Abstract. We prove a quenched central limit theorem for random walks with bounded increments in a randomly evolving environment on \mathbb{Z}^d. We assume that the transition probabilities of the walk depend not too strongly on the environment and that the evolution of the environment is Markovian with strong spatial and temporal mixing properties.

1. Introduction

The study of random walks in random environment encompasses a considerable range of possibilities that have been addressed in a wide literature. We refer to [25, 26] for recent reviews of the field. Here we consider a situation in which the environment is not static but has an evolution with strong mixing properties and the transition probabilities of the random walk have a weak dependence on the environment. Note however that we have an explicit bound on how strong the dependence on the environment may be. In this case the situation is simpler than in the case of static environment, indeed we will see that the phenomena of Sinai traps [23] cannot take place.

Random walks in dynamical environment have been intensively studied under various assumptions, see e.g. [23, 2, 17, 3, 10, 14, 5, 4, 22, 7, 20, 1]. In fact [7] considers quite general statical environments and even though it does not formally cover dynamical environments, there seems no conceptual difficulty in doing so. Here we will consider a finite range walk in \mathbb{Z}^d with the environment being a, rather general, space-time mixing Markov Chain. This generalizes the case, well studied in the literature [2, 3, 4, 1], in which the Markov Chain has a product structure, that is at each site of the lattice acts a time mixing Markov Chain independently on the other sites. In the latter situation it has been proven that the random walk satisfies an almost sure quenched (that is when the histories of the environment are held fixed) CLT for each $d \geq 3$, [4, 1]. Here we prove the same result for each $d \geq 1$ and for more general classes of environments.
The general strategy of the proof follows the well established path of considering the process as seen from the particle and studying such a process via a martingale approximation [11, 16, 18, 19]. In particular we use the work of [19] in the spirit of [20, 8, 9]. Yet, as we do not discuss the invariance principle and we consider only finite range walks, our arguments are a bit simpler and direct than the ones in [20].

A pleasant feature of our approach is that by making heavier use of dynamical arguments we are able to employ the same methods to establish the mixing properties of the environment and to prove the quenched CLT. In fact, first we prove a CLT under some abstract conditions, then we introduce the class of environments and proceed to prove that the above conditions are satisfied.

The plan of the paper is as follows: in section 2 we first describe a model in which the process of the environment satisfies a certain number of abstract conditions, and we prove the quenched CLT (Theorem 1), provided a certain correlation decay estimate, (2.21), can be verified. Then, in subsection 2.4, we describe a class of models that are claimed (Theorem 2) to satisfy the above abstract conditions. In section 3 we first show that the inequality (2.21) is equivalent to an estimate for two independent random walks evolving in the same environment (see [5]). The rest of the section is devoted to proving such an estimate. In section 4 we show that the abstract condition under which the almost sure quenched CLT has been proven before are in fact satisfied by the above mentioned large class of Markov environments provided the dependence on the environment is sufficiently weak. This proves Theorem 2. Finally, in Appendix A we recall some facts from [19] and slightly generalize some estimates from that paper that we need for our proofs.

Convention . In this paper we will use C to designate a generic constant depending only on the quantities appearing in the Assumptions (A0) - (A8) below. We will use instead $C_{a,b,c,...}$ for constants depending also on parameters $a, b, c, ...$. Consequently the actual numerical value of such constants may vary from one occurrence to the next. On the contrary we will use $C_0, C_1, ..., \ldots$ to designate constants whose value is held fixed through the paper.

2. Model and Results

2.1. The random walk in random environment. Let I be a compact Polish space (including the possibility of finite or countable) and $\theta = (\theta^q)_{q \in \mathbb{Z}^d} \in \Theta := I^{\mathbb{Z}^d}$ be an environment on \mathbb{Z}^d. We equip Θ with the product topology and the Borel σ-algebra. We assume that the environment has a Markovian time evolution. Let $(\theta_t)_{t \in \mathbb{N}}$ be such a Markov process so that θ_t, with values in Θ, is the environment at time $t \in \mathbb{N}$.

We will use the notation $(\theta_t)^q$, $q \in \mathbb{Z}^d$, with values in I, to designate the space components of θ_t at position q. As usual, we will often use the same notation for the random variable and its values since it creates no confusion.

In other words, we have a Markov process with transition probabilities, for each measurable set $A \subset \Theta$,

$$P(\{\theta_{t+1} \in A\} \mid \theta_t) = p(\theta_t, A).$$

We require the process to be Feller and translation invariant, that is $p(\theta, A) = p(\tau^z \theta, \tau^z A)$ for each θ, z, A, where $(\tau^z \theta)^q = \theta^{q+z} \in I$. We will call P_ν the measure on the set $\Omega := \Theta^\mathbb{N}$ of environment histories generated by the process (2.1) started with the initial measure ν on Θ, while we use P_{ν_0} if the process is started in the
configuration \(\theta \in \Theta \). We will use \(\mathbb{E}_\mu \) for the expectation with respect to \(\mathbb{P}_\mu \). Note that the translation invariance of the kernel \(p \) implies translation equivariance of the measures \(\mathbb{P}_\mu \), namely \(\mathbb{P}_\mu(\tau_z A) = \mathbb{P}_\mu(A) \) for \(A \subseteq \Omega \) and where \(\tau_z \) acts on \(\Omega \) by pure space translation.

We consider then a random walk \(X_t \) started at \(X_0 = 0 \) in such an environment. More precisely, let \(\Lambda := \{ z \in \mathbb{Z}^d : \| z \| \leq C_1 \} \) and \(\Delta_{t+1} := X_{t+1} - X_t \) (here, and in the following, \(\| v \| \) means \(\sup_i |v_i| \)). Then the process \((X_t, \theta_t)_{t \in \mathbb{N}} \) is defined by the transition probabilities

\[
\mathbb{P}(\Delta_{t+1} = z, \theta_{t+1} \in A) \mid X_t, \theta_t) = \pi_z(\tau^X; \theta_t)p(\theta_t, A)
\]

where \(\pi_z \equiv 0 \) for \(z \notin \Lambda \), and \(\pi_z(\theta) \) depends on \(\theta \) only through \((\theta^q)_{q \in \Lambda} \) and is continuous as a function of these variables.

The basic space on which all processes studied in this paper can be defined is \(\Omega \times \Lambda^\mathbb{N} \) with elements \(((\theta_t)_{t \in \mathbb{N}}, (\Delta_t)_{t \in \mathbb{N}}) \). The probability measures \(\mathbb{P}_\mu \) on this space are interested in are skew product measures with “base” \(\mathbb{P}_\mu \) on \(\Omega \) and the transition kernel \(\mathbb{P}(\theta_t) \) which is the distribution of the increments of the walk on a given space-time environment \((\theta_t)_{t \in \mathbb{N}} \).

It is well known that to study the properties of \(X_t \) it is convenient to study the process of the environment as seen from the particle. In fact, such a process can be considered in several fashions two of which will be relevant in the sequel.

2.2. The process of the environment as seen from the particle. We look at the environment history \((\theta_s)_{s \in \mathbb{N}} \) not from the origin of the lattice but from the random position of the particle and use the letter \(\omega \) to denote it. Formally also \(\omega \) is an element of \(\Omega \), but the interpretation is different. On \(\Omega \) we define the space-time random position of the particle and use the letter \(\theta \) to denote it. Formally also \(\theta \) is an element of \(\Omega \), but the interpretation is different. On \(\Omega \) we define the measurable map \(\Phi : \Omega \times \Lambda^\mathbb{N} \rightarrow \Omega \),

\[
\Phi((\theta_t)_{t \in \mathbb{N}}, (\Delta_t)_{t \in \mathbb{N}}) = (\omega_n)_{n \in \mathbb{N}} \text{ with } \omega_0 = (\theta_t)_{t \in \mathbb{N}}, \omega_n = \tau^{X_n} \omega_0
\]

It transforms a measure \(\mathbb{P}_\mu \) into the measure \(\mathbb{P}_\mu = \mathbb{P}_\mu \circ \Phi^{-1} \) on \(\Omega \). This is the distribution of the process \((\omega_n)_{n \in \mathbb{N}} \) of space-time histories as seen from the particle under the basic probability measure \(\mathbb{P}_\mu \). The map \(\Phi \) is an almost sure bijection between the probability spaces \((\Omega \times \Lambda^\mathbb{N}, \mathbb{P}_\mu) \) and \((\Omega, \mathbb{P}_\mu) \) provided the set of \(\tau^{0,b} \)-invariant space-time histories \((\theta_t)_{t \in \mathbb{N}} \) has \(\mathbb{P}_\mu \)-measure zero for all \(b \). Hence it is simply a matter of convenience on which basic space we interpret our random variables. For convenience we also introduce the random variables \(\omega_t = (\omega_i)_{i \leq t} \) for each \(t \in \mathbb{N} \). Observe that \(\omega_t = \tau^{X_t} \theta_t \) are elements of \(\Theta \).

In the following lemma we consider some properties of the processes \((\omega_t)_{t \in \mathbb{N}} \) and \((\omega_n)_{n \in \mathbb{N}} \). The proof is by simple direct computation.

Here and in the following we will use \(\mathcal{C}^0 \) to designate the continuous functions and \(\mathcal{C}^0_{\text{loc}} \) for the continuous functions depending only on finitely many variables.

Lemma 2.1. Let \(\nu \) be any initial measure on \(\Theta \), and let \(\mathbb{P}_\nu \) be the measure on \(\Omega \) constructed from it as described above (i.e. via the intermediate steps \(\mathbb{P}_\nu \) and \(\mathbb{P}_\nu \)).
(1) \((\omega_t)_{t \in \mathbb{N}}\) is a Markov process with transition probabilities

\[(2.4) \quad P_\nu(\{\omega_{t+1} \in A\} | \omega_t) = \sum_{z \in \Lambda} \pi_z(\omega_t)p(\omega_t, \tau^{-z}A)\]

and Feller Markov operator \(S : C^0(\Theta) \rightarrow C^0(\Theta)\) defined by

\[(2.5) \quad Sf(\omega) := \sum_{z \in \Lambda} \int_\Theta f(\tau^z \omega') \pi_z(\omega)p(\omega, d\omega') = E_{P_\nu}(f(\omega_{t+1}) | \omega_t = \omega).\]

(2) \((\omega_t)_{t \in \mathbb{N}}\) is a Markov process with transition probabilities

\[(2.6) \quad P_\nu((\omega_{t+1} \in A) | \omega_t) = \sum_{z \in \Lambda} \pi_z((\omega_t)_0)\mathbb{I}_A(\tau^{z} \omega_t)\]

and Feller Markov operator \(\Pi : C^0(\Omega) \rightarrow C^0(\Omega)\) defined by

\[(2.7) \quad \Pi f(\omega) := \sum_{z \in \Lambda} \pi_z(\theta_0) f(\tau^{z} \omega)\]

with the notation \(\omega = (\theta_t)_{t \in \mathbb{N}}\) explained above.

To successfully use both type of processes, the original one and the one seen from the particle, it will be necessary to have initial measures which result in ergodic stationary processes. More precisely we assume the following.

Assumptions.

(A0) Mixing. There exist unique measures \(\mu_e\) and \(\mu\) on \(\Theta\) such that the processes (2.1) and (2.4), started with the initial distribution \(\mu_e\) and \(\mu\), respectively, are stationary, ergodic and mixing. In addition, \(\mu_e\) is not supported on the translation invariant configurations.

(A1) Absolute continuity. The measures \(\mu\) and \(\mu_e\) are equivalent.

In particular, the measure \(\mu\) is uniquely characterized by the stationarity condition \(E_\mu(Sf) = E_\mu(f)\) for all \(f \in C^0(\Theta)\).

Both measures \(\mu_e\) and \(\mu\) from Assumption (A0) can be used as starting measures for the process \((\theta_t)_{t \in \mathbb{N}}\) of the environment thus giving rise to measures \(P_{\mu_e}^e\) and \(P_{\mu}^e\) on \(\Omega\).

Clearly \(P_{\mu_e}^e\) is stationary, and the corresponding measure \(P_{\mu_e}^e\) on \(\Omega \times \Lambda^N\), defined in section 2.1 is our basic reference probability that we will denote simply by \(P^e\). In contrast, the measure \(P_{\mu}^e\) is not stationary in general, but if we use it to define the measure \(P_{\mu}^e\) on \(\Omega \times \Lambda^N\), then the corresponding measure \(P := P_{\mu}^e \circ \Phi^{-1}\) on \(\Omega\) is stationary, in other words, the process \((\omega_t)_{t \in \mathbb{N}}\) has the stationary distribution \(P\) under the probability \(P_{\mu}^e\). Indeed, a direct computation which uses the translation equivariance of the probability kernel \(p\) shows:

Lemma 2.2. Under Assumption (A0), \(E_{P_{\mu}^e}(\Pi h) = E_{P_{\mu}^e}(h)\) for each \(h \in C^0(\Omega)\). As \(\Pi\) does not increase the supremum-norm, it follows in particular that \(\Pi\) is a \(L^2(\Omega, P_{\mu}^e)\)-contraction.

Remark 2.3. As the measures \(\mu_e\) and \(\mu\) on \(\Theta\) are equivalent, also the Markov measures \(P_{\mu_e}^e\) and \(P_{\mu}^e\) on \(\Omega\) and the measures \(P^e = P_{\mu_e}^e\) and \(P_{\mu}^e\) on \(\Omega \times \Lambda^N\) are equivalent. It follows that the same is true for the corresponding measures \(P_{\mu}^e \circ \Phi^{-1}\) and \(P_{\mu} = P_{\mu}^e \circ \Phi^{-1}\) on \(\Omega\). Therefore all statements concerning almost sure behaviour of our processes have the same meaning regardless of the measure we are referring
to. Observe, however, that this does not mean that the obvious projections of P and P^e to Ω are equivalent!

2.3. A general quenched CLT. We assume the following.

Assumptions.

(A2) Time mixing of the environment as seen from the particle. There exists $\eta < 1$ such that, for each $\varphi \in C_0^\infty(\Theta)$ depending on M variables and for each $n \in \mathbb{N}$,

$$\|S^n \varphi - E_\mu(\varphi)\|_\infty \leq CMn^\eta \|\varphi\|_\infty.$$

(A3) Space mixing of the environment. There exists $\xi > 4$ such that, if $\psi \in C^0(\Theta)$, $\varphi \in C_0^\infty(\Theta)$ and the supports of φ and ψ are at a distance L, then

$$|\mu_\varepsilon(\varphi) - \mu_\varepsilon(\psi)| \leq C_\varepsilon L^{-\xi} \|\varphi\|_\infty \|\psi\|_\infty.$$

(A4) Locality of environment dynamics. There exist $\xi > 4$ and $\tilde{\xi} > 0$ such that for all $M, L, s \in \mathbb{N}$ and $A, B \subset \mathbb{Z}^d$ with diameter at most M and distance $d(A, B) > L$, for all $f, g : \Omega \to \mathbb{R}$ such that f depends only on variables in $A^{[0,\ldots,s]}$ and g only on variables in $B^{[0,\ldots,s]}$, and for each $\theta \in I$ holds

$$|E_{P^e}(f(\theta_1, \ldots, \theta_s)g(\theta_1, \ldots, \theta_s)) - E_{P^e}(f)E_{P^e}(g)| \leq C_M s^{\tilde{\xi}} L^{-\xi} \|f\|_\infty \|g\|_\infty.$$

(A5) Ellipticity. There exist $\gamma_z \geq 0$, $c > 0$ with $\sum_{z \in A} \gamma_z = 1$ and $\sum_{z \in A} \gamma_z e^{t(\langle l, z \rangle)} < 1$ for any $l \in \mathbb{Z}^d \setminus \{0\}$, such that $\tau_{\gamma_z}(\theta) \geq c \gamma_z$ for P^e_μ-almost every θ. In the following we will set $\gamma = c \inf \{\gamma_z \neq 0\} > 0$.

