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This text is a result of the notes written for several Schools. It started with a
series of lectures, Probability and uniformly hyperbolic systems, given by Car-
langelo Liverani in Coimbra in 2008 and the lectures delivered by Mark Demers
and Carlangelo Liverani at the International Conference on Statistical Properties
of Non-equilibrium Dynamical Systems, SUSTC, Shenzhen, July 27 — August 2,
2016. It was then modified and used for the lectures An introduction to the statisti-
cal properties of hyperbolic dynamical systems, delivered by Carlangelo Liverani
at the TMU-ICTP School, Tehran, May 5 — 10, 2018. It has finally reached its
present state for the lectures by Carlangelo Liverani at the 33° Coléquio Brasileiro
de Matematica.

Our aim is not to make a review of the field, but rather to introduce the reader
to some basic modern techniques used to study the statistical properties of chaotic
systems. Here by chaotic we mean uniformly hyperbolic systems. That is, systems
that display a strong uniform sensitivity with respect to initial conditions. We will
stress in particular the so-called functional approach, but we will also provide a
simple introduction to the use of standard pairs and Hilbert metrics, and discuss
some of the relations among these tools.

The goal is to provide the reader with a quick introduction to the literature.
On the one hand we describe in detail the main techniques when applied to the
simplest cases, providing full proofs for the essential general facts of the theory.
On the other hand we try to flesh out the fundamental ideas necessary to understand
the current literature, while avoiding the most technical details.

This note is a partial update with respect to the small review Liverani (2003).



For a much more in depth and technical discussion of transfer operators see Baladi
(2000, 2018).

Our main focus, the functional approach, has its origin in the study of the
Koopman operator Koopman (1931) (acting on L?) starting, at least, with the von
Neumann mean ergodic theorem von Neumann (1932) and further developed by
the Russian school, see Cornfeld, Fomin, and Sinai (1982). An important develop-
ment of this point of view occurred with the study of the transfer operator in sym-
bolic dynamics by Sinai (1968, 1972b), Ruelle (1976a, 1978) and Bowen (1970,
2008).

Next, the functional approach developed further thanks to the work of Lasota
and Yorke (1973), Ruelle (1976b), Keller (1979), Hofbauer and Keller (1982) and,
more recently, Fried (1986), Rugh (1992, 1996), and Kitaev (1999), just to mention
a few. This has eventually led to the current theory, which has assumed its present
form starting with Blank, Keller, and Liverani (2002).

The basic idea is to study directly the spectrum of the Ruelle transfer opera-
tor without coding the system (even though the theory can be applied also to the
transfer operator of a system after inducing). In order to do so, it is necessary to
consider the action of the transfer operator on an appropriate Banach (or Hilbert)
space or, more generally, in an appropriate topology. The non trivial part of the
theory rests in the identification of the appropriate topological spaces which, to be
effective, must reflect the geometric features of the dynamics.

In this note we will discuss only uniformly hyperbolic systems, yet the tech-
niques presented here are relevant also in the non uniformly hyperbolic case, al-
though they must be supplemented with essential new ideas such as Young towers,
started by Young (1998); coupling, as introduced by Dolgopyat (2000) and Young
(1999); and Operator Renewal Theory, whose development is due to Sarig (1999).
In fact, it may be interesting to combine different techniques in order to develop
a more effective theory: examples of attempts in this direction are De Simoi and
Liverani (2016) and Maume-Deschamps (2001).

Another of our goals is to explain which properties the above mentioned Ba-
nach spaces must enjoy and to provide a guide for how to construct and adapt them
to the peculiarities of the systems at hand. Also, we will briefly discuss the idea
of coupling in an especially simple case, but we will not provide any details re-
garding Young towers or Operator Renewal Theory. More generally, we will not
discuss non-uniform hyperbolicity nor general partial hyperbolicity (for the latter
we refer to the book Bonatti, Diaz, and Viana (2005)).

The plan of the exposition is as follows: we start, in Chapter 1, discussing the
simplest possible case, smooth expanding maps of the circle. This allows us to il-



lustrate, in the simplest possible setting, the power of the functional approach and
the type of results that can be obtained once such machinery is in place. In par-
ticular, we will show how important properties of the system such as exponential
decay of correlations, the Central Limit Theorem, Large deviation results, stabil-
ity and linear response easily follow from the spectral properties of the transfer
operator.

In Chapter 2, we will discuss the case of attractors, where the need to consider
spaces of distributions first becomes apparent.

In Chapter 3 we develop the theory for the case of toral automorphisms. This
may seem a bit silly as toral automorphisms can be studied directly using Fourier
series. Yet, this will allow us to illustrate, in the most elementary manner, the main
ideas of the theory, including anisotropic Banach spaces and coupling.

Then, in Chapter 4, we collect all the ideas previously illustrated and extend
them to study general uniformly hyperbolic maps. This gives a precise taste of
what the full theory looks like for uniformly hyperbolic systems.

Next, we discuss non-singular flows. By non-singular we mean that the vec-
tor field generating the flow has no zeros. This implies that a Lyapunov exponent
(the one in the flow direction) is necessarily zero. Hence, this is one of the sim-
plest possible partially hyperbolic systems. The other simple classes of partially
hyperbolic systems are skew-products and group extensions. Some of these can
be treated with similar techniques, but we will not discuss them explicitly in this
note.

We will restrict ourselves to the case of contact flows. Although much of
the present theory can be applied, with few changes, to more general hyperbolic
flows, the contact flow case is the simplest example and hence well suited to an
introductory discussion.

There are three main steps in adapting the analysis of the discrete time trans-
fer operator for hyperbolic maps to the semi-group of continuous time transfer
operators for hyperbolic flows:

1. Adapt Banach spaces used for hyperbolic maps to the setting of hyperbolic
flows: the presence of the neutral flow direction makes this a nontrivial
change.

2. Contrary to the discrete-time case, we do not prove the quasi-compactness
of the transfer operator for the time-one map of the flow, but rather for the
generator of the semi-group of transfer operators for the flow; this involves
the use of the resolvent to ‘integrate out’ the neutral direction.



3. The use of the contact form to estimate an oscillatory integral and derive
a spectral gap for the generator of the semi-group and an estimate for the
resolvent close to the imaginary axis (the Dolgopyat-type estimate).

It then follows from some general considerations that a spectral gap for the gener-
ator of the semi-group implies exponential decay of correlations for the flow. This
approach is detailed in Chapter 5.

At last Chapter 6 discusses the extension of these ideas to hyperbolic billiards.
Note that hyperbolic billiards have serious discontinuities, hence albeit the overall
strategy is the same as in the smooth case, there are crucial technical problems to
overcome, problems that delayed the extension of the theory to this type of system
for almost 20 years.

The notes also include several appendices. These are aimed at providing the
reader with some basic knowledge that, while necessary to fully understand the
main text, is not necessarily common knowledge.

Appendix A contains some very basic facts concerning functional analysis.
These are normally covered in a graduate functional analysis course, but, just in
case the reader was distracted, here we provide the minimum necessary to under-
stand the main text.

