn} ⊂ V +N(T ) is Cauchy. Since N(T ) is finite dimensional, V +N(T )
is closed, by Lemma F.1.1, and hence there exists w ∈ V + N(T ) such that
limn→∞ xn + zn = w. We can write w = a + b, with a ∈ V and b ∈ N(T ).
Then

T (a) = T (w) = lim
n→∞

T (xn + zn) = lim
n→∞

T (xn) = y

concluding the proof. □

The main result of this section follows ideas from [Kat66, Theorem IV-5.30].

Theorem F.1.3 Let X be a Banach space and T ∈ L(X,X) a quasi-nilpotent
operator with dim(N(T )) <∞ and R(T ) closed.2 Then dim(X) <∞.

Proof. First, we need to establish the following fact. Consider the spaces
Vn := N(T )∩R(Tn). Since TnX = Tn−1(T (X)), we have R(Tn) ⊂ R(Tn−1).
Thus, by Lemma F.1.2, Vn is a decreasing sequence of closed subspaces.
Since N(T ) is finite dimensional, there exists m ∈ N such that Vn = Vm for
all n ≥ m.
Let Y = TmX, then TY = Tm(TX) ⊂ Y , and it is closed by Lemma F.1.2

1Recall that the bounded inverse theorem is an immediate consequence of the open
mapping theorem, see [RS80, Theorem III.11]).

2Recall that an operator T ∈ L(X,X) is quasi-nilpotent if limn→∞ ∥Tn∥
1
n = 0.
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again. It follows that T∗ := T |Y , the restriction to Y , belongs to L(Y, Y ),
∥T∗∥ ≤ ∥T∥ and R(T∗) is closed. Note that,

N(T∗) =N(T ) ∩ TmX = Vm = Vm+1

=N(T ) ∩ Tm+1X ⊂ Tm+1X = T∗Y.
(F.1.1)

That is N(T∗) ⊂ R(T∗). Next, we prove N(Tn
∗ ) ⊂ R(T∗) for all n ∈ N.

We proceed by induction: assume that we have N(Tn
∗ ) ⊂ R(T∗), then if

x ∈ N(Tn+1
∗ ) we can write x = a + b where a ∈ N(Tn

∗ ) ⊂ R(T∗) and Tn
∗ b ∈

N(T∗) ⊂ R(T∗), thus x ∈ R(T∗).
Since N(T∗) ⊂ N(T ) is finite dimensional, there exists a closed subspace
Z ⊂ Y such that Y = N(T∗) ⊕ Z.3 Then T∗Z = R(T∗), hence T∗|Z is a
one-one map onto R(T∗). Accordingly to the bounded inverse theorem (e.g.,
see [RS80, Theorem III.11]) there exists S ∈ L(R(T∗), Z) such that T∗S = 1

and S(T∗|Z) = 1. It follows that, if x ∈ N(Tn
∗ ) then x ∈ R(T∗) and we can

apply S, yielding Sx ∈ N(Tn+1
∗ ). Accordingly, if x ∈ N(T∗), S

nx is well
defined for all n ∈ N. We can finally use the quasi-nilpotent hypothesis: for
each x ∈ N(T∗),

∥x∥ = lim
n→∞

∥Tn
∗ S

nx∥ ≤ lim
n→∞

∥Tn
∗ ∥∥S∥n∥x∥

≤ lim
n→∞

∥Tn∥∥S∥n∥x∥ = 0.
(F.1.2)

That is N(T∗) = {0}. But this implies Z = Y and ST∗ = 1, hence SnTn
∗ = 1.

Then, for each x ∈ Y ,

∥x∥ = lim
n→∞

∥SnTn
∗ x∥ = lim

n→∞
∥SnTnx∥ ≤ lim

n→∞
∥S∥n∥Tn∥∥x∥ = 0.

That is {0} = Y = TmX, i.e. X = N(Tm). We can finally conclude since

dimX = dim(N(Tm)) ≤ m dim(N(T )) <∞.

□

F.2 Essential Spectrum

Our aim is to divide the spectrum σ(T ) of a bounded, linear operator T into
two parts, σp(T ) and σess(T ). The discrete spectrum of T , σp(T ), consists
of isolated points λ ∈ σ(T ) such that their associated Riesz projector has
finite rank and the range of λ − T is closed, while the essential spectrum of
T , σess(T ), will be the remaining part of the spectrum. This motivates the
following definition of the essential spectrum, akin to [Bro61].

3This follows from the Hahn-Banch theorem, which, given a base {xi} of N(T∗) allows
to construct functionals ℓi such that ℓi(xj) = δij and hence the projector P =

∑
i xiℓi

whose range is N(T∗), therefore the kernel is the wanted Z.
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Definition F.2.1 Let T be a bounded linear operator on a Banach space X.
The (Browder) essential spectrum of T , σess(T ), is the set of λ ∈ σ(T ), such
that at least one of the following conditions holds:

1) The range of λ1− T , R(λ1− T ), is not closed;

2) N(λ1− T ) is infinite dimensional;

3) λ is a limit point of σ(T ) \ {λ}.

There are many other definitions of the essential spectrum. For example,
Wolf’s ([Wol59]) essential spectrum is the set of those z ∈ C such that z − T
is not Fredholm. Recall that an operator T : X → X is Fredholm if R(T ) is
closed and the dimensions of both N(T ) and the quotient X⧸R(T ) are finite.

The essential spectral radius of a bounded operator T is defined as4

re(T ) := sup{|z| ∈ C : z ∈ σess(T )}. (F.2.3)

A relevant fact is that re is the same under all these different definitions; see
[EE18, Section 1.4] and the subsequent discussion. In the following, we do
not need to enter into such subtleties.
However, it is useful to better clarify the properties of σp(T ) = σ(T )\σess(T ).

Lemma F.2.2 Given T ∈ L(X,X), for some Banch space X. If z ∈ σp(T ),
then we can write X = X0 ⊕ X1,

5 T (X0) ⊂ X0, T (X1) ⊂ X1, X0 is finite
dimensional and, finally, σ(T |X0

) = {z} while σ(T |X1
) ∩ {z} = ∅.

