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60 Introduction.

A discrete time dynamical system consists of a measure space X (be F the o-
algebra), a measurable map T : X — X which describes the dynamics, and a
probability measure P invariant with respect to T. This setting is particularly well
suited to study problems involving statistical properties of the motion of determin-
istic systems.

Typically the properties of interest are ergodicity, mixing, bounds on the decay
of correlations, Central Limit Theorems ( CLT ) and so on. Several approaches have
been developed to tackle such problems at various levels. Given a system, one first
explores the weaker statistical properties and then tries to investigate the stronger
ones using the already obtained results plus some extra properties.

The position of this paper in the above mentioned hierarchy is between obtaining
bounds on the decay of correlations and CLT. In other words we discuss a general
approach that gives checkable conditions under which, in a mixing system, an ob-
servable enjoys the CLT. Many results on CLT in dynamical systems already exist
but they are either limited to one dimensional systems [Ke] or relay on the existence
of special partitions of the phase space [Ch], partitions whose concrete construction
may be far from trivial [BSC1], [BSC2]; for a very nice review of the state of affairs
up to 1989 (but still actual) see [De].

Here, T want to put forward the following point of view: the above described
dynamical systems are most naturally viewed as giving rise to a (deterministic)
Markov process. It is therefore tempting to think that there should exists some
general probabilistic theorem that states abstract conditions for the validity of the
CLT, and that all the concrete cases can simply be obtained by the direct application
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of such a theorem to the system under consideration (without having to code the
system in some symbolic type dynamics). General theorems of this type are well
known in probability theory but they are normally not well suited for applications
to the case at hand. Two such general theorems, tailored for dynamical systems,
can be found in this paper.

Attempts in this directions have been in existence for some time [Go], [IL], but
they are satisfactory only in the one dimensional case (the equivalent of Theorem
1.1 in this paper). Particular mention must be given to [DG], the results obtained
there are essentially comparable to the one presented here in section 1 and could be
applied to the multidimensional case. Unfortunately, not much attention is given
there to applications, so that the possibility to bypass a symbolic representation of
the system is completely overlooked.

The approach used here is a martingale approximation inspired by [KV]. Since
this is a typical probabilistic technique, I think it underlines very well the purely
probabilistic nature of the result hereby clarifying which characteristics of a deter-
ministic system yield such a drastic statistical behavior.

As we will see, a major difference with the analogous type results in probability is
that the CLT holds for a much smaller class of observables than the square summable
ones. This is not an artifact of the proof: it is an inevitable consequence of the
deterministic nature of the systems under consideration so that only observables that
operates some “coarse graining” (and therefore enjoy some degree of smoothness)
can yield strong statistical behavior. Here no particular attempt is made to find
the most general class of observables to which the Theorems apply; nonetheless, the
technique put forward lends itself to an extension in such a direction.

The paper includes some concrete examples as well. Their aim is to show how
the general theorems can be applied in special cases. The cases discussed belong to
quite general classes (expanding one dimensional maps, area preserving piecewise
smooth uniformly hyperbolic maps in two and more dimensions), yet no real new
result is contained in such examples. This reflects the spirit of the paper intended
to presenting an approach rather than new implementations. Nevertheless, the
application of the present results in technically complex situations (e.g., hyperbolic
billiards) greatly simplifies the proof of the validity of the CLT. In addition, it is
conceivable that some new results can be obtained by this approach since the two
above mentioned theorems hold in more general cases than the ones already present
in the literature (a brief comparison with previously known results is inserted after
the proof of each theorem).

The plan of the paper is as follows. Section 1 contains two probabilistic theo-
rems that are well suited for the study of dynamical systems. In fact, they may
seem a bit unnatural from the pure probabilistic point of view. On the one hand,
both theorems deal only with functions in L® instead than L?. The reason is that
normally the decay of correlations in dynamical systems can be obtained only for
classes of functions with some amount of smoothness, which makes them automat-



ically bounded. The issue is not purely a matter of taste: a look at the proofs will
show that such an hypothesis has really been used and that many key estimates
would not hold in L?. On the other hand, in Theorem 2 are introduced o-algebras
Fi that behave nicely with respect to the dynamics. This may make little sense
from the purely probabilistic point of view but it is instead a cornerstone in the
treatment of hyperbolic dynamical systems.

In the above sense the results of section 1, although purely probabilistic in nature,
are expressly developed for applications to dynamical systems.