Appendix B is devoted to a full exposition of the Hennion—Neussbaum theory.
Such a theory underlies much of the current approach, yet it is impossible to find a
full exposition of such results that has as prerequisite only the content of a standard
first functional analysis course. We think that it is better to have full control of the
main instruments used in the field, hence we attempt to fill this expository gap.

Appendix C presents a simplified version of the perturbative theory developed
in Keller and Liverani (1999) and Gouézel and Liverani (2006). Although not
necessary to understand the main text, this theory is by now a standard tool to
study the dependence of the statistical properties of a system on a parameter or
external influences. Hence, it is natural to add it for completeness.

Appendix D contains the basics of projective cones and Hilbert metrics. Part
of this material can also be found in other books (e.g., Viana (1997)) but we add
it for completeness. Also we emphasize the connection with the Banach space
approach, which is not common knowledge.

Appendix E contains hints to the solutions of the problems in the text. We
strongly recommend that the readers look at this appendix only as a last resort and
only after some hard thinking in order to find a solution.



To conclude we would like to thank all the people that provided us with helpful
suggestions related to this text. They are too many to name but, at least, we must
mention Viviane Baladi, Oliver Butterley, Jacopo de Simoi, Dmitry Dolgopyat and
Sébastien Gouézel.
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We start by discussing smooth expanding maps. By a smooth expanding map we
mean amap f € C"(T,T),! r = 2, such that infy | f'(x)| = A, > 1. Clearly
(£, T) is a topological, actually differentiable, dynamical system. Our first goal is
to view it as a measurable dynamical system, hence we need to select an invariant
probability measure.

1.1 Invariant measures

Deterministic systems often have a lot of invariant measures. In particular, to
any periodic orbit is associated an invariant measure (the average along the or-
bit). Given such plentiful possibilities, we need a criteria to select relevant invari-
ant measures. A common choice is to consider measures that can be obtained by
pushing forward a measure absolutely continuous with respect to Lebesgue.

More precisely, let du = h(x)dx, h € L'(T,Leb) and define,” for all ¢ €

1By T we mean the one dimensional torus R/Q. While C”, as usual, denotes the set of functions
r times differentiable with continuous derivatives.
20Obviously, Leb stands for the Lebesgue measure.



2 1. Expanding maps

C%(T,R), the average
p) = [ etonn
T

and the push-forward
Jei(@) = p(@o f).

Note thatif i is a probability measure (i.e., (1) = 1and 2 = 0 implies (k) = 0),
then f.u is also a probability measure. Then

1n—l
{1; Z ffﬂ
k=0

is a weakly compact® set, hence it has accumulation points. On can easily check
that such accumulation points are invariant measures for f', that is fixed points for
[« (this is, essentially, the proof of the Krylov—Bogoliubov Theorem). It is then
natural to study the fixed points of f.

To this end we need to understand a bit better the action of fi.

For example, if u is a delta function supported on a point X, that is u(p) =
9(F) = 82(p). then fupt(p) = p(@ o f) = ¢(f () = 8 r(3)(¢). 50 the action of
f+ on atomic measures reproduces the dynamics of the map f on points. However,
for measures absolutely continuous with respect to Lebesgue, the situation is differ-
ent. Assume, that{p;, ..., p}isanopen partition of T (that is, each p; is an open
interval, U'., p; = T and p; N p; # @ impliesi = j)andthat / : p; — T \ {0}
is one-to-one and onto. Then we can set ¢, = f|[_,l,1 : T\ {0} — p;. Then

neN

fente) =g o )= [ oo ro)- hdx =3 f 00 451 (x) - h(x)dx
i=1
B g 0)) o)
Z/ o) gt = J o o

In other words, 44+ — Lh where

> dLeb
h(y)
chix)= Y 2 (1.1.1)
e T

3Recall that in the weak topology, pn — p if and only if limy—eo fin (@) = u(p) for all
¢ € C%(T,R).
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The operator L is called the (Ruelle) transfer operator. Of course, to properly
define such an operator we must specify on which space it acts. Since

/|Lh(x)|dx < /£|h|(x)dx =/lof(x)|h(x)|dx =/|h(x)|dx,

it follows that £ is well defined as an operator from L!(T, Leb) to itself; moreover
it is a contraction on L(T,Leb). In addition, if dus« = hsdx is an invariant
measure, then

h*dx - d,LL* - df*ﬂ* == Eh*d.x,
that is Lh« = hy. Conversely, if Lhy = h4, then

so that du« = hs«dx is an invariant measure.

We have thus reduced the problem of studying the invariant measures abso-
lutely continuous with respect to Lebesgue to the problem of studying the operator
L, more precisely the eigenspace associated to the eigenvalue one.

We want thus to investigate the spectral theory of the operator £. Unfortunately,
the spectrum of £ on L! turns out to be the full unit disk, a not very useful fact,
e.g. see Keller (1984) or Collet and Isola (1991).

1.2 Lasota—Yorke like inequalities and physical measures

As before, let f € C"(T,T), r = 2, such that infy | f/(x)| = A+ > 1. Following
Lasota—Yorke, we look then at the action of £ on W 1-1; 4

d _ h f//
Lh _£(7) —E(hW). (1.2.1)

The above implies the so-called Lasota—Yorke inequalities

LR < Al

- (12.2)
LR Lo < AL IR |21 + DllAl 1.

4Recall that g € W1 if g € L1 and g’ € L1. Note that the formula follows by differentiating
Equation (1.1.1), using the chain rule and the formula for the derivative of the inverse function.



4 1. Expanding maps

_ f//
where D = ” e

Such inequalities imply that £ is well defined as an
oo

operator from W1 to itself. In addition, when acting on W1 it is a quasi-
compact operator, see Theorem 1.1 for the exact statement. That is, the spectrum
ow11(L) C {z € C : |z| < 1} while the essential spectrum is strictly smaller:
ess-op1a(L) C{z € C : |z] < A71}°  To illustrate the above facts, let us

consider first the special case in which the distortion D = || % || Lo is small,

more precisely A7 + D < 1.

Note that, if Leb(#) = 0, then also Leb(Lh) = 0, hence the space V = {h €
L' : Leb(h) = 0} is invariant under £. Also, if 1 € V, then, since W11 c C°,
by the mean value theorem for integrals there must exist x4 such that 4(xs) = 0,

thus .
e = [ ot = [ | [ wo)] < i,
T T ''Jxs

Next, let us define the norm [|A] 10 = ||A'||z1 + allk||z1 for some a > 0O to be
chosen shortly.® Accordingly, for 4 € V, inequality (1.2.2) implies

Lk < ATHIR |+ (D + @)kl < Q7T+ D+ )l

(1.2.3)
<AL+ D+ ao)|hlyra.

We can then choose a such that v := A;! + D + a < 1, which implies that £ is
a strict contraction on V, that is op1.1 (L|y) C {z € C : |z| < v}. Note that the
dual operator £* satisfies L* Leb = Leb, hence 1 € o(L*) and then 1 € o(L).
Thus we have that there exists i, € L' such that £Lh = h, Leb(h) + Qh, where
1Olwin < vandLebQ = Qhyx = 0. Hence, (1.2.3) implies that, for each

hewhl,
h—h*/hH
Wil

e e oo ),
wl.1 Wil

We have just proven that diusx = h«(x)dx is the only invariant measure of f
absolutely continuous with respect to Lebesgue.’

