
CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMSCarlangelo LiveraniUniversit�a di Roma Tor Vergatax0 Introduction.A discrete time dynamical system consists of a measure space X (be F the �-algebra), a measurable map T : X ! X which describes the dynamics, and aprobability measure P invariant with respect to T . This setting is particularly wellsuited to study problems involving statistical properties of the motion of determin-istic systems.Typically the properties of interest are ergodicity, mixing, bounds on the decayof correlations, Central Limit Theorems ( CLT ) and so on. Several approaches havebeen developed to tackle such problems at various levels. Given a system, one �rstexplores the weaker statistical properties and then tries to investigate the strongerones using the already obtained results plus some extra properties.The position of this paper in the above mentioned hierarchy is between obtainingbounds on the decay of correlations and CLT. In other words we discuss a generalapproach that gives checkable conditions under which, in a mixing system, an ob-servable enjoys the CLT. Many results on CLT in dynamical systems already existbut they are either limited to one dimensional systems [Ke] or relay on the existenceof special partitions of the phase space [Ch], partitions whose concrete constructionmay be far from trivial [BSC1], [BSC2]; for a very nice review of the state of a�airsup to 1989 (but still actual) see [De].Here, I want to put forward the following point of view: the above describeddynamical systems are most naturally viewed as giving rise to a (deterministic)Markov process. It is therefore tempting to think that there should exists somegeneral probabilistic theorem that states abstract conditions for the validity of theCLT, and that all the concrete cases can simply be obtained by the direct applicationThis paper originated out of discussions with D.Szasz and A.Kramli, and was madepossible by D.Szasz key suggestion to use K-partitions. I wish to thank Y.Kifer,E.Olivieri, E.Presutti, B.Tot, and L.Triolo for helpful discussions. In addition, I amindebted to S.Olla for explaining me the subtleties of the Kipnis-Varadhan approach.This work has been partially supported by grant CIPA-CT92-4016 of the Commissionof the European Community. I wish also to thank ESI, where part of this work wasdone. 1



of such a theorem to the system under consideration (without having to code thesystem in some symbolic type dynamics). General theorems of this type are wellknown in probability theory but they are normally not well suited for applicationsto the case at hand. Two such general theorems, tailored for dynamical systems,can be found in this paper.Attempts in this directions have been in existence for some time [Go], [IL], butthey are satisfactory only in the one dimensional case (the equivalent of Theorem1.1 in this paper). Particular mention must be given to [DG], the results obtainedthere are essentially comparable to the one presented here in section 1 and could beapplied to the multidimensional case. Unfortunately, not much attention is giventhere to applications, so that the possibility to bypass a symbolic representation ofthe system is completely overlooked.The approach used here is a martingale approximation inspired by [KV]. Sincethis is a typical probabilistic technique, I think it underlines very well the purelyprobabilistic nature of the result hereby clarifying which characteristics of a deter-ministic system yield such a drastic statistical behavior.As we will see, a major di�erence with the analogous type results in probability isthat the CLT holds for a much smaller class of observables than the square summableones. This is not an artifact of the proof: it is an inevitable consequence of thedeterministic nature of the systems under consideration so that only observables thatoperates some \coarse graining" (and therefore enjoy some degree of smoothness)can yield strong statistical behavior. Here no particular attempt is made to �ndthe most general class of observables to which the Theorems apply; nonetheless, thetechnique put forward lends itself to an extension in such a direction.The paper includes some concrete examples as well. Their aim is to show howthe general theorems can be applied in special cases. The cases discussed belong toquite general classes (expanding one dimensional maps, area preserving piecewisesmooth uniformly hyperbolic maps in two and more dimensions), yet no real newresult is contained in such examples. This reects the spirit of the paper intendedto presenting an approach rather than new implementations. Nevertheless, theapplication of the present results in technically complex situations (e.g., hyperbolicbilliards) greatly simpli�es the proof of the validity of the CLT. In addition, it isconceivable that some new results can be obtained by this approach since the twoabove mentioned theorems hold in more general cases than the ones already presentin the literature (a brief comparison with previously known results is inserted afterthe proof of each theorem).The plan of the paper is as follows. Section 1 contains two probabilistic theo-rems that are well suited for the study of dynamical systems. In fact, they mayseem a bit unnatural from the pure probabilistic point of view. On the one hand,both theorems deal only with functions in L1 instead than L2. The reason is thatnormally the decay of correlations in dynamical systems can be obtained only forclasses of functions with some amount of smoothness, which makes them automat-2