Proof. By defintion z is an isolate point of σ(T ), thus we can consider
a close curve γ such that, calling D its interior, D ∩ σ(T ) = {z} an consider
the projector (see Problem C.20)

P =
1

2πi

∫
γ

(ζ1− T )−1dζ.

Let X0 = R(P ) and X1 = N(P ), by Lemma C.1.2 and Problems C.21, C.22,
these subspaces have all the wanted properties apart from the finite dimen-
sionality of X0.
To establish the latter, consider the operator T0 = T |X0

∈ L(X0, X0). Since
σ(T0) = {z}, we have that σ(z1 − T0) = {0}.6 Then Lemma C.3.2 implies
that the spectral radius of r(z1 − T0) = 0, that is, T0 is quasi-nilpotent. In
addition, suppose that for some sequence {xn} ⊂ X0 and y ∈ X0 we have

4We will often write simply re if the operator T is clear from the context.
5In particular X0 ∩X1 = {0}.
6Here, and in the following, we slightly abuse notation and we write 1 for 1X0 , the

identity operator in L(X0, X0), since the meaning is clear from the context.
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limn→∞(z1− T0)xn = y. Since (z1− T0)xn = (z1− T )xn and R(z1− T ) is
closed by hypotheis, there exists ξ ∈ X such that (z1− T )ξ = y. Yet,

y = Py = P (z1− T )ξ = (z1− T )Pξ,

where we have used Problem C.17. Hence, y ∈ R(z1−T0), that is R(z1−T0)
is closed. Finally, dim(N(z1 − T )) < ∞ by hypothesis as well. The Lemma
follows then from Theorem F.1.3. □

F.2.1 Subspaces

Here we recall a few, mostly well-known facts, about subspaces of a Banach
space.

Definition F.2.3 Let V ⊂ X be a subspace of a normed vector space X.
Given x ∈ X, we define the distance to V by:

dist(x, V ) = inf{∥x− y∥ : y ∈ V }.

Definition F.2.4 A subspace V is called a proper subspace of X if it is nei-
ther the whole space X nor the zero subspace {0}.

Lemma F.2.5 Let X be a Banach space, V ⊂ X a proper closed subspace.
For every ε > 0 there exists x0 ∈ X, ∥x0∥ = 1, and dist(x0, V ) ≥ 1− ε.

Proof. Let x′ ∈ X \V , then d = dist(x′, V ) > 0, (since V is closed). For

each η > 0 there exists y′ ∈ V so that d ≤ ∥x′− y′∥ ≤ d+ η. Let x0 = x′−y′

∥x′−y′∥
and η = εd

1−ε . For any z ∈ V we have:

∥x0 − z∥ =
1

∥x′ − y′∥

∥∥∥x′ − y′ − ∥x′ − y′∥ z
∥∥∥ ≥ d

∥x′ − y′∥
≥ d

d+ η
= 1− ε,

since y′ + ∥x′ − y′∥ z ∈ V . The result follows since ε is arbitrary. □

Definition F.2.6 A normed vector space X is locally compact if any bounded
sequence in X has a convergent subsequence.

Theorem F.2.7 (S. Banach) Every locally compact Banach space X has fi-
nite dimension.

Proof. If dimX = ∞, then we can construct a sequence of unit vectors
{xi}i∈N ⊂ X such that ∥xi−xj∥ ≥ 1

2 for all i ̸= j ∈ N. Indeed, since for all r ∈
N, span{x1, · · · , xr} is finite dimensional, and hence closed, by Lemma F.2.5
there exists xr+1 ∈ X, ∥xr+1∥ = 1, such that d(xr+1, span{x1, · · · , xr}) ≥ 1

2 .
This contradicts the assumption that X is locally compact. □
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F.2.2 Measure of Noncompactness

We can now introduce our major technical tool.

Definition F.2.8 Let X be a Banach space and A ⊂ X a bounded subset.
We define γ(A), which we call the (Kuratowski) measure of noncompactness
of A, to be

inf

{
r > 0 : ∃ n ∈ N, S1, · · · , Sn, diam(Si) ≤ r , s.t. A ⊂

n⋃
i=1

Si

}
.

Definition F.2.9 We call the ball measure of noncompactness of A in X,
γ̃X(A), to be 7

inf

{
r > 0 : ∃ n ∈ N, Br(x1), · · · , Br(xn) xi ∈ X s. t. A ⊂

n⋃
i=1

Br(xi)

}
.

Definition F.2.10 If X1 and X2 are Banach spaces and T ∈ L(X1, X2), we
say that T is a k-set-contraction if for every bounded set A ⊂ X1,

γX2
(T (A)) ≤ kγX1

(A).

We say that T is a ball-k-set-contraction if

γ̃X2(T (A)) ≤ kγ̃X1(A)

for every bounded set A in X1.
We define

γ(T ) = inf{k > 0 : T is a k-set-contraction}
γ̃(T ) = inf{k > 0 : T is a ball-k-set-contraction}.

Remark F.2.11 The above ideas can also be defined for nonlinear maps be-
tween metric spaces [Dar55, Nus69].

Denote the closed ideal of compact linear operators of X into X by K(X),
or K if no confusion arises.8 Let Z = L(X,X)⧸K.

Definition F.2.12 We define a seminorm ∥T∥K on L(X,X) by

∥T∥K = inf
C∈K

∥T + C∥.
7We use the notation Br(x) = {y ∈ X : ∥x− y∥ < r}.
8Recall that an operator is compact iff the image of a bounded set is relatively compact,

that is, if its closure is compact. It is an easy exercise to check that ifK ∈ K ad T ∈ L(X,X),
then TK,KT ∈ K and K is closed in the operator topology.
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Note that ∥T∥K induces a norm on Z with respect to which Z is a complete
normed space.