As already mentioned, the above spectral decomposition, and hence the unique-
ness of the invariant measure absolutely continuous with respect to Lebesgue,

5See Appendix B.1 for a definition of the essential spectrum.

®Note that all such norms are equivalent, so the choice of a special value of @ is only a matter of
convenience.

"To complete the argument, use that W -1 is dense in L!.
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holds in much greater generality, in particular for each f € C? such that | f/| >
A > 1, due to the following abstract theorem, see Appendix B for a full proof,
requiring only a basic knowledge of functional analysis, of the following result,
there corresponding to Theorem B.14,® and of a more general statement as well,
Theorem B.15.

Theorem 1.1 (Hennion (1993)). Let B C By, be two Banach spaces, ||-|| and || - ||w
being the respective norms, satisfying || - |w < || - ||. In addition, let L : B — B
be a linear operator such that there exists M,C,0 > 0 and no € N such that
L0 B — By, is a compact operator and for eachn € N and v € B,

I£%v]lw < CM*|Jv]lw
I£"v]l < CO™ vl + CM"[|v]lw.

then the spectral radius of L is bounded by M and its essential spectral radius is
bounded by 6.

Remark 1.2. In the following we will mostly use the above Theorem when M = 1.
Also, the compactness of the operator (for each ng € N) will often follow by
checking that the unit ball in B, {v € B : |v| < 1}, is relatively compact in
Bw. Finally, if one can prove that there exist eigenvalues outside the essential
spectrum (as we have done before), then Theorem 1.1 implies that the operator
is quasi compact (that is, the maximal part of the spectrum consists of a point
spectrum,).

Let us see you Theorem 1.1 can be used to study the statistical properties of
expanding maps.

Proposition 1.3. For each f € C"(T,T), r = 2, with infy | f/(x)| = A, > 1,
there exists hy € WV, hy > 0, such that, for all @ > O there exists vy € (A:l, 1)
such that, for all h € C* and ¢ € C° we have

’/Tgoof”h—/jrq)h*/qrh

Proof. By Equation (1.2.2) and Theorem 1.1 we know that oy 1.1{L} has only
finitely many eigenvalues of finite multiplicity on the circle {|z| = 1} and that
there exists v € (A7 1, 1) such that the rest of the spectrum is contained in the disk
{lz]| < v}.

< llellcollhlicavg-

8In fact, Theorem B.14 is a bit more general than Theorem 1.1.



6 1. Expanding maps

It follows that there exists a finite set ® C [0, 277) such that we can write’

L= Zei9H9+Q

0e®

where Iy are finite rank operators such that [Tg[Tg, = 8¢9 ¢/ 119, [T9Q = QIly =
0 and the spectral radius of Q is smaller than v. Moreover, since 1 € £*, we have
{0} € ©. It follows that, for all 6 € O,

1 iko ok 15 ke ;
1 — _ L ()] —ik0 nk _
nlgréon E e L nlgréon E e Mg +e 0 Iy.

k=0 0cO k=0
(1.2.4)

Let hy = Ilpl, then Lhy = LIIgl = Iyl = h. Note that, by the above
equation i1, = 0. Since i, € W1 € C° we have that if there exists X € T such
that . (x) = 0, then

1
0=he(®) = (L"h)@) = Y om—ha(y).
e U O)

Thus h«(y) = 0 forall y € f7"(x), n € N. But since the map is expanding, for
each interval [ there exists n such that f(1) = T, hence the preimages of x are
dense and since /5 is continuous this would imply 4. = 0, which is not possible.
It follows that i, > 0.

On the other hand, if I[Tgh = ¢!?h, then by Equation (1.2.4) we have

|| < Molh|

1 n—1
| molhy =1 = tim 5" [ 24ial- [ =

from which it follows that L|h| = I1p|h| = |h|. But then we can choose § such
that i« — B|h| = 0 and there exists X such that . (x) — 8|h|(x) = 0. Then, by the
same argument used above, it must be 4, = f]h|, which means that [Ty is a rank
one projector. Accordingly, it must be that 4 = e!%h, for some ¢ € C°((0, 1), R).
This implies

eOFiOh, = eh = Lh = L',

9Remark that there cannot be Jordan blocks with eigenvector of modulus one, since this would
imply that || £"|| grows polynomially, contrary to Equation (1.2.2).
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that is
r [h* _ ei(¢—9—<p°f)h*] -0

Integrating and taking the real part we have

Ah*[l—cosw—@—wf)]:o

which is possible only if g — 8 —@ o f = 0. But multiplying by 4, and integrating
again we have

0=/T9h*=/r(<p—9—<pof)h*=0.

which shows that 1 is the only peripheral eigenvalue and it is simple. This proves
that forall » € Wb! and ¢ € C°, we have

f<o0f”h—/ m/ h's||<p||co||h||wue‘“”-
T T T

The Proposition then follows by a standard approximation argument.

Problem 1.4. Complete the proof of the Proposition.

As an alternative, you can see Baladi (2000) for a more exhaustive discussion.
O

Remark 1.5. The proof of the above theorem shows that vy, is either the second
largest eigenvalue or it is arbitrarily close to A, It is then natural to ask the
question if there exist maps that have discrete eigenvalues larger than A7, beside
1. The answer is affirmative, see Keller and Rugh (2004) for details.

Problem 1.6. Derive further (1.2.1) to obtain a Lasota—Yorke inequality with re-
spect to the norms WP1, WP=UL1 n < r—1. Show then that the essential spectral
radius of L when acting on WP-1 is bounded by A, P.

The previous problem shows that our game can be played with many norms.
This is an important fact since, on the one hand, different norms provide different
types of convergence and, on the other hand, certain norms are better suited to
capture particular features of the problems. To get a better idea of the possibilities,
solve the next problem.



8 1. Expanding maps

Problem 1.7. For a C" expanding map, obtain a Lasota—Yorke inequality with
respect to the norms CP, cr1 1 < p < r — 1. Show then that the essential
spectral radius of L when acting on CP is bounded by 1, P .

An interesting consequence of the above analysis is that smooth expanding
maps admit a unique physical measure. A measure p is a physical measure if
there exists a measurable set A (called the basin of attraction) of positive Lebesgue
measure such that, for all ¢ € C® and x € 4,

' 1 n—1
lim — > po f"(x) = ulp).
reen k=0

Problem 1.8. Show that if there exists hy € LY hy > 0, such that for all h € L!
we have limy o0 L"h = hy fh,m then dix = h«(x)dx is the unique physical
measure of the system and the basin of attraction is the whole space, except for a
zero Lebesgue measure set.

The above problem shows that, for the uniqueness of the physical measure,
the speed of convergence is immaterial. Yet, if one has estimates on the speed
of convergence (as in our case), then it is possible to obtain a much more useful
bound. To see this, for ¢ € C1(T!, C), letus set § = ¢ — (@) and compute

n—1 2 n—1
Yoo m ) = Y [Fos e do i hnds
k=0 L2(uy) k.j=0
n—1 n—1n—-2 - .
=3 [P hdx 23 3 [Fo w40 hadx
k=0 k>j j=0

n—1
= nlplliagn +2 =D [ Fo () 600 b

=1

=n [ll@lle(M) +2)° [ o f1(x)-p(x) -h*(x)dx}
=1

00 n—1
—2Y [ G- £@ haedx =231 [ 500+ £¢ - hodx.
I=n =1

(1.2.5)

10The limit is meant in the L! topology.
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Note that!