Lemma 2.4. Assumptions (A0), (A1) and (A3) imply that the translation invariant environment configurations have zero P^e_μ-measure.

Proof. Let d be a metric on I. Next, given $b \in \mathbb{Z}^d$, let $A_{M, \delta} := \{\theta \in \Theta : d((\tau^b \theta)_q, (\theta)_q) \leq \delta \forall |q| \leq M\}, A := \{\theta \in \Theta : \tau^b \theta = \theta\}$. Then, for each $n \in \mathbb{N}$ and $\varepsilon > 0$,

$$\mu_\varepsilon(A_{M, \delta}) - \varepsilon \leq \mu_\varepsilon(A) - \mu_\varepsilon(A_{M, \delta}) \leq \mu_\varepsilon(I_{A_{M, \delta}} \tau^{nb} I_A) \leq \mu_\varepsilon(I_{A_{M, \delta}} \tau^{nb} I_{A_{M, \delta}})$$

provided δ is small enough and M large enough. Choosing n sufficiently large (A3) implies

$$\mu_\varepsilon(A) \leq \mu_\varepsilon(A)^2 + C_M \delta \|bn\|^{-\xi} + C\varepsilon.$$

By the arbitrariness of n and ε it follows $\mu_\varepsilon(A) \in \{0, 1\}$, but $\mu_\varepsilon(A) = 1$ is ruled out by assumption (A0), hence it must be $\mu_\varepsilon(A) = 0$ and $P^e_\mu(\{\theta_t \in A\}) = \mu_\varepsilon(A) = 0$ for each $t \in \mathbb{N}$. The claim follows then by assumption (A1).

Remark 2.5. Lemma 2.4 implies that the map $\Phi : \Omega \times \Lambda^N \to \Omega$ is indeed an almost sure bijection. Therefore the σ-algebra $\mathcal{F}_t := \sigma(\omega_0, \ldots, \omega_t)$ and the σ-algebra $\sigma(\Delta_1, \ldots, \Delta_t, (\theta_s)_{s \in N})$ coincide P almost surely. Similarly, Δ_{t+1} is $\sigma(\omega_t, \omega_{t+1})$-measurable.

As (ω_t) is a Markov process under P, conditional expectations of the form $E(G|\mathcal{F}_t)$ can be written as functions of ω_t alone if G is $\sigma(\omega_t, \omega_{t+1}, \ldots)$-measurable. This applies in particular to Δ_{t+1}. Hence

$$E(\Delta_{t+1}|\mathcal{F}_t) = \sum_{z \in A} \varepsilon \pi_z(\tau^X \theta_t) = E(\Delta_{t+1}|\sigma(\Delta_1, \ldots, \Delta_t, \theta_0, \ldots, \theta_t)),$$
so both conditional expectations coincide, and as $\tau^{X_t, \theta_t} = \omega_t$ they are functions of $\omega_t = (\omega_t)_0$.

Remark 2.6. Condition (A5) is slightly weaker than the corresponding conditions in [3, 22]. It is indeed equivalent to requiring that the set of points $z \in \Lambda$ with $\gamma_z > 0$ is not contained in any affine hyperplane of \mathbb{R}.

Lemma 2.7. Under Assumptions (A0), (A1) and (A5), the stationary Markov process (ω_t) with distribution P is ergodic.

Proof. It suffices to prove that $\Pi h = h$ implies h is $P^e_{\mu_e}$-a.e. constant for each indicator function h. Consider a measurable set $C \subset \Omega$ such that $\Pi 1_C = 1_C$. Then, for each $\omega = (\theta_t)_{t \in \mathbb{N}}$,

$$1_C(\omega) = (\Pi 1_C)(\omega) = \sum_{z \in \Lambda} \pi_z(\theta_0) 1_C(\tau^{1, z}; \omega)$$

which means that for each $z \in \Lambda$ such that $\gamma_z \neq 0$, holds $(\tau^{1, z})^{-1} C \subset C$ $P^e_{\mu_e}$-a.e.. Then, by assumption (A1), $\tau^{1, 0} C = C = (\tau^{1, z})^{-1} C$ $P^e_{\mu_e}$-a.e., since $P^e_{\mu_e}$ is invariant by space-time translations. In addition, we will see shortly that the ellipticity assumption (A5) implies that there exists $s \in \mathbb{N} \setminus \{0\}$ such that

$$\tau^s, 0 C = C \quad P^e_{\mu_e} \text{-a.e..}$$

The lemma thus follows by the ergodicity of $P^e_{\mu_e}$ with respect to time translations multiple of s which, in turn, follows from the mixing of the associated Markov process stated in assumption (A0).

The proof of (2.9) is obvious if $\gamma_0 \neq 0$. To study the case $\gamma_0 = 0$, first notice that (A5) implies that the vectors in the set $V := \{(1, z) \in \mathbb{R} \times \Lambda : \gamma_z \neq 0\} \subset \mathbb{R}^{d+1}$ must span \mathbb{R}^{d+1}. Otherwise, there would exist a vector $(a, l) \in \mathbb{Z} \times \mathbb{Z}^d$ such that $\langle (a, l), (1, z) \rangle = 0$ for each $z \in V_0 = \{(z \in \Lambda : \gamma_z \neq 0) \subset \mathbb{R}^d$. But this means $\langle l, z \rangle = -a$ for each $z \in V_0$ which would contradict (A5).

Next, let $\{\tilde{z}_{i,j} \}_{i,j=1}^{d+1} \subset V$ be a basis of \mathbb{R}^{d+1}. Accordingly, for each $s \in \mathbb{Z}$, we can solve the equation $\sum_{i=1}^{d+1} \alpha_i \tilde{z}_i = s(1, 0)$. In turn, this can be written in terms of a $(d+1) \times (d+1)$ invertible matrix, with integer coefficients, and a vector $\tau \in \mathbb{R}^{d+1}$ as $Z \tau = s(1, 0)$. We choose $s \neq 0$ such that $\tau = sZ^{-1}(1, 0) \in \mathbb{Z}^{d+1}$. Let $A_+ = \{i : \alpha_i > 0\}$, then $\tau^{\sum_{j \in A_+} \alpha_j (1, z_j)} C = \tau^{-\sum_{j \in A_+} \alpha_j (1, z_j)} C \quad P^e_{\mu_e} \text{-a.s.,}$ which implies (2.9) since, for each $a \geq b$ and each set A, $(\tau^{b, z})^{-1} \tau^{a, 0} A \supset \tau^{a-b, 0} C$.

Our first main result is a quenched CLT, that is a CLT under the law $P(\theta_t)$, the measure P conditioned to the history $(\theta_t)_{t \in \mathbb{N}}$ of the environment.

Theorem 1. Under assumptions (A0) - (A5), there exists a vector $v \in \mathbb{R}^d$ and a $d \times d$ matrix $\Sigma^2 > 0$ such that for $P^e_{\mu_e}$-a.e. environment history $(\theta_t) \in \Omega$,

$$\lim_{N \to \infty} \frac{1}{N} X_N = v \quad P(\theta_t) \text{-almost surely},$$

and letting $\hat{X}_N := X_N - Nv$

$$\frac{\hat{X}_N}{\sqrt{N}} \Rightarrow \mathcal{N}(0, \Sigma^2) \quad \text{under } P(\theta_t).$$
Proof. Recall Remarks 2.3 and 2.5 which allow us to interpret the random walk \((X_t)_{t \in \mathbb{N}}\) and all other random variables of interest as being defined on the probability space \((\Omega, \mathbb{P})\), and denote by “\(\mathbb{E}\) expectations w.r.t. \(\mathbb{P}\). Consider the filtration

\[\mathcal{F}_t^0 := \sigma(\Delta_1, \ldots, \Delta_t, \theta_0, \ldots, \theta_t) \]

Let \(g(\omega_t) = \mathbb{E}(\Delta_{t+1} | \mathcal{F}_t^0)\). It is easy to see that is a continuous local function of the process of the environment as seen from the particle (recall section 2.2). Write \((2.12)\)

\[\Delta_{t+1} = \Delta_{t+1} - \mathbb{E}(\Delta_{t+1} | \mathcal{F}_t^0) + \mathbb{E}(\Delta_{t+1} | \mathcal{F}_t^0) = [\Delta_{t+1} - \mathbb{E}(\Delta_{t+1} | \mathcal{F}_t^0)] + g(\omega_t). \]

Note that the first term is a martingale. Setting \(v := \mathbb{E}_\mu(g)\) and \(g_0 := g - v\) we define

\[\hat{\Delta}_{t+1} := \Delta_{t+1} - v = \Delta_{t+1} - \mathbb{E}(\Delta_{t+1} | \mathcal{F}_t^0) + g_0(\omega_t). \]

Then \(\mathbb{E}(\hat{\Delta}_{t+1}) = \mathbb{E}_\mu(g_0) = 0\) and, as \(\omega_t = (\omega_t)_{0}^N\), \(\sum_{t=0}^{N-1} \hat{\Delta}_{t+1}\) is the sum of a martingale and an additive functional of the stationary ergodic process \((\omega_t)\) under the law \(\mathbb{P}\) (see Lemma 2.7). Hence \((2.10)\) follows from

\[\lim_{N \to \infty} N^{-1}(X_N - Nv) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=0}^{N-1} (\Delta_{t+1} - \mathbb{E}(\Delta_{t+1} | \mathcal{F}_t^0) + g_0((\omega_t)_0)) = 0 \quad \mathbb{P}\text{-a.s.} \]

Observe that “\(\mathbb{P}_{(\theta_t)}\)-almost surely for \(\mathbb{P}_{(\mu)}\)-a.e. environment history \((\theta_t) \in \Omega^t\) is the same as “\(\mathbb{P}\)-almost surely”.

Of course there is no such simple Fubini-type argument to pass from an unconditioned CLT (also known as annealed CLT) to a conditional CLT. Nevertheless we will first prove the unconditioned CLT since its proof is closely linked with a useful exponential estimate.

We wish to solve the equation \(h - Sh = g_0\) that, thanks to \((A2)\), has the bounded solution \(h = \sum_{k=0}^{\infty} S^k g_0\). We can thus write (observe that \(X_0 = 0)\)

\[X_N = \sum_{t=0}^{N-1} \hat{\Delta}_{t+1} \]

\[= \sum_{t=0}^{N-1} \{ \Delta_{t+1} - \mathbb{E}(\Delta_{t+1} | \mathcal{F}_t^0) + h(\omega_{t+1}) - Sh(\omega_t) \} + h(\omega_0) - h(\omega_N) \]

\[= \sum_{t=0}^{N-1} \Delta_{t+1} + h(\omega_t) - h(\omega_N), \]

where \(\overline{\Delta}_t := \Delta_t - \mathbb{E}(\Delta_t | \mathcal{F}_{t-1}^0) = h(\omega_t) - Sh(\omega_{t-1})\). Put \(M_n := \sum_{t=1}^{n} \overline{\Delta}_t\), then \(M_n\) is a \(\mathcal{F}_n^0\)-martingale. Moreover the \(\overline{\Delta}_t\) are uniformly bounded random variables, and they are almost surely functions of \(\omega_t\) and \(\omega_{t+1}\), so they are functions of \(\omega_t\) (see Remark 2.5). Therefore \(\overline{\Delta}(\overline{\Delta}_t)\) is a stationary and ergodic process and \(N^{-1} \sum_{t=0}^{N-1} \overline{\Delta}_t \overline{\Delta}_t^T\) converges almost surely to a symmetric matrix \(\Sigma^2 \geq 0\). We note that this immediately implies the usual CLT

\[\frac{X_N - Nv}{\sqrt{N}} \Rightarrow \mathcal{N}(0, \Sigma^2) \quad \text{under } \mathbb{P}, \]

see e.g. [13, Theorem 3.2].
In addition, by a variant of Hoeffding’s inequality for martingales (see e.g. [12]), for sufficiently small \(\varepsilon > 0 \) and \(L \in [0, N] \) the following holds

\[
\Pr \left\{ \left| \frac{\hat{X}_{N+L}}{\sqrt{N+L}} - \frac{\hat{X}_N}{\sqrt{N}} \right| \geq \varepsilon \right\} \leq C e^{-C \varepsilon^2 / L}.
\]

This is easily seen as follows: For sufficiently large \(N \) we have, for each of the \(d \) components separately,

\[
\Pr \left\{ \left| \frac{\hat{X}_{N+L}}{\sqrt{N+L}} - \frac{\hat{X}_N}{\sqrt{N}} \right| \geq \varepsilon \right\} \leq \Pr \left\{ \left| \frac{M_{N+L} - M_N}{\sqrt{N+L}} \right| \geq \frac{\varepsilon}{4} \right\} + \Pr \left\{ \left| \frac{M_N}{\sqrt{N}} \right| \geq \frac{\varepsilon}{4} \right\}
\]

and both terms can be estimated using Hoeffding’s inequality, the first one by \(\exp \left(-C \varepsilon^2 N^2 / L^2 \right) \), and the second one by \(\exp \left(-C \varepsilon^2 N^2 / L^2 \right) \).

Next we check that \(\Sigma^2 > 0 \). Indeed, if there exists \(w \in \mathbb{R}^d, \|w\| = 1 \), such that \(\langle w, \Sigma^2 w \rangle = 0 \), then

\[
0 = \mathbb{E}(\langle w, \Delta_{t+1} - \mathbb{E}(\Delta_{t+1} | F_t^i) \rangle) + h(\omega_{t+1}) - Sh(\omega_t)^2)
\]

which implies, for each \(t \in \mathbb{N} \), \(\langle w, \Delta_{t+1} \rangle = \langle w, h(\omega_t) - h(\omega_{t+1}) \rangle \), hence

\[
\langle w, h(\omega_N) \rangle = \sum_{t=0}^{N-1} \langle w, \Delta_{t+1} \rangle + \langle w, h(\omega_0) \rangle
\]

This is in contradiction with the boundedness of \(h \). In fact, on the one hand (2.17) implies \(|\sum_{t=0}^{N-1} \langle w, \Delta_{t+1} \rangle| \leq 2\|h\|_\infty \). On the other hand, by assumption \((A5)\), there exists a probability larger than \(\gamma^N \) to have \(|\sum_{t=0}^{N-1} \langle w, \Delta_{t+1} - v \rangle| \geq CwN \).