Lemma F.2.13 The measure of noncompactness and the ball measure of
noncompactness satisfy the following properties:

a) Let A ⊆ X be a bounded set, then its closure Ā is compact if and only
if γ̃(A) = 0. Also, Ā is compact if and only if γ(A) = 0.

b) An operator T ∈ L(X,X) is compact if and only if γ̃(T ) = 0. Also, T
is compact if and only if γ(T ) = 0.

c) γ(T ) ≤ ∥T∥.

d) For bounded subsets A,B ⊆ X, we have γ(A + B) ≤ γ(A) + γ(B) and
γ̃(A+B) ≤ γ̃(A) + γ̃(B).

e) For all S, T ∈ L(X,X) we have

γ̃(ST ) ≤ γ̃(S)γ̃(T ).

Proof. a) For ε > 0, since Ā is compact, A can be covered by a finite
number of balls of radius ε. Since ε is arbitrary, we have γ̃(A) = 0. Therefore
γ(A) = 0, because γ(A) ≤ γ̃(A). Now assume that Ā is not compact, then
there is a sequence {xn}n∈N ⊆ Ā which has no accumulation points.9 Let
Sε,n be any collection of sets such that xn ∈ Sε,n and the diameter of Sn is
smaller than ε. Then there exist n ∈ N and ε > 0 such that, for any m ≥ n,
Sε,n ∩ Sε,m = ∅. If not, then for any n ∈ N and ε > 0 there exists m ≥ n
such that |xn − xm| < 2ε. Then, if we choose ε = 2−k, n1 = 1 and nk+1 such
that |xnk

−xnk+1
| < 2−k, then {xnk

} is a convergent subsequence of {xn}n∈N
and therefore it has an accumulation point, contrary to the assumption. So
we conclude that γ̃(A) ≥ γ(A) > ε.

b) First suppose that T is a compact operator. For any bounded set A ⊆ X,
T (A) is compact. So by (a), γ̃(T (A)) = 0 and γ(T (A)) = 0. Hence for any
k > 0, T is a ball-k-set-contraction and a k-set-contraction. So γ̃(T ) = 0 and
γ(T ) = 0.
Next, assume that γ(T ) = 0. Let A ⊆ X, be a ball of radius R > 0. For
ε > 0, we have γ(T ) < ε

R . Therefore γ(T (A)) < ε
Rγ(A) < ε. So γ(T (A)) = 0,

then (a) implies T (A) is compact. So T is a compact operator. The same
proof works for the case γ̃(T ) = 0.

9We assume implicitly that xi = xj implies i = j.
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c) If γ(A) = r, then for λ > r, there is a covering of A by finitely many sets
{Bi}ni=1 of diameter not greater than λ. So {T (Bi)}ni=1 will cover T (A). For
any 1 ≤ i ≤ n

diam(T (Bi)) = sup
x,y∈Bi

∥Tx− Ty∥ ≤ ∥T∥ sup
x,y∈Bi

∥x− y∥ ≤ ∥T∥λ,

which implies γ(T ) ≤ ∥T∥.

d) Let γ(A) = α and γ(B) = β. Then for r > α, there is a covering of A by
a finite number of sets {ai}ni=1 of diameter not greater than r and for ρ > β,
there is a covering of B by a finite number of sets {bj}mj=1 of diameter not
greater than ρ. So A+ B = {x+ y}x∈A,y∈B ⊆ ∪i,j{x+ y}x∈ai,y∈bj . For any
1 ≤ i ≤ n, 1 ≤ j ≤ m and x, x′ ∈ ai, y, y

′ ∈ bj we have

∥x+ y − x′ − y′∥ ≤ ∥x− x′∥+ ∥y − y′∥ ≤ r + ρ.

Therefore γ(A+B) ≤ γ(A) + γ(B).
Now let γ̃(A) = κ and γ̃(B) = λ. Then for µ > κ, there is a covering of

A by a finite number of balls {B(ai, ri)}ni=1 of radius ri ≤ µ and for ν > λ,
there is a covering of B by a finite number of balls {B(bj , ρj)}mj=1 of radius
ρj ≤ ν. So A + B = {x + y}x∈A,y∈B ⊆ ∪i,j{x + y}x∈B(ai,ri),y∈B(bj ,ρj). For
any 1 ≤ i ≤ n, 1 ≤ j ≤ m and x ∈ B(ai, ri), y ∈ B(bj , ρj) we have

∥x+ y − (ai + bj)∥ ≤ ∥x− ai∥+ ∥y − bj∥ ≤ µ+ ν.

Therefore γ̃(A+B) ≤ γ̃(A) + γ̃(B).

e) For all S ∈ L(X,X), A ⊆ X, we have:

γ̃(S(A)) ≤ γ̃(S)γ̃(A)

Hence for all S, T ∈ L(X,X), A ⊆ X

γ̃(ST (A)) ≤ γ̃(S)γ̃(T (A)) ≤ γ̃(S)γ̃(T )γ̃(A),

from which the claim follows. □

Lemma F.2.14 Let X and Y be complex Banach spaces and T ∈ L(X,Y ).
Then we have γ(T ∗) ≤ γ̃(T ).10

Proof. Suppose T is a ball-k-set-contraction. To show that T ∗ is a k-
set-contraction, it suffices to show that if S is a set of diameter less than or

10By T ∗we mean the dual operator: for all continuous linear functional ℓ ∈ Y ′ we have
T ∗ℓ ∈ X′ where T ∗ℓ(x) = ℓ(Tx).
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equal to d in Y ∗, T ∗(S) can be covered by a finite number of sets of diameter
less than or equal than kd+ ε, for any ε > 0.
Consider T (B), where B = {x ∈ X, ∥x∥ ≤ 1}. Since γ̃(B) ≤ 1 and T
is a ball-k-set-contraction, T (B) can be covered by a finite number of balls
Bk+ ε

2d
(yi) in Y , 1 ≤ i ≤ n, with centers at yi, and radii k + ε

2d . Select M
such that ∥yi∥ ≤M , 1 ≤ i ≤ n, and ∥y∗∥ ≤M for all y∗ ∈ S. Hence, we have
|y∗(yi)| ≤M2 for each y∗ ∈ S. Decompose the closed interval [−M2,M2] into
a union of disjoint intervals ∆i, 1 ≤ i ≤ p, of length less than ε

2 . We consider
an equivalence relation as follows: Given y∗1 and y∗2 ∈ S, write y∗1 ∼ y∗2 iff for
each i, 1 ≤ i ≤ n, y∗1(yi) and y

∗
2(yi) lie in the same interval ∆j(i), 1 ≤ j(i) ≤ p.