ically bounded. The issue is not purely a matter of taste: a look at the proofs willshow that such an hypothesis has really been used and that many key estimateswould not hold in L2. On the other hand, in Theorem 2 are introduced �-algebrasFi that behave nicely with respect to the dynamics. This may make little sensefrom the purely probabilistic point of view but it is instead a cornerstone in thetreatment of hyperbolic dynamical systems.In the above sense the results of section 1, although purely probabilistic in nature,are expressly developed for applications to dynamical systems.Section 2 describe how the technique applies to non-invertible maps. The case ofpiecewise smooth expanding maps of the interval is discussed in detail.Section 3 deals with the most interesting applications: the multidimensional case.As an example I treat a large subclass of piecewise smooth symplectic maps. Suchmaps are well studied in the literature for some relevant physical models (e.g. bil-liards) are naturally described in their terms. It is shown that very general consid-erations imply the applicability of the results developed in section one.x1 A general probabilistic result.Let X be a complete separable metric space, F a �-algebra, P a probability measure(P (X) = 1) and T : X ! X a measurable map.1 We will call E the expectationwith respect to P . In addition, we require that P is invariant with respect to T (i.e.,for all A 2 F holds P (T�1A) = P (A)), and that the dynamical system (T; X; P )be ergodic.For each � 2 L2(X) de�ne bT : L2(X) ! L2(X) bybT� = � � T;and let bT � : L2(X) ! L2(X) be the dual of bT .If E(f) = 0, then by ergodicity limn!1 1nPn�1i=0 bTnf = E(f ) = 0. The CLT gives usinformations on the speed of convergence; namely the conditions under which thereexists � 2 R+: for each interval I � Rlimn!1P  ( 1pn n�1Xi=0 bTnf 2 I)! = 1p2�� ZI e� x22�2 dx;this is called \convergence in law (or distribution)" to a Gaussian random variableof zero mean and variance �.Consider a sub-�-algebra F0 of F and de�ne Fi = T�iF0, i 2 Z, then thefollowing holds.Theorem 1.1. If Fi is coarser than Fi�1 and, for each � 2  L1(X), we haveE( bT bT ��jF1) = E(�jF1);1Actually, we assume that, for each A 2 F , not only T�1A 2 F but also TA 2 F . 3



then, for each f 2  L1(X), E(f ) = 0 and E(f jF0) = f , such that(1) P1n=0 jE(f bT nf)j <1,(2) the series P1n=0 E( bT �nf jF0) converges absolutely almost surely,2the sequence 1pn n�1Xi=0 bT ifconverges in law to a Gaussian random variable of zero mean and �nite variance �,�2 � �E(f2) + 2P1n=0 E(f bTnf).In addition, � = 0 if and only if there exists a F0{mesurable function g such thatbTf = bTg � g:Finally, if (2) converges in L1(X), then �2 = �E(f2) + 2P1n=0 E(f bTnf).Proof. The key idea is to use a Martingale approximation. That is, to �nd Yi 2L2(X) and g F0{measurable, and almost everywhere �nite, such that(1.1) E(Yi�1 jFi) = Yi�1 ; E(Yi jFi) = 0;(i.e., Yi is a reverse Martingale di�erence with respect to the �ltration fFig1i=0),and(1.2) bT if = Yi + bT ig � bT i�1g 8i > 0:Accordingly,(1.3) 1pn n�1Xi=0 bT if = 1pn n�1Xi=0 Yi + 1pn [bTng � g]:Equation (1.3) shows that we can obtain the central limit theorem for our randomvariable provided we have the central limit theorem for the martingale di�erence Yi.In fact, 1pn [bTng � g] converges to zero in probability when n!1.Note that (1:1) and (1:2) are equivalent toE( bT if jFi) = E( bT igjFi)� E( bT i�1gjFi) 8i > 0:Since by the de�nition of Fi follows that, for each � 2 L1(X),E( bT i�jFi) = bT iE(�jF0) 8i > 0;2As we will see in the proof, this implies that there exists an almost everywhere �nite F0-measurable function g, such that f = g � E( bT �gjF0).4



and because the invariance of E with respect to T implies bT � bT = 11 , we have(1.4) f = E(gjF0) � bT �E(gjF1) = g � bT �E( bT bT �gjF1)= g � E( bT �gjF0):It is immediate to see that g = 1Pn=0E( bT �nf jF0) (if the series converges in L1(X))is a solution of the above equation, and therefore of (1.2), (clearly, Yi = bT i�1Y1).3In fact, setting T0� = E( bT ��jF0), the solution of (1:4) is given by the NeumannseriesP1n=0 Tn0 f . But Tn0 f = E( bT �nf jF0) sinceE( bT �E( bT �nf jF0)jF0) =bT � bTE( bT �E( bT �nf jF0)jF0) = bT �E( bT bT �E( bT �nf jF0)jF1)=bT �E(E ( bT �nf jF0)jF1) = bT �E( bT �nf jF1)=bT �E( bT bT �(n+1)f jF1) = E( bT �(n+1)f jF0):To insure that the central limit theorem for Yi holds, we need only to show thatYi is square summable due to the following [Ne]:Theorem. Let (Yn)n�1 be a stationary, ergodic, martingale di�erence (or reversedmartingale di�erence) with respect to a �ltration fFngn�1. If Y1 2 L2(X), then theCLT holds and �2 = E(Y 21 ).The above theorem could apply to our case since the stationarity of (Yn) is impliedby the invariance of the measure with respect to T , while the ergodicity follows fromthe ergodicity of the dynamical system (X; T; P ).If the seriesP1n=0 E( bT �nf jF0) would converge in L2(X), then Y1 2 L2(X) wouldhold and the Theorem would be proven. It is however a remarkable fact that Yi canbe in L2(X) without g being even integrable [KV]. Unfortunately, the road to thisresult is a bit indirect and consists in carrying out an argument similar to the oneabove but producing a sequence of martingale di�erences Yi(�) that approximateYi.Let us look for Yi(�), � > 1, such that(1.5) E(Yi�1 (�)jFi) = Yi�1(�) ; E(Yi (�)jFi) = 0;and(1.6) bT if = Yi(�) + bT ig(�) � ��1 bT i�1g(�) 8i > 0; � > 1:3It is noteworthy that, once we have g, the Yi are de�ned by (1.2) itself, and will automaticallysatisfy (1.1). 5