1L - i) (x)] < ha(x) f (@ - h)(X)dx| + | Q" (@hs) 11

= 10" (@h)lly11 < Callgllery!

for some v < 1. Thus the quantity in the last line of (1.2.5) is uniformly bounded
in n and the quantity in the square bracket is well defined.

Accordingly,

2

n

1 n—1
H; > g0 fRx) = palp)
k=0 L2(w)

The above is a refinement, in the special case of expanding maps, of Von Neu-
mann’s Mean Ergodic Theorem. Indeed, Von Neumann’s Theorem, together with
the ergodicity of i+, implies that the left hand side of the equation (1.2.6) tends
to zero but without any information on the speed of convergence. Since /. > 0,
it also provides an alternative solution to Problem 1.8. In addition it can be used
to prove the almost sure convergence of the ergodic averages.'? The latter follows
also from the Birkhoff Ergodic Theorem since 44 > 0. Summarizing: the ergodic
average converges Lebesgue almost everywhere to the average with respect to the
unique invariant measure absolutely continuous with respect to Lebesgue. A nat-
ural question is: what is the exact speed of convergence?

1.3 Standard Pairs

Let us revisit what we have learned about smooth expanding maps of the circle
using a different technique: standard pairs.

This tool is less powerful than the spectral decomposition of the transfer op-
erator, but much more flexible; it is then instrumental in the study of less trivial
systems. We present it in a very simplified manner and such a simplification is pos-
sible only because we treat very simple systems: smooth expanding maps. Once
we fix some a > 0, a standard pair is a couple £ = (1, p) where I = [, ] C T

Here, and the following, we will use Cy, c to mean a generic constant, depending only on the
choice of f, which value can change from one occurrence to the next.

12Use the usual trick to study the sum in blocks of size 2k,
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and p € C'(1,R~,) such that p € C,4 (1), where
0. p(x)
p(y)

and [; p = 1. We fix some § < 1/2 and denote by £, the set of all possible such
objects satisfying § < |1]| < 28.
To a standard pair £ = (I, p) is uniquely associated the probability measure.

Ca(l) := {pECO(I) D p= <l wx y el

we(p) = /1 p(x)p(x)dx.

Remark 1.9. For further use we call £ = (1, p), where |I| < & and/or p € Cp(1)
for some b > a, a prestandard pair.

Remark 1.10. In this particular case we could have considered only the case I =
T, but this would not have illustrated the flexibility of the method nor prepared us
for future developments.

Lemma 1.11. There exists ag > 0 such that, for all a = ag and £ € £, there
exists N € N and {{; }1N=1 C 84 such that

N
fate = pitte;.

i=1
where ), p; = 1.

Proof. Note that, if we choose 2§ small enough, then f is invertible on each in-
terval I of length smaller than /. Hence, calling ¢ the inverse of f|;.

Sag(p) = /f(l)pw @' - @

Note that by hypothesis f (/) is longer than A, times /. If it is longer than 24,
then we can divide it into subintervals of length between 6 and 28. Let {/; } denote
the collection of such a partition of f (7). Also, letting p; = || L Pod: |¢’| and

pi = p;'pod-|¢’|, wehave
fette(9) =Zpi/1 pi .
i i

Note that | L Pi = 1 by construction and that p; € C,([;) follows by the same
computations done in Section 1.2. O
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We have thus seen that convex combinations of standard pairs, which we will
write { p;, £; } (called standard families), are invariant under the dynamics. This is
a different way to restrict the action of the transfer operator to a suitable class of
measures. In fact, it is not so different from the previous one as (finite) standard
families yield measures absolutely continuous with respect to Lebesgue and with
densities that are piecewise C!.

1.3.1 Coupling

Given two measures ., v on two probability spaces X, Y, respectively, a coupling
of 1, v is a probability measure & on X x Y such that, for all / € C°(X,R) and
g € CO°(Y,R) we have

/ Foaldx.dy) = p(f)
XxY
/ cOadx, dy) = v(g).
XxY

That is, the marginals of « are exactly p and v.

Problem 1.12. Let X be a compact Polish'> space, let d be the distance and
consider the Borel o-algebra on X. For each pair of probability measures |1, v
let G(w, v) be the set of couplings of . and v.

1. Show that G(u,v) # 0.

2. Show that

dgn = ot [ deeetdr.dy)
aeG(u,v) Jx2

is a distance (called the Kantorovich distance in the space of measures).

3. Show that the topology induced by d on the set of probability measures is
the weak topology.

4. Discuss the cases X = [0,1], d(x,y) = |x—y|and X = [0,1], dp(x,y) =
0iff x =y and do(x, y) = 1 otherwise.

See the end of Section 2.1 for a generalization of the distance d.

13That is a complete, separable, metric space.
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Decay of correlations via coupling

In this section we provide an alternative approach to exponential mixing for ex-
panding maps based on the above mentioned ideas. Let us consider any two stan-
dard pairs £, le L. First of all note that there exists ng € N such that, for each /
of length §, 01 = T!. We then consider the standard pairs {{; = (I;, p;)} and
{Z,- = (7,- , pi )} into which, according to Lemma 1.11, we can decompose the mea-
sures fy %y and fy© Wy, respectively. Let 7r;, 7; be the corresponding weights in
the convex combination of the standard families.

Choose any of the intervals {/;}, say Iy. There are, at most, three intervals fi, let
us call them I 0, I 1, Z%, whose union covers Io. Then there must exist an interval
I;, say Iy, such that J = Iy N I is an interval of length at least §/3. Let J be the
central third of J. We can write Io = J1 UJ U Jyand I~0 = fl uJu .72. Note
that the subintervals J, J;.J; are, by construction, of size at least §/9.

Next, we define z; = [} po, ps = z7'po; 27 = [; Po. s = Z5'Po;
_ | . _ ~ ~_ _ —1=
zg; = [}, p0, ps; = 23! pos 25, = [7. Po, By, = 23! Po.

Note that (J, py), (J,py), (Ji,py;) and (];,ﬁj) are all prestandard pairs.
Obviously, they will appear in the convex combination deﬁnmg the measures
[0 e and f'° wy with the weights py = mozy, py = ToZy, pi = Tozy;
and p; = 7oz 57 7, respectively.

For simplicity we rename our collection of intervals so that they become {J, /; }
and {J, I;} and, together with the corresponding densities that we rename py, p;
and py, p;, form standard and prestandard pairs. Similarly, we rename the weights
toread py, p; and py, p;. This allows us to write

S () =PJ/PJ(P+ZPi /Il- pi ¢
flug (‘P)—PJ/PJ(P+ZP1/ pig.

l

Note that there exists a fixed constant ¢o > 0 such that min{py, py} = 4co. In
addition, by definition inf{py, 5y} = ™23 > 1/2, provided § has been chosen
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small enough. Accordingly, setting p = ﬁ, we can write

fa me(@) =co f, pp + (pg — 2co) /J pJs® + co /J(Zm — P

l

+) pi /1 pig =: cov(p) + (1 —co)vr(9)
X (1.3.1)
I uze) =co /J P + (5s —2c0) /J 5o+ co /J 251 - Py
+ 25 | B = covle) + (1 - colTr(e),

where v, VR, VR are probability measures.'*

We can then consider the coupling

a1(g) = co / (g, %) + (1 — co)vg x Tr(g).