Then we divide S into equivalence classes Sj , 1 ≤ j ≤ q,
We claim that diameter (T ∗(Si)) ≤ kd+ ε. Take y∗1 and y∗2 in Si. We have

∥T ∗(y∗1)− T ∗(y∗2)∥ = sup
x∈B

|y∗1(Tx)− y∗2(Tx)| = sup
y∈T (B)

|y∗1(y)− y∗2(y)|.

If y ∈ T (B), we know that y ∈ Bk+ ε
2
(yi) for some i, 1 ≤ i ≤ n. It follows that

|y∗1(y)− y∗2(y)| ≤ |y∗1(y − yi)− y∗2(y − yi)|+ |y∗1(yi)− y∗2(yi)|

= |(y∗1 − y∗2)(y − yi)|+ |y∗1(yi)− y∗2(yi)| ≤ d(k +
ε

2d
) +

ε

2
= kd+ ε.

Thus, for each ε > 0, ∥T ∗(y∗1)− T ∗(y∗2)∥ ≤ kd+ ε. This shows that diameter
(T ∗(Si)) ≤ kd+ ε, and since T ∗(S) ⊂

⋃q
i=1 T

∗(Si), we have covered T
∗(S) by

a finite number of sets of diameter less than or equal to kd+ ε. □

Lemma F.2.15 Let X be a complex Banach space and T ∈ L(X,X).
Assume that for some n ≥ 1, γ̃(Tn) < 1. Then R(1 − T ) is closed and
dim(N(1− T )) <∞.

Proof. The proof consists of two steps. First, we prove that if A ⊂ X
is closed and bounded, while K ⊂ X is compact, then ((1 − T )−1K) ∩ A is
compact.11 Then we prove that this implies the claimed properties.12

Step 1: Let A be a closed, bounded subset ofX and letK be a compact set.
We prove that K1 = {x ∈ A : (1− T )x ∈ K} is compact. By Lemma F.2.13-
(a), in order to show that K1 is compact, it suffices to show that γ̃(K1) = 0.
Notice that γ̃(K1) is defined, since A is bounded. Suppose x ∈ K1, so that
x = Tx+m for some m ∈ K. Iterating we obtain

x = Tnx+

n−1∑
i=0

T im. (F.2.4)

11A map such that the preimage of a compact set is compact is called proper.
12In fact, the proof of the second step implies in general that if S is proper, then R(S) is

closed and dimN(S) < ∞.
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If we writeK∗ =
∑n−1

i=0 T
i(K), K∗ is compact, since it is the continuous image

of a compact set. Furthermore, (F.2.4) implies that K1 ⊂ Tn(K1) +K∗, so
that γ̃(K1) ≤ γ̃(Tn(K1)), by Lemma F.2.13-(a)-(d). Since Tn is a ball-k-set-
contraction, k < 1, γ̃(K1) ≤ kγ̃(K1). It follows that γ̃(K1) = 0.

Step 2: Let S = (1 − T ). By step 1, N(S) = S−1(0) is locally compact,
consequently N(S) is finite-dimensional by Theorem F.2.7. Next, we prove
that R(S) is closed.
Let {xn} ⊂ X be such that limn→∞ Sxn = y, we want to show that y ∈ R(S).
Choose zn ∈ N(S) so that

d(xn, N(S)) ≥ 1

2
∥xn − zn∥.

We want to show that ∥xn − zn∥ is bounded.
Suppose that, for some subsequence nj , limj→∞ ∥xnj

− znj
∥ = ∞, and define

ξn = ∥xn − zn∥−1(xn − zn). Then

lim
j→∞

Sξnj = lim
j→∞

∥xnj − znj∥−1Sxnj = 0. (F.2.5)

Since K = {S(ξnj )}∪{0} is compact, by Step 1 S−1(K)∩{x ∈ X : ∥x∥ ≤ 1}
is compact as well. Consequently, {ξnj} is contained in a compact set and
must have a convergent subsequence {ξnjk

}. Let ξ̄ be its limit. Equation

(F.2.5) implies Sξ̄ = 0, that is ξ̄ ∈ N(S). However, this is a contradiction
since

∥ξn − ξ̄∥ ≥ d(ξn, N(S)) = ∥xn − zn∥−1d(xn, N(S)) ≥ 1

2
.

As claimed, supn∈N ∥xn − zn∥ ≤M for some M ∈ R. By Step 1 again,

K∗ := S−1({Sxn} ∪ {y}) ∩ {z ∈ Z : ∥z∥ ≤M}

is compact. Consequently, {xn − zn} ⊂ K∗ has a convergent subsequence
{xnj − znj}. Let η be its limit. By continuity

S(η) = lim
j→∞

S(xnj
− znj

) = lim
j→∞

S(xnj
) = y

wereby proving that R(S) is closed.
□

F.3 Nussbaum formula

In this section, we obtain a characterization of the essential spectral radius
re = sup{|λ| : λ ∈ σess(T )}. We essentially follow [Nus70].
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Lemma F.3.1 Let X be a complex Banach space and T ∈ L(X,X). Let

r′e := inf{(γ̃(Tn))
1
n : n ∈ N}. Then

r′e = lim
n→∞

(γ̃(Tn))
1
n = lim

n→∞
(γ(Tn))

1
n .

Furthermore, if |λ| > r′e, then dim(N(λ− T )) <∞ and R(λ− T ) is closed.

Proof. We start showing that lim supn→∞(γ̃(Tn))
1
n ≤ r′e.