In analogy with what we have seen before g(�) = 1Pn=0��nE( bT �nf jF0), only nowg(�) 2 L2(X) for each � > 1. Since lim�!1g(�) = g(1) = g almost surely, it followsthat lim�!1Yi(�) = Yi almost surely. In addition,E(Yi (�)2) =E(Y1(�)2) = E([ bT f � bTg(�) + ��1g(�)]2)=E( bT f [ bTf � bTg(�) + ��1g(�)])� E([ bT g(�) � ��1g(�)][bTf � bTg(�) + ��1g(�)]);since E( bT f � bTg(�) + ��1g(�)jF1) = E(Y1 jF1) = 0. Hence,E(Yi (�)2) =� E(( bT f)2) + E([ bT g(�)� ��1g(�)]2)=�E(f2) + E( bT g(�)[bTg(�)� ��1g(�)])� ��1E(g(�) bT g(�)) + ��2E( bT g(�)2)=� E(f2) + 2E( bT g(�)[ bTg(�) � ��1g(�)]) � (1� ��2)E(g(�)2)=� E(f2) + 2E( bT g(�) bTf) � (1 � ��2)E(g(�)2 )=� E(f2) + 2E(g(�)f ) � (1 � ��2)E(g(�)2 )�� E(f2) + 2 1Xn=0��nE(f bTnf) � �E(f2) + 2 1Xn=0 jE(f bTnf)j:The wanted estimates follows fromE(Y 21 ) = E(lim inf�!1 Y1(�)2) � lim inf�!1 E(Y1 (�)2) � �E(f2) + 2 1Xn=0 E(f bTnf):In conclusion, we have seen that the random variable under consideration con-verges in law to a Gaussian of variance �2 = E(Y 21 ) <1. If � = 0 then the secondassertion of the statement holds sinceE(Y 21 ) = E([ bT f � bTg + g]2):If we assume that the series in (2) converges in L1(X), then it is possible toobtain the much sharper resultlim�!1E(Y1(�)2) = �E(f2) + 2 1Xn=0��nE(f bTnf):6



In fact, for each " > 0����E(Yi (�)2)�E(f2 ) + 2 1Xn=0��nE(f bTnf)���� � 1Xn=0(1� ��n)E(f bTnf)+ (1� ��2)E(g(�)2) � (1� ��M ) 1Xn=0 E(f bTnf) + 1Xn=M E(f bTnf)+ (1� ��2)E(g(�)2) � "+ (1 � ��2)E(g(�)2 )where M has been chosen su�ciently large and � su�ciently close to one. In orderto continue we need to estimate the last term in the above expression. For furtheruse we will deal with a more general estimate: for each �; � 2 (1; 1) holds(1.7) E(g(�)g(�)) = 1Xn;m=0��n��mE( bT �nfE( bT �mf jF0))� 1Xn=0��n M�1Xm=0 kfk1E(jE ( bT �nf jF0)j) + 1Xn=0��n 1Xm=M E(jE ( bT �mf jF0)j)�Mkfk1 1Xn=0E(jE ( bT �nf jF0)j) + kfk11� ��1 1Xm=M E(jE ( bT �mf jF0)j):That is, choosing again M large and � su�ciently close to 1,(1� ��1)E(g(�)2) � 2":This is not the end of the story: it is possible to prove that Y1 is the limit of Y1(�)in L2(X). To see this it su�ces to estimateE([Y1(�) � Y1(�)]2) = E([��1g(�)� ��1g(�)][Y1(�) � Y1(�)])= E([��1g(�)� ��1g(�)]2)� E([g(�) � g(�)]2)� 2(1� ��1��1)E(g(�)g(�));since no generality is lost by choosing � � � > 1, the result follows thanks to theestimate (1:7). �Let us discuss briey how the above result compares with the ones present in theliterature. In the work of Gordin [Go], used by Keller [Ke], a very similar theoremis present. The main di�erence is that condition (1) and (2) are replaced by themuch stronger condition 1Xn=0E(E ( bT �nf jF0)2) <1: 7