Section 2 describe how the technique applies to non-invertible maps. The case of
piecewise smooth expanding maps of the interval is discussed in detail.

Section 3 deals with the most interesting applications: the multidimensional case.
As an example I treat a large subclass of piecewise smooth symplectic maps. Such
maps are well studied in the literature for some relevant physical models (e.g. bil-
liards) are naturally described in their terms. It is shown that very general consid-
erations imply the applicability of the results developed in section one.

61 A general probabilistic result.
Let X be a complete separable metric space, F a o-algebra, P a probability measure
(P(X)=1)and T : X — X a measurable map.! We will call E the expectation
with respect to P. In addition, we require that P is invariant with respect to T (i.e.,
for all A € F holds P(T7'A4) = P(A)), and that the dynamical system (T, X, P)
be ergodic.

For each ¢ € L*(X) define T: L*(X) — L*(X) by

Tp=goT,

and let T* : L?*(X) — L*(X) be the dual of T.

If E(f) =0, then by ergodicity lim % E?:_ol T"f =E(f) =0. The CLT gives us
informations on the speed of convergence; namely the conditions under which there
exists o € R™: for each interval I C R

n—1
1 - 1 22
lim P — g T"fel = /6_20_2d$;
e <{ \/ﬁ =0 f }> 2mo J1

this is called “convergence in law (or distribution)” to a Gaussian random variable
of zero mean and variance o.

Consider a sub-o-algebra Fy of F and define F;, = T~ 'Fy, ¢ € Z, then the
following holds.

Theorem 1.1. If F; is coarser than F;_1 and, for each ¢ € L°(X), we have

E(TT*6|F) = E(6|F),

T Actually, we assume that, for each A € F, not only T-1A € F but also TA € F.



then, for each f € L>(X), E(f) =0 and E(f|Fo) = f, such that

(1) 302, [T f)] < e,
(2) the series > o~ JE(T*" f|Fy) converges absolutely almost surely,?

the sequence
n—1
=2 I
\n “
1=0
converges in law to a Gaussian random variable of zero mean and finite variance o,

0 < —E(f?)+ 2300 JE(fT" f).

In addition, o = 0 if and only if there exists a Fo—mesurable function g such that
Tf=Tqg—g.

Finally, if (2) converges in L'(X), then o* = —E(f?)+2> 7", E(ff"f)

Proof. The key idea is to use a Martingale approximation. That is, to find Y; €
L?(X) and g Fo—measurable, and almost everywhere finite, such that

(11) E(Yi1|F) = Yii; E(Y;|F) =0,

(i.e., Y; is a reverse Martingale difference with respect to the filtration {F;}2,),
and

(1.2) Tf=Y,+Tig—T" 'g ¥i>D0.

Accordingly,

1 n—1 N 1 n—1 1 -
1.3 — Tf = — Yi+ —=[T"¢g — ¢].
(1.3) T ; f=5 ; o=l

Equation (1.3) shows that we can obtain the central limit theorem for our random
variable provided we have the central limit theorem for the martingale difference Y;.
In fact, %[T"g — g] converges to zero in probability when n — oo.

Note that (1.1) and (1.2) are equivalent to
E(T' f|F:) = B(T' g|Fi) — B(T" "' g|Fi) Vi>0.
Since by the definition of F; follows that, for each ¢ € L'(X),
EB(T" 8| F;) = T'E(6|Fo) Vi >0,

?As we will see in the proof, this implies that there exists an almost everywhere finite F;-
measurable function g, such that f = g — E(T*g|Fy).
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and because the invariance of E with respect to T implies T*T = 1 , we have

f=E(g|Fo) — T*E(9|f1) =g - T\*E(ff*ﬂfl)

1.4 .
A =g — E(T"g|Fo).

It is immediate to see that g = E(f*"ﬂfg) (if the series converges in L!( X))

n=0
is a solution of the above equation, and therefore of (1.2), (clearly, ¥; = Ti_lYl).3
In fact, setting Too = E(T*¢|Fy), the solution of (1.4) is given by the Neumann
series > T f. But T f = E(T*" f|Fy) since

E(T*E(T*" f|Fo)|Fo) =T* TE(T*E(T*" f|Fo )| Fo) = T*E(TT*E(T*" f|Fo)|F1)
=T B(B(T"" f|Fo)|F1) = T*E(T"" f|F)
=T*E(TT*"HV f|Fy) = BT £ 7).

e

To insure that the central limit theorem for Y; holds, we need only to show that
Y; is square summable due to the following [Nel:

Theorem. Let (Yy,)n>1 be a stationary, ergodic, martingale difference (or reversed
martingale difference) with respect to a filtration {F,}n>1. If Y1 € L*(X), then the
CLT holds and o = E(Y}?).