For any ε > 0, choose m such that (γ̃(Tm))
1
m ≤ r′e + ε. For large enough

n, write n = pm+ q where 0 ≤ q ≤ (m− 1).
Then, by the above fact and reaclling Lemma F.2.13-(e), we obtain

(γ̃(Tn))
1
n ≤ (γ̃(Tm))

p
n · (γ̃(T ))

q
n ≤ (r′e + ε)

pm
n (γ̃(T ))

q
n .

Taking the limit n → ∞ yields lim supn→∞(γ̃(Tn))
1
n ≤ r′e + ε. Since ε was

arbitrary, we have proved lim supn→∞(γ̃(Tn))
1
n ≤ r′e ≤ lim infn→∞(γ̃(Tn))

1
n .

Therefore limn→∞(γ̃(Tn))
1
n exists and equals r′e. In the exact same way, we

can prove that limn→∞(γ(Tn))
1
n exists.

Suppose |λ| > r′e and n is such that (γ̃(Tn))
1
n < |λ|. Consider T1 = ( 1λ )T and

notice that γ̃(Tn
1 ) = ( 1

|λ|n )γ̃(T
n) = k < 1. By Lemma F.2.15, R(1 − T1) is

closed and dim(N(1− T1)) <∞. □

Lemma F.3.2 If |λ0| > r′e, then λ0 is not a limit point of σ(T ) \ {λ0}.

Proof. We show that all points λ ̸= λ0, in some neighborhood of the
point λ0, belong to the resolvent of T and so λ0 is not a limit point of σ(T ).
The case λ0 ∈ ρ(T ) is trivial. Let λ0 ∈ σ(T ). First we prove that either
N(λ0 − T ) ̸= {0} or N(λ0 − T ∗) ̸= {0}.

Suppose that N(λ0 − T ) = N(λ0 − T ∗) = {0}. Then (λ0 − T )−1 : D → X
exists on D = R(λ0 − T ) which is closed, by Lemma F.3.1. Assume that
D ̸= X, then by Lemma F.2.5, there is u ∈ X, such that ∥u∥ = 1 and
∥u − w∥ ≥ 1

2 for any w ∈ D. Let V := span{u,D}, then for any v ∈ V we
can write v = αu+ w with w ∈ D. Define l(v) := α, then

∥v∥ = ∥αu+ w∥ = |α|∥u− (−α−1w)∥ ≥ 1

2
|α| = 1

2
|l(v)|.

So
|l(v)| ≤ 2∥v∥.

We can then apply the Hahn-Banach theorem to produce an extension of l on
all of X and l ̸= 0, since l(u) = 1. For any v ∈ X,

(λ0 − T ∗)l(v) = l
(
(λ0 − T )v

)
= 0.
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This contradicts N(λ0 − T ∗) = {0}. So D = X, which implies that λ0 − T is
invertible on X and by the bounded inverse theorem, (λ0−T )−1 is a bounded
operator. Therefore λ0 /∈ σ(T ) and this contradicts the assumption.

Suppose that there exists a sequence {λ̃n}∞n=1 ⊂ σ(T ) \ {λ0}, λi ̸= λj
for i ̸= j, which accumulates to λ0. Then there are either infinitely many
ũn ∈ N(λ̃n − T ) or infinitely many l̃n ∈ N(λ̃n − T ∗). For each ε > 0, let
nε ∈ N such that, for n > nε, |λ̃n − λ0| < ε|λ0|.

In the first case, for any k ∈ N, let Mk be the subspace spanned by the
vectors ũnε

, · · · , ũnε+k. Set uk := ũnε+k and λk := λ̃nε+k. Note that the
u1, u2, · · · are linearly independent. This can be proven by induction, indeed
if {u1, . . . , un+1} are linearly dependent, then either also {u1, . . . , un} are

lienarly dependent or
∑n+1

i=1 αiui = 0, with α1 ̸= 0. Then

0 =

n+1∑
j=1

(λiαiui + Tαiui) =

n+1∑
j=1

λiαiui.

But this implies
∑n

j=1(λi−λn)αiui = 0, which again implies that {u1, . . . , un}
are linearly dependent. Accordingly, each Mk−1 is a closed proper subspace
of Mk. So, by Lemma F.2.5, there exists vk ∈ Mk, such that ∥vk∥ = 1 and
d(vk,Mk−1) ≥ 1− ε.

Note that vk = αkuk + wk where αk ∈ R, wk ∈ Mk−1. So for k, r, s ∈ N,
such that s > k,

∥T rvs − T rvk∥ = ∥T r(αsus) + T rws − T rvk∥ = ∥αsλ
r
sus + T rws − T rvk∥

= |λrs|∥vs−(ws−λ−r
s T rws+λ

−r
s T rvk)∥ ≥ |λrs|(1−ε) = |(λs−λ0+λ0)r|(1−ε)

= |λr0|
∣∣∣1+ λs − λ0

λ0

∣∣∣r(1−ε) ≥ |λ0|r
(
1−

∣∣∣λs − λ0
λ0

∣∣∣)r

(1−ε) ≥ |λ0|r(1−ε)r+1.

This implies that T r{|v| ≤ 1} cannot be covered by finitely many sets of
diameter 1

4 |λ0|
r(1 − ε)r+1. Therefore, by the arbitrariness of ε, γ̃(T r) ≥

γ(T r) ≥ 1
4 |λ0|

r.
In the second case, exactly the same argument implies γ(T ∗r) ≥ 1

4 |λ0|
r.

By Lemma F.2.14, γ̃(T r) ≥ 1
4 |λ0|

r.

Thus in both cases, r′e = infn(γ̃(T
n))

1
n ≥ |λ0| which contradicts the as-

sumption. So λ0 is not a limit point of σ(T ). □

Corollary F.3.3 According to the Definition F.2.1 of the essential spectrum,
Lemmata F.3.1 and F.3.2 imply that r′e ≥ re.

13

Lemma F.3.4 Let T ∈ L(X,X) and r > re(T ). Then there exists a finite
dimensional linear operator F such that σ(T + F ) ⊂ {λ : |λ| ≤ r}.

