
INVARIANT MEASURES AND THEIR PROPERTIES.

A FUNCTIONAL ANALYTIC POINT OF VIEW

CARLANGELO LIVERANI

Abstract. In this series of lectures I try to illustrate systematically what I
call the “functional analytic approach” to the study of the statistical properties
of Dynamical Systems. The ideas are presented via a series of examples of
increasing complexity, hoping to give in this way a feeling of the breadth of
the method.
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A foreword

This text grew out of a series of five lectures that I gave at the Center Ennio
de Giorgi during the Research Trimester on Dynamical Systems (Pisa, February
1-April 30, 2002). I must say that, while writing, I added some more material that
I felt naturally belonged to the logic of the argument but I did not have the time to
cover in the actual lectures. As a consequence the present text corresponds more
to a ten rather than a five lectures course. Nevertheless, I kept the original division
since it is quite natural. In fact, it is rather tempting to expand the material even
further and make this into a full blown graduate course. I am unsure if I will ever fall
for such a temptation. In the mean time my task here is to present systematically
an approach to the problem of statistical properties of Dynamical Systems and try
to show how far it can be carried out. This reflects my opinion that the best way
to test a point of view is to try to push it to its limits. Personally, I think that the
approach presented here may be pushed much further. For example, extending it
to non uniformly hyperbolic cases or more sophisticated objects such as dynamical
ζ functions. I hope that this presentation will motivate others to do so.

1. First Lecture (the problem)

This series of lectures are dedicated to the study of the statistical properties of
Dynamical Systems.

I must immediately emphasize that the material and the point of view presented
here are a bit single minded and have no intention whatsoever to constitute a review
of the field. In fact, if one wishes to get a brief general introduction to the field
I warmly recommend the papers by Young [91, 92] and Viana [88]; for a recent
overview on the statistical properties of Dynamical Systems see Baladi’s book [4]
and [34] for a detailed general introduction to the field of Dynamical Systems.

Before starting, however, I must at least mention that the present approach has a
long history, beginning at least with the work of Sinai and then Ruelle, but twisted
through the results of Lasota-Yorke and Keller, just to mention very few of the
main actors.

1.1. The general Problem. Consider a Dynamical Systems (X,T ) where X is a
measurable space and T : X → X a measurable map.

The term statistical properties of a dynamical system is a very loose expression
but it roughly relates to the properties of the evolution of measures. It is an
interesting fact of life that very complex Dynamical Systems become much simpler
once one studies the evolution of measures rather than of points.

Given a probability measure µ on X , one can define T∗µ(A) := µ(T−1A) for
each measurable set A.1 Clearly T∗ : P(X) → P(X), where P(X) is the set of
the probability measures on X .2 Indeed, since T−1X = X , if µ ∈ P(X), then
T∗µ(X) = µ(X) = 1.

1The operator T∗ is often called Transfer operator, in analogy with the related object in
Statistical Mechanics, or Perron-Frobenius operator, borrowing the terminology from the theory
of positive matrices and operators, or also Ruelle-Perron-Frobenius operator in recognition of the
rôle of D.Ruelle in emphasizing its importance and in the study of its properties.

2In these notes we will consider only probabilities measures. Nonetheless, it must be said that
there exists a rich and very interesting theory of σ-finite invariant measures, [1].
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When investigating the properties of the dynamical system (P(X), T∗), the first
relevant question is the study of the fixed points, that is the invariant measures:
µ(A) = µ(T−1A) for each measurable set A.3

Given an invariant measure µ, one can define the measurable dynamical sys-
tem (X,T, µ). For such a dynamical system several natural questions concerning
statistical properties arise. The first question is the identification of the invariant
sets. One of the most interesting possibilities being when all the invariant sets4

are trivial–either of zero or of full measure–such systems are called ergodic. This
corresponds to a study of the properties of the invariant measure itself.

If one is interested in the behavior of nearby measures, a first possibility is
to consider the set A(µ) := {ν ∈ P(X) | ν ≪ µ}, that is the set of measures
absolutely continuous with respect to µ. In several cases (certainly in all the ones
discussed below) it happens that T∗A(µ) ⊂ A(µ), in this case the map is called
nonsingular with respect to µ. If µ is an attractor for A(µ), then the measurable
dynamical system (X,T, µ) is called mixing. This is a very interesting notion which
has received a lot of attention due to its importance both in practical and theoretical
contexts. For mixing systems a further obvious issue concerns the speed with which
measures in A(µ) are attracted to µ, the so called speed of mixing.

To understand more global properties of (P(X), T∗) one can try to gain a better
knowledge of the behavior of a larger class of measures, for example one can study
the asymptotic behavior of the measures that are absolutely continuous with respect
to a given (not necessarily invariant) measure m (e.g. Lebesgue).

It is also possible to investigate stronger statistical properties of (X,T, µ) (e.g.,
Central Limit Theorems, K-property, Benoully property, etc.–see [34] for a more
complete introductory discussion). Yet, here we will limit our investigations to the
above concepts.

Of course the first question is: do invariant measures always exist?
The answer is, in general, negative. Consider indeed the following two trivial

examples

(1) T : R → R defined by T (x) = x2 + 2. Clearly any invariant measure must
be supported on [2,∞). On the other hand, if x ≥ 2, T−1x ⊂ (−∞, x− 1).
Accordingly, for any bounded set A there exists n ∈ N such that T−nA ⊂
(−∞, 2), hence µ(A) = µ(T−nA) = 0.5

(2) T : [0, 1] → [0, 1]

T (x) =











1

2
x+

1

4
∀x 6= 1

2

0 for x =
1

2

Clearly, µ({1/2}) = 0 since the point has no preimage. Thus letting A =
[0, 1/2) ∪ (1/2, 1], for each ε > 0 there exists n ∈ N such that T nA ⊂
(1/2 − ε, 1/2 + ε), so µ((1/2 − ε, 1/2 + ε)) ≥ µ(T nA) = µ(A) = µ([0, 1]).

3Notice that if T is invertible and T−1 is measurable, then the above relation is equivalent to
µ(A) = µ(TA) for each measurable set A.

4That is, the measurable sets A such that T−1A ⊂ A.
5Here no invariant measure at all does exist (a part from µ = 0, which clearly always exists

but we do not take into considerations since it yields no information whatsoever on the systems).
If we wish to exclude only invariant probability measures, then the obvious example Tx = x+ 1
suffices.
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Hence, if the measure is Borel, by the regularity of the measure follows
µ([0, 1]) = µ({1/2}) = 0.

In the two counterexamples above the obstructions derive, in the first case, from
the non-compactness of the space and, in the second case, from the discontinuity
of the map. Essentially these are the only possible obstructions as is illustrated in
the next section.

1.2. Existence (Kryloff–Bogoliouboff).

Proposition 1.1 (Kryloff–Bogoliouboff [50]). If X is a compact metric space and
T : X → X is continuous, then there exists at least one invariant (Borel) measure.

Proof. Consider any Borel probability measure ν and define the following sequence
of measures {νn}n∈N := {T n

∗ ν}. Next, define

µn =
1

n

n−1
∑

i=0

νi.

Again µn(X) = 1, so the sequence {µi}∞i=1 is contained in a weakly compact set
(the unit ball) and therefore admits a weakly convergent subsequence {µni

}∞i=1; let
µ be the weak limit.6 We claim that µ is T invariant. Since µ is a Borel measure
it suffices to verify that for each f ∈ C0(X) holds µ(f ◦ T ) = µ(f). Let f be a
continuous function, then by the weak convergence we have7

µ(f ◦ T ) = lim
j→∞

1

nj

nj−1
∑

i=0

νi(f ◦ T ) = lim
j→∞

1

nj

nj−1
∑

i=0

ν(f ◦ T i+1)

= lim
j→∞

1

nj

{nj−1
∑

i=0

νi(f) + ν(f ◦ T nj)− ν(f)

}

= µ(f).

�

1.3. Why is this not enough? The problem with the above result is not so
much in the hypotheses of the Theorem (although discontinuous systems do have
an important rôle in Dynamical Systems–just think of billiard systems or Poincarè
maps of flows, for example) but rather in the lack of information about the invariant
measure.

Indeed, in general there may be a lot of invariant measures and not all of them
may be relevant for the study of a system. For example, if the system has a periodic
orbit {T ix0}ni=1, x0 ∈ X , then the Dirac measure that assigns to each point of the
orbit the same weight is obviously invariant.

6This depends on the Riesz-Markov Representation Theorem that states that the space of
Borel measures M(X) is exactly the dual of the Banach space C0(X). Since the weak convergence
of measures in this case corresponds exactly to the weak-* topology, the result follows from the
Banach-Alaoglu theorem stating that the unit ball of the dual of a Banach space is compact in
the weak-* topology.

7Note that it is essential that we can check invariance only on continuous functions: if we

would have to check it with respect to all bounded measurable functions we would need that µn
converges in a stronger sense (strong convergence) and this may not be true. Note as well that
this is the only point where the continuity of T is used: to insure that f ◦ T is continuous and
hence that µnj (f ◦ T ) → µ(f ◦ T ).
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A simple possibility is to look for measures that are affiliated to some reference
measure. Instead of going into some abstract discussion about a precise technical
meaning of the word affiliated let us be very concrete and see immediately a simple
example in which the reference measure is Lebesgue.

1.4. A simple example: smooth expanding maps. Let T be a C2(Td,Td)
expanding map.8 As already mentioned we would like to restrict the measures we
are interested in to measures that are related to Lebesgue. An interesting way to
do so is to consider the following semi–norm

(1.1) ‖µ‖ := sup
|ϕ|∞≤1

ϕ∈C1(Td,Rd)

d
∑

i=1

µ(∂iϕi)

and consider the set of measures B := {µ ∈ P(Td) | ‖µ‖ <∞}.
The next little lemma will helps us to understand what type of measures we are

considering.

Lemma 1.1. If ‖µ‖ < ∞ then µ is absolutely continuous with respect to the
Lebesgue measure m and, in addition, the Radon-Nykodim derivative is a function
of bounded variation.

Proof. Let µ ∈ B. For each ε ∈ (0, 1) let Jε be the smoothing operator

Jεϕ(x) :=

∫

Td

ε−dj(ε−1(x − y))ϕ(y)dy

where, j ∈ C∞(Rd,R+), supp(j) ⊂ [−1/2, 1/2]d and
∫

Rd j(y)dy = 1. Moreover
define, as usual,

J∗
εµ(ϕ) := µ(Jεϕ).

Then w-limε→0 J
∗
εµ = µ.9 In addition, since

Jε1 = 1, and ∂i(Jεϕ) = −Jε∂iϕ,

it holds J∗
εµ(1) = µ(1) = 1 (that is J∗

ε : P(Td) → P(Td)) and

‖J∗
εµ‖ = sup

|ϕ|∞≤1

ϕ∈C1(Td,Rd)

d
∑

i=1

µ(Jε∂iϕi) = sup
|ϕ|∞≤1

ϕ∈C1(Td,Rd)

d
∑

i=1

µ(∂i(Jεϕi))

≤ sup
|Jεϕ|∞≤1

ϕ∈C1(Td,Rd)

d
∑

i=1

µ(∂i(Jεϕi)) = ‖µ‖
(1.2)

Moreover, |J∗
ε µ(ϕ)| ≤ ε−d|j|∞ |µ| |ϕ|L1 , hence J∗

εµ is absolutely continuous with
respect to Lebesgue. Let hε ∈ L∞(Td,R) be the density of J∗

ε µ. Clearly, hε ∈
BV (Td,R), the space of functions of bounded variation, in addition they have
uniformly bounded variation. Accordingly, {hε}ε>0 is a relatively compact sequence

8That is ‖DT‖ ≥ λ > 1.
9By w-lim we mean the limit in the weak (or weak-∗ for the functional analytic oriented)

topology.
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in L1(Td,R) ([23]). Consider any convergent subsequence {hεj}j∈N, and let h ∈
BV (Td,R) be its limit, then for each ϕ ∈ C0(Td,R) holds

µ(ϕ) = lim
j→∞

J∗
εjµ(ϕ) = lim

j→∞

∫

Td

hεjϕ =

∫

Td

hϕ.

�

Remark 1.1. Note that the closure of the space of measures with C1 density by the
above norm yields the space of measures with densities in the Sobolev space W1,1.
It is an interesting exercise to check that the following holds unchanged for such a
space as well.10

The basic idea of the present approach is the realization that the operator T∗
evolving the measures is a regularizing operator, if properly viewed. This is made
precise by the following.

Lemma 1.2 (Lasota-Yorke type inequality). For each µ ∈ B holds,

T∗µ(1) = µ(1)

‖T∗µ‖ ≤ λ−1‖µ‖+Bµ(1).

Proof. We have already discussed the first inequality, for the second
∑

i

T∗µ(∂iϕi) =
∑

i

µ((∂iϕi) ◦ T )

=
∑

i

µ(∂i((DT
−1ϕ) ◦ T )i)−

∑

ij

µ(ϕj ◦ T∂i[∂jT−1
i (Tx)]).

(1.3)

The result follows since

sup
i

|(DT−1ϕ) ◦ T )i|∞ = sup
i

|DT−1ϕi|∞ ≤ λ−1|ϕ|∞,

while |
∑

ij µ(ϕj ◦ T∂i[∂jT−1
i (Tx)]|∞ ≤ |D2T |∞d|ϕ|∞ =: B|ϕ|∞. �

Lemma 1.2 readily implies that all the Kryloff-Bogoliouboff accumulations points,
starting from a measure absolutely continuous with respect to the Lebesgue measure
m, have density in BV (Td,R).11

Due to this state of affairs, one can study directly the evolution of the densities
rather than the evolutions of the measures. To do so set dµ = hdx and define the
operator L : BV(Td,R) → BV(Td,R) by

Lh :=
dT∗µ

dx
.

A direct computation yields the well known formula

(1.4) Lf(x) =
∑

y∈T−1x

| det(DyT )|−1f(y).