To obtain more refined information it is convenient to consider the finer filtration \(F_t := \sigma \{ \Delta_1, \ldots, \Delta_{t}, (\theta_s)_{s \in \mathbb{N}} \} \) and the decomposition

\[
\hat{\Delta}_{t+1} = (\hat{\Delta}_{t+1} - \mathbb{E}(\hat{\Delta}_{t+1} | F_t)) + \mathbb{E}(\hat{\Delta}_{t+1} | F_t)
\]

Clearly, \(Z_t := \sum_{s=1}^{t} \hat{\Delta}_s - \mathbb{E}(\hat{\Delta}_s | F_{s-1}) \) is a martingale with respect to the filtration \(F_t \). Let

\[
\tilde{g}(\theta) := \sum_{z \in \Lambda} z \pi_z(\theta_0) - v
\]

so \(\tilde{g} \) is a continuous local function on \(\Theta \). Then

\[
\mathbb{E}(\hat{\Delta}_{t+1} | F_t) = \sum_{z \in \Lambda} z \pi_z(\tau^X_i \theta_t) - v = \tilde{g}(\tau^X_i \theta_t) = \tilde{g}(\omega_t).
\]

Recall that \(\omega = (\omega_s)_{s \in \mathbb{N}} \). Denote \(G(\omega) := \tilde{g}(\omega_0) \). By Lemma 2.1, Remark 2.3 and section 2.2 on the environment as seen from the particle, we have

\[
\mathbb{E}(\hat{\Delta}_{t+1} | F_t) = \tilde{g}(\omega_t) = G(\omega_t)
\]

\[
\mathbb{E}(\hat{\Delta}_{t+1} | F_0) = \Pi' G(\omega_0) = \mathbb{E}(G(\omega_t) | \sigma(\omega_0))
\]

where \((\omega_t) \) is the Markov process defined in section 2.2. Thus, the remainder in (2.18) is an additive functional of this Markov process.
The next idea, following [20], is to use [19, Theorem 1] to conclude. To be precise, [20] uses [19] in conjunction with the theory of fractional coboundaries developed in [8]. In fact, since we are discussing random walks with bounded increments, the use of [8] is not really necessary and a slightly more quantitative version of [19] allows to conclude by a simple Borel-Cantelli argument, see [21] for a similar strategy. For the reader’s convenience we present the needed modifications of the arguments from [19, 21] in the appendix. Indeed, Theorem A.2 shows the following: given any \(w \in \mathbb{R}^d \) and \(\rho \geq 0 \), if

\[
\sum_{n=1}^{\infty} n^{-\frac{2}{\rho}} \left(\ln n \right)^\rho \left\| \sum_{k=0}^{n-1} \langle w, \Pi^k G \rangle \right\|_{L^2(\Omega, \mathbb{P}_\mu)} < \infty,
\]

then \(\sum_{s=0}^t G(\omega_s) \) can be decomposed, under the stationary law \(P \) of \((\omega_t)_{t \in \mathbb{N}} \), as \(\tilde{M}_t + R_t \) where \(\tilde{M}_t \) is an \(L^2(\Omega, P) \)-martingale with respect to the filtration \(\mathcal{F}_t = \sigma(\omega_0, \ldots, \omega_t) \), see Remark 2.3, and \(\lim_{N \to \infty} N^{-\frac{2}{\rho}} R_N = 0 \) in \(L^2(\Omega, P) \). In addition, \(\tilde{M}_t - \tilde{M}_{t-1} \) is \(\sigma(\omega_{t-1}, \omega_t) \)-measurable, and it can be written as \(H(\omega_{t-1}, \omega_t) \) for some \(\mathbb{R}^d \)-valued function \(H \in L^2(\Theta^2, \mathbb{P}_2) \), where \(\mathbb{P}_2 \) is the two times marginal of \(P \). That is \(\int \int f(\omega, \omega') P(d\omega, d\omega') := \sum_{z \in A} \int \int f(z) f(\omega, \tau_{1, z}^2 \omega) \mathbb{P}_\mu(d\omega) \). We thus have that

\[
\tilde{X}_t = \sum_{s=1}^t \tilde{\Delta}_s = Z_t + \tilde{M}_{t-1} + R_{t-1} = Z_t + \tilde{M}_t + \tilde{R}_t
\]

where \(Z_t + \tilde{M}_t \) is a \(\mathcal{F}_t \)-martingale and \(\tilde{R}_t = R_{t-1} - H(\omega_{t-1}, \omega_t) \) is of order \(O\left(t^{\frac{2}{\rho}} (\ln t)^{-\rho} \right) \) in \(L^2(\Omega, P) \), see Theorem A.2. Define \(\mathbb{R}^{d \times d} \)-valued function \(F \in L^1(\Omega, \mathbb{P}_\mu) \) by

\[
F(\omega_s) := \mathbb{E}\left((Z_{s+1} + \tilde{M}_{s+1} - Z_s - \tilde{M}_s)(Z_{s+1} + \tilde{M}_{s+1} - Z_s - \tilde{M}_s)^T | \mathcal{F}_s \right)
\]

(observe that \(F \) depends only on \(\omega_s \) due to remark 2.3). Then the average (conditional) quadratic variation of the \(\mathbb{R}^d \)-valued martingale, \(Z_t + \tilde{M}_t \), for \(\mathbb{P}_\mu \)-a.e. environment history \((\theta_t)_{t \in \mathbb{N}} \), is given by

\[
\lim_{t \to \infty} \frac{1}{t} \sum_{s=0}^{t-1} \mathbb{E}\left((Z_{s+1} + \tilde{M}_{s+1} - Z_s - \tilde{M}_s)(Z_{s+1} + \tilde{M}_{s+1} - Z_s - \tilde{M}_s)^T | \mathcal{F}_s \right)
\]

\[
= \lim_{t \to \infty} \frac{1}{t} \sum_{s=0}^{t-1} F(\omega_s) = \mathbb{E}_{\mathbb{P}_\mu}(F)
\]

where we have used Birkhoff’s theorem and the ergodicity of the process \((\omega_t) \) under \(P \) (see Lemma 2.7). Hence, for \(\mathbb{P}_\mu \)-a.e. \((\theta_t) \), we have convergence \(t^{-\frac{1}{2}} (Z_t + \tilde{M}_t) \Rightarrow N(0, \mathbb{E}_{\mathbb{P}_\mu}(F)) \), by standard martingale CLT convergence theorems.

Indeed, one may apply [13, Theorem 3.2] to the conditional martingales “\(Z_t + \tilde{M}_t \) given \((\theta_t) \)”. To do this one needs to check that for \(\mathbb{P}_\mu \)-a.e. \((\theta_t) \) this conditional martingale satisfies a conditional Lindebergh condition which in turn is implied by the slightly stronger requirement that \(\lim_{t \to \infty} \frac{1}{t} \sum_{s=0}^{t-1} \mathbb{E}\left(f_{\omega_s^2}(\omega_s, \omega_{s+1}) | \mathcal{F}_s \right) = 0 \) \(P \)-almost surely for each \(\varepsilon > 0 \) where \(f_u(\omega_s, \omega_{s+1}) = (\xi_{s+1}, \xi_{s+1}) \mathbb{1}(\xi_{s+1}, \xi_{s+1} > u) \).
and \(\xi_{s+1} = Z_{s+1} - M_{s+1} - Z_s - M_s \). But, for each \(u > 0 \),
\[
\lim_{t \to \infty} \frac{1}{t} \sum_{s=0}^{t-1} \mathbb{E}(f_{s+2}(\omega_s, \omega_{s+1}) | \mathcal{F}_s) \leq \lim_{t \to \infty} \frac{1}{t} \sum_{s=0}^{t-1} \mathbb{E}(f_u(\omega_s, \omega_{s+1}) | \mathcal{F}_s)
= \mathbb{E}(f_u) = \mathbb{E}((\xi_{s+1}, \xi_{s+1}) I_{\{u > u_0\}})
\]

\(\mathcal{P} \)-almost surely by Birkhoff’s theorem and observing that \((\omega_t) \) is a Markov process, and this value tends to zero as \(u \to \infty \).

Note also that
\[
(2.22) \quad \mathbb{E}_{\omega u}(F) = \lim_{N \to \infty} N^{-1} \mathbb{E}((Z_N + M_N)^2) = \lim_{N \to \infty} N^{-1} \mathbb{E}(\tilde{X}_N^2) = \Sigma^2,
\]
in particular \(\mathbb{E}_{\omega u}(F) = \Sigma^2 > 0 \).

The last task is to prove that the remainder \(t^{-\frac{1}{2}} \tilde{R}_t \) converges to zero almost surely. Given the available estimates we first prove it only for the subsequence \(t \in T_a := \{[1 + hk^{-a}]^{2k} \}_{k \in \mathbb{N}}^{0 < j < k^a} \) where \(a > 1 \) is such that \(2\rho > 1 + a \). Here we assume that \(\rho > 1 \) for which (2.21) holds. Indeed, by Theorem A.2 and Chebyshev’s inequality, it follows that
\[
\sum_{t \in T_a} \mathbb{P}(\{|t^{-\frac{1}{2}} \tilde{R}_t| \geq \varepsilon\}) \leq C\varepsilon^{-2} \sum_{t \in T_a} (\ln t)^{-2\rho} \leq C\varepsilon^{-2} \sum_{k \in \mathbb{N}} k^{-2\rho} < \infty.
\]

By Borel-Cantelli, it follows that \(t^{-\frac{1}{2}} \tilde{R}_t \) converges to zero almost surely along the subsequence \(T_a \). Accordingly, along the subsequence \(T_a \), conditioned on \(\mathcal{F}_\omega \)-almost every environment history the random variables \(N^{-\frac{1}{2}} \tilde{X}_N \) converge weakly to a Gaussian with variance \(\Sigma^2 \). To conclude we use the fact, quantified in (2.16), that \(N^{-\frac{1}{2}} \tilde{X}_N \) changes very slowly. Given any \(n \in \mathbb{N} \), let \(nT_a \in T_a \) be the element of \(T_a \) closest to \(n \). Then (2.16) implies
\[
\sum_{n \in \mathbb{N}} \mathbb{P} \left(\left| \frac{\tilde{X}_n}{\sqrt{n}} - \frac{\tilde{X}_{nT_a}}{\sqrt{nT_a}} \right| \geq \varepsilon \right) \leq \sum_{n \in \mathbb{N}} C e^{-C\varepsilon^2 \frac{n}{nT_a}} \leq \sum_{k \in \mathbb{N}} C^2 k e^{-C\varepsilon^2 k^a} < \infty
\]

provided \(a > 1 \). Hence, by Borel-Cantelli again, the sequence \(\left(\frac{\tilde{X}_n}{\sqrt{n}} - \frac{\tilde{X}_{nT_a}}{\sqrt{nT_a}} \right) \) converges to zero \(\mathbb{P}_\mu \)-almost surely, which implies the claimed result.

The theorem is thus proved provided (2.21) holds with \(\rho > 1 \). In subsection 3.2 we will see, following [5], that such an estimate is equivalent to estimating the number of times two independent walks in the same environment come close. We will then show that (2.21) is indeed satisfied under assumptions (A0) - (A5). \(\square \)

2.4. A concrete model: weakly coupled Markov Chains. We have seen that under some assumptions it is possible to prove a quenched CLT theorem for the random walk, it is now time to present a concrete class of examples in which such assumptions are satisfied.

Let \(K(\theta, dy) \) be a transition kernel that specifies the transition probability from \(\theta^0 \in I \) to \(y \in I \) given the rest of the configuration \(\theta^{\neq 0} := (\theta^p)_{p \neq 0} \). Clearly \(\int_I K(\theta, dy) = 1 \). We further require that, for each \(u \in C^0(I) \) and \(q \in \mathbb{Z}^d \), the function \(\tilde{u} \) defined by \(\tilde{u}(\theta) := \int_I u(y)K(\theta, dy) \) belongs to \(C^0(\Theta) \). So we can define
a Feller Markov operator $K : C^0(\Theta) \to C^0(\Theta)$,

$$ (Kf)(\theta) := \int_{\Theta} \prod_{q \in \mathbb{Z}^d} K(\tau^q \theta, dy_q) f(y) $$

(2.23)

In fact, K is clearly well defined on $C^0_{\text{loc}}(\Theta)$, and it extends by continuity to all of $C^0(\Theta)$.

Assumptions.

(A6) Local mixing. For each $\theta, \tilde{\theta} \in \Theta$ such that $\theta^q = \tilde{\theta}^q$ for each $q \neq 0$ we assume

$$ |K(\theta, dy) - K(\tilde{\theta}, dy)| \leq 2d_0 $$

where the norm refers to the total variation of measures.

(A7) Weak coupling. For each $p \neq 0$, and $\theta, \tilde{\theta} \in \Theta$ such that $\theta^q = \tilde{\theta}^q$ for each $q \neq p$, we assume

$$ |K(\theta, dy) - K(\tilde{\theta}, dy)| \leq d_q. $$

(A8) Long range bound. There exists $\xi' > \max\{4 + d, 2d\}$ such that, for all $L > 0$,

$$ \sum_{\|q\| \geq L} d_q \leq CL^{-\xi'}. $$

(A9) Dobrushin like conditions. Write the transition probabilities of the random walk in the form $\pi_z(\theta) = a_z + \tilde{\pi}_z(\theta)$ where $a_z \in [0, 1]$, $\sum_{z \in \Lambda} a_z = 1$ and $\tilde{\pi}_z$ depends only on θ^p, $p \in \Lambda$. Then, setting $D := \sum_{z \in \Lambda} \|\tilde{\pi}_z\|_{\infty}$, consider the following hierarchy of conditions

a) $\eta_0 := \sum_{q \in \mathbb{Z}^d} d_q < 1$

b) $\eta_1 := (1 + (1 + 2|\Lambda|)D)\eta_0 < 1$

c) $\eta_1 < 1$; $D < 1$; $\eta_0 < (1 - D)^{\frac{(1+q)}{(1+d)}}$.

Remark 2.8. In the case of finite range interactions ($d_q = 0$ for $\|q\|$ larger than some $R > 0$) a polynomial decay of time correlations suffices to prove the CLT. One can then use the strategy employed at the end of section 4.5 to obtain the result under a weaker smallness condition than the one stated in (A9).

In section 4 we will prove the following theorem.

Theorem 2. (i) Each Markov environment satisfying (A6), (A7), (A9-a) enjoys property (A0), although only relative to μ_e.

(ii) If (A9-b) is also satisfied, then (A0) holds true for μ as well.

(iii) If, in addition, it satisfies property (A8), then it enjoys (A2), (A3) and (A4) as well.

(iv) Finally, if also (A9-c) is satisfied, then also (A1) holds true.

Remark 2.9. The above assumptions are very similar, although much more general, to the ones used in [3, 1]. In fact in [3, 1] the Markov Chains are independent at each site, this corresponds to $d_q = 0$ for each $q \neq 0$ so that $\eta_0 = d_0$ in assumption (A9). Also the random walk is a nearest neighborhood and the transition probabilities depend only on the site presently visited. This corresponds to having π_z depending only on θ^0 in the present setting, which would imply that the constant $(1 + 2|\Lambda|)$ in (A9) can be replace by 3. In the above described situation one can compare our results with the previous ones (but remember that [3] holds only for
$d \geq 3$ while [1] only for $d > 7$). For example let us compare with [1] which presents sharper results in its realm of applicability.