A similar comment applies to [DG], where moreover there is no discussion of thecase � = 0.Theorem 1.1 often is applicable in cases in which T is not invertible, wheresometime it is possible to choose F0 = F (see x2 ).When T is invertible the choice F0 = F is likely to yield Fi = F for each i 2 Z,this would undermine the possibility of capturing any type of dynamical coarsegraining e�ect, whereby nullifying the hope of obtaining an interesting statisticalbehavior. In such a case, there are situations in which a natural choice for F0 exists(see x3), but it would be too restrictive to require f to be F0{measurable.The above di�culties can be dealt with by the following Theorem.Theorem 1.2. Suppose T one to one and onto. If Fi is coarser than Fi�1, then,for each f 2  L1(X), E(f ) = 0 such that(1) P1n=0 jE(f bT nf)j <1,(2) the series P1n=0 jE( bT �nf jF0)j converges in L1,(3) 9 � > 1: supk2N k�E(jE (f jF�k ) � f j) <1,4the sequence 1pn n�1Xi=0 bT ifconverges in law to a Gaussian random variable of zero mean and �nite variance �,�2 = �E(f2) + 2P1n=0 E(f bTnf).In addition, if P1n=0 njE(f bTnf)j < 1, then � = 0 if and only if there existsg 2 L2(X) such that bTf = bTg � g:Proof. The key idea is to �rst approximate f by E(f jF�k ) and then use the sametype of Martingale approximation introduced in Theorem 1.1. That is, to �ndYi(k; �) 2 L2(X) and g(k; �) 2 L2(X) such that, given k > 0, for each i > 0 and� > 1(1.8) E(Yi�1 (k; �)jFi�k) = Yi�1(k; �) ; E(Yi(k; �)jFi�k) = 0;(in other words, Yi(k; �) is a reverse Martingale di�erence with respect to the �l-tration fFig1i=�k) and(1.9) bT iE(f jF�k ) = Yi(k; �) + bT ig(k; �)� ��1 bT i�1g(k; �) 8i > 0; � � 1:Note that (1:8) and (1:9) are equivalent toE(f jF�k ) = g(k; �)� ��1E( bT �g(k; �)jF�k):4This condition it is not optimal, as it can be seen by looking at the proof, yet I do not knowof any application in which a weaker condition could be of interest.8



It is immediate to see that g(k; �) = 1Pn=0��nE( bT �nf jF�k) 2 L2(X) for each� > 1 and in L1(X) for � = 1 (this is a consequence of hypothesis (2) in thestatement of the Theorem) is a solution of the above equation (see the analogousdiscussion in Theorem 1.1).Again we want to show that the Yi(k; 1) are square summable, actually, in thiscase, we need a uniform estimate in k. In partial analogy with Theorem 1.1, wehaveE(Yi (k; �)2) =E(Y1 (k; �)2) = �E(E (f jF�k )2) + E([ bT g(k; �)� ��1g(k; �)]2)=� E(E (f jF�k )2) + 2E(g(k; �)E(f jF�k )) � (1� ��2)E(g(k; �)2):In addition, for each � > 1,E(g(k; �)E(f jF�k )) � 1Xn=0 jE(fE ( bT �nf jF�k))j = 1Xn=0 jE( bT �nfE(f jF�k ))j�2kfk1kE(jE (f jF�k ) � f j) + 1Xn=k E( bT kfE( bT �nf jF0))+ 2k�1Xn=0 E( bTnff) <1;where the uniform bound follows from the hypotheses (1), (2), (3) of the Theo-rem. The previous estimates show that Yi(k; 1) are uniformly square integrablemartingale di�erences. Moreover,limk!1 lim�!1E(Y1(k; �)2) = �E(f2) + 2 1Xn=0E(f bTnf) = �2:To see this it, it is enough to computeE(g(k; �)g(k; �)) = 1Xn;m=0��n��mE( bT �nfE( bT �mf jF�k))� 1Xn=0��nMkfk1E(jE ( bT �nf jF�k)j) + 1Xn=0��nkfk1 1Xm=M E(jE ( bT �mf jF�k)j)�Mkfk21k +Mkfk1 1Xn=0 E(jE ( bT �nf jF0)j)+ (1� ��1)�1kfk1 1Xm=M�k E(jE ( bT �mf jF0)j); 9



so, sinceM can be chosen arbitrarily large, lim�!1(1��)E(g(k; �)2) = 0. Furthermore,in analogy with Theorem 1.1, easily follows that Y1(k; �) converges to Y1(k; 1) inL2(X).This implies that, de�ningSn = 1pn n�1Xi=0 bT if ; Skn = 1pn n�1Xi=0 bT iE(f jFk );the Skn converges in law to a gaussian with zero means and variance E(Y1(k; 1)2).The next step is to obtain the needed convergence as k goes to in�nity.E([Skn � Sn]2) =1n n�1Xi; j=0 E( bT i [f � E(f jF�k )] bT j [f � E(f jF�k )])�E([f � E(f jF�k )]2) + 2 n�1Xi=1 jE([f � E(f jF�k )] bT i[f � E(f jF�k )])j�2kfk1E(jf � E(f jF�k )j) + 2 n�1Xi=1 jE( bT if [f � E(f jF�k )])j=2kfk1E(jf � E(f jF�k )j) + 2 n�1Xi=1 jE( bT �if [f � E(f jF�k�i)])j� 2kfk1 1Xi=k E(jf � E(f jF�i)j);which it is smaller than " uniformly in n, since (3) implies the convergence of theseriesP1i=0 E(jf � E(f jF�i)j).Collecting the previous estimates follows that Sn converges to a Gaussian of zeromean and variance �2.Next, suppose that �2 = 0 and P1n=0njE(f bT nf)j � 1, then(1 � ��2)E(g(k; �)2) + E(Y1 (k; �)2) = �E(E (f jF�k )2) + 2E(g(k; �)f)= E(f2 )� E(E (f jF�k )2)� 2 1Xn=1(1 � ��n)E(f bTnf)+ 2 1Xn=0��n hE(E ( bT �nf jF�k)f) � E(f bTnf)i� kfk1E(jf � E(f jF�k )j) + 2(1� ��1) 1Xn=0njE(f bTnf)j+ 2kfk1 2k�1Xn=0 E(jE (f jF�k )� f j) + 1Xn=k E(jE ( bT �nf jF0)j)! + 2 1Xn=2k E(f bTnf):10