13See (F.2.3) for the defintion of re.
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Proof. Since σ(T ) ∩ {λ : |λ| ≥ r} is a compact set of isolated points,
it consists of a finite number of points λ1, · · · , λn. Let Ci be a small circle
about λi, Ci ∩ Cj = ∅ for i ̸= j and containing only λi from σ(T ), and

Pi =
1

2πi

∫
Ci

(ξ − T )−1dξ

be the Riesz projector associated with λi. Let P =
∑n

i=1 Pi, and F = −TP .
By Lemma F.2.2, dim(R(P )) <∞ and

σ(T + F ) = σ(T (1− P )) ⊂ [σ(T ) \ {λi}] ∪ {0},

which implies the Lemma. □

The following lemma provides the desired characterization of re.

Lemma F.3.5 Let X be a complex Banach space and T ∈ L(X,X). Then

lim
n→∞

(γ(Tn))
1
n = lim

n→∞
(γ̃(Tn))

1
n = lim

n→∞
(∥Tn∥K))

1
n = re.

Proof. By Lemma F.3.1 the first two limits equal r′e. The same argu-

ment as in Lemma F.3.1 shows that r′′e := limn→∞ ∥Tn∥
1
n

K exists.
For S ∈ L(X,X) and any compact operator K ∈ K(X), by Lemma F.2.13,

γ(S) = γ(S +K) ≤ ∥S +K∥.

Therefore γ(S) ≤ ∥S∥K, which implies r′e ≤ r′′e .
To conclude, we show that r′′e ≤ re. Suppose re < r′′e , and let r ∈ (re, r

′′
e ).

For this r, let F be as in Lemma F.3.4 and write T1 = T + F . Then
limn→∞ ∥Tn

1 ∥
1
n ≤ r (if unclear, see Problem C.13). On the other hand,

∥Tn∥K ≤ ∥Tn
1 ∥, so that we obtain r′′e = limn→∞ ∥Tn∥

1
n

K ≤ r, a contradic-
tion. It follows that r′′e ≤ re. Then, Corollary F.3.3 implies re = r′e = r′′e . □

F.4 Hennion’s theorem and its generalizations

We first prove Hennion’s theorem, then provide a more recent generalization.
In fact, the next Theorem is itself a small generalization of [Hen93], since

it allows the weak norm to be just a semi-norm. A similar generalization is
contained in [HH01, Theorem XIV.3]. To this end, we need a bit of notation:
given a vector space X and a semi-norm ∥ · ∥w, we call X0,w the space X
equipped with the topology induced by the semi-norm. Next, we can consider
the vector space Xw of the equivalence classes with respect to the semi-norm
(i.e. x ∼ y iff ∥x−y∥w = 0). We can define the norm ∥x̃∥′ = infx∈x̃ ∥x∥. This
yields a Banach space Xw, as it can be checked directly.
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Problem F.1 Given a normed space Y , a Banch space X togheter with a
seminorm ∥ · ∥w, and and operator T ∈ L(Y,X0,w), show the they canonically

induce an operator T̃ : L(Y,Xw).

Definition F.4.1 Using the notation of Problem F.1, we say that T ∈ L(Y,X0,w)

is ∥ · ∥w-compact if T̃ (B) is compact.

Theorem F.4.2 ([Hen93]) Let (X, ∥·∥) be a Banach space and T ∈ L(X,X).
Assume that there exists a continuous14 semi-norm ∥ · ∥w on X, and M >
θ > 0, A,B,C > 0, such that, for all n ∈ N and f ∈ X,15

∥Tnf∥w ≤ CMn∥f∥w; ∥Tnf∥ ≤ Aθn∥f∥+BMn∥f∥w .

Then the spectral radius of T ∈ L(X,X) is bounded by M . If, in addition, T
is ∥ · ∥w-compact, then the essential spectral radius of T is bounded by θ.

Proof. Continuity of the semi-norm implies that there exists C ′ > 0
such that ∥f∥w ≤ C ′∥f∥ for all f ∈ B. For if not, then for any n ∈ N, there
must exist fn ∈ B with ∥fn∥ = 1, but ∥fn∥w ≥ n. But then ∥ 1

nfn∥ → 0 while
∥ 1
nfn∥w ≥ 1, contradicting continuity of the semi-norm.
This fact plus the second inequality yields, for all n ∈ N and f ∈ B,

∥Tnf∥ ≤ (A+BC ′)Mn∥f∥. (F.4.6)

By the spectral radius formula, see Problem C.13, we conclude the spectral
radius is bounded by M .

For the second part, by Lemma F.3.5, and recalling Defintion F.2.10, we
have

re = lim
n→∞

n
√
γ̃(Tn) ≤ lim

n→∞
n
√
γ̃(TnB1)

where B1 := {f ∈ X | ∥f∥ ≤ 1}.
Next we prove that TnB1 can be covered by a finite number of balls of radius
C♯ · θn, which implies that

re ≤ lim
n→∞

n
√
γ̃(TnB1) ≤ lim

n→∞
n
√
C♯ · θn = θ.

By hypothesis, T̃B1 is relatively compact in Xw. Thus, for each ε > 0 we can
extract a finite sub-cover {B̃ε(f̃i)}Nε

i=1 from the covering {B̃ε(f̃)}f̃∈T̃B1
, where

B̃ε(f̃) = {g̃ ∈ X̄w : ∥g̃ − f̃∥′w < ε}. Then, choosing16 fi ∈ f̃i ∩ TB1 and

14By continuous, we mean that if (fn)n ⊂ B is a sequence such that ∥fn∥ → 0, then
necessarily ∥fn∥w → 0.