10In fact, changing a bit the norms (that is considering measures with densities in C1), one
can prove–with a bit more work–that the limiting object of the Kryloff-Bogoliouboff procedure
are measures with C1 densities, when starting by measures in such a class. This is a nice exercise
as well.

11In fact, iterating the Lemma yields ‖Tn
∗ µ‖ ≤ λ−n‖µ‖ + B(1 − λ−1)−1. The result follows

then by standard approximation arguments and the compactness of the unit ball of BV in L1

(see, e.g. the proof of Lemma 1.3).
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It is an helpful exercise to redo all the above arguments directly for the operator
L. The logic is exactly the same, only one must use the BV(Td,R) norm rather
than the ‖ ·‖ norm (which, in fact, is exactly the same, once one considers densities
rather than measures).

A natural question is if the procedure outlined above is able to provide all the
invariant measures we may be interested in. To get a feeling of the situation just
consider the next lemma.

Lemma 1.3. For each invariant measurable set A of positive Lebesgue measure
there exists an invariant measure µ ∈ B supported in A.

Proof. Let χA be the characteristic function of the set A, and consider the measure
mA(ϕ) := m(χAϕ)m(A)−1. The idea is to apply the Kryloff-Bogoliouboff procedure
to mA, the problem being that mA may not belong to B (it will not if χA is not of
bounded variation). Yet, since BV is dense in L1, for each ε > 0 we can consider
gε ∈ BV such that

∫

gε = 1 and |χA − gε|L1 ≤ ε. Let mε(ϕ) := m(gεϕ) and let µA

and µε be weak limits of some subsequence 1
nj

∑nj−1
i=0 T i

∗mA and 1
nj

∑nj−1
i=0 T i

∗mε,

respectively. Clearly µA is supported in A. In addition, on the one hand

|µA(ϕ)− µε(ϕ)| ≤
1

nj

nj−1
∑

i=0

m(|χA − gε| |ϕ ◦ T i|) ≤ |ϕ|∞ε,

and, on the other hand,

‖µε‖ ≤ lim
j→∞

1

nj

nj−1
∑

i=0

λ−i‖µε‖+B(1− λ−1)−1 = B(1− λ−1)−1.

Thus, by Lemma 1.1 it follows that there exists hε ∈ BV, for which the variation sat-
isfies

∨

hε ≤ B(1−λ−1)−1, such that µε(ϕ) =
∫

hεϕ. But then, by the compactness
of the unit ball of BV in L1, [23], it follows that there exists a subsequence εj such
that hεj converges in L1 to a function of bounded variation,

∨

h ≤ B(1 − λ−1)−1.
Accordingly,

µA(ϕ) =

∫

hϕ,

that is µA ∈ B. �

The above lemma gives us quite a deep information on the structure of the
invariant sets of positive Lebesgue measure. For example, in the one dimensional
case (d = 1), since h ∈ BV, its support must contain an interval, that is A must
contain an interval. This eliminates the possibility of an invariant Cantor set of
positive Lebesgue measure; this property is at times called local ergodicity.

The arguments in this section can be easily generalized. For example one can
investigate cases in which the map is more or less regular.

For simplicity let us restrict our discussion to the one dimensional case (d = 1).

1.5. More Regularity. Suppose that T ∈ Cn+1(T1,T1), for n ∈ N. One can then
consider the norms, for k ≤ n,

‖µ‖k := sup
ϕ∈Ck

|ϕ|
C0≤1

µ(ϕ(k)).
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A trivial analogous of Lemma 1.1 shows that if
∑n

j=0 ‖µ‖j <∞ then µ is absolutely
continuous with respect to Lebesgue with a density n − 1 time differentiable and
with the n− 1 derivative being a bounded variation function.

It is an easy exercise to verify the formula

dk

dxk
[(DT )−kϕ ◦ T ] = ϕ(k) ◦ T +

k−1
∑

j=0

αj(T )ϕ
(j) ◦ T,

where αj depends only on the first k− j derivatives of T . Using such a formula one
can easily generalize the computation in the proof of Lemma 1.2 whereby obtaining,
for each k ≤ n,

(1.5) ‖T∗µ‖k ≤ λ−n‖µ‖k +B
k−1
∑

j=0

‖µ‖j.

The above estimates give, for k = 1, the same statement of Lemma 1.2. In partic-
ular, as we have already remarked,

‖Tm
∗ µ‖1 ≤ B(1− λ−1)−1 ∀m ∈ N.

Using (1.5) iteratively on k one obtains, by the same token, that there exist C > 0
such that

‖Tm
∗ µ‖n ≤ C ∀m ∈ N.

In analogy with what we have seen so far, the above inequality implies that there
are invariant measures in Bn := {µ ∈ P(X) | ∑n

i=1 ‖µ‖i <∞}.

1.6. Less Regularity. There are two possibilities: maps that are only C1+α(T1,T1),
α ∈ (0, 1), or maps that can have discontinuities. We will concentrate on the second
case being more interesting.12

Let us consider the one dimensional piecewise smooth expanding case. That is
a map T : [0, 1] → [0, 1] such that there exists a partition Z, in intervals, of [0, 1]

such that, for each Z ∈ Z, the map T restricted to
◦

Z is C2. To further simplify
matters we assume strong expansivity, that is |DT | ≥ λ > 2.13 In this case we can
use the same semi-norm used for C2 maps, (1.1), that is

‖µ‖ := sup
ϕ∈C1

|ϕ|∞≤1

µ(ϕ′).

Remark 1.2. Note that, due to the discontinuity of the map, the original Kryloff-
Bogoliouboff argument 1.1 does not apply to the present situation.

To overcome such a problem we will implement the same argument of Proposition
1.1 but without using the weak compactness of the measures, instead we will use
the compactness of the unit ball of the function of bounded variation in L1, [23].

Indeed, let us start by noticing the following.

12For the reader interested in the first case, consider the semi–norms:

‖µ‖α := sup
ϕ∈C1

|ϕ|
C1−α≤1

µ(ϕ′).

13In the general case in which one has only |DT | ≥ λ > 1, once must consider the powers of
the map T in order to gain enough expansion.
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Lemma 1.4. For piecewise smooth maps T∗B ⊂ A(m), the set of absolutely con-
tinuous measures with respect to Lebesgue.

Proof. If ‖µ‖ < ∞, then Lemma 1.1 implies that µ is absolutely continuous with
respect to Lebesgue, it is then trivial to see that T∗µ ∈ A(m). �

Accordingly, if ‖µ‖ <∞, then, for each ϕ ∈ C1,

T∗µ(ϕ
′) =

∑

Z⊂Z

T∗µ(ϕ
′χZ) =

∑

Z⊂Z

T∗µ(ϕ
′χ ◦

Z
),

since, by Lemma 1.4, T∗µ gives zero weight to points.
For each Z ∈ Z, define φZ to be linear and such that φZ = ϕ on ∂Z, then define

ψZ = ϕ− φZ , on Z, and extend ψZ to all [0, 1] by setting it equal to zero outside

Z. We obtain in this way a continuous function. Moreover, for each x ∈
◦

Z,

|φ′Z(x)| ≤
2|ϕ|∞
|Z| .

Thus,

T∗µ(ϕ
′) =

∑

Z⊂Z

µ(ψ′
Z ◦ T ) + µ(φ′Z ◦ Tχ ◦

Z
)

≤
∑

Z⊂Z

µ((ψZ ◦ T (DT )−1)′) +Bµ(1)|ϕ|∞

= µ
((

∑

Z⊂Z

ψZ ◦ T (DT )−1
)′)

+Bµ(1)|ϕ|∞.

We are left with the problem that the function ψ̄ :=
∑

Z⊂Z ψZ ◦T (DT )−1 it is not

C1, in fact its derivative has a finite number of points of discontinuity. Nevertheless,
for each ε we can find a continuous function gε, |gε|∞ ≤ |ψ̄′|∞, such that it differs
from ψ̄′ only on a set of Lebesgue measure ε. Then, if we define ψε(x) := ψ̄(0) +
∫ x

0
gε(z)dz, holds |ψ̄ − ψε|∞ ≤ 2|ψ̄′|∞ε. Hence,

µ(ψ̄′) ≤ µ(ψ′
ε) + 2|ψ̄′|∞‖µ‖ε ≤ ‖µ‖(2|ϕ|∞ + 4|ψ̄′|∞ε).

Since ε is arbitrary, this implies

T∗µ(ϕ
′) ≤ (2λ−1‖µ‖+B)|ϕ|∞.

We have thus, also in this case, the Lasota-Yorke inequality14

‖T∗µ‖ ≤ 2λ−1‖µ‖+B.

We can thus redo the Kryloff–Bogoliouboff argument: let µ0 ∈ B be a probability
measure, then let µn := 1

n

∑n−1
i=0 T

i
∗µ0. By iterating the Lasota–Yorke inequality

follows

‖µn‖ ≤ 1

n

n−1
∑

i=0

(2λ−1)I‖µ0‖+B(1 − 2λ−1)−1 ≤ ‖µ0‖
n(1− 2λ−1)

+
B

1− 2λ−1
.

By Lemma 1.1 we know that the µn are absolutely continuous with respect to
Lebesgue and that their density hn are functions of bounded variation with uni-
formly bounded variation norm. The already mentioned compactness of the unit
BV ball in L1 implies that there exists a subsequence hnj

such that it converges

in L1 to a function h of bounded variation norm bounded by B(1 − 2λ−1)−1. Let

14In fact, this is the original Lasota-Yorke inequality,[62].
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µ be the measure with density h, then µ ∈ B and it is trivial to check that it is an
invariant measure.

Remark 1.3. Note that we have a stronger convergence than in the usual Kryloff–
Bogoliouboff argument (µnj

converges on all L∞ functions), this is an aspect of the
stronger control that we must have on the system in order to control the effect of
the discontinuities.

2. Second Lecture (three less trivial examples)

In the previous lecture we have considered only probability measures, this is a
very good point of view for a probabilist but not so exciting for an analyst: the set
of probability measures is not a vector space. It is natural to ask if the previous
arguments can be turned into a more functional analytic setting. This will be done
while treating the next examples. We will see in the following lectures that such a
functional analytic point of view will prove far reaching.

2.1. Coupled map lattices. Let T̃ be a smooth expanding map of the circle.
Define T : TZ → TZ as the product of such maps. Next, let Fε : TZ → TZ be a
diffeomorphism close to the identity. More precisely, assume that (DFε)

−1 = Id+εA
and that

|Aij | ≤ Ce−a|i−j| and |∂kAij | ≤ Ce−a|i−k|−a|j−k|.

We finally consider that map Tε := Fε ◦ T .15 Next, we want to consider an ap-
propriate Banach space on which to analyze the dynamics. In analogy with the
previous lecture, let us consider the set of signed measures M(TZ) and define on it
the two norms16

|µ| := sup
ϕ∈C0(TZ,R)
|ϕ|∞≤1

µ(ϕ)

‖µ‖1 := sup
ϕ∈C1(TZ,RZ)∑

i∈Z
|ϕi|∞≤1

∑

i∈Z

µ(∂iϕi)

The first is the usual norm in M(TZ), the second is a generalization of the bounded
variation norm to the infinite dimensional setting. We will work in the space B :=
{µ ∈ M(TZ) | ‖µ‖1 < ∞} which is a Banach space once it is equipped with the
norm ‖ · ‖ := ‖ · ‖1 + | · |.

Let us gain some understanding of what B looks like. Given µ ∈ M(TZ) and
Λ ⊂ Z we can define the marginal µΛ ∈ M(TΛ) by the relation

µ(ϕ) =: µΛ(ϕ) ∀ϕ ∈ C0(TΛ,R).

Now, if Λ is a fine set, it follows that ‖µΛ‖ <∞. We know already (Lemma 1.1) that
this means that µΛ is absolutely continuous with respect to Lebesgue with density
of bounded variation. Accordingly, all the measures in B have finite dimensional

15The meaning of the above inequalities is that the maps are weakly coupled and the coupling
is quite local, that is a motion of one coordinate is not influenced from distant coordinates, at
least for a short time.

16Actually, ‖ · ‖1 is only a semi-norm, indeed ‖ ⊗Z m‖1 = 0.
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marginals which are absolutely continuous with respect to Lebesgue.17 This is
clearly a natural generalization of what we have seen in the finite dimensional case.

To check that the Lasota-York inequality holds just remember equation (1.3)
and notice that18

|(DTε)−1| ≤ λ−1(1 + ε(1− e−a)−1)

and
∑

ij

|ϕj∂i[(DT̃ )
−1(Id + εA)ij ]|∞ ≤

∑

ij

|ϕj |∞[Bδij + ε(B + λ−1)C]e−a|i−j|

≤
∑

i

|ϕi|∞[B + εC(B + λ−1)(1 − e−a)−1]

=: B1

∑

i

|ϕi|∞.

Accordingly, for ε small enough there exists θ ∈ (λ−1, 1) such that

‖Tε∗µ‖ ≤ θ‖µ‖+B1|µ|.
To conclude we have a last problem: in infinite dimensions the unit ball of B is no
longer compact in L1. This is a serious problem as far as the study of the statistical
properties is concerned (see the third lecture), one that it is not clear how to deal
with up to now. Yet, limited to the properties of the invariant measures, such a
strong property it is not needed, in fact it suffices that the unit B ball is sequentially
closed in the weak topology. Clearly, in such a case, all the Kryloff–Bogoliouboff
accumulation point will have ‖ · ‖ norm bounded by B1(1 − θ)−1 + 1, since the
iteration of the Lasota-Yorke inequality yields, for probability measures,

‖Tεn∗µ‖ ≤ θn‖µ‖+B1|(1− θ)−1µ| ≤ B1(1− θ)−1 + 1.

This implies the existence of invariant measures with finite dimensional marginals
that are absolutely continuous with respect to Lebesgue and with BV density.

Lemma 2.1. The B unit ball is sequentially closed in the weak topology.