Accordingly, it is possible to de�ne � : (0; 1) ! N, lim�!1 �(�) =1, such thatE(g(�(�); �)2) �M 8� > 1lim�!1 E(Y1(�(�); �)2) = 0;where M is some �xed positive number.Since L2(X) is a Hilbert space, and therefore reexive, the unit ball is compactin the weak topology, so fg(�(�); �g�>1 is a weakly compact set and we can extracta subsequence f�jg, limj!1 �j = 1, such that fg(�(�j); �jg converges weakly to afunction g 2 L2(X). In addition, (1.9) implies, for each ' 2 L2(X),E( bT �'E(f jF�k )) = E(Y1 (�(�j); �j)')+E( bT �'g(�(�j); �j))���1j E('g(�(�j ); �j));and taking the limit j !1 yieldsE( bT �'f) = E( bT �'g)� E('g) 8' 2 L2(X):That is bTf = bTg � g:�This theorem is rather similar to Theorem 4.4 in [DG], the main di�erence isthe absence, in [DG], of a discussion of the degenerate case � = 0. The only otherresults known to the author having a breath similar to Theorem 2.1 are containedin [Ch]. The comparison it is not so easy because the results in [Ch] are stateddirectly in the language of special families of �nite partitions. This language it iswell suited for applications to the case in which the system is studied by the type ofcoding called Markov sieves, but it is not so transparent in an abstract context. Atany rate, an evident di�erence is that Chernov's result requires the existence of the�rst moment of the correlations (i.e., P1n=0 nE(ff � Tn) < 1) in order to obtainthe CLT while in Theorem 1.2 such a condition is not necessary, unless one wantsthe coboundary characterization of the functions that yield a degenerate limit.x2 Non invertible maps.In this section we will see how the results of the previous section apply to the casein which T is onto but not one to one.We choose F0 = F , so Fi = F for all i � 0. Note that if E(�jF1) = �, theng(x) = �(T�1x) is well de�ned, hence Range(T ) is exactly the F1-measurable func-tions. Moreover, bT bT � is an orthogonal projection onto Range(T ), while E(�jF1)is an orthogonal projection onto the F1-mesuarable functions. That is, for each� 2 L1(X) bT bT �� = E(�jF1): 11



Therefore, the �rst condition of Theorem 1.1 is satis�ed quite generally. To seehow the theorem works let us apply it to the case of one dimensional maps (i.e.X = [0; 1]).Let us consider a partition of [0; 1] into �nitely many intervals fIkgpk=1. AndT : [0; 1]! [0; 1] such that(1) T ��Ik 2 C(2) for each k 2 f1; :::; pg(2) infx2[0;1] jDxT j � � > 1.That is a piecewise smooth expanding map. If the reader wants to consider aconcrete example, here is a very simple one: the piecewise linear map T : [0; 1] ![0; 1] de�ne by T (x) =8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
92 �19 � x� x 2 �0; 19�92 �x� 19� x 2 �19 ; 39�92 �59 � x� x 2 �39 ; 59�92 �x� 59� x 2 �59 ; 79�92 (1� x) x 2 �79 ; 1�The map satis�es our assumptions since jDT j = 92 > 1.The following result is well known [HK]:Theorem 2.1. There exists a unique probability measure �, absolutely continuouswith respect to Lebesgue, which is invariant with respect to the map T . In addition,there exist5 � 2 (0; 1) and K > 0 such that, for each f 2 BV ([0; 1]) (the space offunctions of bounded variation), and g 2 L1([0; 1]; �)����Z 10 fg � Tnd�� Z 10 fd�Z 10 gd����� � K�nkfkBVkgk1:Since � is absolutely continuous with respect to the Lebesgue measure m, theRadon{Nicod�ym derivative h = d�dm is in L1([0; 1]; m). For simplicity assume h �" > 0,6 then it followsbT �f(x) = h(x)�1 Xy2T�1(x)h(y)f(y)jDyT j�1:5In fact, it is possible to obtain explicit estimates of K and �; see [L2] for details.6This is always veri�ed if T is continuous, like in our example; but see [L2] for a discussion ofthe general case.12