The above theorem could apply to our case since the stationarity of (Y},) is implied
by the invariance of the measure with respect to T, while the ergodicity follows from
the ergodicity of the dynamical system (X, T, P).

If the series Y~ E(f*"ﬂfg) would converge in L?(X), then Y; € L?(X) would
hold and the Theorem would be proven. It is however a remarkable fact that Y; can
be in L?(X) without ¢ being even integrable [KV]. Unfortunately, the road to this
result is a bit indirect and consists in carrying out an argument similar to the one
above but producing a sequence of martingale differences Y;(\) that approximate
Yi.

Let us look for Y;(A), A > 1, such that

(1.5) E(Yi1 (M)F) =Yia(A) 5 E(Yi(A)]Fi) = 05
and
(1.6) T F =Y\ +Tg(\) = A" '1T 1 g(\) Vi>0, A>1.

3Tt is noteworthy that, once we have g, the Y; are defined by (1.2) itself, and will automatically
satisfy (1.1).



In analogy with what we have seen before g(\) = > /\_"E(T\*"ﬂ}"o), only now
n=0

g(\) € L*(X) for each A > 1. Since >l\1ml g(N) = g(1) = g almost surely, it follows
that >l\1ml Yi(A\) = Y; almost surely. In addition,

E(Yi(\)?) =E(Yi(M)?) = E(Tf — Tg(\) + A g(M)]?)
=E(Tf[Tf—Tg(\)+A"g(N))
—E([Tg(\) = A\Lg(NTF — Tg(\) + AL g(M)]),

since E(T\f — Tg(/\) + A7 g(N)|F1) = E(Y1|F1) = 0. Hence,

E(Y;(\)?) = — E(T £)?) + E([Tg(\) — <W>

=—E(f*)+ Hf«u Tg(\) = A"'g(\)])
+A2MTﬂM%
[Tg(A\) = A" g(M)]) = (1= A72)E(g())?)
TF)— (1= A")E(g(\)?)
=—Eu%+zm<nfw41—A2Ewa

< — E(f?) —|—22/\_"E(ff"f) < —E(f?) +22 IE(fT" f)
n=0
The wanted estimates follows from

E(Y?) = E(liminf Y1 (\)?) < liminf B(Y; (\)?) < —E(f?) + 2 i E(fT" f)

A—1 A—1
n=0

In conclusion, we have seen that the random variable under consideration con-
verges in law to a Gaussian of variance 0? = E(Y}?) < co. If ¢ = 0 then the second
assertion of the statement holds since

E(Y;") =E(Tf —Tg+g]").
If we assume that the series in (2) converges in L'(X), then it is possible to

obtain the much sharper result

A—1

lim B(Y;(\)?) = —E(f*) +2 Y A"E(fT" ).



In fact, for each ¢ > 0

E(Yi(A)Z)—E(fZ)+2ZA‘"E(fTA"f)‘ <) (1= ATE(FTf)

+(1=ATE(g(N)?) < (A=A Y EB(FT"F) + Y B(fT"f)

n=0
+ (1= AT)E(g(N)?) < e+ (1= A7HE(g(V)?)
where M has been chosen sufficiently large and A sufficiently close to one. In order

to continue we need to estimate the last term in the above expression. For further
use we will deal with a more general estimate: for each A, u € (1, co) holds

E(g(Mg(p) = Y N "u "E(T*" fE(T™ f|Fy))

n,m=0
e} M—-1 e}
(A7) <D AT Y Ml BOE(T™ £1F0 ) +ZA " E(E(T f|F0))
n=0 m=0 m=M
< M| Fll 3 BB 1))+ 20 S B(B(F™ f12,)).
n=0 m=

That is, choosing again M large and A sufficiently close to 1,
(1 - 2"HE(g(\)?) < 2e.

This is not the end of the story: it is possible to prove that Y7 is the limit of Y7(\)
in L?(X). To see this it suffices to estimate

E([A™ g(N) — ()] [Yi(A) — Y (p)))
E(A " g(A) — ™ g(w)]?) — E([g(N) — g(u)]?)
2(1 — = IATHE(g( Mg (1),

since no generality is lost by choosing A > u > 1, the result follows thanks to the
estimate (1.7). O

E([Y1(X) — Yi(u)]?)