The assumptions of [1] are in terms of the two parameters κ, ε where $1 - \kappa$ gives a bound for the rate of mixing and thus corresponds to our γ_0. The parameter ε is the best constant such that $\pi_z \geq \varepsilon a_z$. The equivalent of (A9) (the only relevant condition here) in [1] reads $\kappa + \varepsilon^2 > 1$, i.e. $\kappa = 1 - \varepsilon^2$ for some $\gamma > 2$. This is sufficient for the annealed CLT in [1], but $\gamma > 6$ is assumed for the quenched CLT (indeed, not only CLTs but Donsker-type invariance principles are proved in [1]). To see the relation with our conditions, let us consider the simple case in which π is the best constant such that η holds with a two walks estimate. The assumptions of [1] reads $1 - \varepsilon$ and (A9-b). in the language of [1], reads $(1 + 3(1 - \varepsilon))(1 - \kappa) < 1$, that is $\kappa + (4 - 3\varepsilon)^{-1} > 1$. One can easily verify that the above condition is better than $\kappa + \varepsilon^2 > 1$ provided $\varepsilon \leq .75$. Furthermore, if $\kappa = 1 - \varepsilon^2$ for some $\gamma \geq 3$, then $\kappa + (4 - 3\varepsilon)^{-1} > 1$ for all $0 \leq \varepsilon < 1$. As for the condition (A9-c), a direct computation along the lines of section 4.5 yields that it can be replaced, in this case, by $\eta_0 + D < 1$, that is $\kappa + \varepsilon > 1$, which is always weaker than the above. The reason is that all truncated operators in the proof of Lemma 4.8 coincide in this case with the untruncated ones so that the estimates in (4.21) and (4.27) can be replaced by equalities. As a result, the estimate in Lemma 4.8 is uniform in n. In other words, our conditions are weaker than the condition under which the quenched invariance principle is proved in [1].

3. Proofs: CLT under assumptions (A0) - (A5)

In this section we prove Theorem 1.

3.1. Equivalence of (2.21) with a two walks estimate. As discussed in section 2.3 it suffices to prove (2.21). Remembering (2.20), for each $w \in \mathbb{R}^d$, $\|w\| \leq 1$,

$$\left\| \sum_{t=0}^{N-1} \langle w, \Pi_t'G \rangle \right\|_2^2 = \sum_{t,s=1}^{N} \mathbb{E} \left(\mathbb{E}(\langle w, \hat{\Delta}_t \rangle | F_0) \mathbb{E}(\langle w, \hat{\Delta}_s \rangle | F_0) \right)$$

The above formula has a very interesting interpretation: consider two independent random walks X_n, Y_n both starting from zero and evolving in the same environment (θ_t) described by the transition probabilities (2.1). That is, setting $\hat{\Delta}_{t+1}^X := X_{t+1} - X_t - v$, $\hat{\Delta}_{t+1}^Y := Y_{t+1} - Y_t - v$, we have

$$P\{ (\hat{\Delta}_{t+1}^X, \hat{\Delta}_{t+1}^Y) = (z, z') \} = \pi_z \pi_{z'} \mathbb{E}(\langle w, \hat{\Delta}_t \rangle \langle w, \hat{\Delta}_s \rangle \mathbb{E}(\langle w, \hat{\Delta}_t \rangle \langle w, \hat{\Delta}_s \rangle))$$

Let us call \mathbb{E}_ν^2 the law of such a process when the environment is started with the measure ν and denote by \mathbb{E}_ν^2 the corresponding expectation. Then

$$\left\| \sum_{t=0}^{N-1} \langle w, \Pi_t'G \rangle \right\|_2^2 = \sum_{t,s=1}^{N} \mathbb{E}_\nu^2 \left(\langle w, \hat{\Delta}_t^X \rangle \langle w, \hat{\Delta}_s^Y \rangle \right).$$

Remark 3.1. Note that, if the process (X_n, Y_n) satisfies the CLT (which is in fact a consequence of what we will prove later on), then (3.1) corresponds to the off-diagonal part of the covariance of such a process. From this point of view condition (2.21) says that the two walks are asymptotically independent.
3.2. The two walks estimate: off-diagonal variance. Let \(L_N := A \ln N \), for some fixed \(A > 0 \) to be chosen later (see (3.10) and (3.12)).

Lemma 3.2. There exists \(\delta > 0 \), such that

\[
\mathbb{E}^2_\mu(\text{Card}\{t \leq N : \|X_t - Y_t\| \leq L_N\}) \leq C N^{1-\delta} \quad (N \in \mathbb{N})
\]

This lemma is proven in Section 3.3. Now we complete the proof of (2.21) using the lemma.

Let us introduce the filtrations

\[
F^0_{t,X} := \sigma \{X_0, \ldots, X_t, Y_0, \ldots, Y_t, \theta_0, \ldots, \theta_t\},
\]

\[
F^0_{t,Y} := \sigma \{X_0, \ldots, X_t, Y_0, \ldots, Y_t, (\theta_s)_{s \in \mathbb{N}}\},
\]

and the filtrations \(F^0_t \) and \(F^0_X \) which are just the “\(X \)- and \(Y \)-versions” of the previously introduced \(F^0_t \). To estimate (3.1) we start by considering the case \(t < s \).

As \(\tilde{\Delta}_t^X \) and \(\tilde{\Delta}_s^Y \) are conditionally independent given \(F^0_{t,Y} \) we have

\[
\mathbb{E}^2_\mu \left(\langle w, \tilde{\Delta}_t^X \rangle \langle w, \tilde{\Delta}_s^Y \rangle \right) = \mathbb{E}^2_\mu \left(\langle w, \tilde{\Delta}_t^X \rangle \mid F^0_{t,Y} \right) \mathbb{E}^2_\mu \left(\langle w, \tilde{\Delta}_s^Y \rangle \mid F^0_{t,X} \right).
\]

Calling \(\omega^X \) the environment as seen from \(X \), we have

\[
\mathbb{E}^2_\mu \left(\tilde{\Delta}_s^Y \mid F^0_{t,Y} \right) = S^{s-t} g(\omega^X_t).
\]

Assumption (A2) implies then

\[
\left| \mathbb{E}^2_\mu \left(\langle w, \tilde{\Delta}_t^X \rangle \langle w, \tilde{\Delta}_s^Y \rangle \right) \right| \leq C \eta^{s-t-1}.
\]

Hence for each \(a > \frac{\xi}{2} \), setting \(b = \frac{2(\rho+a)}{\ln \eta^{-1}} \) and denoting \(T_N := b \ln(\ln N) \) we have

\[
\sum_{\substack{|s-t| \geq T_N \\ \text{s.t.} \ \ 1 \leq t+s \leq N}} \left| \mathbb{E}^2_\mu \left(\langle w, \tilde{\Delta}_t^X \rangle \langle w, \tilde{\Delta}_s^Y \rangle \right) \right| \leq C_a N(\ln N)^{-2(\rho+a)}
\]

\[
\leq C_a N(\ln N)^{-2\rho}.\]

Since the roles of \(t \) and \(s \) are interchangeable, it remains to consider the cases for which \(s \geq t \geq T_N \) and \(s-t \leq T_N \). Let us write \(\tilde{\Delta}_t^{X,s} = \langle w, \tilde{\Delta}_t^X \rangle \) and \(\tilde{\Delta}_s^{Y,t} = \langle w, \tilde{\Delta}_s^Y \rangle \). We can then write

\[
\left| \mathbb{E}^2_\mu \left(\langle w, \tilde{\Delta}_t^{X,s} \rangle \langle w, \tilde{\Delta}_s^{Y,t} \rangle \right) \right| \leq \mathbb{E}^2_\mu \left(\mathbb{I}_{\|X_t-T_N-Y_{t-T_N}\| \geq L_N} \tilde{\Delta}_t^{X,s} \tilde{\Delta}_s^{Y,t} \right) + C \mathbb{P}^2_\mu \left(\|X_t-T_N-Y_{t-T_N}\| < L_N \right).
\]

Let us set \(A_{N,t} := \{\|X_t-T_N-Y_{t-T_N}\| \geq L_N\} \). Using the fact that \(\tilde{\Delta}_t^{X,s} \) and \(\tilde{\Delta}_s^{Y,t} \) are conditionally independent given \(F^0_{t,T_N} \) we can write

\[
\mathbb{E}^2_\mu \left(\mathbb{I}_{A_{N,t}} \mathbb{E}^2_\mu \left(\tilde{\Delta}_t^{X,s} \tilde{\Delta}_s^{Y,t} \mid F^0_{t,T_N} \right) \right).
\]

We want to estimate the conditional expectation with respect to \(F^0_{t,T_N} \). To this end we fix \(\theta_0, \ldots, \theta_{t-T_N}, X_0, \ldots, X_{t-T_N} \) and \(Y_0, \ldots, Y_{t-T_N} \). Then \(\mathbb{E}^2_\mu \left(\tilde{\Delta}_t^{X,s} \mid F^0_{t-T_N} \right) \) and \(\mathbb{E}^2_\mu \left(\tilde{\Delta}_s^{Y,t} \mid F^0_{t-T_N} \right) \) are functions of two subsets of the spatial coordinates of the \(T_N + s-t \leq 2T_N \) variables \(\theta_1, \ldots, \theta_s \), and these subsets are separated by
a distance $L_N - CT_N \geq L_N/2$. Since $E_\mu^2 \left(f(\theta_{t-T_N}, \ldots, \theta_s) \mid F_{t-T_N}^{0,XY} \right) = E_{\mu_{t-T_N}}(f)$, we can apply assumption (A4) and estimate the first term on the right hand side of (3.4) by

$$
\left| \mathbb{E}_\mu^2 \left(1_{A_N}, \mathbb{E}_\mu^2 \left(\hat{\Delta}_{w,s}^X \mid F_{t-T_N}^{0,XY} \right) \right) \right|
\leq \left| \mathbb{E}_\mu^2 \left(1_{A_N}, \mathbb{E}_\mu^2 \left(\hat{\Delta}_{w,t}^X \mid F_{t-T_N}^{0,XY} \right) \mathbb{E}_\mu^2 \left(\hat{\Delta}_{w,s}^Y \mid F_{t-T_N}^{0,XY} \right) \right) \right| + C L_N^{-\xi} T_N^2
\leq \mathbb{E} \left(|S^{T_N} g(\omega^{X}_{t-T_N})| \cdot |S^{t-t+T_N} g(\omega^{Y}_{t-T_N})| \right) + C L_N^{-\xi} T_N^2
\leq C \left(\eta^{T_N} + L_N^{-\xi} T_N^2 \right).
$$

Hence, if $\xi > 2\rho$,

$$
\sum_{|t-s| \leq b \ln \ln N} \sum_{1 \leq t,s \leq N} \left| \mathbb{P}_\mu^2 \left(\langle w, \hat{\Delta}_{t}^X \rangle \langle w, \hat{\Delta}_{t}^Y \rangle \right) \right| \leq \frac{C_{A,b} N (\ln \ln N)^{\xi+1}}{(\ln N)^{\xi}} + T_N \sum_{t=T_N}^{N-1} \mathbb{P}_\mu^2 \left(A_{N,t} \right) + T_N^2.
$$

Collecting (3.3) and (3.6) proves (2.21) provided that $\xi > 2\rho + 2$. (Note that, because $\xi > 4$ in (A4), we may choose $\rho > 1$ as required at the end of subsection 2.3.)

3.3. Estimating the number of close encounters

We first reduce (3.2) to a simpler inequality.

Lemma 3.3. There exists $\beta \in (0,1), C_0 > 0$ such that for any $\theta \in \Theta$ for any a,b such that $\|a - b\| > L_N$, we have

$$
\mathbb{P}_\theta^2 (\|X_j - Y_j\| > L_N \mid j = 1, 2 \ldots N | X_0 = a, Y_0 = b) \geq \frac{C_0}{N^{\beta}}.
$$

(Here \mathbb{P}_θ^2 is the underlying probability for the process (θ_t, X_t, Y_t) started at $\theta_0 = \theta$.)

Proof of Lemma 3.2. We start by noticing that (A5) implies, for each $a,b \in \mathbb{Z}^d$,

$$
\mathbb{P}_\theta^2 \left(\left\{ \sup_{0 \leq t \leq L_N} \|X_t - Y_t\| \geq L_N \right\} \mid X_0 = a, Y_0 = b \right) \geq \gamma^{L_N},
$$

the latter being the probability of one fixed path in which X_t, Y_t get further and further apart at each step. Accordingly, for each $\varrho < 1 - \beta$, we have

$$
\mathbb{P}_\theta^2 \left(\left\{ \sup_{0 \leq t \leq L_N} \|X_t - Y_t\| \leq L_N \right\} \mid X_0 = a, Y_0 = b \right) \leq \prod_{j=1}^{N^e L_N^{-1}} (1 - \gamma^{L_N})
\leq \epsilon^{-\gamma^{L_N} L_N^{-1} N^e} \leq \epsilon^{-N^{e-2A \ln \gamma^{-1}}} \leq \epsilon^{-N^{e/2}},
$$

where we have chosen A such that

$$
\varrho > 4A \ln \gamma^{-1}.
$$
Next, consider the sets $B^+_N := \{(x, y) : \|x - y\| \leq R\}$, $B^-_N := \{(x, y) : \|x - y\| > R\}$ and the stopping times, for $k > 0$,

$$s_0 := \inf \{j \in \mathbb{N} : (X_j, Y_j) \in B_{L_N}^-, (X_{j+1}, Y_{j+1}) \in B_{L_N}^+\},$$

$$s_{2k} := \inf \{j \in \mathbb{N} : j > s_{2k-2}, (X_j, Y_j) \in B_{L_N}^-, (X_{j+1}, Y_{j+1}) \in B_{L_N}^+\},$$

$$s_1 := \inf \{j \in \mathbb{N} : j > s_0, (X_j, Y_j) \in B_{L_N}^+, (X_{j+1}, Y_{j+1}) \in B_{L_N}^-\},$$

$$s_{2k+1} := \inf \{j \in \mathbb{N} : j > s_{2k-1}, (X_j, Y_j) \in B_{L_N}^+, (X_{j+1}, Y_{j+1}) \in B_{L_N}^-\}.$$

Clearly, $s_{2k} < s_{2k+1} < s_{2k+2}$ and $s_k > k$. As $X_0 = Y_0$, these stopping times are adapted to the filtration $\mathcal{F}^{0,XY}_t$. With this notation, (3.7) implies

$$\mathbb{P}_\theta^2 \left(\sup_{i \leq N} (s_{2i} - s_{2i-1}) > N^\varepsilon \right) \leq N \sup_{i \leq N} \mathbb{P}_\theta^2 \left(\{s_{2i} - s_{2i-1} > N^\varepsilon\} \right) \leq Ne^{-N^\varepsilon/2}.$$

Let us set $J := \inf\{k \in \mathbb{N} : s_{2k+1} \geq N\} + 1$, obviously $J \leq N/2 + 1$. Clearly J is the number of intervals in which the two walks are closer than L_N, before time N. Since the above estimate tells us that such intervals are shorter than N^ε, with overwhelming probability, we have

$$\mathbb{E}_\theta^2(\text{Card}\{n < N : \|X_n - Y_n\| \leq L_N\}) \leq N^2e^{-N^\varepsilon/2} + N^\varepsilon \mathbb{E}_\theta^2(J).$$

It remains to investigate the length of the intervals of time in which the two walks are closer than L_N or, which is the same, the ones in which they are further apart than L_N. Let $S_n := \{\sup_{k \leq n} (s_{2k+1} - s_{2k}) < N\}$, and denote by $\mathcal{F}_{s_{2k}}^{0,XY}$ the σ-algebra associated to the filtration $\mathcal{F}^{0,XY}_t$ and the stopping time s_{2k}. Then

$$\mathbb{P}_\theta^2(\{J > n + 1\}) = \mathbb{P}_\theta^2(\{s_{2k+1} < N \quad \forall k \leq n\})$$

$$\leq \mathbb{P}_\theta^2(\{s_{2k+1} - s_{2k} < N \quad \forall k \leq n\}) = \mathbb{E}_\theta^2(1_{S_n}).$$

Thus, by (3.7),

$$\mathbb{P}_\theta^2(\{J > n + 1\}) \leq \mathbb{E}_\theta^2(1_{S_n}) = \mathbb{E}_\theta^2(1_{S_{n-1}} \mathbb{P}_\theta^2(\{s_{2n+1} - s_{2n} < N\} | S_{n-1}))$$

$$= \mathbb{E}_\theta^2(1_{S_{n-1}} \mathbb{P}_\theta^2(\{s_{2n+1} - s_{2n} < N\} | \mathcal{F}_{s_{2n}}^{0,XY}))$$

$$\leq \left(1 - \frac{C_0}{N^\beta}\right) \mathbb{E}_\theta^2(1_{S_{n-1}}) \leq \cdots \leq \left(1 - \frac{C_0}{N^\beta}\right)^n.$$

Thus, letting $1 - q > \alpha > \beta$, it follows that

$$\mathbb{P}_\theta^2(\{J > N^\alpha\}) \leq Ce^{-C_0N^\alpha - \beta},$$

which means that $\mathbb{E}_\theta^2(J) \leq N^\alpha + N \mathbb{E}_\theta^2(\{J > N^\alpha\}) \leq CN^\alpha$. In view of (3.11) this proves (3.2) provided we have chosen δ so small that $\varrho + \alpha < 1 - \delta$. \hspace{1cm} \square

Our program is thus completed once we prove (3.7). To this end an intermediate result is needed.