Such a representation implies that the last statement of Theorem 2.1 can berephrased as follows: for each f 2 BV ([0; 1]), R 10 fd� = 0kbT �nfk1 � K�nkfkBV:It is then immediate to see that Theorem 1.1 applies to this situation yieldingthe central limit theorem for all functions of bounded variation. The reader caneasily see that such a result can be improved obtaining the central limit theorem forfunctions with less regularity (e.g., by an approximation argument) but this is notthe main focus here. In addition, similar results can be obtained for several casesin which the map T consists of in�nitely many smooth pieces.It is also immediate to verify that the theorem will yield the CLT for BV functionsalso for some non-hyperbolic maps (such as the quadratic family [Y]) or maps thatare non-uniformly hyperbolic ([LSV]).x3 Invertible maps.In this case it would be useless to choose F0 = F : typically this would yield Fi = Ffor each i 2Z. So the choice of F0 must be motivated by dynamical considerations.Here we will discuss a general class of systems for which such a choice is quitenatural: the hyperbolic systems.7For simplicity I will con�ne the discussion to the case in which X is as compactsymplectic manifold with a Riemannian structure that yields a volume form equiv-alent to the symplectic one and T a piecewise C2 symplectic map, but see [KS] and[LW] for more general possibilities. By hypothesis the symplectic (or Riemannian)volume � is invariant. (The more general case of dissipative systems can also betreated by the same arguments, again the details are left to the reader).We will assume T uniformly hyperbolic, since almost nothing is known on thedecay of correlations for non-uniformly hyperbolic systems. By this we mean that ateach point x 2 X there exists two subspaces Eu(x); Es(x) 2 TxX, Eu(x)\Es(x) =f0g and Eu(x)�Es(x) = TxX, invariant (i.e., DxTEu;s(x) = Eu;s(Tx)), and thereexists � > 1 such that for each x 2 X,kDxTvk � �kvk 8v 2 Eu(x)kDxTvk � ��1kvk 8v 2 Es(x):Also, we assume that Eu;s(x) depends continuously with respect to x (the abovesystems are called Anosov, in the smooth case). In the smooth case such systems areknown to be ergodic (in fact, Bernoulli ), one can see [LW] for su�cient conditionsthat insure ergodicity also in the non smooth case. To help the reader in bettervisualizing the following discussion let us consider the simplest possible non-trivialexample.7More generally this strategy can be applied to K-systems. 13



We consider a family of linear maps of the plane de�ned byx01 = x1 + ax2x02 = x2;where a is a real parameter. We use these linear maps to de�ne (discontinuous ifa 62 N) maps of the torus by restricting the formulas to the strip f0 � x2 � 1g andfurther taking them modulo 1. In this way we de�ne a mapping T1 of the torusT2 = R2=Z2 which is discontinuous on the circle fx2 2 Zg (except when a is equalto an integer) and preserves the Lebesgue measure �.Similarly we de�ne another family of maps depending on the same parameter aby restricting the formulas x01 = x1x02 = ax1 + x2to the strip f0 � x1 � 1g and then taking them modulo 1. Thus for each a we get amapping T2 of the torus which is discontinuous on the circle fx1 2Zg (except whena is equal to an integer) and preserves the Lebesgue measure �.Finally we introduce the composition of these maps T = T2T1 which depends onone real parameter a. An alternative way of describing the map T is by introducingtwo fundamental domains for the torus M+ = f0 � x1 + ax2 � 1; 0 � x2 � 1g andM� = f0 � x1 � 1; 0 � �ax1 + x2 � 1; g.The linear map de�ned by the matrix� 1 aa 1 + a2� = � 1 0a 1�� 1 a0 1�takesM+ ontoM� thus de�ning a map of the torus which is discontinuous at moston the boundary of M+ and preserves the Lebesgue measure. This is the map Tthat constitute our toy model.Let us go back to the more general case, according to [KS] such systems havea natural measurable partition (in fact a K-partition): the partition into stablemanifolds.Such a partition P can be constructed as to satisfy the following requirements:(1) there exists a �nite number of codimension one smooth manifolds fSigm0i=1,transversal to the stable direction, such that each p 2 P has the boundariespoints belonging to the set [m0j=1 [1n=0 T�nSi;8(2) for each p 2 P diam(p) � 2�0;9(3) for each p 2 P there exists fpigki=1 � P such that T�1p = [ki=1pi.8In the discontinuous case such manifolds can be simply chosen as the set of points at which Tis not C(2) .9�0 is some previously �xed number.14