Problem 1.13. For eachn € N, calling py the density of fl'v, show that

(fu x fuan(g) = co / Pn(0)g(e.x) + (1 — co) f7vr X fTR(8):

Problem 1.14. Show that there exists n1 € N, such that both fy 'vg and fi''Vg
admit a decomposition into standard families { pi1 , Kll} and { 'ﬁil , Eil }, respectively.

The above Problem implies that, at time 7 = ng + n, we can take any two

standard pairs £ 11 and f} , apply the same arguments used to derive Equation (1.3.1),
and obtain

~1,i,j ~L,i,j
Jmgr = covij + (1 —co)Vg . fup = covij + (1 —co)ig™ .
1
We can thus write fi''vg = ), ; pilﬁ} f*noﬂe} and f'°Vr = 3 ; pilﬁ} *no,uz}
and, letting p;, ; be the density of the measure v; ;, consider the coupling

a2(g) = Zpilﬁ}co/J pi,j(x)g(x,x) + (1 — CO)V;{I’J X 5;{1"’ (8)-
ij /

i.J

4Note that fjy(1) — cov(1) = 1 — cg, hence we have to renormalize by 1 — ¢q in order to
have a probability measure.
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Collecting the above considerations and recalling Problem 1.13, it follows that
there exists a probability density p! such that the measures f?" iy and f2"
admit a coupling of the form

x fa() = oo+ (1=co)co] [ 5 (0g(e.x) + (1=l S200g x 21T (o).
But the above implies, using the discrete distance do of Problem 1.12,
d(fF e, f2"up) < (1= co)”.
By induction it then follows
d(fE e, fE mp) < (1= co). (132)

Remark 1.15. Note that if @ = ZIN=1 PDi[Lg; is the measure associated to the stan-
dard family {p;,{; }1_1,
with density p given by"

px) =Y pipi ()1 (x) < ) pie < e

then it is absolutely continuous with respect to Lebesgue

The above allows us to prove the following fact:

Theorem 1.16. For each pair of measures |, v associated to standard families,
and all observables ¢ € L we have,

| fi (@) — filv(e)| < Ce ™ "|lg| L.

Proof. Let G be any coupling of fu and f]'v, and let g(x, y) = ¢(x) — ¢().
Then

| £ (o) = fiv(@)] = 16(9)] < G(d - |g]) < gllooG(d) < 2[@]looG(d)

and the claim follows by Equation (1.3.2), taking the infimum over the couplings
and setting c = 17! In(1 — cp)~!. O

Thus, if we have a measure u determined by a standard family it follows that
{ £} is a sequence of measures determined by standard families, hence it must
be a Cauchy sequence (just apply the previous remark to p and f]* ). If follows

5By 1 ; we mean the characteristic function of the set J .
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that there exists a unique measure v, with density p € L such that, for each
standard family measure i and measurable set A4,

Jim pu(f7"A) = v(4) = v(f71A).

Moreover it is easy to see that we can approximate any measure  that is absolutely
continuous with respect to Lebesgue by a sequence of measures {uy } that arise as
standard families. It thus follows that the dynamical system (T, f, v) is mixing,
i.e., for each measure p absolutely with respect to Lebesgue (hence with respect
to v ) we have

lim u(f™"A) = v(A).
n—>0o0
In particular, v is the unique absolutely continuous invariant measure.

Remark 1.17. Theorem 1.16 is equivalent to the proof of the existence of a spectral
gap for the operator L established in Section 1.2. However, note that the standard
pair method does not provide any further information on the spectrum. This is both
its weakness and its strength.

In the next section we discuss a further strategy to obtain similar results. Again,
such a strategy only allows us to establish the equivalent of a spectral gap, yet it
provides a sharper estimate on the size of the gap.

1.4 Projective cones and Hilbert metric

Projective metrics are widely used in geometry, not to mention the importance
of their generalizations (e.g. Kobayashi metrics) for the study of complex man-
ifolds, Isaev and Krantz (2000b). It may seem surprising that they play a ma-
jor role. also in the study of statistical properties of dynamical systems,'® e.g.
see Dubois (2009), Ferrero and Schmitt (1988), Liverani (1995a,b), Liverani and
Maume-Deschamps (2003), Rugh (2010), and Saussol (2000).

A quick introduction to the Hilbert metric can be found in Appendix D.

Problem 1.18. Prove that for each o € (A7, 1) anda = D(o — A7Y) 7!, setting

Ca = Jh € CH(T,Ry) Zﬁx; < e? I

16 Actually, it is not too surprising since projective metrics provide a proof of the Perron—Frobenius
theorem for matrices with positive elements, see Appendix D.3, and the transfer operator is a positive
operator (that is, it maps positive functions in positive functions).
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it holds true that
L(Cy) C Cqq.

Problem 1.19. Prove that the diameter of Cy4 in the Hilbert metric of Cq is finite.

Remark 1.20. Thanks to the above two problems we could conclude by proving
Theorem 1.21 using the cone C4. Yet, this gives a not-so-good estimate of the
spectral gap. It is thus interesting to see how a more refined cone can be used to
yield a better estimate.

Consider a dynamical partition Py,.'” Let us define the convex cone
Cam = {h e cO(T) ' E(h | Fm) = 0; W] < a/ h} . (1.4.1)
T

Where F, is the o-algebra generated by the partition Py, and E(- | F7,) is the
conditional expectation with respect to the Lebesgue measure. The first relevant
fact consists in the following computation'®

(L)' 11 < A7MR' 1+ Blhly < A7H R+ B[Th + Blh —E( | Fm)

< Q5+ BATIN ] + B/ 7
T

forall h € Cq m since each I € Py, satisfies [1| < A",

_1—1

The above means that if v € (A7!,1), A7 < 2 g* anda = 2B(1 —v)~ 1,

then Lh satisfies the second condition defining the cone. What about the first
condition?

hy = Y Dy {E(Mfm)(y)— / |h'(s>|ds}
yeh—mx 1(»)

where I(y) is the element of P,, which contains the point y. To continue it is
necessary to apply a standard type of argument in hyperbolic theory: a distortion

"By dynamical partition we mean a partition obtained in the following way. Let Pg be any
partition such that f restricted to each element is one-to-one and the image of each of its elements
is the whole circle. Then Pp, = \/7L, f ~iPy. It should be remarked that any sufficiently fine
partition would do, see Liverani (1995b), and even a smooth partition of unity could be used. The
special choice here is determined only for didactic reasons.