Lemma 3.4. Given $R > 0$, take two points a_R and b_R such that $\|a_R - b_R\| = R$. For each $\epsilon \in (0, 1]$, consider two walks starting at a_R and b_R respectively and let us define the stopping time $\tau_{\epsilon,R}$ as the first time n such that

$$\|X_n - Y_n\| \leq \frac{R}{2} \quad \text{or} \quad \|X_n - Y_n\| \geq 2R.$$
Proof of Lemma 3.3. Let
\[P_0^\gamma (\|X_{\tau_{R}} - Y_{\tau_{R}}\| \geq 2R) \geq \frac{1}{2} - C_2 \epsilon \]
\[P_0^\gamma (\|X_{\tau_{1,R}} - Y_{\tau_{1,R}}\| \geq 2R) \geq \frac{1}{4} . \]

Proof. Of course, the estimate in the statement is essentially sharp only in one dimension. If \(d > 1 \), then the probability is actually close to one. Yet the above estimate suffices for our purposes. So in the higher dimensional case we will control only one coordinate whereby obtaining the same estimate as in one dimension.

We decompose \((\hat{X}_n, \hat{Y}_n)\) in the same way as we decomposed \(\hat{X}_n\) in (2.14). Observe that \(E(\hat{X}_n^1 | F^0,XY) = E(\hat{X}_n^1 | F^0,XY)\). Denote
\[M_n^{XY} := (\hat{X}_n, \hat{Y}_n) - (h(\omega_0^X), h(\omega_0^Y)) + (h(\omega_n^X), h(\omega_n^Y)). \]
As before, \(M_n^{XY}\) is a bounded martingale with respect to the filtration \(F_n^{0,XY}\), while the remainder is a bounded boundary term. Since \(\|a_R - b_R\| = R\) it follows that there exists a unit vector \(v_R\) such that \(\langle v_R, X_0 - Y_0 \rangle = R\). If we now define a new stopping time \(\tau_R^*\) as the first time \(n\) for which
\[\langle v_R, X_n - Y_n \rangle \leq \frac{\epsilon R}{2} \text{ or } \langle v_R, X_n - Y_n \rangle \geq 2R \]
it follows
\[p := P_0^\gamma(\langle v_R, X_{\tau_R^*} - Y_{\tau_R^*} \rangle \geq 2R) \leq P_0^\gamma(\|X_{\tau_R} - Y_{\tau_R}\| \geq 2R). \]
Note that \(E_0^\gamma(\tau_R^*) < \infty\). Indeed, by ellipticity (A5), \(\inf_{\theta,n} P_0^\gamma(\sup_{0 \leq i \leq 2R} \|v_R, X_{n+i} - Y_{n+i}\| \geq 2R) \geq \beta > 0\). Hence it follows that \(E_0^\gamma(\{\tau_R^* \geq n\}) \leq C(1 - \beta)^n\). Thus
\[E_0^\gamma(\langle v_R, X_{\tau_R^*} - Y_{\tau_R^*} \rangle) = E_0^\gamma(\langle v_R - v_R, M_{\tau_R^*}^{XY} \rangle) + O(1) \]
\[= E_0^\gamma(\langle v_R, X_0 - Y_0, M_{\tau_R^*}^{XY} \rangle) + O(1) = R + O(1) \]
while, on the other hand,
\[E_0^\gamma(\langle v_R, X_{\tau_R^*} - Y_{\tau_R^*} \rangle) \leq 2Rp + \frac{\epsilon R}{2} (1 - p). \]
The above two equations readily imply \(p \geq \frac{1}{2} - \frac{\epsilon}{4} - CR^{-1}\) which is what we were looking for. The second inequality follows similarly. \(\square\)

We can finally conclude by proving (3.7).

Proof of Lemma 3.3. Let \(X_0 = a\) and \(Y_0 = b\) with \(\|a - b\| \geq L_N\) and \(\kappa \in (\frac{1}{2}, 1)\). Using ellipticity (A5) for the first \(L_N\) steps, then the second estimate of Lemma 3.4 for the next \(\ln_2 \epsilon^{-1}\) steps and finally the first estimate of that lemma for another \(\log_2 N^\kappa\) steps we obtain
\[P_0^\gamma (\|X_j - Y_j\| \text{ reaches } N^\kappa L_N \text{ before } L_N) \geq \gamma^{L_N} \epsilon^{-2} \left(\frac{1}{2} - C_2 \epsilon \right)^{\log_2 N^\kappa} \geq \epsilon^{-2} N^{-\kappa - C_3 \epsilon - A \ln \gamma^{-1}}. \]
In other words there is a polynomially small probability of making an excursion of size \(N^\kappa L_N\) before returning to a distance \(L_N\). On the other hand once we have
such a big excursion Hoeffding’s inequality (see e.g. [12]) implies that it will take more than \(N \) steps to come back, indeed

\[
\mathbb{P}_\theta^a \left(\inf_{1 \leq j \leq N} \| X_j - Y_j \| \leq L_N \right) \left\| X_0 - Y_0 \right\| \geq N^\kappa L_N \leq 2 \sup_{\theta} \mathbb{P}_\theta \left(\sup_{1 \leq j \leq N} \| \bar{X}_j \| > N^\kappa L_N / 3 \right) \left\| \bar{X}_0 = 0 \right\| \leq C Ne^{-CN^{2\kappa-1}}.
\]

The last two inequalities imply (3.7) with \(\beta = \kappa + C_3 \epsilon + A \ln \gamma^{-1} \) and \(C_0 = C \epsilon^{-2} \), provided we choose \(A > 0 \) and \(\epsilon > 0 \) so small that

\[
\kappa + C_3 \epsilon + A \ln \gamma^{-1} < 1
\]

This proves Lemma 3.3 \(\square \)

4. Proofs: The Environment

In this section we prove Theorem 2.

Remark 4.1. The reader is alerted that the following arguments are more of a functional analytic than of a probabilistic nature. In particular, we will work with the Banach space \(\mathcal{M}(\Theta) \) of complex valued measures rather than just with probability measures.

4.1. The Environment – Time Mixing

Following [15] we will lift the dynamics to a rather abstract space and prove that such a lift enjoys a spectral gap. This will imply the wanted results.

In fact, we want to lift the dynamics to the space \(\mathcal{B} := \mathcal{C} \otimes \bigotimes_{p \in \mathbb{Z}^d} \mathcal{M}_p(\Theta) \) where \(\mathcal{M}_p(\Theta) := \{ \mu \in \mathcal{M}(\Theta) : \mu(\varphi) = 0 \ \forall \varphi \in \mathcal{C}^0(\Theta) \text{ that do not depend on } \theta_p \} \) and the closure is taken with respect to the norm

\[
\| \bar{\mu} \| := \sup\{ |c_\mu|, |\mu_p| : p \in \mathbb{Z}^d \}.
\]

Here we use the notational convention that an element \(\bar{\mu} \in \mathcal{B} \) has components \(c_\mu \in \mathbb{C} \) and \(\bar{\mu} := (\mu_p)_p \) with \(\mu_p \in \mathcal{M}_p(\Theta) \) and, for each complex valued measure \(\mu \in \mathcal{M}(\Theta) \), \(|\mu| \) is the total variation of \(\mu \). For example, if \(\nu_p, \nu'_p \) \((p \in \mathbb{Z}^d)\) are probability measures on \(\Theta \) such that \(\nu_p = \nu'_p \) for all \(p \neq q \), and we set \(\nu := \otimes_{p \in \mathbb{Z}^d} \nu_p \), \(\nu' := \otimes_{p \in \mathbb{Z}^d} \nu'_p \), then \(\nu - \nu' \notin \mathcal{M}_q(\Theta) \).

To define such a lift we need, first of all, to define a map \(\Psi : \mathcal{M}(\Theta) \to \mathcal{B} \) and a projection \(\text{Pr} : \mathcal{B} \to \mathcal{M}(\Theta) \) that allow to transfer objects between the two settings.

The choice of the first map is quite arbitrary, we will fix a convenient one. Consider a strict total ordering \(\prec \) of \(\mathbb{Z}^d \) such that \(0 \prec p \) for each \(p \in \mathbb{Z}^d \setminus \{0\} \) and the set \(\{ q : q \prec p \} \) contains the box (centered at zero) of size \(C_4\|p\| \) and is contained in the box of size \(C_5\|p\| \). For example, one can start from zero and spiral out on larger and larger cubical shells. Let \(q_+ \) be the successor of \(q \)(that is, \(q < q_+ \) and there are no \(q' \in \mathbb{Z}^d \) such that \(q < q' < q_+ \)).

Let \(m \) be an arbitrary probability measure on \(\Theta \), fixed once and for all. For each \(q \in \mathbb{Z}^d \) we can then consider the \(\sigma \)-algebra \(\mathcal{F}_q \) determined by all the variables \(\omega^{q'} \) with \(q' \prec q \), hence \(\mathcal{F}_0 \) is the trivial \(\sigma \)-algebra. Call \(x^{-p} \) and \(x^{+p} \), the set of coordinates with indexes smaller (respectively larger) than \(p \).

Next, for each \(q \in \mathbb{Z}^d \), define the operator \(J_q : \mathcal{C}^0(\Theta) \to \mathcal{C}^0(\Theta) \) and its dual \(J'_q : \mathcal{M}(\Theta) \to \mathcal{M}(\Theta) \) by

\[
J_q f := m^q(f) - m^{q_+}(f) ; \quad J'_q \mu(f) := \mu(J_q f)
\]
where \(m^q \) is the marginal of \(m \) on the \(\mathcal{F}_q \) variables. In other words, given a local function \(f \in \mathcal{C}^0(\Theta) \), and a point \(q \in \mathbb{Z}^d \), \(m^q(f) \) depends only on \(x^q \) variables, namely

\[
m^q(f)(x^q) = \int_{\Theta} f(y^q, x^q) m(dy^q, dy^q).
\]

For each local function \(f \) we have

\[
f = m(f) + \sum_{q \in \mathbb{Z}^d} J_q(f).
\]

Note that, as \(f \) is local, there exists a box \(\Lambda \subset \Theta \) such that \(f \) depends only from the variables \(\{ \omega_q : q \in \Lambda \} \), but this means that the sum consists only of finitely many terms. Accordingly, for each \(\mu \in \mathcal{M}(\Theta) \) we define \(\hat{\mu} := \mu - \mu(1)m \) and, for each \(f \in \mathcal{C}^0 \) and \(q \in \mathbb{Z}^d \), we consider \(J_q\hat{\mu}(f) = \hat{\mu}(J_qf) \). Then \(J_q\hat{\mu} \in \mathcal{M}(\Theta) \), and we can define the lift

\[
\Psi(\mu) := (\mu(1), (J_q\hat{\mu})_q) \in \mathcal{B}.
\]

Remark 4.2. If one chooses \(m := \otimes_{q \in \mathbb{Z}^d} m_q \), that is a product measure, where \(m_* \) is an arbitrary probability measure on \(I \), then a direct computation, using definition (4.1), yields \(J_q f = E_m(f \mid \mathcal{F}_q) - E_m(f \mid \mathcal{F}_q^c) \), where \(\mathcal{F}_q^c \) is the \(\sigma \) algebra determined by the \(\omega_p \) with \(p \geq q \) and \(E_m \) is the expectation with respect to \(m \). Moreover \(J_q^q m = 0 \) for all \(q \in \mathbb{Z}^d \), hence \(J_q^q \hat{\mu} = J_q^q \mu \). The reason to allow non product measures in spite of the slightly more complex definitions is their usefulness in section 4.5.

On the other hand, for each \(\hat{\mu} = (c_\mu, (\mu_p)_p) \in \mathcal{B} \) and local function \(f \) we can define

\[
\Pr \hat{\mu}(f) := c_\mu m(f) + \sum_{p \in \mathbb{Z}^d} \mu_p(f),
\]

Remark 4.3. Although \(\Pr \hat{\mu}(f) \) is well defined on each local function, nevertheless \(\Pr \hat{\mu} \) is not necessarily a measure. Yet, \(\Pr \Psi \mu = \mu \) for all \(\mu \in \mathcal{M}(\Theta) \) since, for each local function \(f \), \(m(\sum_q J_q f) = m(f - m(f)) = 0 \). There exists thus a subset \(\mathcal{B}_m \subset \mathcal{B} \) containing \(\Psi(\mathcal{M}(\Theta)) \) such that each element of \(\Pr \mathcal{B}_m \) gives rise to a bounded linear functional on the space of local functions, hence identifies uniquely a measure. In other words, for each \(\hat{\mu} = (c_\mu, (\mu_p)_p) \in \mathcal{B}_m \), \(c_\mu m + \sum_{p \in \mathbb{Z}^d} \mu_p \) converges weakly to a measure that we call \(\Pr \hat{\mu} \). (Note that here the order of the series may matter, we tacitly assume that the order is the one given by the relation \(\prec) \).