IA

Let us discuss briefly how the above result compares with the ones present in the
literature. In the work of Gordin [Go], used by Keller [Ke|, a very similar theorem
is present. The main difference is that condition (1) and (2) are replaced by the
much stronger condition

ZE (T*" f|F)?) < oo.



A similar comment applies to [DG], where moreover there is no discussion of the
case 0 = 0.

Theorem 1.1 often is applicable in cases in which T is not invertible, where
sometime it is possible to choose Fy = F (see §2 ).

When T is invertible the choice Fy = F is likely to yield F; = F for each ¢ € Z,
this would undermine the possibility of capturing any type of dynamical coarse
graining effect, whereby nullifying the hope of obtaining an interesting statistical
behavior. In such a case, there are situations in which a natural choice for Fj exists
(see §3), but it would be too restrictive to require f to be Fy—measurable.

The above difficulties can be dealt with by the following Theorem.

Theorem 1.2. Suppose T one to one and onto. If F; 1s coarser than F;_, then,
for each f € L7(X), E(f) =0 such that

(1) S0 [B(FT" £)] < o,
(2) the series Y |E(T*™ f|Fy)| converges in L',
(3) Fa > 1: sup k“E(|E(f|F-r) — f]) < o0,*

keN

the sequence
1 n—1 N
- T!
s
converges in law to a Gaussian random variable of zero mean and finite variance o,
o =—-E(f)+2>, [E(fT"]i)
In addition, of > . _ n|E(fT"f)| < oo, then ¢ = 0 if and only if there emists

g € L*(X) such that
Tf=Tqg—g.

Proof. The key idea is to first approximate f by E(f|F_;) and then use the same
type of Martingale approximation introduced in Theorem 1.1. That is, to find
Yi(k, \) € L*(X) and g(k, \) € L*(X) such that, given k > 0, for each i > 0 and
A>1

(1.8) E(Yio1 (k, MFiop) = Yiea(k, A) 5 E(Yi(k, M)|Fieg) =0,

(in other words, Y;(k, A) is a reverse Martingale difference with respect to the fil-
tration {F;}2_,) and

(1.9)  T'E(f|F_p) = Yi(k, \) + T?g(k, \) = X' T g(k, ) Vi>0, A>1.
Note that (1.8) and (1.9) are equivalent to
E(f[F-) = g(k, A) = AT'E(T* g(k, M F-r).

4This condition it is not optimal, as it can be seen by looking at the proof, yet I do not know
of any application in which a weaker condition could be of interest.



It is immediate to see that g(k, A\) = > /\_"E(T\*"ﬂ}—_k) € L*(X) for each
n=0

A > 1 and in LY(X) for A = 1 (this is a consequence of hypothesis (2) in the
statement of the Theorem) is a solution of the above equation (see the analogous
discussion in Theorem 1.1).

Again we want to show that the Y;(k, 1) are square summable, actually, in this
case, we need a uniform estimate in k. In partial analogy with Theorem 1.1, we
have

B(Y;(k, ) =E(Yi(k, \)*) = —E(E(f|F-x)*) + E([Tg(k, A) = A" g(k, M%)
= — B(E(f|F-¢)*) + 2E(g(k, ME(f[F-r)) = (1= A7*)E(g(k, A)*).

In addition, for each A > 1,

E(g(k, NE(FIF_1)) < 3 [B(FE(T™ FIF_0) = 3[BT FE(f1 71 )|

n=0 n=0
<2\ flloo KE([E(FIF k) — F1) + > B(T* FE(T*" | F0))
n==k
2k—1

+Z (T"ff) < o,

where the uniform bound follows from the hypotheses (1), (2), (3) of the Theo-
rem. The previous estimates show that Y;(k, 1) are uniformly square integrable
martingale differences. Moreover,

lim lim B(Yi(k, A\)?) = —E(f*) +2Y E(fT"f) =

k—oo A—1
n=0

To see this it, it is enough to compute

Blg(k, Mgk, p)) = Y A" "E(T" fE(T*" f|F-t))

n,m=0
<D AT M Fllo E(E(T*" £IF )| +ZA " Fllo Z E([E(T*™ f|F&)])
n=0 m=M
< M|[FI2 5 + M| flloo > B(E(T f|Fo)])
n=0
+ (=AMl Y E(E(T™ £1F0)]),
m=M—k



s0, since M can be chosen arbitrarily large, >l\im (1—=\N)E(g(k, A\)?) = 0. Furthermore,
—1

in analogy with Theorem 1.1, easily follows that Y7(k, A) converges to Yi(k, 1) in
L*(X).
This implies that, defining

1 n—l/\‘ 1 n—l/\‘
=—=) T'fs Sui=—) TEfIF),

the S* converges in law to a gaussian with zero means and variance E(Y; (k, 1)?).
The next step is to obtain the needed convergence as k goes to infinity.