18Remember inequality (1.2.2).
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estimate.
1:/ d_x:/ |D$fm|d§>/ |Dyfm|e_zgn=l|ln|DfI'§f|_]n|Dfiyf||
T 1(y) I(y)
= [1(0)[|Dy f™ e D" Fo
Let D := ¢~ (1=43D7"Bo_then the above equations yield

/h Am/m@ (D — XW@/h !Ah

(1.4.2)

L)z Y
IEP

provided we choose m so that D —2A,™a > 0.
This means that, by choosing m such that A7 < 4% (1 — v), it holds that
L"Cqm C Coam Witho = 1+" < 1. In addition, it is easy to compute that!?

—AT
1+ B +2(1+ D)=
A= diam(L"Cq m) <2In | 2 (D )= :=2Ind < oo.

(1.4.3)
The estimate (1.4.3) can be used together with Theorem D.2 and Lemma D.4
to prove:

Theorem 1.21. If f : T — T is twice differentiable and |Df| = A, > 1, then
there exists a unique invariant measure [L«, absolutely continuous with respect
to Lebesgue; moreover hy 1= % e WUL. The dynamical system (T, f, jus) is
mixing. In addition, there exists A € (0, 1) such that for all measures |1 absolutely

continuous with respect to m such that h := j—,’; e WL it holds that

lu(@o f*) = px(vf o fMI < CoA" |h = hallyra lloll L1

In addition, 1 1
Alm 17]m

A < |tanh — = SL

4 §—1

19Tg see this, compute the distance of a generic element &1 € Cg s, from 1. This is done by looking
for A, such that A < f < . This immediately yields A < min{infE(h | F); [p h— $|h’|1} and
u = max{sup E(& | ]-') Jrh+l ~|h'|1}. Now if h € L™Cq,m, according to the above discussion it
follows that A < min{2 > 1- U}fT h:=aandp = max{l+aA; ™ +B+DA™a; 140} [y h =

B. Thus the distance between s and 1 is given by In g. The diameter is then obviously less than
twice such a distance.
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Note that the bound for the contraction rate A it is now rather explicit. We
do not insist on its actual value since the above bound is still too simplistic to be
optimal. The goal here was only to emphasize the possibility to obtain explicit
bounds.?’

1.5 'The Central Limit Theorem

Let ¢ € CI(T,R) and set ¢ := ¢ — j« (@), then, by Equation (1.2.6), we know
that

1 n—1
lim = > ¢of¥x)=0 Leb—ae.
k=0

n—oon

Moreover, (1.2.6) suggests that % Zi;}) pof k(x) is of size (’)(n_%). It is then
tempting to define

1 n—1
— A k
Y, = ﬁkz%)wof .

The natural question is whether ¥, has a limit as n — co. The answer depends on
the meaning that we give to the word “limit”. In fact, the answer may be positive
only if we consider ¥, as a random variable with distribution Fy () := u({x
W, (x) <t}).>! Letus call P the associated probability. The goal of this section is
to prove the following theorem.

Theorem 1.22. Suppose that there does not exist g € C°(T,R) such that ¢ =
g —go f (ie, ¢ is not a continuous coboundary). Then there exists o,C > 0
such that, calling Pg, the probability distribution of a Gaussian random variable
of zero average and variance o, we have, foralln € N anda,b € R, |b—a| < 1,

a2
e 202 b
P (W € [a.b]) — Pg, (a.b)| < € | 2 4]
nio n

_a|

D=

20For the reader interested in sharp bounds see, e.g., Baladi and Young (1993, 1994), Keane, Mur-
ray, and Young (1998), Liverani (2001), Galatolo and Nisoli (2014), Galatolo, Nisoli, and Saussol
(2015), Jenkinson, Pollicott, and Vytnova (2018).

21R1eca11 that the initial measure u has the form du = hdx. Here, for simplicity, we assume
hecC'.
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Remark 1.23. Note that, if there exists g € CO(T,R) such thatp = g—go f
(i.e., ¢ is a continuous coboundary), then o = 0 (see Lemma 1.28) and
W= (g~ g0 /")
= —(g—go .

Thus it converges uniformly to zero. Hence, the necessity of the assumption.

Remark 1.24. Note thatif ¢ = g — g o f, then, if x belongs to a periodic orbit
of period p, we have

p—1 p—1 p—1
Y goff)y=> gofF=Y gortt =0

Hence, the assumption of Theorem 1.22 is checkable: it suffices to find a periodic
orbit on which such a sum is not zero to verify the hypotheses of Theorem 1.22.

Remark 1.25. Theorem 1.22 means that, if the precision of the instrument that per-
forms the measure is compatible with the statistics, then the typical fluctuations in
the measurements are of order «/LE and Gaussian. This is well known by exper-

imentalists who routinely assume that the result of a measurement is distributed
according to a Gaussian.””

Remark 1.26. Note that Theorem 1.22 is sensitive to the size of the interval only

if|b—al = C#n_%, to have a better resolution more work is needed. Also, if
max{|a|,|b|} = Cyv/Inn then Pg,([a, b)) is smaller than the error term, hence
we do not obtain much information. If one wants to have a better knowledge on
the tail of the distribution, then one has to study the Large deviations. These can
in fact be studied by similar techniques, see Section 1.6.

Be aware that the above result is far from optimal, it is intended only to give
an idea of the results and techniques available. Sharper results can be obtained
with more work (e.g. see Kasun and Liverani (2021) and references therein for
more precise results).

The rest of the section is devoted to the proof of Theorem 1.22. The proof
consists of several steps. We start by recalling the relation between the distribution

22Note however that our proof holds in a very special case that has little to do with a real experi-
mental setting. To prove the analogous statement for a realistic experiment is a completely different
ball game.
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function F,, and the probability. The following Lemma holds in higher generality,
see Varadhan (2001), but for the reader’s convenience we provide a simple proof
in our special case.

Lemma 1.27. For each continuous function g holds*

E(g) = u(g(¥)) = /R ¢ (OdFy (1) (1.5.1)
where the integral is a Riemann—Stieltjes integral.
Proof. We consider first the case g € Cj, then

/Rng =—[RF,1(t)g/(t)dt

(1.5.2)
_ / dt / dx h(O)Lis : v, <y (Vg ().
R T1

Applying Fubini yields
[ e == [ ax [ dtheorg w,eens©
R T! R
o0
= —/ dx h(x)/ g (t)dt :/ dx h(x)g(Y,(x)).
T! ¥, (x) T!

The results for g € Cg follows by density. To conclude note that (1.2.6) and
Chebyshev’s inequality imply

wlx @ Yu(x)=1}) < /Tl dx h(xX) 1z - w, (z2yz03 (X)W (x) 212
s/ dx h(0) | ()12 < 1729l
’]I‘l

Thus, if g and g; differ only outside the set {|s| = ¢}, g € CJ and [|Z¢[|co < l|g|lco,
by (1.5.2) we have

(g (¥n)) —/Rgt(S)an(S) = [1(g(¥n)) — 1@ ()| < liglleot > Crllollc

and the Lemma follows by taking the limit for t — oo. O

3By E we mean the expectation with respect to the probability P. So it is just a different notation
(more probabilistic) for the expectation with respect to the measure dju = hd Leb.
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It is thus clear that if we can control the distribution F},, we have a very sharp
understanding of the probability to have small deviations (of order +/n) from the
limit.