15These are often called Lasota-Yorke (or Doeblin-Fortet) inequalities.
16Recall that elements of Xw are equivalence classes of elements in X.
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setting Uε(fi) = {f ∈ X : ∥f − fi∥w < ε} = {f ∈ f̃ : f̃ ∈ B̃ε(f̃i)} we have
a finite covering of TB1. Accordingly, for each f ∈ Uε(fi) ∩ TB1 we have

∥Tn−1(f − fi)∥ ≤ Aθn−1∥f − fi∥+BMn−1∥f − fi∥w
≤ Aθn−12(Aθ +BC ′M) +BMn−1ε.

where we have used equation (F.4.6). Choosing ε sufficiently small we can
conclude that for each n ∈ N the set Tn(B1) can be covered by a finite number
of ∥ · ∥-balls of radius C♯ · θn centered at the points {Tn−1fi}Nε

i=1. □

To conclude the appendix, we show that the hypotheses of the above theorem
can be further weakened to situations in which T is not necessarily continuous
with respect to the weak norm.17

Theorem F.4.3 ([BGK07]) Let (X, ∥·∥) be a Banach space and T ∈ L(X,X).
Assume that there exists a semi-norm ∥ · ∥w on X such that any bounded se-
quence in ∥ · ∥ contains a Cauchy sequence for ∥ · ∥w. If there exist n0 ∈ N
and θ,B > 0 such that,

∥Tn0f∥ ≤ θn0∥f∥+B∥f∥w, (F.4.7)

then the essential spectral radius of T is bounded by θ.

Proof. Note that there must exist C > 0 such that ∥f∥w ≤ C∥f∥. If not
then there would be a sequence {fn}, ∥fn∥ ≤ 1, such that limn→∞ ∥fn∥w = ∞,
but this contradicts that fn must have a Cauchy subsequence.

Let M = 2∥T∥, then we can define the new seminorm,

∥f∥′w := (2C)−1
∞∑

n=0

M−n∥Tnf∥w.

Note that

∥f∥′w ≤ 1

2

∞∑
n=0

M−n∥Tnf∥ ≤ 1

2

∞∑
n=0

2−n∥f∥ = ∥f∥

∥Tf∥′w ≤ (2C)−1
∞∑

n=0

M−n∥Tn+1f∥w

= (2C)−1M

∞∑
n=1

M−n∥Tnf∥w ≤M∥f∥′w.

(F.4.8)

17Indeed, note that the first displayed inequality in F.4.2 amounts simply to the continuity
of T in the weak norm.
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Thus, if we set A = Mn0θ−n0 , for each n ∈ N we can write n = kn0 + m,
m < n0, and, iterating F.4.7,

∥Tnf∥ ≤ θkn0Mm∥f∥+
k−1∑
j=0

Bθ(k−1−j)n0∥T jn0+mf∥w

≤ θkn0Mm∥f∥+Bmax{θ(k−1−j)n0M jn0+m}∥f∥′w
≤ Aθn∥f∥+BMn∥f∥′w

since it must be that θ ≤ ∥T∥ =M/2.
Next, if {fn} is bounded in the ∥ · ∥ norm, so are the sequences Tmfn,

m ∈ N. Then, by hypothesis, we can extract a sequence n1j such that fn1
j

is Cauchy in the ∥ · ∥w norm. From it we can extract a sequence n2j , with

n21 = n11, such that Tfn2
j
is Cauchy in the ∥ · ∥w norm, and so on. Note that,

by construction, njj = nmj for m ≥ j. Then the sequence njj is such that
Tmfnj

j
is Cauchy in the ∥ · ∥w norm for all m ∈ N. Then, for each ε > 0, if

(2C)−12−L < ε/2, then, by the definition of the norm ∥ · ∥′w, we can write

∥fnj
j
− fnk

k
∥′w ≤ (2C)−1

L∑
m=0

M−m∥Tm(fnj
j
− fnk

k
)∥w + ε/2.

It follows that there existsm ∈ N such that, if j, k ≥ m, then ∥fnj
j
−fnk

k
∥′w ≤ ε,

i.e. we can extract a Cauchy sequence in the ∥·∥′w norm. So the ∥·∥′w norm has
the same property as the ∥ · ∥w norm. This implies that T is a ∥ · ∥′w-compact
operator. The statement follows then from Theorem F.4.2. □

The paper [BGK07] provides an application of Theorem F.4.3 to prove a
local limit theorem for weakly coupled lattices of expanding maps in which
the relevant operators are indeed not continuous in the weak norm. For more
details, see [BGK07, Section 3].



Appendix G

Probability–the minimum

This appendix is intended to provide the minimum of probability theory
needed in this Book. Of course, there are wonderful books to study prob-
ability (e.g., on one extreme, the monumental [Fel67],[Fel66], on the other,
the synthetic but really deep [Var01]), but they require some effort to read as
they contain much more material than needed here.

G.1 Distribution and Characteristic Functions

Let X be a measurable space and µ a probability measure. For any mea-
surable set A will use the notation P(A) = µ(A) =

∫
A
dµ for its probabil-

ity. Also, given a measurable function (random variable) φ, we will write
E(φ) = µ(φ) =

∫
X
φdµ for its expectaion. Given a random variable φ we

define the distribution function

F (x) = P({y ∈ X : φ(y) ≤ x}).

Note that F is an increasing function, and lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1.

Also note that F defined a measure νF on R, such that

F (x) = νF ({y ∈ R : y ≤ x)}.

Another fundamental object is the characteristic function

ϕ(t) = E(eitφ) =
∫
X

eitφ(x)µ(dx) =

∫
R
eizνF (dz) =

∫
R
eizF (dz), (G.1.1)

where the last is a Riemann–Stieltjes integral. Note that, since µ is a proba-
bility measure ϕ(0) = 1. In addition, if F is differentiable and F ′ is Riemann

263
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integrable,1 then

ϕ(t) =

∫
R
eiztF ′(z)dz. (G.1.2)

In this case, if ϕ is integrable, the usual Fourier inversion formula yields

F ′(x) =
1

2π

∫
R
e−ixtϕ(t)dt. (G.1.3)

More generally, we have the following result.

Lemma G.1.1 ([Var01, page 20]) Given the distribution function F and
the charatcteristic function ϕ of a random variable φ, we have

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

ϕ(t)
e−ibt − e−iat

−it
dt

for all points a, b of continuity of F .

Let us mention another useful fact.

Lemma G.1.2 If E(|φ|) <∞, then ϕ is differentiable at zero. In addition,

ϕ′(0) = iE(φ).