Proof. Let the sequence {µn} ⊂ B converge weakly to µ and suppose that ‖µn‖ ≤ 1.
Then, for each function ϕ ∈ C1(TZ,RZ) such that

∑

i |ϕi|∞ ≤ 1, holds

∑

i∈Z

µ(∂iϕi) = lim
l→∞

l
∑

i=−l

µ(∂iϕi) = lim
l→∞

lim
n→∞

∑

i∈Λ

µn(∂iϕi)

≤ lim
l→∞

lim
n→∞

‖µn‖
l

∑

i=−l

|ϕi|∞ ≤ 1.

Hence ‖µ‖ ≤ 1. �

For a generalization of the above results to the discontinuous case see [45]. In-
stead consult [35, 5] for much stronger results in the smooth (analytic) case (in the
latter work a different approach, based on Statistical Mechanical methods–cluster
expansion– and pioneered in [14, 12, 13], is used).

17More is true: the bounded variation norm of the density of the Λ marginal is bounded by
|Λ| ‖µ‖1, thus there is a precise control on how the measure becomes singular with respect to
Lebesgue as Λ increases.

18The operator norm is taken with respect to the ℓ1 vector space norm |v|1 :=
∑

i∈Z
|vi|.
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2.2. Partially hyperbolic systems. Let us consider a partially hyperbolic system
(X,T ) where X is a Riemannian compact manifold and T ∈ C2(X,X).

This means that the tangent space is naturally split into two space E0(x) ⊕
Eu(x) = TxX such that19

‖DxT |Eu(x)‖ ≥ λ > 1

‖DxT |E0(x)‖ ≤ 1.

This implies the existence of an unstable foliation {Wu(x)}, [69, 70]. For the
following it is important to know more precisely the properties of such a foliation.
This subject has been widely investigated, I refer to [63] and [34] for an introduction
to the field and to [76, 26] for more complete results. The easiest way to do so is
to describe the local picture near an arbitrary point z.

x

y

y′

H(x,y)

Wu(0,y′)

Wu(0,y)

Wu(z)=Wu(0,0)

z

Figure 2.1. Unstable foliation

The foliation can be described (locally) by a function H (see 2.1) with the fol-
lowing properties

(1) H(0, 0) = 0; H(ξ, 0) = ξ.
(2) H(·, y) is the graph of Wu(0, y).
(3) H(·, y) id C2 for each y
(4) H(x, ·) is Cα for some α > 0 (this is nothing else than the Holonomy between

the affine spaces {(0, y)}y∈Rd0 and {(x, y)}y∈Rd0 ).

(5) JxH(·, y) ∈ C1.

Due to the above properties it is possible to straighten locally the foliation via
the change of coordinates

(2.1) Ψ(ξ, η) = (ξ,H(ξ, η)).

Note that such a change of coordinate is only Hölder but it is absolutely continuous
and

JΨ = JηH

19This it is not the general definition, yet the following argument holds in greater generality.
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Let us consider the set of continuous vector fields in the unstable direction V :=
{v ∈ C0(X, T X) | v(x) ∈ Eu(x); smooth when restricted to unstable manifolds}.
The first task is to define a divergence for such vector fields

Lemma 2.2. There exists a functional u-div : V → C0(X) such that, for each
h ∈ C1, holds

(2.2)

∫

X

v(h) =

∫

X

h u-div v.

Proof. Note that (2.2) always defines a functional but, in general, we have only
u-div v ∈ (C1)∗, our task is thus to prove the extra regularity. If v ∈ Eu(x) then
v = (w, ∂ξHw). Accordingly the vector fields in V can be described as (w, ∂ξHw)
with w ∈ C1. Thus

v(h) =
∑

i

wi∂xi
h+ (∂ξHw)i∂yi

h.

Hence, for each h ∈ C1, holds
∫

v(h) =

∫

{

∑

i

wi∂xi
h+ (∂ξHw)i∂yi

h

}

JΨdξdη

=

∫

∑

i

wi∂ξi(h ◦Ψ)JΨdξdη

=

∫

dη

∫

∑

i

∂ξi(wiJΨ)h ◦Ψdξ

=

∫

h

{

∑

i

∂ξi(wiJΨ)(JΨ)−1

}

◦Ψ−1.

�

We then consider the set M(X) of signed measures on X and we define on it
the following norms20

|µ| := sup
ϕ∈C0

|ϕ|∞≤1

µ(ϕ)

‖µ‖1 := sup
v∈V

|v|∞≤1

µ(u-div v).
(2.3)

Not surprisingly we will restrict ourselves to B := {µ ∈ M(X) | ‖µ‖1 < ∞}. The
next Lemma will give an idea of which type of measures we are talking about, but
to state it properly some notation is needed. Let us consider a neighborhood U
that can be covered by a coordinate chart of the type previously described, so that
in the new coordinates the unstable foliation consists of hyper-planes. Clearly in
U the unstable foliation gives rise to a natural, measurable, partition, let us call it
Fu.

Lemma 2.3. ‖µ‖1 <∞ implies that, for each ϕ ∈ C0(X,R) supported in U ,21

Eµ(ϕ | Fu) = Em(hϕ | Fu)

20Again ‖ · ‖1 is a semi-norm, indeed ‖m‖1 = 0.
21In the following I will use the probabilistic notation Eµ(f) for µ(f), so that I can more

naturally work with the conditional expectation E(· | Fu).
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where h|Fu
is BV m–a.e..

Proof. Let v be supported in a ball B ⊂ U and φ be Fu measurable. Then φ|γ =
const for all γ ∈ Fu and v(φ) = 0. Then

Eµ(u-div(φv)) = Eµ(φu-div v) = Eµ(φE(u-div v | Fu)).

Taking the sup on such φ, |φ|∞ ≤ 1, we have

Eµ(|E(u-div v | Fu)|) ≤ ‖µ‖1|v|∞
Hence there exists A ∈ L1(X,µ) such that

Eµ(u-div v | Fu)(x) ≤ A(x)‖µ‖1|v|∞
and the lemma follows. �

The above lemma characterizes the measures locally, but this suffice since it is
always possible to reduce all the considerations to small neighborhood by using a
smooth partition of unity.

As an interesting example of measures in B consider

µ(ϕ) :=

∫

Wu

hϕ

where Wu is a regular piece of unstable manifold and h ∈ C1(Wu,R).
Let us see how the dynamics acts on such norms.

T∗µ(ϕ) = µ(ϕ ◦ T ) ≤ |µ||ϕ|∞
thus |T∗µ| ≤ |µ|.

Moreover if dµ
dm = h ∈ C1(X,R), then

dTn
∗ µ

dm = Lnh, where the operator L is

defined by Lnh = | detDT n|−1h ◦ T−n := gnh ◦ T−n ∈ C(1)(X,R), thus

T n
∗ µ(u-div v) =

∫

v(Lnh) =

∫

v(gn)

gn
Lnh+

∫

v̄n(h)

where

v̄n = (DT−nv) ◦ T n.

Clearly v̄n ∈ V and |v̄n|∞ ≤ λ−n|v|∞. Accordingly,

(2.4) ‖T n
∗ µ‖1 ≤ λ−1‖µ‖1 +B|µ|.

This, as we have already seen, implies that there exists invariant measures in B,
these are commonly called SRB (Sinai-Ruelle-Bowen) measures.22

2.3. Non-uniform expansion. The next logical step is to investigate situations
in which some non-uniform hyperbolicity takes place. In general this is a very
hard problem not yet well understood. Although many results exists ([91] for an
overview) no general theory seems to be available as yet. Here, I will discuss the
simplest possible example: a non-uniformly expanding map.

22The closeness of the unit ball of B with respect to the weak topology is left as an exercise to
the reader.
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To simplify our discussion even further let us consider a very concrete family of
maps.23 Let 0 < γ < 1 and define the map T : [0, 1] → [0, 1]

(2.5) T (x) =

{

x(1 + 2γxγ) ∀x ∈ [0, 1/2)

2x− 1 ∀x ∈ [1/2, 1]

This kind of maps are called intermittent and were addressed by Prellberg and
Slawny in [75], they have a relationship with a statistical model introduced by Fisher
[24] and then studied by Gallavotti [25]. In the papers [27], [90], the dynamical
behavior of these maps was taken as a model for the intermittency of turbulent
flows [74]. The existence of absolutely continuous invariant measures for such maps
was first proved in [86] and their statistical properties have been widely investigated
in more recent years [61, 94, 32, 95, 51, 83]. Here we will discuss only the existence
of invariant measures by adopting our present approach.

Let us consider the semi norm

‖µ‖α := sup
ϕ(0)=0=ϕ(1)

|ϕ|
C0+H0

α(ϕ)≤1

µ(ϕ′)

H0
α(ϕ) := sup

x∈[0,1]

|ϕ(x)|
xα

where we chose α > γ.

Lemma 2.4. The space Bα := {µ ∈ M(T) | ‖µ‖α < ∞} consists of measures that
are absolutely continuous with respect to Lebesgue and with density hµ such that,
setting h̄µ(x) := xαhµ(x), h̄µ ∈ L∞. In addition

|h̄µ|L∞ ≤ 2(α+ 2)‖µ‖α + (α+ 1)|µ|.
Proof. Let µ ∈ Bα, then for each ϕ ∈ L1,

∫

[0,1]
xαϕ(x) = 0, holds

∫

[0,1]

xαϕ(x)µ(dx) =

∫

[0,1]

d

dx

(
∫ x

0

ξαϕ(ξ)dξ

)

µ(dx).

Now, let φ(x) :=
∫ x

0
ξαϕ(ξ)dξ, it is easy to see that φ(0) = φ(1) = 0, |φ|C0 ≤ |ϕ|L1 ,

Hα(φ)(0) ≤ |ϕ|L1 . Accordingly,

µ̄(ϕ) :=

∫

[0,1]

xαϕ(x)µ(dx) ≤ 2‖µ‖α|ϕ|L1 .

Thus, for each ϕ ∈ L1, holds, setting ϕ̄ :=
∫

xαϕ(x),

µ̄(ϕ) = µ̄(ϕ− (α + 1)ϕ̄) + (α+ 1)ϕ̄µ̄(1) ≤ (2(α+ 2)‖µ‖α + (α+ 1)|µ|)|ϕ|L1 .

This implies that µ̄ is absolutely continuous with respect to Lebesgue and that its
density h̄µ ∈ L∞([0, 1],m), with |h̄µ|∞ ≤ 2(α+ 2)‖µ‖α + (α+ 1)|µ|. �

To continue we need to show that the operator enjoys some regularization prop-
erty, nevertheless we cannot hope in a Lasota-Yorke type inequality as the ones
already seen. Indeed, such an inequality would imply an exponentially fast conver-
gence to the invariant measure (see the next lecture) while it is known for some
time that such maps exhibits only a polinomially fast convergence to equilibrium

23One could consider more general examples (e.g. any piecewise smooth expanding maps with
a finite number of neutral periodic orbits of the type T qx = x + x1+γ , γ ∈ (0, 1)) but it would
make little difference in the following, apart from making the exposition less readable.
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[52, 66]. Nevertheless, it is possible to obtain a weaker Lasota-Yorke type inequality
which suffices for our purposes.

Lemma 2.5. For each α > β > γ there exist C > 0 such that

‖T n
∗ µ‖α ≤ σαβ(n)‖µ‖β +Bαβ(n)|µ|, ∀n ∈ N,

where σαβ(n) := Cn−α−β
γ and Bα,β(n) := Cn

(1−α)(α−β)
γ(α−γ) .

Before proving such a non-uniform version of the Lasota-Yorke inequality, let us
see how it solves our problems. For each ǫ > 0 sufficiently small let αk := γ+ǫγ(1+
1
k ) < 1, set δk := αk+1 −αk, nk = eaǫ

−1k2

, mk :=
∑k

j=1 nj , σk := σαk,αk+1
(nk) and

Bk := Bαk,αk+1
(nk).

24 Then for ‖µ‖γ <∞ holds

‖Tmk
∗ µ‖γ+2ǫ ≤ ‖Tmk

∗ µ‖α1 ≤
k
∏

j=1

σj‖µ‖αk
+

k−1
∑

l=1

Bl

l
∏

j=1

σj |µ|

≤
k
∏

j=1

σj‖µ‖γ +

k−1
∑

l=1

Bl

l
∏

j=1

σj |µ|.
(2.6)

Now σk ≤ Ce−a =: σ∗ < 1, provided a has been chosen large enough. Thus
∏k

j=1 σj ≤ σk
∗ and

‖Tmk
∗ µ‖γ+2ǫ ≤ σk

∗‖µ‖γ + C

k−1
∑

j

σj
∗e

1−γ
ǫγ

a|µ| ≤ σk
∗‖µ‖γ +Bε|µ|.

From the above inequality follows, in the usual way, that each invariant measure
constructed with the Kryloff-Bogoliouboff argument, starting from an absolutely
continuous measure, will yield an invariant measure with ‖ ·‖α norm finite, for each
α > γ.

To prove Lemma 2.5 we need a good control on the distortion of the map.
Let Zn be the dynamical partition of level n (that is, Zn is a maximal partition

such that T n is one-one on its elements). To have an idea of how it looks like let
a0 = 1, a1 := 1/2 and {an+1} := T−1an ∩ [0, 1/2]. Then [0, an] ∈ Zn.

Lemma 2.6. There exists a constant C > 0 such that

1

Cn
1
γ

≤ an ≤ C

n
1
γ

;
2γ

Cγ+1n
1
γ
+1

≤ an−1 − an ≤ Cγ+12γ

n
1
γ
+1

.

Proof. Clearly, an+1 ≤ an. Hence

an+1 = an − 2γaγ+1
n+1 ≥ an − 2γaγ+1

n ≥ 1

Cn
1
γ

[

1− 2γ

cγn

]

≥ 1

C(n+ 1)
1
γ

,

provided C is large enough.