BSh ~ S.%) =1 > B - BF DL - BGIF)
<B((f ~ BAIF ) +2 3 RS — BT~ BIF- )

<Ol ~ ECSIF-0))) 423 [BE FIf ~ B 0)])

n—1

=2|| fll e B(f — B(fIF-i)]) +2 )[BT f[f — BOf|F-gi)])]

i=1
<2 flloe Y E(f = E(FIF-)),
i=k

which it is smaller than ¢ uniformly in n, since (3) implies the convergence of the

series >~ B(|f — E(f|F-i)]).

Collecting the previous estimates follows that S, converges to a Gaussian of zero

mean and variance 0'2.

Next, suppose that 0 =0 and Y, n|E(fT\"f)| < o0, then
(1= A"H)E(g(k, V) + E(Y1(k, \)?) = —E(E(f|F-k)*) + 2E(g(k, \)[)

= E(f*) — E(E(f|F_+) —221— E(fT" f)

+2ZA " BT fIF_0)f) — BT )

(. @)

< [ FllooBULf — E(CFIF_x)]) +2(1 = A7) > n|B(fT" f)]
+2[| £l (Z E(E(f|F-x) — )+ Y E(E(T™" f|Fo)| ) +2 Z (fT" f)

10



Accordingly, it is possible to define ¢ : (0, 1) — N, limy_1 ¢(\) = oo, such that

E(g(6(\), M) < M YA>1
lim E(Y; (6(\), \)?) =0,

A—1

where M is some fixed positive number.

Since L?(X) is a Hilbert space, and therefore reflexive, the unit ball is compact
in the weak topology, so {g(#(\), A}a>1 is a weakly compact set and we can extract
a subsequence {A;}, lim; .o, A; = 1, such that {g(¢(};), A;} converges weakly to a
function ¢ € L*(X). In addition, (1.9) implies, for each ¢ € L*(X),

E(T*@E(f|F_k)) = E(Y1(6(N;). \)e)+E(T* 0g(6(A;), A=A E(eg(6(A;), Aj)),

and taking the limit 7 — oo yields

KT pf) = E(T"¢g) — E(pg) Yy € L*(X).

That 1s R R
Tf=Tqg—g.

4

This theorem is rather similar to Theorem 4.4 in [DG], the main difference is
the absence, in [DG], of a discussion of the degenerate case ¢ = 0. The only other
results known to the author having a breath similar to Theorem 2.1 are contained
in [Ch]. The comparison it is not so easy because the results in [Ch] are stated
directly in the language of special families of finite partitions. This language it is
well suited for applications to the case in which the system is studied by the type of
coding called Markov sieves, but it is not so transparent in an abstract context. At
any rate, an evident difference is that Chernov’s result requires the existence of the
first moment of the correlations (i.e., Y. . nE(ff o T") < c0) in order to obtain
the CLT while in Theorem 1.2 such a condition is not necessary, unless one wants
the coboundary characterization of the functions that yield a degenerate limit.

62 Non invertible maps.

In this section we will see how the results of the previous section apply to the case
in which 7" is onto but not one to one.

We choose Fy = F, so F; = F for all ¢ < 0. Note that if E(¢|F;) = ¢, then
g(z) = ¢(T~1z) is well defined, hence Range(T) is exactly the Fj-measurable func-
tions. Moreover, TT* is an orthogonal projection onto Range(T'), while E(-|F7)
is an orthogonal projection onto the Fj-mesuarable functions. That is, for each
¢ € L'(X) L

TT*¢ = E(o|Fy).

11



Therefore, the first condition of Theorem 1.1 is satisfied quite generally. To see
how the theorem works let us apply it to the case of one dimensional maps (i.e.
X =10, 1]).