According to above properties, if one chooses as F0 the �-algebra generated by thepartition P, then fFig1i=0 has the dynamical properties requested in the hypothesesof Theorem 1.2.To make the previous statement more clear let us see how such a partition lookslike in the concrete example mentioned above.The map T is piecewise linear and it has constant contracting direction v. Let uscall S the discontinuity set of T�1 and S1 = [1n=0T�nS. Then the stable partitionis made of segments along the direction v with the endpoints belonging to S1.10Since S1 is an invariant set, properties (1)-(3) are readily veri�ed.Further, we will assume that the manifolds fSig satisfy the following property:Property 0. For each i 6= j Si \Sj is either empty or consists of smooth subman-ifolds Iij of codimension at least two. Moreover, setting11M � supij ]fk 2 f1; :::; m0g j Sk \ Iij 6= ;g;we require � � ��1M < 1:Note that Property 0 may not be satis�ed by T but may be enjoyed by T q, forsome q > 1. In fact, it is not so hard to see that \generically" this will be thecase (i.e., Property 0 will hold for some iterate of the map). In such a situation wecan apply all the following to the dynamical system (X; �; T q) obtaining the sameconclusions as far as the CLT is concerned. Here, for simplicity, we restrict ourselvesto the case q = 1.If we think to our model example we see that M = 2, so that ��1M < 1 ifjaj > 1p2 . The reader can easily compute M for powers of T and see that Property0 is satis�ed for smaller and smaller values of a. Of course, a = 0 corresponds tothe identity, for which no hyperbolicity is present.For the systems under consideration holds the following (see [KS] for details)Property 1. For each p 2 P de�ne the measure �p byZp gd�p � E(gjF0)(x);for g 2 C(0)(X), and x 2 p.Then, calling mp the measure induced by the Riemannian structure on p, and�p = d�pdmp the Radon{Nicod�ym derivative, there exist c0 such that supp k�pk1 � c0.For our simple example we see that �p = 1mp(p)mp.10See [LW] for the details of such a construction and the proof that almost every point belongsto one such segment.11Here by ]B is meant the cardinality of the set B. 15



The map is invertible, thus bT �f = f � T�1. A very important consequence ofProperty 1 is that, if p 2 P and P 0 � P is such that Sq2P0 q = T�np, then for eachf 2 L1(X; �) Zp f � T�nd�p = Xq2P0 �p(Tnq)Zq fd�p:In addition, one can prove the following (see [L1] for a complete discussion of thetwo-dimensional case).Property 2. For each � � �0, there exists K 2 R and � > 1, such that, for eachx 2 X that belongs to a p 2 P with diam(p) � �, and for each g; f 2 C�(X) (H�oldercontinuous of class � > 0), RX g = 0,12jE(f bT �ngjF0)(x)j � K��nkgks�kfku�In the rest of the section we will see that Properties 0-2 imply, for the systemsunder consideration, the hypotheses of Theorem 1.2.Lemma 3.1. Calling A" = fx 2 X j diam(p(x)) � "g we have13m(A") � C"for some �xed C 2 R+.Proof. Since @p is made up of points belonging to the preimages of the manifoldsSi, it follows that if diam(p) � " then there exists z 2 @p and n 2 N, i 2 f1; :::; m0gsuch that Tnz 2 Si. Accordingly, Tnp must lie in a ��n" neighborhood of Si. Sucha neighborhood has measure c1��n", for some �xed c1. It is then clear thatm(A") � 1Xn=0m0c1��n" = m0c11� �":�The problem in applying our theorem comes from the possible presence in Pof very small elements. On such elements Property 2 does not provide any directcontrol. To our advantage instead works Lemma 3.1 that informs us that the totalmeasure of the very small pieces is small.12By kfk� we mean the usual C(�) norm, while kfks� = supp2P supx; y2p jf(x)�f(y)jkx�yk� + kfk1; andkfku� is de�ned analogously by using the unstable partition. Essentially, This norms measure theH�older derivative in the stable (or unstable) direction only.13By m(�) we mean the symplectic or Riemannian metric that, according to our hypotheses, isthe invariant measure of the system.16



Yet, small pieces may be present.14 The idea to deal with them consists initerating them: if T�njp is smooth, then diam(T�np) � �ndiam(p). Unfortunately,in general T is not smooth so we have to handle the iterations with more care.Fix p 2 P, by construction there exists P1 � P such that T�1p = Sq2P1 q. CallP�1 = fq 2 P1 j diam(q) � �g and p1 = Sq2P�1 Tq � p. In other words p1 consistsof the portion of p that, under the actions of T�1, does not give rise to su�cientlylarge elements of the partition. The process can obviously be iterated: let P2 bethe collection such that T�2p1 = Sq2P2 q, P�2 = fq 2 P2 j diam(q) � �g, p2 =Sq2P�2 T 2q � p1 and so on.Lemma 3.2. If � is su�ciently small and p 2 A", then for n � log "�1�log ��1 +m,mp(pn) � "�m:Proof. Thanks to Property 0, the choice of � su�ciently small insures that eachelement with diameter less than � can intersect at most M manifolds Si. Since theSi describe all the possible discontinuities in our system, it follows that ]P1 � M .But the same argument applies to each connected piece of pj : since the diameter ofT�lpj is, by de�nition, less than �, for l < j, it follows that T�l�1pj can consistsof, at most, M elements of the partition. In conclusion, ]P�n �Mn, andmp(pn) �Mn��n� � �m":�Using the above estimates, for each n; k 2 N, k < n, and calling �B the charac-teristic function of the set B, we haveE(jE (g bT �nf jF0)j) � 1Xm=0 E(�A�m� jE(g bT �nf jF0)j)= n�kXm=0 E(�A�m� jE( bT �k [bT kg bT �(n�k)f ]jF0)j)+ 1Xm=n�k+1kfk1kgk1�(A�m�):14In fact, this is certainly the case in the non-smooth case. If T is smooth, then it is possibleto construct P in such a way that diam(P) � � for some �xed �, by using Markov partitions.When �nite Markov partitions are available the present method boils down to a repackaging ofwell known facts. 17