Proof. Let us compute the derivative

lim
h→0

ϕ(h)− ϕ(0)

h
= lim

h→0

1

h
E(eihφ − 1) = lim

h→0
E

(
iφ

1

h

∫ h

0

eiξφdξ

)

= lim
h→0

E

(
iφ

1

h

∫ h

0

[
eiξφ − 1

]
dξ

)
+ E(iφ).

Next, let β < 1
2 , and let Ah = {φ ≥ h−β}. Then, since φ is integrable, it

must be2

lim
h→0

E(1Ah
|φ|) = 0.

We can then estimate∣∣∣∣∣E
(
iφ

1

h

∫ h

0

[
eiξφ − 1

]
dξ

)∣∣∣∣∣ ≤ 2E(1Ah
|φ|)+E(1Ac

h
|φ|2h) ≤ 2E(1Ah

|φ|)+h1−2β ,

from which the Lemma follows. □
1Note that, since F is increasing, F ′ is defined almost everywhere.
2If unsure, consider the set Γn = {|φ| ∈ [2n, 2n+1)}, then

∑
n∈N 2n|Γn| ≤ E(|φ|) < ∞.

Thus, for each L ∈ R,
E(1φ>L|φ|) ≤

∑
n≥ln2 L

2n+1|Γn|.
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In applications, we often try to estimate the characteristic function. It is
then natural to try to investigate how an error in the characteristic function
reflects on our knowledge of the distribution function.

Lemma G.1.3 ([Fel66, equation (3.13) of Chapter XVI.3]) Let ϕ and Φ be
two characteristic functions and let F and G be the corresponding character-
istic functions. Assume that F is the distribution function of an integrable
random variable and G is differentiable with ∥G′∥∞ ≤ M for some M ∈ R.
Then, for all T ∈ R+,

3

|F (x)−G(x)| ≤ 1

π

∫ T

−T

∣∣∣∣ϕ(ξ)− Φ(ξ)

ξ

∣∣∣∣ dξ + 12M

πT
.

Proof. Let T > 0 and ω̂T ∈ C0(T,R) such that supp(ωT ) ⊂ [−T, T ].
Also, let ωT be the inverse Fourier transform of ω̂T . Since ωT is an analytic
function, the convolutions FT := F ⋆ ωT and GT := G ⋆ ωT are smooth
functions. Also, by formula (G.1.2),

ϕT (t) =

∫
R
eizt

∫
R
F (x)ω′

T (z − x)dxdz =

∫
R
eizt

∫
R
ωT (z − x)dF (x)dz

= ω̂T (t)

∫
R
eixtdx = ϕ(t)ω̂T (t).

Analogously, ΦT (t) = Φ(t)ω̂T (t). Then folumula (G.1.3) applies and yields

F ′
T (x)−G′

T (x) =
1

2π

∫ T

−T

e−ixt [ϕ(t)− Φ(t)] ω̂T (t)dt.

Integrating with respect to x yields

FT (x)−GT (x) =
1

2π
lim

S→∞

∫ T

−T

∫ x

−S

e−iξt [ϕ(t)− Φ(t)] ω̂T (t)dξdt

=
1

2π
lim

S→∞

∫ T

−T

eiSt − e−ixt

it
[ϕ(t)− Φ(t)] ω̂T (t)dt

=
1

2π

∫ T

−T

e−ixt

−it
[ϕ(t)− Φ(t)] ω̂T (t)dt,

(G.1.4)

where, in the last line, we have used the Riemann-Lebesgue Lemma, also the
integrand is a bounded function since ϕ(0) = Φ(0) = 1 and, recalling Lemma
G.1.2, ϕ− Φ is differentiable at zero.
Next, we want to estimate the difference between FT (x)−GT (x) and F (x)−
G(x). For each ε > 0, let xε be such that

∥F −G∥∞ ≤ |F (xε)−G(xε)|+ ε.

3Humm, Feller has 24 rather than 12, maybe I lost a 2 somewhere.
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We discuss only the case F (xε)−G(xε), the other one can be treated in the
same way with the obvious changes. To compute it is convenient to make an
explicit choice of ωT . Following [Fel66] we choose

ωT =
1− cosTx

πTx2

To check the the Fourier trasfom is supported as required solve the following
probem.

Problem G.1 Show that

ω̂T (t) =

{
1− |t|

T for |t| ≤ T

0 otherwise.

For x ≥ xε, recalling that F is increasing, we have

F (x)−G(x) ≥ F (xε)−G(xε) +G(xε)−G(x) ≥ F (xε)−G(xε)−M(x− xε).

We can then choose x1 = xε +
F (xε)−G(xε)

2M =: xε +A and compute

∥FT −GT ∥∞ ≥ |FT (x1)−G(x1)| =
∣∣∣∣∫

R
[F (x)−G(x)]ωT (x1 − x)dx

∣∣∣∣
≥1

2
(F (xε)−G(xε))

∫ x1+A

x1−A

ωT (x1 − x)dx

− [F (xε)−G(xε) + ε]

∫
|x1−x|≥A

ωT (x1 − x)dx

≥1

2
(F (xε)−G(xε))

∫ ∞

−∞

1− cosTx

πTx2
dx

−
[
3

2
(F (xε)−G(xε)) + ε

] ∫
|x|≥A

1

πTx2
dx

≥F (xε)−G(xε)

2π

∫ ∞

−∞

1− cosx

x2
dx− 3(F (xε)−G(xε)) + 2ε

πTA

To conclude, solve this problem.

Problem G.2 Show that ∫ ∞

−∞

1− cosx

x2
dx = π.

The above, since ε is arbitrary, implies

∥F −G∥∞ ≤ 2∥FT −GT ∥∞ +
12M

πT

which, together with (G.1.4), implies the Lemma. □
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[Wol59] Frantǐsek Wolf. On the invariance of the essential spectrum under a change of
boundary conditions of partial differential boundary operators. Nederl. Akad.
Wetensch. Proc. Ser. A 62 = Indag. Math., 21:142–147, 1959.
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