On the other hand, for C large, a < Cn− 1
γ for each an such that an − 2γaγ+1

n <
2−γan. For larger n we have

an+1 = an − 2γ(an − 2γaγ+1
n+1)

γ+1 ≤ an − 2γ2−γ(γ+1)aγ+1
n ≤ C

(n+ 1)
1
γ

,

provided, again, C is large enough. Finally, the last inequality follows from the
already established ones and an−1 − an = 2γaγ+1

n . �

24All this choices are largely arbitrary, many others would do as well.
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Our basic distortion result is the following.25

Lemma 2.7. There exists C > 0 such that for each n ∈ N, Z ∈ Zn and x, y ∈ Z
holds true

e−
C

n−m+1 ≤ DxT
m

DyTm
≤ e

C
n−m+1 ∀m ≤ n.

Proof. For m ≤ n, holds

m−1
∏

j=0

DT jxT

DT jyT
≤

m−1
∏

j=0

e| ln |D
Tjx

T |−ln |D
Tjy

T | ≤
m−1
∏

j=0

e(an−j−1−an−j)a
γ−1
n−j

≤ eC
∑m−1

j=0 (n−j)
−1− 1

γ (n−j)
1− 1

γ ≤ eC
∑n

j=n−m+1 j−2 ≤ e
C

n−m+1 .

This concludes the proof, the other bound being completely similar. �

Proof of Lemma 2.5. For each ϕ ∈ C1, holds

T n
∗ µ(ϕ

′) = µ(ϕ′ ◦ T n) = µ([(DT n)−1ϕ ◦ T n]′) + µ((D2T n)(DT n)−2ϕ ◦ T n)

=: µ(φ′n) + µ(ψn).
(2.7)

Note that φn is C1 on the interior of each Z ∈ Zn. In addition, φn ∈ C0 since for
each a ∈ ∂Z ∈ Zn holds T na ∈ {0, 1} hence φn(a) = 0. Nevertheless, it may not
belong to the class of test function sine it is not necessarily C1. On the other hand
we have already seen in the subsection devoted to piecewise smooth maps how to
deal with such a problem once it is known that the function is uniformly C1 outside
the boundaries of the partition, so we will not replay the same argument. Thus, we
need a careful estimate of the norm of two functions φn and ψn.
Estimate of the norm of φn := (DT n)−1ϕ ◦ T n. It is convenient to partition
the orbit of x according to the time spent in a neighborhood of the fixed point.
Define U0 = (0, 1/2) and let U = (0, an∗

) be a fixed neighborhood of the fixed
point. Define n0(x) := inf{k ∈ N | T kx 6∈ U0}. Next, let κ(x) = χU0(x)(1 −
χU0(Tx)) + χU (Tx)(1 − χU (x)), clearly κ(x) is equal one if and only if the point
x enters U or exits U0 in one time step.26 We can then define ni+1(x) := inf{k ≥
ni(x) | κ(T kx) = 1}. Clearly, the stretches of trajectories between n2i and n2i+1

belong to the complement of U , while the pieces of trajectories between n2i−1 and
n2i belong to U0, but starting from inside U .

Let us start analyzing a piece of trajectory in U . If z ∈ U , then T jz ∈ U for
each j < n0(z), by definition. In fact, z ∈ [an0(z), an0(z)+1]. The first interesting
fact follows from Lemmata 2.6, 2.7: for each j ≤ n0(z) holds true

(2.8) DzT
j ≥ C−1 an0(z)−j − an0(z)+1−j

an0(z) − an0(z)+1
≥ C−3 (n0(z) + 1)

1
γ
+1

(n0(z)− j + 1)
1
γ
+1
.

On the other hand, outside U the map enjoys a minimal amount σ > 1 of expansion
at each step.

25Here an in the following C will be used to designate fixed, possibly different, constants.
26By χA we mean the characteristic function of the set A.
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Clearly, the worst possible case is if all the trajectory belongs to U0, in such a
case n0(x) ≥ n and

|φn(x)| ≤ C3

(

n0(x) − n+ 1

n0(x) + 1

)1+ 1
γ

|ϕ(T n(x))|

≤ C3

(

n0(x) − n+ 1

n0(x) + 1

)1+ 1
γ

(n0(x)− n)−
α
γ H0

α(ϕ)

≤ C3n0(x)
−1− 1

γ (n0(x)− n+ 1)1+
1−α
γ H0

α(ϕ).

Maximizing on n0(x) yields

(2.9) |φn|∞ ≤ C(α)n−α
γ H0

α(ϕ).

The last task is to compute the β-Hölder constant of φn at zero. Let y < x, then

|φn(x)| ≤ |(DxT
n)−1| |ϕ(T nx)| ≤ H0

α(ϕ)|(DxT
n)−1| |T nx|α.

Again the worst possibility turns out to be the case in which all the trajectory lies
in U0. In such a case, n < n0(x). Thus

|φn(x)| ≤ H0
α(ϕ)

(

n0(T
nx+ 1)

n0(T nx) + n+ 1

)1+ 1
γ

n0(T
nx)−

α
γ (n0(T

nx) + n)
β
γ xβ

Taking the maximum on the possible values of n0(T
nx) yields

(2.10) Hα(φn)(0) ≤ C8(α− β)
α−β

γ n−α−β
γ H0

α(ϕ).

Estimate of the norm of ψn := (D2T n)(DT n)−2ϕ◦T n. We first use the formula

(2.11) (D2
xT

n)(DxT
n)−2 =

n−1
∑

i=0

(Dxi
T n−i)−1D

2
xi
T

Dxi
T

where xi := T ix. According to (2.8), if z ∈ U , then

DzT
n0(z) ≥ C−3n0(z)

1
γ
+1 ≥ C−3n

1
γ
+1

∗ ≥ 2

provided we have chosen n∗ large enough. Thus in a stretch of trajectory inside
U0 we get a fixed total expansion, on the other hand outside U we have some fixed
amount σ > 1 of expansion at each iteration. It thus makes sense to consider a
stretch of trajectory in U0 as a single step. Of course, this is useful only if uniform
bounds on the distortion hold. By formulae (2.11), (2.8) follows, for each z ∈ U
and m ≤ n0(z),

m−1
∑

i=0

(DT izT
m−i)−1D

2
T izT

DT izT
≤ C4

m
∑

i=1

(n0(z)−m+ 1)1+
1
γ

(n0(z)− i)1+
1
γ

(n0(z)− i+ 1)−1− 1
γ

= C4(n(z)−m+ 1)1+
1
γ

n(z)
∑

i=n0(z)−m

i−2

≤ C(n(z)−m+ 1)
1
γ

m

n0(z)
.

Using the above formula one can perform the sum over the pieces of trajectories
that belong to U0. Accordingly, one obtains that the sum is bounded by a fixed
constant unless T nx ∈ U0. In such a case one has to analyze separately the last
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terms of the sum, the one that correspond to the last run in U . Let k be the last
entrance time in U , then calling z = T kx holds n0(T

nx) = n0(z)− n+ k > 0 and

n−1
∑

i=k

(Dxi
T n−i−1)−1D

2
xi
T

Dxi
T

≤ C

n−1
∑

i=k

(

n0(z)− n+ k

n0(z)− n+ i

)1+ 1
γ
(

1

n0(z)− n+ i

)

γ−1
γ

≤ C1(n0(z)− n+ k)
1
γ
n− k

n0(z)
≤ C1n0(T

nx)
1
γ

1

1 + n0(Tnx)
n−k

.

Accordingly, if T nx 6∈ U , we have that ψn(x) ≤ C2|ϕ|∞. On the other hand, if
T nx ∈ U , then

|ψn(x)| ≤ C1|ϕ(T nx)|n0(T
nx)

1
γ

1

1 + n0(Tnx)
n−k

≤ C1H
0
α(ϕ)n0(T

nx)
1−α
γ

n− k

n− k + n0(T nx)

≤ C1H
0
α(ϕ)n0(T

nx)
1−α
γ .

(2.12)

Let us consider two cases: first n0(T
nx) ≤ nδ̄. In such a situation we have

(2.13) |ψn(x)| ≤ C1H
0
α(ϕ)n

(1−α)δ̄
γ .

On the other hand, if n0(T
nx) > nδ̄, then let Ωk,n,m be the set of points x such

that T k−1x ∈ [1/2, 1] =: I1 and T kx ∈ [am+n−k+1, am+n−k] =: ∆m+n−k. Clearly,
for x ∈ Ωk,n,m holds n0(T

nx) = m and the last entrance time in U is exactly k. Let
Ω := ∪∞

m=nδ̄ ∪n
k=0Ωk,n,m, then ψn is uniformly bonded by (2.13) on the complement

of Ω. Finally, let us define ψ̄n(x) := x−βψn(x). With such notations and using all
the above estimates we can write

µ(ψn) ≤ µ(χΩψn) + C3n
(1−α)δ̄

γ |ϕ|Cα |µ|

≤ 3{‖µ‖β + |µ|}|χΩψ̄n|L1 + C3n
(1−α)δ̄

γ H0
α(ϕ)|µ|,

where we have used Lemma 2.4. We are then left with the estimate of the L1 norm
of χΩψ̄n.

Clearly Ωn−k+m = T−k+1(T−1∆m+n−k ∩ I1) =: ∆̄m+n−k and will thus consist
of an interval JZ into each element Z ∈ Zk−1. Since T k−1JZ ⊂ I1 our distortion
estimates imply that

|I1|
|∆̄m+n−k|

≤ C
|Z|
|JZ |

,

that is |JZ | ≤ C|∆̄m+n−k| |Z|. Let us understand a bit better how the elements of
Zk−1 are distributed. For each ∆ℓ, T

ℓ∆ℓ = I1 by construction. This means that,
if ℓ ≤ k

∑

Z∈Zk−1

Z⊂∆ℓ

|JZ | ≤ C
∑

Z∈Zk−1

Z⊂∆ℓ

|∆̄m+n−k||Z| ≤ C2
∑

Z′∈Zk−1−ℓ

Z′⊂I1

|∆m+n−k||Z ′||∆ℓ|

≤ C2|∆m+n−k| |∆ℓ|

where we have used again our distortion estimates.
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Hence,

∫

Ω

|ψ̄n| =
∞
∑

m=nδ̄

n
∑

k=0

k
∑

ℓ=1

∫

Ωm,n,k∩∆ℓ

|ψ̄n|

≤
∞
∑

m=nδ̄

n
∑

k=0

k
∑

ℓ=1

C5H
0
α(ϕ)m

1−α
γ

n− k

n− k +m
ℓ

β
γ (m+ n− k)−

1
γ
−1ℓ−

1
γ
−1

≤ C6H
0
α(ϕ)

∞
∑

m=nδ̄

n
∑

k=0

m
1−α
γ k(m+ k)−

1
γ
−2

≤ C7H
0
α(ϕ)

∞
∑

m=nδ̄

m−α
γ ≤ C8H

0
α(ϕ)n

(1−α
γ
)δ̄

Conclusion. By the above results we can estimate the terms in (2.7) as

|T ∗nµ(ϕ′)| ≤ {C9n
−α−β

γ + C10n
(1−α

γ
)δ̄}‖µ‖β + C11n

1−α
γ

δ̄|µ|.

We finally choose δ̄ := α−β
α−γ and the lemma follows. �

3. Third Lecture (beyond existence: statistical properties)

In the previous lectures we have successfully investigated the invariant measures
of a variety of systems, still there are plenty of reasons to be unhappy about the
above considerations. A most obvious question is: what about uniqueness?

Clearly in the generality discussed so far one cannot hope that uniqueness al-
ways holds. For example, consider a partially hyperbolic system consisting of an
expanding map times identity. Clearly any measure obtained by the unique ab-
solutely continuous invariant measure for the expanding system times any other
measure, on the space on which acts the identity, is an invariant measure.27

Nevertheless, in many cases it is possible to take the previous analysis much
further. Let us start by analyzing the simplest case: the smooth expanding maps.

3.1. The spectral picture. The idea is to use the dynamical knowledge gained
so far and transform it into informations on the spectrum of the operator T∗ on the
Banach space B := {complex valued measures µ such that ‖µ‖ <∞}.28

First of all Lemma 1.2 implies that the spectral radius is bounded by one and
the existence of invariant measures shows that 1 ∈ σ(T∗), that is the spectral radius
is exactly one.

More can be said thanks to the following abstract result.

Theorem 3.1 (Hennion-Neussbaum argument [28]). Consider two Banach spaces
B ⊂ Bw, ‖ · ‖ ≥ ‖ · ‖w, and an operator L : B → B such that, for some M > θ > 0,
A,B,C > 0, and for each n ∈ N, holds true

‖Lnf‖w ≤ CMn‖f‖w; ‖Lnf‖ ≤ Aθn‖f‖+BMn‖f‖w

27It is also easy to make counterexamples by using expanding discontinuous maps, it is an
helpful exercise to try.

28Since here we want to discuss spectral theory it is convenient to consider measures and
function with complex values. Such an extension is totally standard, thus we will not comment
further on it.
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Then the spectral radius of L is bounded by M . If, in addition, L is compact as an
operator from B to Bw, then L is quasi compact and its essential spectral radius29

is bounded by θ.

Proof. The first assertion is trivial, for the second start by noticing that Nussbaum’s
formula [67] asserts that if rn is the inf of the r such that {Lnf}‖f‖≤1 can be covered
by a finite number of balls of radius r, then the essential spectral radius of L is given
by limn→∞

n
√
rn. Let B1 := {f ∈ B | ‖f‖ ≤ 1}. By hypotheses LB1 is relatively

compact in Bw. Thus, for each ε > 0 there are f1, . . . , fNε
∈ LB1 such that

LB1 ⊆ ⋃Nǫ

i=1 Uǫ(fi), where Uǫ(fi) = {f ∈ B | ‖f − fi‖w < ǫ}. For f ∈ LB1 ∩Uǫ(fi),
holds

‖Ln−1(f − fi)‖ ≤ Aθn−1 ‖f − fi‖+
B

M

n−1

‖f − fi‖w ≤ A(θ +BM)θn−1 +BMnǫ .