Now that we know how to lift measures, we must describe how to lift the dynamics. For each local function \(f \) and \(p \in \mathbb{Z}^d \), we decompose

\[
Kf = K_p f + \sum_{q \in \mathbb{Z}^d \setminus \{p\}} K_{p,q} f
\]
with operators K_p and $K_{p,q}$ defined as follows: for each $q \in \mathbb{Z}^d$, setting $q' <_p q \iff q' - p < q - p$,

$$(K_{p,q}f)(\omega) := \int_\Theta K(\tau^p \omega, dy^p) \prod_{0 < q' <_p q} K(\tau^{q'} \omega(p), dy^{q'}) X \left[K(\tau^q \omega, dy^q) - K(\tau^q \omega(p), dy^q) \right] \prod_{q' >_p q} K(\tau^{q'} \omega, dy^{q'}) f(y)$$

(4.4)

$$(K_p f)(\omega) := \int_\Theta K(\tau^p \omega, dy^p) \prod_{q' \in \mathbb{Z}^d \setminus \{p\}} K(\tau^{q'} \omega(p), dy^{q'}) f(y)$$

where $\omega^{q'}_p = \omega^q$ for each $q' \neq p$, while $\omega^p_p = a$, for some fixed $a \in I$. It is easy to see that the series in (4.3) converges due to assumptions (A7) and (A9-a). The fundamental fact of the above decomposition is that, if f does not depend on ω^q, then $K_{p,q} f = 0$. Accordingly, for each $\mu \in \mathcal{M}(\Theta)$, $K_{p,q} \mu = \mathcal{M}(\Theta)$. In addition, if $\mu \in \mathcal{M}_p(\Theta)$, then $K_{p,q} \mu \in \mathcal{M}_q(\Theta)$, since if $f(y)$ does not depend on y^p, then also $K_p f$ does not. Define $\tilde{\alpha} = (1, \alpha) = (1, (\alpha_p)_p)$ by

$$\tilde{\alpha} := \Psi(K' \mu)$$

Also let

$$K' \mu_p = \sum_{q \in \mathbb{Z}^d \setminus \{p\}} K'_{p,q} \mu_p + K'_{p,p} \mu_p$$

Finally, (4.6) suggests to define the operator $K : \mathcal{B} \to \mathcal{B}$ by

$$K \mu := (c_\mu, c_\mu \tilde{\alpha} + A \tilde{\mu}) := \left(c_\mu, (c_\mu \alpha_q + K'_{q,q} \mu_q + \sum_{p \in \mathbb{Z}^d \setminus \{q\}} K'_{p,q} \mu_p)_q \right)$$

For all $\mu \in \mathcal{M}(\Theta)$, local functions f and $n \in \mathbb{N}$ we have

$$\Pr K^n \Psi(m)(f) = \mu(K^n f).$$

Thus $K(\mathcal{B}_m) \subseteq \mathcal{B}_m$ and the dynamics of K covers the original one.

Lemma 4.4. The hypotheses (A6), (A7) and (A9-a) on the Markov process imply $||A|| \leq \sum_q d_q = \eta_0 < 1$.

Proof. Let $\nu \in \mathcal{M}_q(\Theta)$ and $f \in C^0$. Define \tilde{f} by $K_q f(\omega) = \int K(\tau^q \omega, dy^q) \tilde{f}(y^q, \omega)$. Then $||\tilde{f}||_\infty \leq ||f||_\infty$ and \tilde{f} does not depend on ω^q. Now, by assumption (A6), it follows that, varying ω^q, $\int K(\tau^q \omega, dy^q) \tilde{f}(y^q, \omega)$ changes by, at most, $2d_0$. Hence for each $(\omega^p)_{p \neq q}$, there must exist $a', a'' \in I$ and $t \in [0,1]$ such that defining ω' and ω'' as those configurations which are obtained from a configuration ω replacing ω^0 by a' or a'', respectively, and defining $\tilde{K}(\omega,.) = tK(\omega',.) + (1 - t)K(\omega'',.)$, the following holds

$$\left| \int K(\tau^q \omega, dy^q) \tilde{f}(y^q, \omega) - \int \tilde{K}(\tau^q \omega, dy^q) \tilde{f}(y^q, \omega) \right| \leq d_0 ||f||_\infty.$$

Thus,

$$|\nu(K_q f)| = |\nu \left(\int K(\tau^q \omega, dy^q) \tilde{f}(y^q, \omega) - \int \tilde{K}(\tau^q \omega(\omega), dy^q) \tilde{f}(y^q, \omega) \right)| \leq d_0 |\nu| ||f||_\infty.$$

While, by assumption (A7), for all $p \neq q$ and all $\tilde{\mu}$ we have $|K'_{p,q} \mu_p| \leq d_{p-q}|\mu_p|$. □
Hence the fixed point equation $\mathcal{K}(1, \bar{\mu}) = (1, \bar{\mu})$ has the unique solution $(1, (I - A)^{-1} \bar{\alpha})$ which can easily be seen to project down to a stationary probability measure μ_c on Θ. Indeed, given any probability measure ν, the set $\{K^n\nu\}$ will have weak accumulation points. On the other hand, calling $(1, \bar{\nu})$ the lift of ν we have that $\mathcal{K}^n(1, \bar{\nu}) = (1, A^n\bar{\nu} + \sum_{k=0}^{n-1} A^k \bar{\alpha})$ is a lift of $K^n\nu$. Hence the measures $K^n\nu$ must agree, on local functions, with the projections of the $\mathcal{K}^n(1, \bar{\nu})$, and it follows that

$$
\bar{\mu} := \lim_{n \to \infty} \mathcal{K}^n(1, \bar{\nu}) = (1, (I - A)^{-1} \bar{\alpha})
$$

projects to a unique invariant probability measure μ_c which is the weak limit of the sequence $(K^n\nu)$.

Finally, the operator \mathcal{K} has a spectral gap, which implies exponential time mixing of this invariant measure, i.e., the analogue of property (A2) for the Markov evolution of the environment and the measure μ_c. In particular we have proven (A0) relative to μ_c (The fact that μ_c cannot be supported on the translation invariant configurations is a direct consequence of (A6), see also Lemma 4.4).

Remark 4.5. Note that the above argument would hold verbatim for more general, site dependent, kernels $K_{\theta}(\tau \theta, dy^\theta)$ (instead of $K(\tau \theta, dy^\theta)$). The only difference being the loss of the translation invariance of μ_c.

4.2. The environment – space mixing.

For property (A3) we need an extra argument. Given a function $\varphi \in C^0(\Theta)$ let us call $\Lambda(\varphi) \subset \mathbb{Z}^d$ the set of variables on which φ depends. That is, $\Lambda(\varphi)$ is the smallest subset of \mathbb{Z}^d such that $\varphi(x) = \varphi(y)$ whenever $x, y \in \Theta$ with $x^p = y^p$ for all $p \in \Lambda(\varphi)$. Also let us call C^0_{loc} the set of continuous local functions (that is functions for which $\Lambda(\varphi)$ is a finite set). Finally, for any two functions $\varphi, \psi \in C^0_{\text{loc}}(\Theta)$, let $\rho_{\varphi, \psi} := \inf\{\|x - y\| : x \in \Lambda(\varphi), y \in \Lambda(\psi)\}$, the distance between the sets of dependence.

For each $\varphi \in C^0_{\text{loc}}$ and $\psi \in C^0$ such that $\rho_{\varphi, \psi} = L$ and $\Lambda(\varphi)$ is contained in a box of size l, we want to estimate $\mu_c(\varphi \psi) - \mu_c(\varphi) \mu_c(\psi)$. Let us define $\Lambda_L(\varphi) := \{q \in \mathbb{Z}^d : \inf_{p \in \Lambda(\varphi)} \|p - q\| < L\}$, clearly $\Lambda_L(\varphi) \cap \Lambda(\psi) = \emptyset$. Moreover, $\Lambda_L(\varphi)$ contains, at most, $(l + L)^d$ sites. Next, for each $n \in \mathbb{N}$ let $r := L/2n$. Our main idea is to modify the kernels as to define a new process with coupling range less than r in $\Lambda_L(\varphi)$. To do so we define, for each $q \in \Lambda_L(\varphi)$, the cutoff kernels

$$K_{r,q}(\omega, dy) := \begin{cases} K(\omega_{(r,q)}, dy) & \text{if } q \in \Lambda_L(\varphi) \\ K(\omega_{(r,q)}, dy) & \text{if } q \notin \Lambda_L(\varphi) \end{cases}$$

where, for some fixed $b \in I$,

$$\omega^p_{(r,q)} = \begin{cases} \omega^p & \text{if } \|p - q\| < r \\ b & \text{if } \|p - q\| \geq r \end{cases} \quad \omega^p_{(r,q)} = \begin{cases} \omega^p & \text{if } \|p - q\| < r \lor p \notin \Lambda_L(\varphi) \\ b & \text{if } \|p - q\| \geq r \land p \in \Lambda_L(\varphi) \end{cases}$$

We can then use the above kernels to define the operator \mathcal{K} as in formula (2.23) (see also Remark 4.5). Note that such an operator is close to the original one, indeed for each $\phi \in C^0(\Theta)$

$$
\|\mathcal{K} \phi - \mathcal{K} \phi\|_\infty \leq \sum_{q \in \Lambda_L(\varphi), \|\cdot\| \geq r} d_q \|\phi\|_\infty + \sum_{q \notin \Lambda_L(\varphi), p \in \Lambda_L(\varphi), \|p - q\| \geq r} d_{p-q} \|\phi\|_\infty
$$

$$
\leq C (l + L)^d r^{-\xi} \|\phi\|_\infty
$$
by the long range assumption (A8). We can thus write
\begin{align}
\mu_{r}(\varphi \psi) &= \mu_{r}(\mathcal{K}^{n}(\varphi \psi)) = \mu_{r}(\mathcal{R}^{n}(\varphi \psi)) + O(n(l + L)^{d} r^{-\xi} \|\varphi \psi\|_{\infty}) \\
&= \mu_{r}(\mathcal{R}^{n}(\varphi \psi)) + O(n(l + L)^{d} r^{-\xi} \|\varphi \psi\|_{\infty})
\end{align}
(4.10)

At this point it is natural to define measures \(\nu_{n,r}(\phi) := \mu_{r}(\mathcal{R}^{n}(\varphi \psi)) \). Note that the lift of such a measure to the space \(\mathcal{B} \) is given by \(\Psi(\nu_{n,r}) = (\mu_{r}(\mathcal{R}^{n}(\psi)), \tilde{\nu}_{n,r}) \)
with \(\|\Psi(\nu_{n,r})\| \leq 4 \|\psi\|_{\infty} \). By the results of the previous section (and Remark 4.5) applied to the operator \(\mathcal{R} \) it follows that there exists a measure \(\mu_{r} \) such that
\begin{align}
|\nu_{n,r}(\mathcal{R}^{n}(\varphi)) - \mu_{r}(\varphi)| \leq C \sigma^{n} L^{d} \|\varphi\|_{\infty} + C n(l + L)^{d} r^{-\xi} \|\varphi\|_{\infty}.
\end{align}

Observe that, due to the constructive nature of the proof in the preceding section, the constants \(C \) and \(\sigma \) do not depend on \(r \).

The above estimates applied to the case \(\psi = 1 \) (i.e. to \(\nu_{n,r} = \mu_{r} \)) imply
\begin{align}
|\mu_{r}(\varphi) - \mu_{r}(\varphi)| \leq C \sigma^{n} L^{d} \|\varphi\|_{\infty} + C n(l + L)^{d} r^{-\xi} \|\varphi\|_{\infty}.
\end{align}

Choosing \(n \) proportional to \(\ln L \), the two last facts and (4.10) yields, for \(l \leq L \),
\begin{align}
|\mu_{r}(\varphi \psi) - \mu_{r}(\varphi) \mu_{r}(\psi)| & \leq |\nu_{n,r}(\mathcal{R}^{n}(\varphi)) - \mu_{r}(\varphi) \mu_{r}(\psi)| + C \frac{n(l + L)^{d}}{r^{\xi}} \|\varphi \psi\|_{\infty} \\
& \leq |\mu_{r}(\varphi)| |\mu_{r}(\mathcal{R}^{n}(\varphi)) - \mu_{r}(\psi)| + C (n L^{d} r^{-\xi} + \sigma^{n} L^{d}) \|\varphi\|_{\infty} \|\psi\|_{\infty} \\
& \leq C (L^{-\xi} + d(\ln L)^{\xi+1} \|\varphi\|_{\infty} \|\psi\|_{\infty}).
\end{align}

Clearly (4.11) implies the space mixing property (A3) provided \(\xi' > \xi + d \).

4.3. The environment as seen from the particle. The above construction can also be used to attain our other goal: the study of the dynamics as seen from the particle. That is, we wish to study the operator (see (2.5))
\begin{align}
Sf(\omega) = \sum_{z \in \Lambda} \pi_{z}(\omega) \mathcal{K}(\tau^{z} f)(\omega).
\end{align}

We will use the same space as in the previous section, the only new difficulty is to define the covering dynamics. To this end let us define \(\mathcal{B}_{z} : \mathcal{B} \to \mathcal{B} \) by \(\mathcal{B}_{z}(\mu) := (c_{z}, ((\mathcal{B}_{z}(\mu))_{q})_{q}) \) where \((\mathcal{B}_{z}(\mu))_{q}(f) := \mu_{q+z}(\pi_{z} \tau^{z} f) \). We have \((\mathcal{B}_{z}(\mu))_{q} \in \mathcal{M}_{q}(\Theta) \) provided \(q \not\in \Lambda \), but we have no control of this kind for \(q \in \Lambda \). Thus, although the operator \(\sum_{z \in \Lambda} \mathcal{B}_{z} \) would cover \(S' \) it does not respect the structure of the space for the components in \(\Lambda \). On the other hand \((\mathcal{B}_{z}(\mu))_{q}(f) := \mu_{q+z}(\pi_{z} \tau^{z} f) \in \mathcal{M}_{q}(\Theta) \) for each \(q \in \mathbb{Z}^{d} \). Accordingly, for each \(q \in \Lambda \) we must deal only with the remainders \((\mathcal{R}_{z}(\mu))_{q}(f) := \mu_{q+z}(\pi_{z} \tau^{z} f) \). We can again use our decomposition operators to write \((\mathcal{R}_{z}(\mu))_{q}(f) = \sum_{q' \in \mathbb{Z}^{d}} (\mathcal{R}_{z}(\mu))_{q}(J_{q'} f) \), and then redistribute the various terms to the appropriate components of the vector, indeed \(J_{q}(\mathcal{R}_{z}(\mu))_{q} \in \mathcal{M}_{q}(\Theta) \). Finally, defining, in analogy with the previous case, \(\zeta \) by \(\Psi(S'_{\mu_{r}}) = (1, \zeta) \) we can define the covering dynamics \(S(c_{r}, \tilde{\nu}) := (c_{r}, \tilde{c}_{r} \zeta + \tilde{S}\tilde{\nu}) \) where
\begin{align}
(\tilde{S}\tilde{\nu})_{q} := \begin{cases}
\sum_{z \in \Lambda} \left[\mathcal{K}(\mathcal{B}_{z}(0, \tilde{\nu}))_{q} + \sum_{q' \in \Lambda} J_{q'}(\mathcal{R}_{z}(0, \tilde{\nu}))_{q'} \right] & \text{if } q \notin \Lambda \\
\sum_{z \in \Lambda} \left[\mathcal{K}(\mathcal{A}_{z}(0, \tilde{\nu}))_{q} + \sum_{q' \in \Lambda} J_{q'}(\mathcal{R}_{z}(0, \tilde{\nu}))_{q'} \right] & \text{if } q \in \Lambda
\end{cases}
\end{align}
Once more, one can easily check that, for each $\nu \in \mathcal{M}(\Theta)$, the following holds
\[\Pr[\mathcal{S}^n\Psi\nu](f) = \nu(S^n f) \text{ for all } n \in \mathbb{N}, \]
that is we have a proper covering of the original dynamics. Moreover, by (A9-b),
\[\|\mathcal{S}\| \leq \|\mathcal{K}\|(1 + (1 + 2|\Lambda|) \sum_{z \in \Lambda} |\hat{\pi}_z|) \leq \eta_0(1 + (1 + 2|\Lambda|)D) = \eta_1 < 1. \]
This proves properties (A0) for μ and (A2) by exactly the same arguments used in section 4.1.