This can be achieved in various ways. In the following, we choose to compute
the characteristic function

on(2) = /R M dF, (1)

of the distribution F;, since this provides the strongest results, but see Liverani
(1996) for a softer approach or De Simoi and Liverani (2015) and Dolgopyat
(2005) for a more general approach. The characteristic function determines the
distribution via the formula

' 1 A e—iak . e—ibk
Fa(b) = Fyla) = lim —— / ) ————en()dA, (1.5.3)

as can be seen in any basic book of probability theory, e.g. Varadhan (2001, 2007).
In the case when there exists a density, that is an L1 function f,, such that F, (b) —

Fu(a) = [, ab fn(t)dt, then the formula above becomes simply

_ 1 —iyA
B = 5= [ oz, (154

and follows trivially from the inversion of the Fourier transform. Our next step
is to find a convenient expression for ¢,. We follow a clever idea due to Nagaev
(1957) and Guivarc’h and Hardy (1988). Recalling (1.5.1), we can write

ou0) = [ | Dn(ydn
’]I‘l
Ay =2 s ok A

= / o' Vi Zk=09TT o k() o U () dx (15.5)
']I‘l

_ / Ry =T O (eijﬁwh) ().
’]I‘l

It is then natural to define, for each v € R, the operator

Loh(x) = [c (ei""’h)] (x). (1.5.6)
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Using such an operator we can rewrite (1.5.5) as

- A n—2 5o
(pn(k):/Ielﬁzk:O(p fk(x).‘ci (h)(x)dx
T v (1.5.7)

- / £, (h) (x)dx.
T! Un

where the last line is obtained by iterating the previous arguments.
To conclude we must understand the growth of £", . That is, we want to

v
understand the spectrum of the operators £, for moderately large v. Since for
v = 0 we know the spectrum, we can apply standard perturbation theory.

Lemma 1.28. There exists vy, Co > 0 and & € (0, 1) such that, for all v € [0, vo],
we can write £, = A, IT, + Q,, where all the quantities are analytic in v and **

IT,(¢) = hyly(p) Yo e WY withh, e WE £, e WEHY* £,(hy) =1
1
A, —1— 502v2| <Cp?

2
< Cov

o0 o0
an —My—v Y LA -y +v ) ILy(1— LA (1 —1T)
WlAl

k=0 k=0

o2 = fT@(X)Zh*(x)dx + 2]; /T G0 FR()-G(x) - he(¥)dx

1OV lw1.1 < Co™,

where 1 is the identity operator and we have used ' for the derivative with respect
tov and set L = Lo, I1 = II.

In addition, o = 0 iff there exists g € C°(T,R) suchthat$) = g—go f (ie.,
¢ is a continuous coboundary).

Proof. The spectral decomposition £, = A,I1, + Q,, its analyticity and the
bound on @, follow by standard perturbation theory (see Appendix A.4 or, e.g.,
Kato (1995) if you want the general theory). Moreover, 17‘,2 = II,, L,I], =
n,L, = AyIl, and IT,Q, = Q,I1, = 0. Recall that Ay = 1 and [Ty =
hs ® Leb.

Next, we must Taylor expand in v the various objects. First of all note that,
since the projector [Ty = hix ® Leb is a rank one operator, so is the projector IT,,.

24By (W L1)* we mean the dual space of W 1:1,
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Hence, there exists a unique &, € W1 with fT hy(x)dx = 1, in the range of
IT,. Next, choose £, € (W11)* to have the same kernel as IT, and normalize it
so that £,,(h,) = 1; it follows that I, (¢) = h,{,(¢). Moreover,

ﬁ;nv + E‘)H\,) == A;Hv + Avnll).
Multiplying by [T, from the left, yields

AL, = IT,L,IT, = £,(L),hy)IT, (1.5.8)
which, since £,,h = L, (i ph), gives

A,:) = ikuﬁv((ﬁhv)
and, in particular, Ay, = 0.
Next, setting £, = A, Ly, we have
(1-2,100)1 — M), = (1 - LT, = A, £, 0T, — A1, =
= A, (1= 11,)L, 0y

which implies

o0 o0

-1, =21 Y koka-myc,m, =21y Lk — )L, i,
k=0 k=0

(1.5.9)

Note that the above estimates imply that there exists vyp > 0 such that the series is
convergent for all v < vg. Analogously, from 1, L, = A, [T, we obtain

o
(1 —1,) = A, Y ,L,(1 — IT,) L5 (1 - 1T,). (1.5.10)
k=0

Noticing that [T} [T, + IT,IT), = IT}, that is
H‘,)Hv = (1 —_ Hv)nlll,,
implies IT, [T T, = 0 and (1 — I1,)IT} (1 — I1,) = 0. We can then write
Hll; = anl/)nv + (]l - Hv)nl/;nv + an‘/;(]l - Hv) + (]l - Hv)nll;(]l - Hv)
o o0
=0 Lk - m)L,m, + 251y 0L, L,(1 - IT,) L8 (1 - 1T,).

k=0 k=0
(1.5.11)
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Finally, differentiating (1.5.8), we have
MM, + Ay, = I L0, + T, L), + IT, L1,
which, multiplying both from left and right by I7,, yields
A,:)/Hv - H\)H]/)E:)H\) + HUE:),HV + Hvﬁi)n]/)nv
= I1,11,(1 — I1,) L, 1T, + T, L 1T, + IT, L, (1 — IT,)I1,IT,.
hence,

From the above and equations (1.5.9), (1.5.10) it follows
o0
K== [ owrhwar =23 [ o o s
k=1

Note that (1.2.5) implies that —o2 = Ay < 0, thus o is well defined. We are
left with the task of investigating the case 0 = 0. Equation (1.2.5) implies that if

o = 0, then H Zz;}) do fkx) HL2( ) is uniformly bounded in n. Accordingly it
"

admits weakly convergent subsequences in L2. Let g € L? be an accumulation
point, then for each 7 € W1 we have

n;
. . = 1 7] kh .
/gofhh* jll)ngo/2<pof h-h
k=1
nj—l

=—/¢J-h-h*+ lim / Z¢ofk-h-h*+/¢,c"f(h-h*)
J—>00 k=0

:_/é'h‘h*+/g'h'h*.

Since W11 is dense in L? it follows
Qhs = ghs — g o fhx,

where, without loss of generality, we can assume [ ghs = 0.

It remains to prove that g € C°. This follows from Livsic theory, see Livsic
(1971a, 1972b), but let us provide a simple direct argument: Applying L to the
last equation yields

LOhy = —(1 — L)ghx.
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Since the above equation can be restricted to the space of zero average functions
and hy > 0 we can write

1
g=——1—L)""Lohy,
hx

and since ¢gh, € W1 we have g € W1, The claim follows recalling that
wll cco. O

Using Lemma 1.28 and Equation (1.5.7) we can obtain the following result.

Theorem 1.29 (Central Limit Theorem). Suppose ¢ is not a continuous cobound-
ary, then for each continuous function g we have

Jim E(g(¥n)) = Eg, (g).

where Eg, is the expectation for a Gaussian random variable of zero average and
variance O.