Choosing ǫ sufficiently small we can conclude that for each n ∈ N the set Ln(B1)
can be covered by a finite number of ‖ · ‖–balls of radius const. θn centered at the

points {Ln−1fi}Nǫ

i=1. �

In the case at hand the above Theorem can be immediately applied with M = 1
and θ = λ−1 thanks to Lemma 1.2 while the compactness follows readily from the
compactness of the unit BV ball in L1. We have thus the spectral picture sketched
in Figure 3.2.

1

∗
∗

∗

∗
∗

∗λ−1

Figure 3.2. The spectrum of the transfer operator

Let Π1 be the projector on the eigenvalue one, then Π1T∗ = T∗Π1. Again by
1.2 follows that ‖(T∗Π1)

n‖ = ‖T n
∗ Π1‖ ≤ D(1 − λ−1)−1. This implies that T∗Π1

29By essential spectrum I mean the complement of the point spectrum with finite multiplicity.
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cannot contain a Jordan block, otherwise the norm of the powers would grow at
least linearly. Accordingly, T∗Π1 = Π1T∗ = Π1 and thus Π1 can be written as:30

Π1µ =
ℓ

∑

i=1

Ψi(µ)µi

where Ψi ∈ B∗, Ψ(T∗µ) = Ψi(µ), T∗µi = µi and ℓ is the dimension of the eigenspace
associated to the eigenvalue 1. By Lemma 1.2 follows

‖Π1µ‖ = ‖Π1T
n
∗ µ‖ ≤ λ−n‖Π1‖ ‖µ‖+B(1 − λ−1)−1‖Π1‖ |µ|

thus ‖Π1µ‖ ≤ (1− λ−1)−1B‖Π1‖ |µ|. That is, Π1, and hence the Ψi, is continuous
over the measures. For each each h ∈ BV let Ψ̄i(h) := Ψi(µh), where dµh = hdm.
Then |Ψ̄i(h)| = |Ψi(µh)| ≤ C|µh| ≤ C|h|L1 . Since BV is dense in L1, Ψ̄ has a
unique continuous extension as a functional on L1. Thus, Ψ̄i belongs to the dual of
L1 and can then be identified with an L∞ function ψ̄i: Ψ̄i(µh) =

∫

ψ̄ih = µh(ψ̄i).

Then |ψ̄i|∞ ≤ C and ψ̄i ◦ T = ψ̄i.
31

Thus, since
∫

ψ̄ihj = δij , the space of invariant functions is at least ℓ dimensional.
On the other hand, the level set of an invariant function is an invariant set and to
any invariant set can be associated at least an invariant measure, see Lemma 1.3,
it follows that there are exactly ℓ invariant sets of positive Lebesgue measure.

The above considerations imply immediately the dichotomy below.

Lemma 3.1. If the systems is mixing then it mixes exponentially fast on B.
This means, in particular, that there exists σ > 0 such that for each µ ∈ B,

µ(1) = 0, and ϕ ∈ L∞, calling h the density of µ, holds true
∣

∣

∣

∣

∫

hϕ ◦ T n

∣

∣

∣

∣

≤ ‖µ‖ |ϕ|L∞e−σn.

In fact, it is possible to show that all the systems under considerations are mixing.32

Yet, for simplicity we will prove this fact only in the case d = 1.
First of all, we remarked after Lemma 1.3 that each invariant set must contain

an interval. Since the image of an interval must be eventually all the space–due to
the expansivity of the map–it follows that there can be only one invariant set: T1.
This implies that ℓ = 1 and that the eigenvector is an ergodic measure.33

Note that the above argument can be applied verbatim to any power T q of the
map. Hence all the powers of T are ergodic.

The mixing follows analogously since all the arguments carried out for Π1 hold
unchanged for Πα, α ∈ σ(T∗), |α| = 1. The only difference is that the corresponding
functions ψ̄i satisfy ψ̄i ◦ T = αψ̄i. Conversely, if there exists ψ ∈ L∞(T1,m) such

30Of course, this decomposition it is not unique, indeed one can choose any basis of the
eigenspace.

31An alternative approach is to notice that the spectral picture implies that Π1 is the limit,
in B, of 1

n

∑n−1
i=0 T i

∗. This implies immediately that Π1 is weakly continuous on B. Since B is

weakly dense in M(Td) it follows that Π1, and hence also the Ψi, can be extended to a weakly
continuous operator (functional) on M(Td). One can then define ψ̄i(x) = Ψi(δx). Note that,
in this way, one gets the extra information that the ψ̄i must be continuous. Of course, such an
argument, contrary to the one in the main text, would not hold if T it is not continuous.

32This is a consequence of the smoothness of the map and the connectedness of Td, it could
be false if the map is not continuous or the space is not connected.

33Or, if one prefers, that the ergodic decomposition associated to the Lebesgue measure is
trivial.
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that ψ ◦ T = αψ, then α ∈ σ(T∗). Indeed, for each µ ∈ B holds (α − T∗)µ(ψ) = 0,
that is Range(α− Tα) 6= B. But then, since for each n ∈ N we have ψ̄n

i ∈ L∞ and

ψ̄n
i ◦ T = (ψ̄i ◦ T )n = αnψ̄n

i ,

αn ∈ σ(T∗) for all n ∈ N. Since σ(T∗) ∩ {z ∈ C | |z| = 1} consists at most of
finitely many points (by the quasi-compactness of T∗) it follows that there must
exist q ∈ N such that αq = 1. This implies ψ̄i ◦ T q = ψ̄i, hence all the ψ̄i must be
constant by the ergodicity of T q. Accordingly the equation ψ̄i ◦T = αψ̄i cannot be
satisfied. This shows that there cannot be eigenvalue on the unit circle beside one.
The quasi-compactness implies then the existence of a spectral gap which yields,
as announced, exponential mixing on B. The mixing follows then by a standard
approximation argument.

3.2. Perturbations. The previous results start to be rather satisfactory, yet to be
really satisfied one would like to be able to answer to questions like

• Can we compute the invariant measure with a preassigned precision?
• Can we compute the rate of decay of correlation with a preassigned preci-
sion?

• Is the system stable under random perturbation? (If not, we may be talking
about objects that are not observable in reality)

• do nearby systems behave similarly?

The answer to the above questions can be obtained via perturbation theorems.
Few such results are available (e.g., see [47], [89] for a review and [6] for some more
recent results), here we will follow mainly the theory developed in [46] adapted to
the special cases at hand.

For simplicity let us work directly with the densities. Then L is the transfer
operator for the densities, see equation 1.4. We will start by considering an abstract
family of operators Lε satisfying the following properties.

Condition 3.1. Consider a family of operators Lε with the following properties

(1) A uniform Lasota-Yorke inequality:

‖Ln
εh‖BV ≤ Aλ−n‖h‖BV +B|h|L1 , |Ln

ε h|L1 ≤ C|h|L1 ;

(2)
∫

Lh(x)dx =
∫

h(x)dx ;
(3) For L : BV → BV define the norm

|||L||| := sup
‖h‖BV≤1

|Lf |L1,

that is the norm of L as an operator from BV → L1. Then we require that
there exists D > 0 such that

|||L − Lε||| ≤ Dε.

Condition 3.1-(3) specifies in which sense the family Lε can be considered an
approximation of the unperturbed operator L. Notice that the condition is rather
weak, in particular the distance between Lε and L as operators on BV can be
always larger than 1. Such a notion of closeness is completely inadequate to apply
standard perturbation theory, to get some perturbations results it is then necessary
to drastically restrict the type of perturbations allowed, this is done by Conditions
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3.1-(1,2) which state that all the approximating operators enjoys properties very
similar to the limiting one.34

Let us see immediately why the above setting is relevant to the issues under
consideration.

Example 3.1. The Lε are Perron-Frobenius (Transfer) operators of maps Tε which
are C1–close to T , that is dC1(Tε, T ) = ε and such that dC2(Tε, T ) ≤ M , for some
fixed M > 0. In this case the uniform Lasota-Yorke inequality is trivial. On the
other hand, for all ϕ ∈ C1 holds

∫

(Lεf − Lf)ϕ =

∫

f(ϕ ◦ Tε − ϕ ◦ T ).

Now let Φ(x) := (DxT )
−1

∫ Tεx

Tx ϕ(z)dz, since

Φ′(x) = −(DxT )
−1D2

xTΦ(x) +DxTε(DxT )
−1ϕ(Tεx) − ϕ(Tx)

follows
∫

(Lεf−Lf)ϕ =

∫

fΦ′+

∫

f(x)[(DxT )
−1D2

xTΦ(x)+(1−DxTε(DxT )
−1)ϕ(Tεx)].

Given that |Φ|∞ ≤ λ−1ε|ϕ|∞ and |1−DxTε(DxT )
−1|∞ ≤ λ−1ε, we have

∫

(Lεf − Lf)ϕ ≤ ‖f‖BV λ
−1|ϕ|∞ε+ |f |L1λ−1(B + 1)ε|ϕ|∞ ≤ D‖f‖BV ε|ϕ|∞.

By Lebesgue dominate convergence theorem we obtain the above inequality for each
ϕ ∈ L∞, and taking the sup on such ϕ yields the wanted inequality.

|Lεf − Lf |L1 ≤ D‖f‖BV ε.

We have thus seen that all the requirements in Condition 3.1 are satisfied. See [41]
for a more general setting including piecewise smooth maps.

Let us mention a couple of other interesting examples that, although not ex-
haustive, give a good idea of the applicability of the present setting. The explicit
verification of Condition 3.1 in these cases is left to the reader (or referred to the
references).

Example 3.2. Lε is the transition operator of a stochastically perturbed map T .
For example, we can consider an operator Jε of the type introduced in Lemma 1.1
and define Lε := JεL. This corresponds to moving a point with the deterministic
map T and then distributing it in a small ε neighborhood according to a probability
distribution determined by the kernel j. In such a case ε is the “size” of the
perturbation, see [41, 8, 6, 9] for more details.

Example 3.3. Lε is the transition operator for the Ulam-type discretization of
T with grid size ε. This means that one chooses a partition Z of intervals of size
smaller than ε, then defines the conditional expectation

Pεf(x) :=
∑

Z∈Z

χZ(x)
1

|Z|

∫

Z

f

34Actually only Condition 3.1-(1) is needed in the following. Condition 3.1-(2) simply implies
that the eigenvalue one is common to all the operators. If 3.1-(2) is not assumed, then the operator
Lε will always have one eigenvalue close to one, but the spectral radius could vary slightly, see
[60] for such a situation.
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and sets Lε := PεL. The interest of such type of perturbations (discretizations)
of a dynamical system lies in the fact that the range of Lε is finite dimensional.
Thus the operator Lε is nothing else than a matrix. Accordingly its eigenvalues
and eigenvectors can be explicitly computed and, if they are close to the ones of the
unperturbed system, this provides a possible tool for investigating the spectrum of
L itself. In fact, this strategy goes back to Ulam [87]. For more details on this
example see [53, 41, 7, 16, 9] and for related work also [33, 64, 36, 48].

Comforted by the fact that we are talking about problems of practical interest,
let us go back to our more abstract setting and see what can be done. To state the
result consider, for each operator L, the set

Vδ,r(L) := {z ∈ C | |z| ≤ r or dist(z, σ(L)) ≤ δ}.
Since the complement of Vδ,r(L) belongs to the resolvent of L it follows that

Hδ,r(L) := sup
{

‖(z − L)−1‖BV | z ∈ C \Vδ,r(L)
}

<∞.

By R(z) and Rε(z) we will mean respectively (z − L)−1 and (z − Lε)
−1.

Theorem 3.2 ([46]). Consider a family of operators Lε : BV → BV satisfying
Conditions 3.1. Let Hδ,r := Hδ,r(L); Vδ,r := Vδ,r(L), r > λ−1, δ > 0, then, if
ε ≤ ε1(L, r, δ), σ(Lε) ⊂ Vδ,r(L). In addition, if ε ≤ ε0(L, r, δ), there exists a > 0
such that, for each z 6∈ Vδ,r, holds true

|||R(z)−Rε(z)||| ≤ Cεa.

Proof.35 To start with we collect some trivial, but very useful algebraic identities.
For each operator L : BV → BV and n ∈ Z holds

1

z

n−1
∑

i=0

(z−1L)i(z − L) + (z−1L)n = Id(3.1)

R(z)(z − Lε) +
1

z

n−1
∑

i=0

(z−1L)i(Lε − L) +R(z)(z−1L)n(Lε − L) = Id(3.2)

(z − Lε)
[

Gn,ε + (z−1Lε)
nR(z)

]

= Id− (z−1Lε)
n(Lε − L)R(z)(3.3)

[

Gn,ε + (z−1Lε)
nR(z)

]

(z − Lε) = Id− (z−1Lε)
nR(z)(Lε − L),(3.4)

where we have set Gn,ε :=
1
z

∑n−1
i=0 (z

−1Lε)
i.

Let us start applying the above formulae. For each h ∈ BV and z 6∈ Vr,δ holds

‖(z−1Lε)
n(Lε − L)R(z)h‖BV ≤ (rλ)−nA‖(Lε − L)R(z)h‖BV +

B

rn
|(Lε − L)R(z)h|L1

≤ [(rλ)−nA2C1 +Br−nDε]Hr,δ‖h‖BV < ‖h‖BV

Thus ‖(z−1Lε)
n(Lε − L)R(z)‖BV < 1 and the operator on the right hand side of

(3.3) can be inverted by the usual Neumann series. Accordingly, (z−Lε) has a well
defined right inverse. Analogously,

‖(z−1Lε)
nR(z)(Lε−L)h‖BV ≤ (rλ)−nA‖R(z)(Lε−L)h‖BV+Br

−n|R(z)(Lε−L)h|L1 .