Let us consider a partition of [0, 1] into finitely many intervals {I;};_,. And
T :1]0, 1] — [0, 1] such that

(1) T‘Tk € C? for each k € {1, ..., p}

(2) inf |D.T|>A> 1.
z€[0,1]

That is a piecewise smooth expanding map. If the reader wants to consider a
concrete example, here is a very simple one: the piecewise linear map T : [0, 1] —

[0, 1] define by
(5-2) =<(5)
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The map satisfies our assumptions since |DT| =
The following result is well known [HK]:

Theorem 2.1. There exists ¢ unique probability measure p, absolutely continuous
with respect to Lebesgue, which s invariant with respect to the map T. In addition,

there exist® A € (0, 1) and K > 0 such that, for each f € BV ([0, 1]) (the space of
functions of bounded variation), and g € L'(]0, 1], u)

1 1 1
[ ssorman— [ gau [ adn| < 5" sl
0 0 0

Since p is absolutely continuous with respect to the Lebesgue measure m, the
Radon—Nicodym derivative h = j—/;fl is in L'([0, 1], m). For simplicity assume h >
£ > 0,5 then it follows

T*fla) =h(x)™" Y h(y)f(y)ID,TI7

yeT—1(x)
5In fact, it is possible to obtain explicit estimates of K and A; see [L.2] for details.

5This is always verified if T is continuous, like in our example; but see [L.2] for a discussion of
the general case.
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Such a representation implies that the last statement of Theorem 2.1 can be

rephrased as follows: for each f € BV ([0, 1]), fol fdu =20
177" flloe < KA"| fllmv-

It is then immediate to see that Theorem 1.1 applies to this situation yielding
the central limit theorem for all functions of bounded variation. The reader can
easily see that such a result can be improved obtaining the central limit theorem for
functions with less regularity (e.g., by an approximation argument) but this is not
the main focus here. In addition, similar results can be obtained for several cases
in which the map T consists of infinitely many smooth pieces.

It is also immediate to verify that the theorem will yield the CLT for BV functions
also for some non-hyperbolic maps (such as the quadratic family [Y]) or maps that
are non-uniformly hyperbolic ([LSV]).

63 Invertible maps.

In this case it would be useless to choose Fy = F: typically this would yield F; = F
for each ¢ € Z. So the choice of Fy must be motivated by dynamical considerations.
Here we will discuss a general class of systems for which such a choice is quite
natural: the hyperbolic systems.”

For simplicity I will confine the discussion to the case in which X is as compact
symplectic manifold with a Riemannian structure that yields a volume form equiv-
alent to the symplectic one and T a piecewise C? symplectic map, but see [KS] and
[LW] for more general possibilities. By hypothesis the symplectic (or Riemannian)
volume 4 is invariant. (The more general case of dissipative systems can also be
treated by the same arguments, again the details are left to the reader).

We will assume T uniformly hyperbolic, since almost nothing is known on the
decay of correlations for non-uniformly hyperbolic systems. By this we mean that at
each point € X there exists two subspaces E*(x), E*(x) € T, X, E*(x)NE*(x) =
{0} and E*(x) & E*(x) = T, X, invariant (i.e., D,TE"*(x) = E"*(Tx)), and there
exists A > 1 such that for each x € X,

ID.To|| = A|jo|| Vo€ E*(z)
ID.To|| < A7 jo|| Vo€ E*(2).

Also, we assume that E"*(x) depends continuously with respect to x (the above
systems are called Anosov, in the smooth case). In the smooth case such systems are
known to be ergodic (in fact, Bernoulli ), one can see [LW] for sufficient conditions
that insure ergodicity also in the non smooth case. To help the reader in better
visualizing the following discussion let us consider the simplest possible non-trivial
example.

"More generally this strategy can be applied to K-systems.
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We consider a family of linear maps of the plane defined by

:1;'1 =1x1 + azxs

r_
1’2—1'2,

where a is a real parameter. We use these linear maps to define (discontinuous if
a ¢ N) maps of the torus by restricting the formulas to the strip {0 < 22 < 1} and
further taking them modulo 1. In this way we define a mapping 77 of the torus
T? = R?/Z* which is discontinuous on the circle {x; € Z} (except when a is equal
to an integer) and preserves the Lebesgue measure .
Similarly we define another family of maps depending on the same parameter a

by restricting the formulas

l’ll =T

:1;'2 = ax] + 9

to the strip {0 < z; < 1} and then taking them modulo 1. Thus for each a we get a
mapping T3 of the torus which is discontinuous on the circle {1 € Z} (except when
a is equal to an integer) and preserves the Lebesgue measure p.