4.4. Locality. The idea for the verification of condition (A4) is, again, to approximate the true dynamics with one in which the interactions are cut-off at a proper scale. More precisely, let A', B' be two $L/2$-neighborhoods of A, B, respectively. Similarly to what we did in the previous section, we can kill all interactions, in $A' \cup B'$, at a distance larger than $L/2s$. If we call \mathbb{P}_0^θ the distribution of the resulting Markov process started from the configuration θ, then assumption (A8) implies
\[\|\mathbb{P}_0^\theta(f(\theta_1, \ldots, \theta_s)g(\theta_1, \ldots, \theta_s)) - \mathbb{P}_0^\theta(f(\theta_1, \ldots, \theta_s))\|_\infty \leq C(M + L)^d s^{\xi'} L^{-\xi'} \|fg\|_\infty \leq C_M L^{-\xi - d} s^{\xi' + 1} \|fg\|_\infty \]
with $\xi' > d + 2$. As $\mathbb{P}_0^\theta(f(\theta_1, \ldots, \theta_s)g(\theta_1, \ldots, \theta_s)) = \mathbb{P}_0^\theta(f(\theta_1, \ldots, \theta_s))\mathbb{P}_0^\theta(g(\theta_1, \ldots, \theta_s))$ by construction, condition (A4) follows provided we chose $\xi = \xi' - d > 4$ and $\xi > \xi' + 1$.

4.5. Absolute continuity. Since we aim at proving μ to be absolutely continuous with respect to μ_e, it is natural to work in the smaller space \mathcal{M}^e of measures on Θ absolutely continuous with respect to μ_e. In addition, now we have a natural reference measure so we want to choose the measure m, in the construction of the lift Ψ defined at the beginning of section 4.1, to be μ_e. This implies $\Psi(\mu_e) = (1, 0) \in \mathcal{B}$. Clearly all the results of the previous section apply with this choice of m.

First of all note that the above is consistent.

Lemma 4.6. Both \mathcal{K}' and \mathcal{S}' are well defined as operators from \mathcal{M}^e to itself.

Proof. Consider first the case of a measure $\nu \in \mathcal{M}^e$ such that $f := \frac{d\nu}{d\mu_e} \in L^\infty(\Theta, \mu_e)$. Then
\[\mathcal{K}'(\nu)(\varphi) = \int f \cdot \mathcal{K}\varphi \, d\mu_e \leq \|f\|_\infty \cdot \int \mathcal{K}|\varphi| \, d\mu_e = \|f\|_\infty \cdot \mu_e(|\varphi|) \]
for each bounded measurable $\varphi : \Theta \to \mathbb{R}$. Now for each $\nu \in \mathcal{M}^e$, calling again f the density, by monotone convergence
\[\mathcal{K}'(\nu)(\varphi) = \sup_n \mathcal{K}'((f \wedge n)\mu_e)(\varphi) \leq \sup_n n\mu_e(\varphi) \]
for each such φ. In particular this holds for $\varphi = 1_A$ being the indicator function of any μ_e null set. Hence $\mathcal{K}'(\nu)(A) = 0$ if $\mu_e(A) = 0$. Similar arguments hold for \mathcal{S}' by using the translation invariance of μ_e.

On the other hand, in the present generality it is not guaranteed that J_q maps \mathcal{M}^e into itself, so we cannot check directly that the covering dynamics $\mathcal{S} : \mathcal{B} \to \mathcal{B}$ preserves absolute continuity of the components measures. The above considerations show that it may not be very convenient to work with the decomposition (4.13) to treat the problem of absolute continuity. Even more,
the second sum on the left hand side of (4.13) is of highly non local nature which makes it very hard to control the sum of the components of the resulting vector. To overcome these difficulties it is useful to decompose the operator S into a convex combination of two operators: one representing a random walk with fixed transition probabilities and the other, small, one keeping the dependence on the environment. To do so it suffices to write
\begin{equation}
(4.15) \quad \pi_z = (1 - \kappa) c_z + \kappa \tilde{\pi}_z
\end{equation}
where $c_z := (1 - \kappa)^{-1} \max \{0, a_z - \|\tilde{\pi}_z\|_\infty\}$, $\tilde{\pi}_z := \kappa^{-1} (\pi_z - \max \{0, a_z - \|\tilde{\pi}_z\|_\infty\})$ and $\kappa := 1 - \sum_{z \in \Lambda} \max \{0, a_z - \|\tilde{\pi}_z\|_\infty\} \leq D$ is small by assumption (A9-c). Let us set $S_0 f := \sum_{z} c_z \tau^z K f$ and $S_1 := \sum_{z} \tilde{\pi}_z \tau^z K f$, clearly $S = (1 - \kappa) S_0 + \kappa S_1$ and $c_z, \tilde{\pi}_z \geq 0, \sum_{z} c_z = \sum_{z} \tilde{\pi}_z = 1$. Hence, $\|S_0 f\|_\infty \leq \|f\|_\infty, \|S_1 f\|_\infty \leq \|f\|_\infty$. It is then convenient to consider a Bernoulli process with probability $(1 - \kappa, \kappa)$. For each $\sigma \in \{0, 1\}^\Lambda$, we let σ^n be the first n symbols of σ and set $S_{\sigma^n} := S_{\sigma^n_0} \cdots S_{\sigma_1}$. Using E for the expectation with respect to the above process, we see that
\begin{equation}
(4.16) \quad S^n f = E(S_{\sigma^n} f).
\end{equation}
The advantage of the representation (4.16) lies in the fact that S_0 can be conveniently treated by our covering space techniques, while the occurrences of S_1 are weighted by a small probability.

To be more precise, recall that, by the analogue of (4.8), $\mu = \lim_{N \to \infty} S^{N'} \mu_c$. Then, after setting $\zeta := (S' - 1) \mu_c$, we can write
\begin{equation}
(4.17) \quad S^{N'} \mu_c = \mu_c + \sum_{n=0}^{N-1} S^{n'} \zeta
\end{equation}
where Σ_n is the set of σ such that σ^n contains a string of zeroes of length longer than $t_n := -(1 - \vartheta) \ln(1 - \kappa)^{-1} \ln n$, $\vartheta \in (0, 1)$. Clearly $E(1_{\Sigma_n}) \leq e^{-C_\vartheta n^{1/2}}$. On Σ_n let m_σ denote the beginning of the first string of t_n zeros. We have
\begin{equation}
(4.18) \quad \left| \zeta(S^{n'} \varphi) \right| \leq \sum_{q \in \mathbb{Z}^d} E \left(\zeta(S_{\sigma^n_0} \cdots S_{\sigma^n_{m_\sigma + t_n}} J_q S_{\sigma^n_{m_\sigma + t_n}} \Sigma) \right) + e^{-C_\vartheta n^{1/2}} \|\varphi\|_\infty
\end{equation}
\begin{equation}
\leq E \left(\left| \Pr \left(\mathcal{S}_n^{(n')}(S_{\sigma^n_0} \cdots S_{\sigma^n_{m_\sigma + t_n}} \zeta) \right) (S_{\sigma^n_{m_\sigma + t_n}} \Sigma) \right| \right) + e^{-C_\vartheta n^{1/2}} \|\varphi\|_\infty
\end{equation}
where we have introduced the covering operator \mathcal{S}_n defined by
\begin{equation}
(4.19) \quad \mathcal{S}_n(c_{\nu}, (\vartheta)_q) = (c_{\nu}, (\tilde{S}_n \vartheta)_q) := (c_{\nu}, \sum_{z \in \Lambda} (K C_z (0, \tilde{\vartheta}))_q)
\end{equation}
and, contrary to (4.13), we have defined $(C_z (0, \tilde{\vartheta}))_q(f) := \nu_{q+z} (c_z \tau^z f)$. A direct computation shows that \mathcal{S}_n covers S_0^n, hence formula (4.18).

Note that the summands in the first line of (4.17) are absolutely continuous w.r.t. μ_c, by Lemma 4.6. Hence the total variation of such measures is the $L^1(\Theta, \mu_c)$ norm of their density.

Unlike \tilde{S}, the operator \mathcal{S}_n is reasonably local. To make precise such a locality, we introduce the norm $\|\varphi\|_1 := \sum_{q \in \mathbb{Z}^d} |\varphi_q|$ and denote $B_1 := \{(0, \tilde{\vartheta}) \in B : \|\tilde{\vartheta}\|_1 < \infty\}$.

Lemma 4.7. For each $(0, \tilde{\vartheta}) \in B_1$ the following holds true
\[\|\mathcal{S}_n \vartheta\|_1 \leq \eta_0 \|\vartheta\|_1. \]
Theorem 4.8. For each $\rho \in \mathcal{B}_1$, then
\[
\sum_{p \in \mathbb{Z}^d} (S_0 \rho)_p \leq \sum_{z \in \Lambda} c_z \left(\sum_{p \in \mathbb{Z}^d} |K'_p \rho_{p+z}| + \sum_{q \in \mathbb{Z}^d \setminus \{p\}} |K'_{q,p} \rho_{q+z}| \right)
\leq \sum_{z \in \Lambda} c_z \left(d_0 |\rho_{p+z}| + \sum_{q \in \mathbb{Z}^d \setminus \{p\}} d_{q-p} |\rho_{q+z}| \right)
\leq d_0 \|\rho\|_1 + \sum_{q \in \mathbb{Z}^d} |\rho_q| \sum_{z \in \Lambda} c_z \sum_{v \in \mathbb{Z}^d \setminus \{0\}} d_v = \left(d_0 + \sum_{v \neq 0} d_v \right) \|\rho\|_1 .
\]

Next we verify that the above norm is relevant for the problem at hand.

Lemma 4.8. For each $n \in \mathbb{N}$ and $\sigma \in \{0, 1\}^\mathbb{N}$ we have
\[
\|\Psi(S^{(s)}_{\sigma^n} \zeta)\|_1 = \sum_{q \in \mathbb{Z}^d} |J_q^{(s)} \zeta^{(s)}_{\sigma^n} \zeta| \leq C n^{\nu d} .
\]

Proof. We start by studying $J_q^{(s)} S_{\sigma^n} \mu_c$. Also we will write S for S_{σ}, since the computation is exactly the same. Given $q \in \mathbb{Z}^d$ we can change the kernel K for all points $\|p\| \leq \frac{C_4}{2} |q|$ to have only interactions of range $C_4 |q||(8n)^{-1}$. (The constant C_4 is defined at the beginning of section 4.1.) We call $K^{(q)}$ and $S^{(q)}$ the resulting Markov operators for the process of the environment and the environment as seen from the particle, respectively. Clearly, by (A8),
\[
\|(S^{(q)} - S) \varphi\|_\infty \leq C \|q\|^{-\xi} n^{\xi^d} \|\varphi\|_\infty .
\]

Hence, for all $m \leq n$,
\[
\|(S^{(q)} - S)^m \varphi\|_\infty \leq \sum_{k=0}^{m-1} \|(S^{(q)} - S)^k (S^{(q)} - S) S^{m-1-k} \varphi\|_\infty
\leq C \|q\|^{-\xi} n^{\xi^d} m \|\varphi\|_\infty ,
\]
and the same holds for $K^{(q)}$ and K. On the other hand, if $n \leq \frac{C_4}{2} |q|$, then
\[
(S^{(q)})^n J_q \varphi = \sum_{z_1, \ldots, z_n \in \Lambda} \pi_{z_1} K^{(q)}_{\tau z_1} \left[\pi_{z_2} K^{(q)}_{\tau z_2} \ldots K^{(q)}_{\tau z_{n-1}} \left[\pi_{z_n} K^{(q)}_{\tau z_n} J_q \varphi \right] \ldots \right]
\]
\[
= \sum_{z_1, \ldots, z_n \in \Lambda} \pi_{z_1} K^{(q)}_{\tau z_1} \left[\pi_{z_2} K^{(q)}_{\tau z_2} \ldots K^{(q)}_{\tau z_{n-1}} \left[\pi_{z_n} \right] \ldots \right]
\times K^{(q)}_{\tau z_n} \left[K^{(q)}_{\tau z_n} \ldots K^{(q)}_{\tau_{z_{n-1}}} \left[K^{(q)}_{\tau z_1} J_q \varphi \right] \ldots \right]
\]
\[
= \sum_{z_1, \ldots, z_n \in \Lambda} \pi_{z_1} K^{(q)}_{\tau z_1} \left[\pi_{z_2} K^{(q)}_{\tau z_2} \ldots K^{(q)}_{\tau z_{n-1}} \left[\pi_{z_n} \right] \ldots \right]
\times \tau_{z_1} \ldots \tau_{z_n} K^n J_q \varphi + O(\|q\|^{-\xi} n^{\xi^d+1} \|\varphi\|_\infty) ,
\]
where we have used the fact that if two functions f, g have disjoint support, then $K^{(q)}(fg) = K^{(q)} f \cdot K^{(q)} g$, the same considerations as in (4.20) and the translation
invariance of \mathcal{K}. Set $z^{n-k} := (z_{k+1}, \ldots, z_n)$ and
\[\psi_{z^n} := \tau^{-z_1 \cdots -z_n} \left[\pi_{z_1} \mathcal{K}(q) \tau^{z_1} \left[\pi_{z_2} \mathcal{K}(q) \cdots \mathcal{K}(q) \tau^{z_{n-1}} [\pi_{z_n}] \cdots \right] \right] \]
Then
\[\psi_{z^n} = \left[\tau^{-z_1 \cdots -z_n} \pi_{z_1} \mathcal{K}(q) \tau^{-z_1} \left[\pi_{z_2} \mathcal{K}(q) \cdots \mathcal{K}(q) \tau^{-z_{n-1}} \right] \psi_{z^{n-1}} \right] \]
which is
\[\left[\tau^{-z_1 \cdots -z_n} \pi_{z_1} \mathcal{K}(q) \psi_{z^{n-1}} \right] \]
since, when applied to a function f supported in the box $\{ p \in \mathbb{Z}^d : \| p \| \leq \frac{C_d}{4} \| q \| \}$, the operator $\mathcal{K}(q)$ is invariant under translation by $\tau^{-z_1 \cdots -z_n}$ provided $nC_1 \leq \frac{C_d}{4} \| q \|$, that is $\mathcal{K}(q) \tau^{-z_1 \cdots -z_n} f = \tau^{-z_1 \cdots -z_n} \mathcal{K}(q) f$.

Remark 4.9. Note that later on in the proof we will apply $\mathcal{K}(q)$ to functions that are supported in a box of size $\frac{C_d}{4} \| q \|$ centered at the origin. Hence, by construction, such functions never see the kernels in which the interaction is long range, accordingly we can modify $\mathcal{K}(q)$ to have interactions of length $\| q \|$ in all \mathbb{Z}^d, without any change in the above formulae. We will call $\tilde{\mathcal{K}}(q)$ the resulting translation invariant object.