35This proof is simpler than the one in [46], yet it gives worst bounds, although sufficient for
the present purposes.
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This time to continue we need some informations on the L1 norm of the resolvent.
Let g ∈ BV, then equation (3.1) yields

|R(z)g|L1 ≤ 1

r

n−1
∑

i=0

|(z−1L)ig|L1 + ‖R(z)(z−1L)ng‖BV

≤ 1

rn(1− r)
|g|L1 +Hδ,rA(rλ)

−n‖g‖BV +Hδ,rBr
−n|g|L1

≤ r−n(Hδ,rB + (1− r)−1)|g|L1 +Hδ,rA(rλ)
−n‖g‖BV

Substituting, we have

‖(z−1Lε)
nR(z)(Lε − L)h‖BV ≤ {(rλ)−nAHδ,r2C1[1 +Br−n]

+Br−2n[Hδ,rB + (1− r)−1]Dε}‖h‖BV < 1,

again, provided ε is small enough and choosing n appropriately. Hence the operator
on the right hand side of (3.4) can be inverted, thereby providing a left inverse for
(z − Lε). This implies that z does not belong to the spectrum of Lε.

To investigate the second statement note that (3.2) implies

R(z)−Rε(z) =
1

z

n−1
∑

i=0

(z−1L)i(Lε − L)Rε(z)−R(z)(z−1L)n(Lε − L)Rε(z).

Accordingly, for each ϕ ∈ BV holds

|R(z)ϕ−Rε(z)ϕ|L1 ≤ {r−n(1− r)−1ε+Hδ,r(λr)
−n2AC1 +Hδ,rBε}‖Rε(z)ϕ‖BV.

�

Remark 3.1. It takes little work to use the above Hölder continuity of the spectral
data to answer the questions posed at the beginning of the section (limited to the
case of smooth piecewise expanding maps). Just remember the examples.

3.3. Differentiability of SRB-measures. The previous sections established the
continuity of the spectral data (and of the invariant measure in particular) with
respect to various type of perturbations. It provides also an estimate of the modulus
of continuity, for example for the invariant measure the modulus of continuity must
be, at least, x ln x. Nevertheless, in certain cases, the above estimate it is not
optimal since it does not take into account extra smoothness properties of the map.
Let us see how this works in our usual simple example: let us consider a C3(T1,T1)
expanding map. According to our discussion in section 1.5 we can consider three
norms for the density of the measures we are interested in:

‖h‖0 := |h|L1 ; ‖h‖1 := |h|W1,1 = |h|L1+|h′|L1 ; ‖h‖2 := |h|W1,2 = |h|W1,1+|h′′|L1 ,

and the three corresponding Sobolev spaces B0 = L1(T1,R), B1 =W1,1(T
1,R) and

B2 = W1,2(T
1,R).36 It is easy to get the Lasota-Yorke inequality for these spaces

and the compactness of the unit ball of B1 in B0 and of B2 in B1 are well known.
The application of the arguments developed so far implies that L is ergodic and
has a spectral gap both in B1 and in B2. For the perturbed family of operators let
us consider, for example, a smooth random perturbation. Then we have Lεhε = hε
for the perturbed density. Let us define the quantities L̃ε := Lε − L; h̃ε := hε − h.

36We choose to work with Sobolev spaces rather than with spaces of bounded variations for a
precise reason, see the discussion of equation (3.6).
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By the general theory there existsM > 0 such that ‖h‖2+‖hε‖2 ≤M . In addition,
Lεhε = hε implies

(Id− Lε)h̃ε = L̃εh.

Since
∫

L̃εh = 0 and the spectral gap implies that the spectral radius of Lε on
V0

i := {h ∈ Bi |
∫

h = 0}, i ∈ {1, 2}, is strictly less than one, we can write

(3.5) h̃ε = (Id− Lε)
−1L̃εh.

By the same arguments described in section 3.2 (see section 4.2 for the general
setting) it follows that (Id − Lε)

−1 are uniformly bounded, by some constant C0,

as an operator on B1 while |||L̃ε|||B2→B1 ≤ Cε, hence

‖h̃ε‖1 ≤ C0‖L̃εh‖1 ≤ C0Cε‖h‖2,
that is hε is Lipsichtz as a function of ε in ‖ · ‖1 norm. To get differentiability it is

necessary a bit more: the existence of an operator L̂ : B2 → B1 such that

(3.6) lim
ε→0

||ε−1L̃εg − L̂g||1 = 0 for all g ∈ B2.

Let us assume (3.6) for the time being, we will come back to it at the end of
the section. Then, since on V0

1 (remember that by the spectral gap there exists
ν ∈ (0, 1) such that ‖Ln

ε ‖1 ≤ Cνn)

(Id− Lε)
−1 =

∞
∑

k=0

Lk
ε

and

|||Lk
ε − Lk|||B1→B0 ≤

k−1
∑

j=0

|||Lj
ε(Lε − L)Lk−1−j |||B1→B0

≤ C

k−1
∑

j=0

|||(Lε − L)Lk−1−j |||B1→B0 ≤ Cε

k−1
∑

j=0

‖Lk−1−j‖1 ≤ Cεk,

it follows

|||(Id− Lε)
−1 − (Id− L)−1|||V0

1→V0
0
≤

L−1
∑

k=0

|||Lk
ε − Lk|||B1→B0

+

∞
∑

k=L

{‖Ln|V0
1
‖1 + ‖Ln

ε |V0
1
‖1}

≤ C{Lε+ νL} ≤ Cε ln ε−1.

(3.7)

Accordingly, setting ĥ = (Id− L)−1L̂h, holds

lim
ε→0

‖ε−1h̃ε − ĥ‖0 = lim
ε→0

‖ε−1(Id− Lε)
−1L̃εh− (Id− L)−1L̂h‖0

≤ lim
ε→0

‖(Id− Lε)
−1[ε−1L̃εh− L̂h]‖1 + ‖(Id− Lε)

−1L̂h− (Id− L)−1L̂h‖0

≤ C0 lim
ε→0

‖ε−1L̃εh− L̂h‖1 = 0

which is the announced differentiability of the invariant density. To be precise we
have seen that hε ∈ C1(R,B0), as a function of ε.
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Equation (3.6). Let us assume, as before, that the random perturbation is given
by Lε := JεL, where Jε is defined in Lemma 1.1. Let γ :=

∫

j(ξ)|ξ|dξ and define

Ĵf := γf ′. Clearly Ĵ is a bounded operator from B2 to B1.

Lemma 3.2. For each f ∈ B2 holds

lim
ε→0

‖ε−1(Jε − Id)f − Ĵf‖1 = 0.

Proof. Let us start with the L1 norm. For each f ∈ C2 holds

ε−1(Jε − Id)f − Ĵf = −ε−1f(x) + ε−1

∫

T1

jε(x− y)f(y)dy − γf ′(x)

=

∫

T1

ε−1jε(x− y)

∫

[x,y]

f ′(z)dzdy − γf ′(x)

=

∫

T1

ε−1jε(ξ)

∫

[0,ξ]

f ′(x − η)dηdξ − γf ′(x)

=

∫

T1

dξε−1jε(ξ)

∫

[0,ξ]

{f ′(x − η)− f ′(x)}dη

Differentiating

d

dx
[ε−1(Jε − Id)f − Ĵf ] =

∫

T1

dξε−1jε(ξ)

∫

[0,ξ]

{f ′′(x− η)− f ′′(x)}dη

Now, since f ∈ C2, both quantities inside the integrals converge everywhere to zero
when ε → 0, and by the Lebesgue dominated convergence theorem the Lemma
follows for C2 functions. Since the above representations easily imply that ε−1(Jε−
Id) are uniformly bounded operators from B2 to B1, the result for all W1,2 follows
by density.37 �

We have thus the announced equation (3.6) setting L̂ := ĴL.

4. Fourth Lecture (The uniformly hyperbolic case)

In the last lecture we have carried out our program till some of its most extreme
consequences for the case of smooth expanding maps, the next natural question is:
In which generality can this program be carried out?

A part from obvious possibilities to investigate generalizations to higher dimen-
sion and piecewise smooth maps (see[4] for informations on such possibilities) the
first natural candidate are hyperbolic systems. The problem here is clearly the
presence of a stable direction. A moment thought shows that it is not clear at all
how T∗ can be seen as a regularizing operator when a stable direction is present.
To understand this better let us consider the simplest possible example.

4.1. Another simple example: an attracting fixed point. Consider a map
T ∈ C2(U,U), U ⊂ Rd compact and convex. Suppose that the maps contracts:

‖DxT ‖ ≤ λ−1 ; λ > 1.

37Here finally is the difference between working with Sobolev spaces and spaces with derivatives
of bounded variation. All the rest would be exactly the same but this last fact would not be true
and we could not conclude the argument. I leave this as a topic for the reader to meditate.



INVARIANT MEASURES AND THEIR PROPERTIES 29

Clearly, such a map has only one fixed point x∗ and each smooth measure, when
iterated, converges weakly to δx∗

. So the regularity properties seem to deteriorate
rather than to improve.

Yet, nowhere is written that we must restrict our attention to the space of
measures, that is M(U) = C0(U,R)∗. Let us consider Cα(U,R)∗, α > 0, instead.
More precisely, let us fix some δ > 0 and consider the norms

|ϕ|Cα := |ϕ|∞ +Hα(ϕ) ; Hα(ϕ) := sup
|x−y|≤δ

|ϕ(x) − ϕ(y)|
|x− y|α ,

‖µ‖s,α := sup
|ϕ|Cα≤1

µ(ϕ).

Then, since |ϕ ◦ T |∞ ≤ |ϕ|∞ and Hα(ϕ ◦ T ) ≤ λ−αHα(ϕ), it holds that

(4.1) ‖T∗µ‖α ≤ ‖µ‖α.

Moreover setting, for each ε > 0,

Aεϕ(x) =
1

m(Bε(x))

∫

Bε(x)

ϕdm

we have, for α ∈ (0, 1),

|ϕ− Aεϕ|∞ ≤ εαHα(ϕ)

Hα(ϕ− Aεϕ) ≤ 2Hα(ϕ)

H1(Aεϕ) ≤ εα−1Hα(ϕ)

from which the Lasota-Yorke inequality follows. Indeed, for each ϕ ∈ Cα, |ϕ|Cα ≤ 1
and σ ∈ (λ−α, 1), holds

T n
∗ µ(ϕ) = µ(ϕ ◦ T n) = µ((ϕ − Aεϕ) ◦ T n) + µ((Aεϕ) ◦ T n)

≤ sup
|φ|Cα≤(εα+2λ−nα)

µ(φ) + εα−1‖µ‖s,1 ≤ Aσn‖µ‖s,α +B‖µ‖s,1,

provided we have chosen A,B large and ε small enough. While (4.1), for α = 1,
yields ‖T∗µ‖s,1 ≤ ‖µ‖s,1.

Moreover, since the unit ball of C1 is compact in Cα, it follows that the unit
ball of (Cα)∗ is compact in (C1)∗.38 We have thus all the ingredients to apply the
strategy outlined in the previous lecture (as it will be further remarked in the next
section).

In particular, calling B := M(U)
‖·‖s,α

and Bw := M(U)
‖·‖s,1

we have that
T∗ : B → B is a quasi-compact operator and its spectral radius is one. This means

that T∗ =
∑ℓ

i=1 T∗Πi +R where σ(T∗Πi) = {0, αi}, |αi| = 1, and ‖Rn‖ ≤ Cθn for
some C ≥ 0 and θ < 1. But then

lim
n→∞

1

n

n−1
∑

i=0

T i
∗ = Π0,

where σ(T∗Π0) = {0, 1}. Moreover, since ‖T n
∗ ‖ ≤ 1 implies no Jordan blocks, it

holds true T∗Π0 = Π0T∗ = Π0.

38To see this one can, for example, apply Theorem 4.210 of [37] to the trivial embedding.
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Accordingly, for each ϕ ∈ Cα and each measure µ ∈ M(U)

Π0µ(ϕ) = lim
n→∞

1

n

n−1
∑

i=0

µ(ϕ ◦ T i) ≤ lim
n→∞

1

n

n−1
∑

i=0

|µ| |ϕ|∞ ≤ |µ| |ϕ|∞.

This means that Π0M(U) ⊂ M(U). But the range of Π0 is finite dimensional, hence
its range must be contained in M(U), since M(U) is dense in B by construction.
In other words, all the µ ∈ B such that T∗µ = µ must be measures, and since there
is only one invariant measure it follows that δx∗

it is not only the unique invariant
measure, but also the unique invariant distribution.

Remark 4.1. Note that the above arguments says nothing of interest on the regu-
larity of the invariant measure (only that it is a measure, which it is obvious). Yet,
it says that one can consider invariant distributions rather than invariant measures
and still be able to characterize them. This is very important if one is interested in
the the spectral picture, since eigenvectors with eigenvalue less then one are often
only distributions.39

4.2. The general framework. Before proceeding further it is helpful to remark
that most of what we have done so far can be seen as special cases of a rather
general scheme. Such a scheme can be summarized by the following ingredients.

(1) Two Banach spaces Bi (let ‖ · ‖ be the norm of B1 and | · | the norm of B2).
(2) A domination between the norms: ‖ · ‖ ≥ | · |.
(3) An operator L : Bi → Bi. (L is the Transfer operator)
(4) A regularization property:

‖Lnf‖ ≤ Aλ−n‖f‖+ B|f |, |Lnf | ≤ C|f |
with λ > 1. (Lasota-Yorke type inequality)

(5) Compactness: L{f ∈ B1 | ‖f‖ = 1} is pre-compact in B2.
(6) Invariant functional: exists ℓ ∈ B∗

2 such that L∗ℓ = ℓ.

Remark 4.2. Note that the last point corresponds, in the previous examples, to
1◦T = 1. This is connected to our choice to restrict the analysis to measures related
to Lebesgue. If one wants to choose a conformal measure as reference measure then
the above setting still applies, provided it is slightly generalized. This generalization
is important (for example it is very natural to investigate the measure of maximal
entropy), yet it exceeds our scopes, see [52, 4] for examples.

The consequences of the above setting are briefly summarized as follows.

• (4) =⇒ σ(L) ⊂ {z ∈ C | |z| ≤ 1}.
• (6) =⇒ 1 ∈ σ(L).
• (4,5) =⇒ σess(L) ⊂

{

z ∈ C

∣

∣

∣

∣

|z| ≤ λ−1

}

(Hennion-Neussbaum argument)

If 1 is a simple eigenvalues and no other eigenvalues of modulus one are present
then the projection Π1 on the associated eigenvector is given by

Π1f = hℓ(f)

where Lh = h.