Finally we introduce the composition of these maps T' = 15T} which depends on
one real parameter a. An alternative way of describing the map 7' is by introducing
two fundamental domains for the torus M+ = {0 <2y +ary < 1,0 < 2y <1} and
M7 ={0<2, <1,0< —axy + 22 <1, }.

The linear map defined by the matrix

Goare)=(G 069

takes M™T onto M~ thus defining a map of the torus which is discontinuous at most
on the boundary of M™ and preserves the Lebesgue measure. This is the map T
that constitute our toy model.

Let us go back to the more general case, according to [IKS] such systems have
a natural measurable partition (in fact a K-partition): the partition into stable
manifolds.

Such a partition P can be constructed as to satisfy the following requirements:

(1) there exists a finite number of codimension one smooth manifolds {S;}2%,

transversal to the stable direction, such that each p € P has the boundaries
points belonging to the set U UM, 7788

(2) for each p € P diam(p) < 28¢;°

(3) for each p € P there exists {p;}¥_, C P such that T~1p = UF_ p..

8In the discontinuous case such manifolds can be simply chosen as the set of points at which T'

is not C(2)
980 is some previously fixed number.
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According to above properties, if one chooses as Fj the o-algebra generated by the
partition P, then {F;}52, has the dynamical properties requested in the hypotheses
of Theorem 1.2.

To make the previous statement more clear let us see how such a partition looks
like in the concrete example mentioned above.

The map T is piecewise linear and it has constant contracting direction v. Let us
call S the discontinuity set of 77! and Sy, = U2, T~"S. Then the stable partition
is made of segments along the direction v with the endpoints belonging to Su..°
Since So is an invariant set, properties (1)-(3) are readily verified.

Further, we will assume that the manifolds {5;} satisfy the following property:

Property 0. For cach i # j S;NS; is either empty or consists of smooth subman-
ifolds I;; of codimension at least two. Moreover, setting'!

M =supf{k € {1, ..., mo} | Sk NI # 0},

¥

we TequiTe

r=\"'M < 1.

Note that Property 0 may not be satisfied by T' but may be enjoyed by T, for
some g > 1. In fact, it is not so hard to see that “generically” this will be the
case (i.e., Property 0 will hold for some iterate of the map). In such a situation we
can apply all the following to the dynamical system (X, p, T'?) obtaining the same
conclusions as far as the CLT is concerned. Here, for simplicity, we restrict ourselves
to the case ¢ = 1.

If we think to our model example we see that M = 2, so that A\™'M < 1 if
la] > % The reader can easily compute M for powers of T and see that Property

0 is satisfied for smaller and smaller values of a. Of course, a = 0 corresponds to
the identity, for which no hyperbolicity is present.
For the systems under consideration holds the following (see [KS] for details)

Property 1. For each p € P define the measure 1, by

/ gy = Bg|Fo)(x),

p

for g € CO(X), and x € p.

Then, calling m, the measure induced by the Riemannian structure on p, and

Op = ;:1’; the Radon—Nicodym derivative, there exist ¢y such that sup, ||yl < co.

For our simple example we see that u, = mmp.
p

10See [LW] for the details of such a construction and the proof that almost every point belongs
to one such segment.
1 Here by £B is meant the cardinality of the set B.
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The map is invertible, thus T*f = foT ! A very important consequence of

Property 1 is that, if p € P and P' C P is such that ] ¢ = T7"p, then for each
qeP’

/foT‘"de = Mp(TnQ)/fde-
r q

qeP!

fe Ll (X, u)

In addition, one can prove the following (see [L1] for a complete discussion of the
two-dimensional case).

Property 2. For each 6 < 6y, there exists K € R and A > 1, such that, for each
x € X that belongs to a p € P with diam(p) > 6, and for each g, f € C*(X) (Holder
continuous of class o >0), fX g=0,12

[ECFT™ g Fo)()| < KA [|gl[a]lflla
In the rest of the section we will see that Properties 0-2 imply, for the systems
under consideration, the hypotheses of Theorem 1.2.

Lemma 3.1. Calling A. = {z € X | diam(p(z)) < e} we have'?
m(A:) < Ce

for some fized C € RT.