Next, for each x 2 p � A�m�, using the notations of the Lemma 3.2 and setting� = bT kg bT �(n�k)f ,jE(g bT �nf jF0)j = ����Zp � � T�kd�p���� � ����Zpk � � T�kd�p����+ �����Zpnpk f � T�kd�p������ c0mp(pk)k�k1 + Xq2PTkq�pnpk �p(T kq) ����Zq �d�p����� c0kfk1kgk1��k + Xq2PTkq�pnpk �p(T kq)jE(�jF0)j� c0kfk1kgk1��k +K��n+kk bT kgks�kfku�� kfk�kgk�[c0��k +K��n+k��k�]:Using the above estimates yieldE(jE (g bT �nf jF0)j) � kfk�kgk� �(n � k)(c0�k� +K��n+k) + C�1� � �n�k+1� :Hence, by choosing k = �n2 �, it follows that there exists c1 2 R+ such thatE(jE (gT �nf jF0)j � c1nmaxf�; ��1gn2 :This veri�es the hypotheses 1{2 of Theorem 1.2. Hypothesis 3 follows triviallyfrom the assumption f 2 C(�) (or f piecewise H�older). To see this, consider thatF�k is the �-algebra associated to the partition T kP. But, if p 2 T kP, thendiam(p) � 2��k�0. Thus, for each x 2 p 2 T kP, let q 2 P be the unique elementsuch that p � q, thenjE(f jF�k )(x) � f(x)j = j�q(p)�1 Zp fd�q � f(x)j � supy2p jf(y) � f(x)j� kfk�diam(p)� � kfk�2����k��0 :Hence Theorem 1.2 applies to the class of systems under consideration and yieldsthe CLT for all H�older continuous functions (in fact, the above considerations caneasily be pushed to obtain the CLT for much larger classes of functions; e.g. piece-wise continuous functions with a logarithmic modulus of continuity).18



References[BSC1] L.A.Bunimovich, Ya.G. Sinai, N.I. Chernov, Markov partitions for two dimensional bil-liards, Rus. Math. Surv. 45 (1990), 105{152.[BSC2] L.A.Bunimovich, Ya.G. Sinai, N.I. Chernov, Statistical properties of two dimensionalhyperbolic billiards, Rus. Math. Surv. 46 (1991), 47{106.[Ch] N.I.Chernov,Limit Theorems and Markov approximations for chaotic dynamical systems,Probability Theory and Related Fields 101 (1995), 321{362.[De] M. Denker, The Central Limit theorem for dynamical systems, Dynamical Systems andErgodic Theory, Banach Center Publications, 23, Czeslaw Olech editor, PWN{PolishScienti�c Publisher, Warsaw, 1989.[DG] D.D�urr, S.Goldstein, Remarks on the Central Limit Theorem for weakly dependent ran-dom variables, Stochastic Processes{Mathematics and Physics, S.Albeverio, Ph.Blanchardand L.Streit editors, Lecture Notes in Mathematics, vol. 1158, Springer-Verlag, 1986.[Go] M.I.Gordin, The Central Limit Theorem for stationary processes, Soviet.Math.Dokl. 10n.5 (1969), 1174{1176.[HK] F. Hofbauer, G. Keller, Ergodic properties of invariant measures for piecewise monotonetransformations, Math. Zeit. 180 (1982), 119{140.[IL] I.A.Ibragimov, Y.V.Linnik, Independent and stationary sequences of random variables,Wolters-Noordho�, Groningen, 1971.[Ke] G. Keller,Un th�eorem de la limite centrale pour une classe de transformations monotonespar morceaux, Comptes Rendus de l'Acad�emie des Sciences, S�erie A 291 (1980), 155{158.[KS] A.Katok, J.M. Strelcyn with collaboration of F. Ledrappier and F. Przytycki, InvariantManifolds, Entropy and Billiards, Smooth Maps with Singularities, Lectures Notes inMathematics 1222 (1986).[KV] C.Kipnis, S.R.S.Varadhan, Central Limit Theorem for addictive functions of reversibleMarkov process and applications to simple exclusions, Commun.Math.Phys. 104 (1986),1{19.[L1] C. Liverani, Decay of correlations, Annals of Mathematics 142 (1995), 239{301.[L2] C. Liverani, Decay of Correlations in Piecewise Expanding maps, Journal of StatisticalPhysics 78, 3/4 (1995), 1111{1129.[LW] C. Liverani, M.P.Wojtkowski, Ergodicity in Hamiltonian Systems, Dynamics Reported 4(1995), 130{202.[LSV] A.Lambert, S.Siboni, V.Vaienti, Statistical properties of a non-uniformly hyperbolic mapof the interval, Journal of Stat.Phys. 72 (1993), 1305.[Ne] J.Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Fran-cisco, 1965.[Y] L.-S.Young, Decay of correlations for certain quadratic maps, Comm.Math.Phys. 146(1992), 123{138.Liverani Carlangelo, Mathematics Department, University of Rome Tor Vergata,00133 Rome, Italy.E-mail address: liverani@mat.utovrm.it
19