39As we have already remarked such eigenvalues determine the speed of decay of the correla-
tions and are often called resonances [80].
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Next, to consider the problems related to stability and computability, define the
norm of L seen as an operator from B1 to B2, that is

|||L||| := sup
‖f‖≤1

|Lf |.

Let Li be two operators that satisfy (1-6), and

|||L1 − L2||| ≤ ε.

For any operator L, let us consider the set

Vδ,r(L) := {z ∈ C | |z| ≤ r or dist(z, σ(L)) ≤ δ}.
Since the complement of Vδ,r(L) belongs to the resolvent of L it follows that

Hδ,r(L) := sup
{

‖(z − L)−1‖ | z ∈ C \Vδ,r(L)
}

<∞.

Theorem 4.1 ([46]). Consider two operators Li : B1 → B1 satisfying (1-6). Let
Hi

δ,r := Hδ,r(Li); V
i
δ,r := Vδ,r(Li), then there exists a, b ∈ R

+ such that, if ε ≤
ε1(L1, r, δ),

‖(z − L2)
−1f‖ ≤ a‖f‖+ b|f |.

In addition, setting η := ln r/α
lnα−1 , if ε ≤ ε0(L1, r, δ), for each z ∈ C \V 1

δ,r it holds true

|||(z − L1)
−1 − (z − L2)

−1||| ≤ εη
[

a‖(z − L1)
−1‖+ b‖(z − L1)

−1‖2
]

.

This allows to obtain very strong spectral stability results as we have already
seen.

4.3. Uniformly hyperbolic systems. In this section we will consider Anosov
diffeomorphisms T : M → M where T is of class C3 and M is a smooth compact
Riemannian manifold. The idea is to extend much of the results of the previous
lecture to this setting. In fact, since the details starts to be a bit more technical
this section (and the next lecture) will be less detailed. I will only try to make clear
which type of results are possible and refer to the original papers for the complete
technical details.

Let us remind that by Anosov we mean (as usual) that there exists a direct sum
decomposition of the tangent bundle T M into continuous sub-bundles Es and Eu,
that is TxM = Es

x ⊕ Eu
x , and constants A ≥ 1 and 0 < λs < 1 < λu such that40

(dxT )(E
s
x) = Es

Tx, ‖(dxT n)|Es
x
‖ ≤ Aλns ,

(dxT )(E
u
x ) = Eu

Tx, ‖(dxT−n)|Eu
x
‖ ≤ Aλ−n

u ,
(4.2)

for all x ∈ M and n ≥ 0. Let du/s = dim(Eu/s). It is well known that for such maps
there exist stable and unstable foliations (W s(x))x∈M and (Wu(x))x∈M, [34, 63, 29].

Each single W s/u(x) is an immersed C3 sub-manifold of M, and TyW s/u(x) = E
s/u
y

for any y ∈ W s/u(x). The dependence of E
s/u
x and W s/u(x) on x, however, is only

Hölder in general–see [76, 26] for exact results. We will denote by τ the optimal
common Hölder-exponent for both distributions. This exponent depends in a well
understood way on the various contraction and expansion coefficients of the map,
and there are a number of cases where the foliations are indeed C1+α for some α > 0
(for example when dim(M) = 2).

40By dT we denote the differential of T , clearly dxT : TxM → TTxM. Similarly, if f : M → R is
differentiable, then dxf : TxM → R.
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It is immediate to verify that, if µ is absolutely continuous with respect to the
Riemannian volume m, then T∗µ is absolutely continuous with respect to m. Given
this fact, it is possible to define the evolution of the corresponding densities:

L dµ

dm
:=

d(T∗µ)

dm
.

The above defined operator L is usually called the Perron-Frobenius or the Ruelle-
Perron-Frobenius or the Transfer operator.

A direct computation shows that L has the following representation:

(4.3) Lf = f ◦ T−1 · d(T∗m)

dm
=: f ◦ T−1 · g ∀f ∈ L1(M,m)

where g ∈ C2(M).41

To treat this case we will try to combine the approaches that were successful in
the expanding case and the one that worked in the contracting case. We start by
defining a suitable set of test functions to control the stable direction. For points
x, y ∈ M with y ∈ W s(x) we define ds(x, y) as the distance between x and y within
the Riemannian manifold W s(x) (which inherits its Riemannian structure from M).
Fix some δ > 0. For 0 < β ≤ 1 and bounded measurable ϕ : M → R, we define42

(4.4) Hs
β(ϕ) := sup

ds(x,y)≤δ

|ϕ(x) − ϕ(y)|
ds(x, y)β

,

which means that the supremum is taken over all pairs of points x and y such that
y ∈ W s(x). Clearly, Hs

β is a semi norm, and we use it to define

(4.5) Dβ := {ϕ : M → R : ϕ measurable, |ϕ|∞ ≤ 1, Hs
β(ϕ) ≤ 1}.

In order to control the unstable direction we provide a set V of measurable
test vector fields v : M → T M adapted to the unstable foliation in the sense that
v(x) ∈ Eu

x for all x ∈ M.
Given the fact that x 7→ Eu

x is, in general, only τ -Hölder for some τ < 1 we
cannot ask the vector fields to be globally more regular than that. By a slight
abuse of notation we define43

(4.6) Hs
β(v) := sup

d(x,y)s≤δ

‖v(x) − v(y)‖
ds(x, y)β

.

Then we will consider the vector fields

(4.7) Vβ := {v ∈ V : |v|∞ ≤ 1; Hs
β(v) ≤ 1} .

From now on we will always assume

0 < β < γ ≤ 1 .

41If M = Td then g = |det(DT )|−1.
42The δ in the definition is fixed once and for all, yet it must satisfy various smallness require-

ments that depend only on (M, T ).
43To compute the difference between two tangent vectors at different (close) points we parallel

transport one of them to the tangent space of the other along the geodesic. We will not mention
this explicitly, since it is completely trivial on M = Td and it is a routine operation on general
Riemannian manifolds, see e.g. [18, Section 2.3].
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Using the above defined classes of test functions and test vector fields we now
define the norms that will describe our Banach spaces of generalized functions. For
f ∈ C1(M,R) let

(4.8)

‖f‖s := sup
ϕ∈Dβ

∫

M
fϕ dm

‖f‖u := sup
v∈Vβ

∫

M
df(v)dm

‖f‖ := ‖f‖u + b‖f‖s
‖f‖w := sup

ϕ∈Dγ

∫

M
fϕ dm.

where
∫

M
df(v)dm is short hand for

∫

M
dxf(v(x))m(dx). The constant b ≥ 1 must

be chosen sufficiently large. Except for ‖ · ‖u, which is only a semi norm, all
these expressions define norms on C1(M,R) and ‖f‖w ≤ ‖f‖s ≤ b−1‖f‖. Note that
the above norms are inhomogeniously anisotropic because the stable and unstable
directions are treated differently and may change from point to point.

Definition 4.1. B(M) and Bw(M) denote the completions of C1(M,R) w.r.t. the
norms ‖ · ‖ and ‖ · ‖w, respectively.

Each f ∈ C1(M,R) naturally gives rise to a bounded linear functional on C1(M,R)
by virtue of

〈f, ϕ〉 :=
∫

M

fϕ dm .

Obviously, ‖f‖∗C1 ≤ ‖f‖w ≤ ‖f‖ ≤ ‖f‖C1. Therefore there exist canonical continu-
ous embedding (not necessarily one-to-one)

C1(M,R) → B(M) → Bw(M) → C1(M,R)∗ .

In fact, each f ∈ Bw defines a bounded linear functional on C1(M,R) by 〈f, ϕ〉 :=
limn→∞〈fn, ϕ〉 where fn ∈ C1(M,R) and limn→∞ ‖f − fn‖w = 0. In the same way
one can embed B(M) into Bw(M).

We now state, without proof, the two basic fact that hold true in (and justify
the) above setting.

Lemma 4.1 ([11]). Suppose β < min{τ, 1} and γ ∈ (β, 1]. Then L extends natu-
rally to a bounded linear operator on both Bw(M) and B(M). In addition, for each
σ > max{λ−1

u , λβs }, we can choose constants b and δ in (4.4) - (4.8) for which there
exists B > 0 such that, for each f ∈ B(M), we have

‖Lnf‖w ≤ A ‖f‖w and ‖Lnf‖ ≤ 3A2σn‖f‖+B‖f‖w for n = 1, 2, . . .

where A is the constant from (4.2).

Proposition 4.1 ([11]). If γ ·min{τ, 1} > β, then the ball B1 := {f ∈ B(M) : ‖f‖ ≤
1} is relatively compact in Bw(M).

The next Theorem follows by the usual Hennion-Neussbaum argument.

Theorem 4.2. Suppose that γ ·min{τ, 1} > β. Then, for each σ > max{λ−1
u , λβs },

the operator L : B(M) → B(M) has essential spectral radius bounded by σ and is thus
quasi compact.
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An immediate consequence of Theorem 4.2 is that for each constant r ∈ (σ, 1)
the portion

spr(L) := sp(L) ∩ {z ∈ C : |z| > r}
of the spectrum consists of finitely many eigenvalues λ1, . . . , λp of finite multiplicity.
See Figure 4.3 for a depiction of the above facts.

1

∗
∗

∗

∗
∗

∗µuµ
−1
s σ

Figure 4.3. Region containing the spectrum of the transfer operator

We have thus gained a spectral picture for Anosov maps completely analogous to
the one obtained for expanding maps. by arguments similar to the one already car-
ried out in section 4.1 and in section 3.1 it is easy to prove that all the eigenspaces
associated to the eigenvalues of modulus one must be contained in the spaces of
measures M(M). Moreover, such measures have conditional expectations with re-
spect to the unstable foliations that are absolutely continuous with respect to the
Lebesgue measure, that is they are SRB measures (this can be proven in analogy
with Lemma 2.3, or see [11] for details).

Since it is well known that, for the systems at hand, the SRB measure, µSRB

is unique [3], and the same holds for all the powers of the map, one can easily
prove that the Dynamical Systems (M, T, µSRB) is mixing. The already established
spectral gap implies then that the system mixes exponentially fast on C1 observable.

It is then natural to investigate the stability of such a picture. At the moment
only partial results are available [11]. Just to give a flavor of the situation let us
quote the following result.

Let Jε : C0 → C0 be the operator defined by

Jεf(x) :=

∫

T2

ε−2j(ε−1‖x− y‖)f(y)dy

where j ∈ C2(R,R+), supp(j) ⊂ [0, 1],
∫

j(r)dr = 1. The first interesting fact is
that Jε can be extended to an operator on B which enjoys nice properties.
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Lemma 4.2. Assume that M = T2. The unstable foliation is Cτ , τ − 1 ≥ α ≥ γ >
β > 0. Then any smooth averaging operator can be extended in a unique way to a
continuous operator on B(M) and one can choose δ (small) and b (large) in such a
way that there exists K > 0 with

‖Jε‖w ≤ K and ‖Jεf‖ ≤ 3‖f‖+K‖f‖w
for all sufficiently small ε > 0 and all f ∈ B(M).

We can then define the operator Lε := JεL. As already noticed Lε is the transfer
operator of a random process consisting in moving a point by the map T followed
by a random jump determined by the transition kernel Jε. In other words at each
step of time the point is displaced at random in a small neighborhood of its current
position, thus we have a small random perturbation of the deterministic system.
The goal is clearly to apply the perturbation theory described in the previous
lecture. This is possible thanks to the next two results.

Lemma 4.3 ([11]). Assume that M = T2. There is a constant B′ > 0 such that,
for sufficiently small ε > 0 and each n ∈ N

‖Ln
ε ‖w ≤ B′ and ‖Ln

ε f‖ ≤ 9A2σn‖f‖+B′‖f‖w
for all f ∈ B(M).
Lemma 4.4 ([11]). Assume that M = T2. There exists a constant K > 0 such that

|||Jε − Id||| ≤ Kεγ−β.

Accordingly |||Lε − L||| ≤ ‖L‖Kεγ−β which suffice to apply Theorem 4.1 and
obtain the wanted spectral stability.44

5. Fifth Lecture (Geodesic flows)

In this last lecture we will discuss flows. Since some aspect are a bit technical–
although very similar to what we have discussed already–I will mostly restrict to
the ideas referring to the original article [58] for the nasty details.

We will consider a C4, d+ 1 dimensional, connected compact Riemannian man-
ifold M with everywhere negative curvature and the associated geodesic flow45 on
the unitary tangent bundle M. The flow Tt : M → M so defined satisfies the following
conditions.

Lemma 5.1 ([49]). At each point x ∈ M there exists a splitting of the tangent space
TxM = Es(x) ⊕ E0(x) ⊕ Eu(x). The splitting is invariant with respect to Tt, E

0

is one dimensional and coincides with the flow direction, in addition there exists
µ > 0 such that

‖dTtv‖ ≤ e−µt‖v‖ for each v ∈ Es and t ≥ 0

‖dTtv‖ ≥ eµt‖v‖ for each v ∈ Eu and t ≤ 0.

44Note that the above estimates imply only Hölder continuity in ε even for the SRB measure.
This is a consequence of the choice of the spaces. The situation could be improved in the two
dimensional case, since the foliation is, in this case, C1+α regular but for the higher dimensional
case where the foliation can be only Hölder continuous it is not clear how to improve the above
approach. Nevertheless, it is known that the SRB measure is differentiable in quite general
situations [81, 82, 22], so it is clear that more work is needed to understand the real potentiality
of the present point of view.

45That is T0 = Id and Tt+s = Tt ◦ Ts for each t, s ∈ R.
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That is, the flow is Anosov.46

Remark 5.1. We will restrict our discussion geodesic flows but all is said holds
more generally for contact flows.47

5.1. A bit of history. For geodesic flows (and contact flows as well) the Riemann-
ian volume (contact volume) is invariant, hence the issue of finding “nice” invariant
measure is trivial.48 On the contrary the investigation of the statistical properties
of the flow are far from trivial. Here is a bit of history of the subject.