Proof. Since Jp is made up of points belonging to the preimages of the manifolds
S;, it follows that if diam(p) < € then there exists z € Op and n € N, ¢ € {1, ..., mg}
such that T"z € S;. Accordingly, T"p must lie in a A™"¢ neighborhood of 5;. Such
a neighborhood has measure ¢y A7 "¢, for some fixed ¢;. It is then clear that

mocy

1_/\5.

m(A.) < Z moCiA~ e =
n=0

4

The problem in applying our theorem comes from the possible presence in P
of very small elements. On such elements Property 2 does not provide any direct
control. To our advantage instead works Lemma 3.1 that informs us that the total
measure of the very small pieces is small.

12By ||f||la we mean the usual C(®) norm, while ||f||5 = sup sup W + || fl]co; and
pePe,yep 7T

[|f]|% is defined analogously by using the unstable partition. Essentially, This norms measure the
Holder derivative in the stable (or unstable) direction only.

3By m(-) we mean the symplectic or Riemannian metric that, according to our hypotheses, is
the invariant measure of the system.
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Yet, small pieces may be present.!* The idea to deal with them consists in

iterating them: if T7"|, is smooth, then diam(T~"p) > A"diam(p). Unfortunately,
in general T is not smooth so we have to handle the iterations with more care.

Fix p € P, by construction there exists P; C P such that T7'p = |J ¢. Call
qeP

P ={q € P, | diam(q) < ¢} and py = |J Tq C p. In other words p; consists
q€P

of the portion of p that, under the actions of 771, does not give rise to sufficiently

large elements of the partition. The process can obviously be iterated: let Py be

the collection such that T7%p; = |J ¢, P, = {¢ € P2 | diam(q) < &}, p2 =

q€P>
U T?%¢ C p1 and so on.
qePS
Lemma 3.2. If ¢ is sufficiently small and p € A., then for n > 1ﬁ)gggy—_115 +m,
mp(pn) < ev™

Proof. Thanks to Property 0, the choice of 6 sufficiently small insures that each
element with diameter less than ¢ can intersect at most M manifolds S;. Since the
S; describe all the possible discontinuities in our system, it follows that §P; < M.
But the same argument applies to each connected piece of p;: since the diameter of
T~ 'p; is, by definition, less than §, for [ < j, it follows that T='"1p; can consists
of, at most, M elements of the partition. In conclusion, §P,, < M", and

mp(pn) < M"AT"6 <v™Me.

4

Using the above estimates, for each n, k € N, k < n, and calling yp the charac-
teristic function of the set B, we have

E(x A, s [E(gT*" f|Fo)])

™3

E(|E(¢T" f|Fo)]) <

3 3
I

|
> o

(XA, s [E(T* [T T8 ]| Fo))

0

> M lcllglloon(Aums).

m=n—k+1

3
I

T41n fact, this is certainly the case in the non-smooth case. If T' is smooth, then it is possible
to construct P in such a way that diam(P) > & for some fixed §, by using Markov partitions.
When finite Markov partitions are available the present method boils down to a repackaging of
well known facts.
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Next, for each @ € p C A,ms, using the notations of the Lemma 3.2 and setting
6 = ThgT*n=hf,

Bl f|Fo)| = / 60 T*dpy| < / boT " duy|+| [ foT *du,
P\Pk
<comp(pe)lldlle + Y pp(THq) /¢dup
qeP
T*qCp\pr
< coll fllssllgllocdr® + > pp(T )| E(6|F0)|
qeP
T*qCp\pr
< coll fllssllgll bt + KAT"FET g1 Il
< || fllallgllalcodr® + KATFEATE],
Using the above estimates yield
T*n k n+k C(S n—k+1
B(ET* 170)1) < Ifllallglle (n — k)eorts + KA+ 4 C2y

Hence, by choosing k = [%], it follows that there exists ¢; € R™ such that
E(|E(gT*" f|Fo)| < exnmax{v, A71}5.

This verifies the hypotheses 1-2 of Theorem 1.2. Hypothesis 3 follows trivially
from the assumption f € C'®) (or f piecewise Holder). To see this, consider that
F_1 is the o-algebra associated to the partition TFP. But, if p € T*P, then
diam(p) < 2A7%8;. Thus, for each x € p € T*P, let ¢ € P be the unique element
such that p C ¢, then

E(FIF_1) () — F(@)] = gl /f@w o) < sup|f(y) — f(x)]

yEp

< [ flladiam(p)® < || flla2*A7F 65

Hence Theorem 1.2 applies to the class of systems under consideration and yields
the CLT for all Holder continuous functions (in fact, the above considerations can
easily be pushed to obtain the CLT for much larger classes of functions; e.g. piece-
wise continuous functions with a logarithmic modulus of continuity).
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