We set $\Xi_n := \sum_{z_1, \ldots, z_n} \psi_{z^n}$ and write the above estimate as
\[(4.21) \quad \left| \mu_e(S^n J_q \varphi) - \mu_e(\Xi_n \cdot (\mathcal{K}(q))^n J_q \varphi) \right| \leq C \| q \|^{-\varepsilon + d} n^{\varepsilon + 1} \| \varphi \|_\infty. \]
As $J_q \varphi$ does not depend on points $\| p \| \leq \frac{C_d}{4} \| q \|$, (4.11) yields
\[\left| \mu_e(S^n J_q \varphi) - \mu_e(\Xi_n) \cdot \mu_e((\mathcal{K}(q))^n J_q \varphi) \right| \leq C \| q \|^{-\varepsilon + d} n^{\varepsilon + 1} \| \varphi \|_\infty
+ C \| q \|^{-\varepsilon + d} (\ln \| q \|)^{\varepsilon + 1} \| \varphi \|_\infty \| \Xi_n \|_\infty, \]
and as $\mu_e((\mathcal{K}(q))^n J_q \varphi) = \mu_e(J_q \varphi) + \mathcal{O}(\| q \|^{-\varepsilon + d} n^{\varepsilon + 1} \| \varphi \|_\infty)$, it follows that
\[\left| \mu_e(S^n J_q \varphi) - \mu_e(J_q \varphi) \right| \leq \left| \mu_e(\Xi_n - 1) \| \varphi \|_\infty \right|
+ C \| q \|^{-\varepsilon + d} (\ln \| q \|)^{\varepsilon + 1} \| \varphi \|_\infty \| \Xi_n \|_\infty. \]
At this point we can estimate the real objects of interest:
\[(4.22) \quad \left| \zeta(S^n J_q \varphi) \right| \leq \sum_{i=0}^{1} \left| \mu_e(\Xi_{n+i} - 1) \| \varphi \|_\infty \right| + C \| q \|^{-\varepsilon + d} n^{\varepsilon + 1} \| \varphi \|_\infty \| \Xi_n \|_\infty
+ C \| q \|^{-\varepsilon + d} (\ln \| q \|)^{\varepsilon + 1} \| \varphi \|_\infty \| \Xi_n \|_\infty. \]
To conclude we must estimate $|\mu_e(\Xi_{n} - 1)|$ and the norm $\| \Xi_n \|_\infty$ on the right hand side of the above equation. To do so it is convenient to consider the operators $\mathcal{K}_q \varphi := g\tilde{\mathcal{K}}(q) \varphi$, $\hat{\mathcal{K}}_q \varphi := g\tilde{\mathcal{K}}(q) \varphi - g\mu_e(q) \varphi$, where $\mu_e(q)$ is the unique invariant measure of the operator $\tilde{\mathcal{K}}(q)$. The proof of the existence of such measures is exactly the same as the proof of the existence of μ_e or μ_r.

Note that $\hat{\mathcal{K}}_1 = 0$. Let us set $\pi_{z_{n-k}} := \tau^{-z_{k+1} \cdots -z_n} \pi_{z_{k+1}}$, then
\[\Xi_n = \sum_{z^n} \mathcal{K}_{\pi_{z^n}} \mathcal{K}_{\pi_{z_{n-1}}} \cdots \mathcal{K}_{\pi_{z_1}} 1 \]
\[= \sum_{z^n} \hat{\mathcal{K}}_{\pi_{z^n}} \mathcal{K}_{\pi_{z_{n-1}}} \cdots \mathcal{K}_{\pi_{z_1}} 1 + \pi_{z^n} \mu_e(q) (\mathcal{K}_{\pi_{z_{n-1}}} \cdots \mathcal{K}_{\pi_{z_1}} 1). \]
The above discussed translation invariance implies
\[(4.24) \quad \sum_{z^n} \left| \pi_{z^n} \mu_e(q) (\mathcal{K}_{\pi_{z_{n-1}}} \cdots \mathcal{K}_{\pi_{z_1}} 1) \right| \leq (1 + \sum_{z} \| \pi_z \|_\infty) = 1 + D. \]
To conclude we need to understand the properties of compositions of the operators \hat{K}_π^ϵ. To do so we use again our covering spaces, as we did for the operators K, S.

Indeed, given an operator \hat{K}_g, with $g = a + \hat{g}$, $a \in \mathbb{R}$, and \hat{g} supported in the box $p + \Lambda$ centered around p, we can define the covering dynamics $\hat{K} G$ of K^π_g where \hat{K} is defined as in (4.7) while $G(c, \tilde{v}) := (0, G\tilde{v})$ is defined, in analogy with (4.13), by

$$(G\tilde{v})_q := \begin{cases} g\nu_q + \sum_{p' \in p + \Lambda} J_q(\hat{g}\nu_{p'}) & \text{if } q \notin p + \Lambda \\ \nu_q + \sum_{p' \in p + \Lambda} J_q(\hat{g}\nu_{p'}) & \text{if } q \in p + \Lambda \end{cases}$$

A direct computation shows that $\Pr(\hat{K} G_1 \cdots \hat{K} G_n \Psi \nu) = \hat{K} G_1' \cdots \hat{K} G_n', \nu$, that is the above operators cover arbitrary products of the operators of interest. In addition, if $\phi \in C^0_{loc}$ depends only of M variables, then

$$(4.25) \quad \|\hat{K}_{\pi_g} \cdots \hat{K}_{\pi_1}\phi\|_\infty \leq \prod_{k=1}^n (a + (1 + 2|\Lambda|)\|\hat{g}_k\|_\infty) \sum_q d_q \|\phi\|_\infty$$

Iterating the procedure in (4.23), (4.24) and using (4.25) yields

$$(4.26) \quad \|\Xi_n\|_\infty \leq C \sum_{k=0}^{n-1} \eta_{k}^\epsilon (1 + D) < \infty.$$

Next observe that $\mu^g_{\epsilon(q)}(\Xi_n) = 1$, which can easily be checked by a direct computation that uses the invariance of $\mu^g_{\epsilon(q)}$ under translations and under the kernel $\hat{K}^{(q)}$. Hence $|\mu^g_{\epsilon}(\Xi_n) - 1| \leq |\mu^g_{\epsilon(q)}(\Xi_n) - 1|$, and as Ξ_n depends on at most $C\|q\|^d$ variables, we can apply (4.8) and its analogue for the kernel $\hat{K}^{(q)}$ to conclude that

$$(4.27) \quad |\mu^g_{\epsilon}(\Xi_n) - \mu^g_{\epsilon(q)}(\Xi_n)| \leq \|\hat{K}^{(q)}_n \Xi_n - (\hat{K}^{(q)}_n)\Xi_n\|_\infty + C\|q\|^d \eta_n^n\|\Xi_n\|_\infty$$

where we used assumption (A8) in the last step. Collecting (4.22), (4.26) and (4.27) we thus arrive at

$$|\zeta(S^n J_q \varphi)| \leq C\|q\|^d \epsilon^{d'} n^{1+\epsilon'} \|\varphi\|_\infty (1 + \|\Xi_n\|_\infty),$$

which, using the trivial bound $|J_q(S^n)\varphi| \leq 2\|\varphi\|$ for $\|\varphi\| \leq n^{\epsilon' + \frac{1}{2}}$, implies the lemma, as $\epsilon' > 2d$ by assumption (A8).

Finally, applying Lemma 4.8 and Lemma 4.7, to (4.18) we have

$$(4.28) \quad |\zeta(S^n \varphi)| \leq C(n_0 n^{\frac{\epsilon' + 1}{2} d} + e^{-C_6 n^{\varphi'/2}}) \|\varphi\|_\infty \leq C n^{-C_6} \|\varphi\|_\infty,$$

where $C_6 > 1$. Indeed, $n_0^{-\epsilon' n^{\varphi'/2}} \leq n^{-\epsilon' n^{\varphi'/2}}$, thus the claim holds true provided

$$\frac{(1-\alpha)\ln n_0^{-1}}{\ln(1-D)} - \frac{\epsilon' + 1}{2} d > 1$$

or, equivalently, $\eta_0 < (1 - D)^{-\frac{\epsilon' + 1}{2} d}$. By (A9-c) we can always choose φ so that this inequality is satisfied. Accordingly the sum on the right hand side of the first line of (4.17) is convergent which implies that $\frac{d(S^n)\mu}{d\mu^g}$ converges in $L^1(\Theta, \mu_g)$ to some function h, hence $\mu = h\mu_g$ is absolutely continuous with respect to μ_g.

Finally, to prove equivalence, if \(\mu_e \) is not absolutely continuous with respect to \(\mu \), then there exists an invariant set \(A \) such that \(\mu(A) = 0 \) but \(\mu_e(A) > 0 \). Accordingly,

\[
0 = \mu(S^n 1_A) = \mu_e(hS^n 1_A) = \sum_{z_1, \ldots, z_n \in \Lambda} \mu_e(h\pi_{z_1} K_{z_1} \pi_{z_2} \ldots K_{z_n} 1_A)
\]

which implies \(\mu_e(hK^n \sum_{i=1}^n z_i 1_A) = 0 \) for each choice of \(n \) and \(z_i \) such that \(\gamma_{z_i} \neq 0 \). By ellipticity, there exist \(s \in \mathbb{N} \) and \(\sum_{i=1}^s z_i = 0 \) (see the proof of (2.9)), thus \(\mu_e(hK^s 1_A) = 0 \). To conclude we consider the processes \(\mathbb{P}_\mu \) and \(\mathbb{P}_{\mu_e} \), clearly the first is absolutely continuous with respect to the second and the Radon-Nikodym derivative is given by \(H(\theta_t) := h(\theta_0) \). Accordingly, calling \(\bar{\tau} \) the time shift, and considering the set \(B := \{ (\theta_t) \in \Omega : \theta_0 \in A \} \), we have \(\mathbb{E}_{\mathbb{P}_{\mu_e}}(H\bar{\tau}^n 1_B) = \mu_e(hK^n 1_A) = 0 \). Thus

\[
0 = \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{E}_{\mathbb{P}_{\mu_e}}(H\bar{\tau}^k 1_B).
\]

But then the Birkhoff ergodic theorem and the ergodicity of \(\mathbb{P}_{\mu_e} \) imply

\[
0 = \mathbb{E}_{\mathbb{P}_{\mu_e}}(H) \mathbb{E}_{\mathbb{P}_{\mu_e}}(1_B) = \mu_e(A)
\]

which is a contradiction. This shows that \(\mu \) and \(\mu_e \) are equivalent, hence (A1).

Appendix A. Central Limit Theorem for additive functionals of Markov chains

In this appendix we recall the results and the arguments of [19] keeping explicit track of some estimates that are needed for the present paper. The basic idea, going back to [16] is to construct a martingale approximation by solving the equation

\[
(1 + \varepsilon)h_\varepsilon = \Pi h_\varepsilon + g,
\]

where \(g = \langle w, G \rangle \) satisfies condition (2.21). Setting \(V_t h := \sum_{s=0}^{t-1} \Pi^s h \), a solution to this equation can be written as

\[
h_\varepsilon = \varepsilon \sum_{s=1}^{\infty} \frac{V_s g}{(1 + \varepsilon)^{s+1}}.
\]

If we define

\[
H_\varepsilon(\omega, \omega') := h_\varepsilon(\omega') - \Pi h_\varepsilon(\omega)
\]

then

\[
\sum_{s=0}^{t-1} g(\omega_s) = M_{\varepsilon,t} + \varepsilon \sum_{s=0}^{t-1} h_\varepsilon(\omega_s) + R_{\varepsilon,t}
\]

where \(M_{\varepsilon,t} \) is a \(\mathcal{F}_t \) martingale and \(R_{\varepsilon,t} \) a boundary term

\[
M_{\varepsilon,t} := \sum_{s=0}^{t-1} H_\varepsilon(\omega_s, \omega_{s+1}) ; \quad R_{\varepsilon,t} := \Pi h_\varepsilon(\omega_0) - \Pi h_\varepsilon(\omega_t).
\]

Lemma A.1. If (2.21) holds, then for each \(\varepsilon > 0 \), setting \(\varepsilon_k := 2^{-k} \varepsilon \), we have \(\sum_{k=0}^{\infty} \sqrt{\varepsilon_k} \| h_\varepsilon \| = o \left((\ln \varepsilon^{-1})^{-\theta} \right) \) where the norm is the \(L^2(\Omega, \mathbb{P}_\mu) \)-norm.
Proof. By definition
\[\|h_\varepsilon\| \leq C + C\varepsilon \sum_{s=2}^{\infty} \left[\|V_s g\| s^{-\frac{3}{2}} (\ln s)^\rho \right] \varphi_\varepsilon (s) (\ln s)^{-\rho} \]
where \(\varphi_\varepsilon (s) := s^{\frac{3}{2}} (1 + \varepsilon)^{-s} \). Then
\[\sum_{k=0}^{\infty} \sqrt{\varepsilon_k} \|h_{\varepsilon_k}\| \leq C\varepsilon^{\frac{3}{2}} + C \sum_{s=2}^{\infty} (\ln s)^{-\rho} \left[\|V_s g\| s^{-\frac{3}{2}} (\ln s)^\rho \right] \sum_{k=0}^{\infty} \varepsilon_k^{\frac{3}{2}} \varphi_{\varepsilon_k} (s) \]
and
\[\sum_{k=0}^{\infty} \varepsilon_k^{\frac{3}{2}} \varphi_{\varepsilon_k} (s) \leq \sum_{k=0}^{\infty} \left(\frac{s\varepsilon}{2\varphi} \right)^{\frac{3}{2}} e^{-\frac{x}{2}(1 - \frac{2}{3}e^{\varepsilon_k})} \leq C \int_{0}^{\infty} x^{\frac{3}{2}} e^{-\frac{x}{2}} x^{-1} \, dx = C. \]
Setting \(\ell = \varepsilon^{-\frac{1}{2}}, \) follows
\[\sum_{k=0}^{\infty} \sqrt{\varepsilon_k} \|h_{\varepsilon_k}\| \]
\[\leq C\varepsilon^{\frac{3}{2}} + C\varepsilon^{\frac{3}{2}} \ell^{\frac{3}{2}} \sum_{s=2}^{\ell-1} \left[\|V_s g\| s^{-\frac{3}{2}} (\ln s)^\rho \right] + C(\ln \ell)^{-\rho} \sum_{s=\ell}^{\infty} \left[\|V_s g\| s^{-\frac{3}{2}} (\ln s)^\rho \right] \]
\[\leq C\varepsilon^{\frac{3}{2}} + C(\ln \varepsilon^{-1})^{-\rho} \sum_{s=\ell}^{\infty} \left[\|V_s g\| s^{-\frac{3}{2}} (\ln s)^\rho \right] \]
and the result trivially follows from (2.21). \(\square \)

Theorem A.2. If (2.21) holds, then
\[\sum_{s=0}^{t-1} g(\omega_s) = M_t + R_t \]
where \(M_t \) is a martingale and \(\|R_t\| \leq Ct^{\frac{3}{2}} (\ln t)^{-\rho} \).

Proof. Since by [19, Lemma 2] \(\{H_{\varepsilon_k}\} \) is a Cauchy sequence in \(L^2(\mathcal{P}) \), we set \(H := \lim_{k\to\infty} H_{\varepsilon_k} \). Then, by Lemma A.1, there exist \(R_t := \lim_{k\to\infty} R_{\varepsilon_k,t} \) and \(\sum_{s=0}^{t-1} g(\omega_s) = M_t + R_t \) where \(M_t := \sum_{s=0}^{t-1} H(\omega_s, \omega_{s+1}) \) is an \(L^2 \) martingale. The last estimate follows from Lemma A.1 and equation (8) of [19]. \(\square \)

References