Although the interest in geodesic flows is very old, for convenience we can start
our history with Hopf who in 1939 proved the ergodicity of geodesic flows on surfaces
of constant negative curvature, [30, 31]. His argument, to this days called the Hopf
argument, proved a very far reaching tool to investigate ergodicity in hyperbolic
systems (see [59] for a modern application of such ideas). The mixing of such
systems was proved by Sinai [85] in 1961.

The next step was undertaken by Anosov in 1963, [2]. He proved ergodicity of
geodesic flows in negative curvature. Thanks to his work it was possible to extend
the Hopf strategy to the a large class of systems (not by chance now called Anosov)
even when the stable and unstable foliation are not C1. This was an impressive
technical advance. After about ten years Ornstein and Weiss [68] established that
this more general class of systems was mixing (in fact Bernoulli).

The study of the rate of mixing starts with the work of Collet, Epstein, Gallavotti
in 1984, [17] soon followed by other similar results [65, 77, 71]. In these papers it is
proven the exponential decay of correlations for geodesic flows in constant negative
curvature (in two and three dimensions). Unfortunately, the technique used there
are based on representation theory and therefore use in an essential way the group
structure of the constant curvature case.

The possibility to obtain a more dynamical proof of the rate of decay of correla-
tion came about thanks to the monumental work of Sinai, Ruelle and Bowen that
developed the so called thermodynamic formalism for Dynamical Systems (see [34]
for a review of such theory). This approach was extend to flows in a sequence of
works [84, 79, 73].

Building on such foundations Chernov in 1998 was finally able to produce a dy-
namical approach to the study of decay of correlation for flows, [15]. He managed
to prove sub-exponential decay of correlations for geodesic flows on negative cur-
vature surfaces. Shortly after Dolgopyat, in a series of papers [19, 20, 21], proved
exponential decay of correlations for Anosov flows in negative curvature with C1

foliations (e.g.: negative curvature surfaces and 1/4-pinched manifolds).
At this point the reader may guess that all axion A flows enjoy exponential decay

of correlations for smooth observable, this turns out to be false. Indeed, Ruelle in
1983 produced an example of a suspension over a shift with piecewise constant
ceiling which it is mixing but exhibits arbitrarily slow correlation decay, [79] (see
also [72]). Such an example is not Anosov, yet it is hyperbolic (Axiom A). To this

46More in general, one can allow a constant A > 0 in front of the exponential term, but this
can be handled exactly as in the following.

47By contact flow we mean that there exists a C(2) one form α on M, such that there exists a
C(2) one form α on M, such that α ∧ (dα)d is nowhere zero, which is left invariant by Tt (that is
α(dTtv) = α(v) for each t ∈ R and tangent vector v ∈ T M).

48Yet, there exists other very important invariant measures that one may be interest in inves-
tigating such as the measure of maximal entropy.
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days it is not known if all Anosov flows mixes exponentially fast, yet we are going
to see that this is the case for contact Anosov flows.

5.2. Looking at a generator. We can now start to describe the spaces on which
we will consider the operators Tt and Lt.

49 First of all let us fix δ > 0 sufficiently
small and define

(5.1) Hs,β(ϕ) := sup
ds(x,y)≤δ

|ϕ(x) − ϕ(y)|
ds(x, y)β

; |ϕ|s,β := |ϕ|∞ +Hs,β(ϕ).

Definition 5.1. In the following by the Banach space Cα
s (M,C) we will mean the

closure of C1(M,C) with respect to the norm | · |s,α. Similar definitions hold with
respect to the metric du and the Riemannian metric d (giving the space of Hölder
function Cα).

Let us also define the unit ball Dβ := {ϕ ∈ Cβ
s (M,C) | |ϕ|s,β ≤ 1}. For a given

β < 1, and f ∈ C1(M,C), let

(5.2)

‖f‖w := sup
ϕ∈D1

∫

M
ϕf

‖f‖ := ‖f‖s + ‖f‖u ; ‖f‖s := sup
ϕ∈Dβ

∫

M
ϕf ; ‖f‖u := Hu,β(f).

Let B(M,C) and Bw(M,C) be the completion of C1(M,C) with respect to the norms
‖ · ‖ and ‖ · ‖w respectively. Note that such spaces are separable by construction
and are all contained in (Cβ)∗, the dual of the β-Hölder functions.

It is well known that the strong stable and unstable foliations and the Jacobian
of the holonomies associated to the stable and unstable foliations for an Anosov
flow are τ -Hölder. From now on we will assume

(5.3) 0 < β < τ2.

Again it is possible to prove some regularization properties of the family Lt.

Lemma 5.2 (Lasota-Yorke type inequality). {Lt}t≥0 is a strongly continuous semi
group on B and Bw. In addition,

‖Ltf‖w ≤ ‖f‖w ; ‖Ltf‖ ≤ ‖f‖
‖Ltf‖ ≤ 3e−λβt‖f‖+B‖f‖w.

Hence there exists a generator X : D(X) ⊂ B → B and the following formula
for the resolvent holds true

(z −X)−1 = R(z) =

∫ ∞

0

e−ztLtdt ; ∀z ∈ C,ℜ(z) > 0.

Unfortunately the unit ball of B it is not compact in Bw. This is due to the
obvious fact that our norms do not induce any control on the flow direction. Nev-
ertheless, the above formula it is very inspiring since the operator R(z) can be
written as an integral along the flow direction, it is thus not inconceivable that
the range of R(z) be regular also in the flow direction, whereby yielding some
compactness property.

49Clearly Lt is defined by
∫
M
ϕ ◦ Tthdm =

∫
M
ϕLthdm.
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Lemma 5.3. Let z = a+ ib, a > 0, then

‖R(z)‖w ≤ a−1 ; ‖R(z)‖ ≤ a−1

‖R(z)nf‖ ≤ 3

(a+ λβ)n
‖f‖+ a−nB‖f‖w.

In addition, R(z) : B(M,C) → Bw(M,C) is compact.

We can then investigate the spectrum of X by studying the resolvent.
Note that ζ ∈ ρ(R(z)) is equivalent to z − ζ−1 ∈ ρ(X). Thus the bound on

the spectral radius of R(z) implies that σ(X) lies in the left half plane (see Figure
5.4). This information is of little interest (it followed already from the fact that Lt

is bounded in the future). On the other hand, Lemma 5.3 implies, via the usual
arguments (see Theorem 3.1) the quasi compactness of R(z). This means that one
can get some information on the spectrum of X on the left of the imaginary axis
(see Figure 5.5). In fact, by varying z, it follows that there is a strip on the left of
the imaginary axis that contains only point spectrum of finite multiplicity without
accumulation points (see Figure 5.6).

a−1
=⇒

♣ z

σ(R(z))

σ(X)c

❅❅❘

Figure 5.4. Relation between the spectral radius of R(z) and σ(X).

a−1
=⇒

♣ z

σ(R(z))

∗

∗

∗

∗

∗

∗

Figure 5.5. Relation between the quasi compactness of R(z) and σ(X)

By arguments similar to the one seen for expanding maps the ergodicity of the
flow implies that 0 is a simple eigenvalue, while the mixing implies σ(X)∩{ib}b∈R =
{0}.
Remark 5.2. Up to now the results hold for each Anosov flow and they correspond
to the to the existence of a strip on which the Laplace transform of the correlation
functions (or the dynamical zeta function) is meromorphyc.

Yet, we cannot conclude much about decay of correlations from the above results.
The obstacle is that, although the imaginary axis is free of eigenvalues (apart from
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∗

∗

∗

∗

∪
σess(X)

∪
σp(X)

Figure 5.6. The spectrum of the generator X .

zero), nothing prevent the eigenvalues to accumulate to the imaginary axis very
far from the real axis. To exclude such a phenomenon it is necessary to have an
estimate of the norm of the resolvent for large values of ℑ(z). This turns out to be
the hardest part of the argument and it is based on the following result.

Lemma 5.4 (Dolgopyat inequality). There exist c, b∗, ν > 0 such that, for all
a ∈ [1, 2], |b| ≥ b∗, z = a+ ib, and n ≥ c ln |b|,

‖R(z)n‖ ≤ (a+ ν)−n.

Hence,

rsp(R(z)) ≤ (a+ ν)−1.

(ν+a)−1
=⇒

♣ z

σ(R(z))

ρ(X)

−ν

Figure 5.7. Ruling out eigenvalues close to the imaginary axis

Remark 5.3. In fact, Dolgopyat result holds for a different operator on a different
space, yet the cancellation mechanism relevant to the proof is similar. In his case he
uses C(1) foliations. Here the contact structure suffices to yield the result regardless
the regularity of the foliation.

By Lemma 5.4 one obtains that there exists a strip on the left of the imaginary
axis that, far away from the real axis, does not contain any eigenvalues (see Figure
5.7). Putting this information together with what we know already we obtain a
spectral gap for the generator.

To conclude a little more work is needed. The problem is that Lt grows expo-
nentially in the past and so no obvious relation between the spectrum of X and the
spectrum of Lt does exist. We conclude thanks to some form of the inverse Laplace
transform.
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Lemma 5.5. If f ∈ D(X2), then

Ltf =
1

2π
lim

w→∞

∫ w

−w

eat+ibtR(a+ ib)f db.

All the above facts easily imply the main result.

Theorem 5.1. For a C4 geodesic flow Tt on a manifold M of everywhere nega-
tive curvature, the operators Lt form a strongly continuous group on B(M,C). In
addition, there exists σ,C1 > 0 such that, for each f ∈ C1,

∫

f = 0, the following
holds

‖Ltf‖ ≤ C1e
−σt|f |Cα .

Note that the above theorem implies the exponential decay of correlation for
all Hölder observable, yet this does not imply that the operators Lt are quasi-
compact, and it is possible that they are not. This may explain the rather indirect
route needed to attain the above result.

5.3. Few rough ideas about the proofs. The proof of the previous results fol-
lows lines very similar to what we have done in the previous lectures. In particular
the easy inequalities

Hu,1(R(z)f) ≤
1

a+ λ
Hu,1(f); Hs,β(R(z)

∗ϕ) ≤ 1

a+ λβ
Hs,β(ϕ)

are the basis to prove Lemmata 5.2 and 5.3. From Lemma 5.3 follows

‖R(z)3nf‖ ≤ 3

(a+ λβ)n
‖R(z)2nf‖+ a−nB‖R(z)2nf‖w

≤ 3(a+ λβ)na2n‖f‖+ a−nB‖R(z)2nf‖w

≤ 1

2(a+ ν)3n
‖f‖+ a−nB‖R(z)2nf‖w.

To prove Lemma 5.4, we have thus to estimate the weak norm of R(z)nf in terms
of the strong norm of f . By using a and idea that, by now, should be familiar we
write

∫

R(z)2nfϕ ∼
∫

fR(z)∗nAu
δR(z)

∗nϕ.

Where Au
δ is the average of a piece of strong unstable manifold of size δ.

A
u
δR(z)

∗nϕ(x) =
1

(n− 1)!

∫

∪∞
t=0TtWu

δ
(x)

tn−1e−ztϕ(ξ)JuT−t(ξ).

Note that, for large t, the image of the unstable manifold becomes extremely long
and invades all the space.

The idea is then to sum together different pieces of such a long manifold. Dif-
ferent pieces can be compared along the stable holonomy yielding a cancellation
due to the non-joint integrability of stable and unstable manifold. This comes
about since the image of the strong unstable manifold by the stable holonomy is
tilted in the flow direction (see Figure 5.8). Accordingly, the oscillating factor eibt,
which it is constant along strong unstable manifolds, gets mapped into something
that oscillate along a fixed strong unstable manifold whereby producing the wanted
cancellations (see Figure 5.8 where the strips symbolize the different phases of the
oscillating factor).
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The non-joint integrability of the foliation is expressed quantitatively by the
contact form.

❍❍❍❍❍❍

❍❍❍❍❍❍

❍❍❍

❍❍❍❍❍❍

holonomy→

✻

✲

t
i
m
e

strong unstable

holonomy−→

Figure 5.8. The Chernov-Dolgopyat cancellation mechanism

To be more precise consider a point x ∈ M and a small neighborhood Bδ(x).
And a coordinate system (u, t, s) such that {(u, 0, 0)} =Wu(x), (0, t, 0) = Ttx and
{(0, 0, s)} = W s(x). Let y ∈ Bδ(x) ∩W s(x) and y′ ∈ Bδ(x) ∩Wu(x). Moreover
let z′ =Wu(y) ∩W sc(y′) and z = W s(y′) ∩Wuc(y). By construction z and z′ are
on the same flow orbit. Thus there exists ∆(y, y′) such that T∆(y,y′)z = z′. The
function ∆(y, y′) is called temporal distance, see Figure 5.9 for a pictorial definition.

The relation between the temporal distance and the contact form is made precise
by the following Lemma.

�
�
�
�
�
�
�
�
�

��

x y′

y
ẑ

z′

z

W sc(y′)

Wuc(y)

PPP✐
W s(y′)

❄

Wu(y)

Σ

Ω

Ω′

❅
❅■

Wu(x)

W s(x)

�
�✠

Figure 5.9. Temporal distance ∆(y, y′): T∆(y,y′)z = z′
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Lemma 5.6. Let v ∈ Eu(x), w ∈ Es(x) be such that expx(v) = y′ and expx(w) =
y,50 then

∆(y, y′) = dα(v, w) +O(|v|τ |w|2 + |w|τ |v|2).

The above formula allows to make quantitatively precise the cancellations de-
picted in Figure 5.8.
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[61] C.Liverani, B. Saussol and S.Vaienti, A Probabilistic Approach to Intermittency, Ergodic
Theory and Dynamical Systems, 19, (1999), 671–685.

[62] A.Lasota, J.A.Yorke, On the existence of invariant measures for piecewise monotonic
transformations, Transact.Amer.Math.Soc., 186, (1973), 481-488.
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