Proof. For |A| < vg+/n we can use Lemma 1.28 and equation (1.5.7) to write

on (1) = e~ TFFOWND L om), (1.5.13)

Hence lim, o, ¢»(A) = e~ 2 which is the characteristic function of a Gaus-

sian random variable of zero average and variance o. The result follows since
convergence of the characteristic functions implies weak convergence of the mea-
sures, see Varadhan (2001). O

The above result shows that our renormalized Birkhoff averages converge to
a Gaussian random variable, yet in practice it is not very useful since it does not
provide any information for the difference between ¥, and a Gaussian random
variable when 7 is large, but finite. In the following we address this subtler prob-
lem.

It turns out that to have sharper results on the limiting distribution we need to
control ¢, for larger A. This is the meaning of the next Lemma.

Lemma 1.30. Foreachv # 0 we have that the essential spectrum of L., acting on
WL s contained in {z € C : |z| < A7} and oy1a(Ly) C iz €C @ |z| < 1}
provided ¢ is not a continuous coboundary.
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Proof. Since, for each h € C 1

ILvhllLr < ILIAIILE < (1Al L1

d h f"h ) R

vtoh =0 (7) = (G ) v

we have the Lasota—Yorke inequality for the operator £,,. Then Theorem 1.1 im-
plies the inclusion op1.1(£y) C {z € C : |z| < 1} and that the essential spectral
radius is bounded by A;1. Accordingly the spectral radius can equal one only if

there exists € R and h € W1 such that £,h = ¢'®h. But then |h| < L|h|
which, integrating yields

0< /£|h|(x) —|h|(x)dx =0,

so that L|h| = |h|. Since the eigenvalue one is simple for £, it must be that
h(x) = e'® (x)h*(x). As both £, and i, > 0 are continuous, it follows that «,,
can be assumed to be a continuous function without loss of generality. In addition,

ﬁh*(X) — h*()C) — e_ie_ia“(x)ﬁvh(x) =L (e—ie—iavof-i—i(xu-i-iv@h*) )

Taking the real part and integrating yields

0= / [I —cos(0 —ayo f(x)+ ay(x) + v@(x))] h«(x)dx
T
which implies that there exists a function N : T — Z such that
0 —ayo f(x) +av(x) +vo(x) = 2N(x)r

Lebesgue almost surely. Hence N must be constant and, taking the average with
respect to x, it follows 2Nz — 6 = 0. Thus, dividing by v, we see that ¢ is a
continuous coboundary. O

Let L = vg > 0. By Lemma 1.30 we have that the spectral radius of £ _,_,

N

for |A| € [vo+/n, L/n] is smaller than some y; € (0,1).” Thus, for |A| €
[vo+/n, L/n] we have that there exists Cz, > 0 such that

lgn (M) < CLyT. (1.5.14)

23 ndeed, the spectral radius is either smaller or equal than A7 or it is determined by the point
spectrum, and hence varies continuously by standard perturbation theory.
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While it is possible to obtain similar estimates for even larger A, they are out of
the scope of this note (see De Simoi and Liverani (2018, Appendix B) for details).

Unfortunately, our estimates do not allow us to use (1.5.3) to compute the
distribution Fy. This problem can be bypassed in various ways, here we present
what is probably the simplest solution: we smooth the density.

To this end let Z be a bounded, independent, zero average random variable
so that | Z| < 1 with smooth density ¢ € C°°. We can then consider the random
variable @n,g = Y, + ¢Z for some ¢ > 0. The random variable @n,g admits a
density, which we denote by A, .. In fact, denoting by 1} the Fourier transform
of ¥ and using (1.5.4), we have

1 . L=
Nos(y) = / TRV (M) d )
21 Jr

1 . . —~
= — | e ey (er)dr
2w JR

vo/n
_ L 0 e_i)ly |:e_g22A2 +0(1/4/n) + O(%—n)] l/ﬁ\(s)t)dk
27 —vo/n

1 . o
+OCLy}) + — / eI (M) (eX)d A
AIZL

2

To conclude, recall that for all p € N, |[¢(v)| < Coll¥llep+2]v|~# for some
Cp > 0. As an example let us choose p = 5. Thus, there exists n7, € N such that,
foralln = nyg,

Nn,e(y) =

1 _»2 1 1
¢ 7207 4 O(— + ).
n

o2 Jn o e L4n?
In addition, note that
PWne€lateb—e) <P ela.b]) SPWnec€la—eb+e).

Hence, calling Pg_ the probability distribution of a Gaussian random variable of
zero average and variance o, we have

b+e

_ 2 1 1
P (Y, b)) < o2d b— _t
wetath < [ ey a0 (o4 )

_a% 1 1
< Pg,(la, b)) + O (86 202) + |b—alO (% + m)
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Arguing similarly for the lower bond and choosing, for example, ¢ = n~10 and
L = 1 we have, for some C > 0,

_a2

e 202 |b—a|
3

n1o n

[P (¥n € [a.b]) = Pg, ([a,b])| < C

D=

which concludes the proof of Theorem 1.22.

Remark 1.31. Note that, if we are not interested in the rate of convergence, then
the information that we obtained on the spectral properties of L,, suffices to prove
the Local Limit Theorem.>®

1.6 Large deviations

As discussed in Remark 1.26, Theorem 1.22 does not provide very good estimates
for large deviations, e.g. deviations of the ergodic average from the expectation
larger than n™* for a < % In this section we provide the essentials on how to
estimate such events.

Giveng € C!,n e Nanda € Ry let

1n—l
Agn(p) = {x €T : ;Z(pOfk(X)—u*(w) Ba}

":f (1.6.1)
0 1=
Agn(p) = {x €T : ;Z(pOfk(X)—u*(w) >a}

k=0

By Problem 1.8 we have
Jim P(Aan(e) = lim ;(Aan(p)) = 0.

Our goal, in this section, is to compute more precisely the asymptotic of the prob-
ability P (Ag,x(¢)).

Again, note that we can write + Zk —09 0 fRx) — ) = Zk —o9o
F*(x) where ¢ 1= ¢ — s« (9). 'Ihus we can reduce the question to the study of

260ne must use the usual trick to prove the Theorem first for functions with compactly supported
Fourier transform and then extend the result by density.
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zero average functions. Our goal is to prove the following Theorem. To state it we
need to define the rate function:

[(a) = — sup hy(f) —v(n] f]).

{veM r 1 v(P)=a}

where M ¢ is the set of invariant probability measures invariant with respect to
f, hy the Kolmogorov—Sinai entropy (see Katok and Hasselblatt (1995) for a de-
scription of the Kolmogorov—Sinai entropy and its properties), and where the sup
takes the value —oo if the set M r(a) :={v € M : v(@) = a} is empty.

Theorem 1.32 (Large Deviations). For each a,e = 0 the exists ng € N and
constants cq e, Cq > 0 such that, for alln = ny,

cace”TDTO <P (4, 4(0) < P(Aan(p)) < Coe 1@,

The proof of the above Theorem is the content of the next three sections: in
Section 1.6.1 we discuss the upper bound in terms of seemingly different rate func-
tions / and J, see Equation (1.6.14). In Section 1.6.2 we discuss the lower bound
in terms of the rate function J, and, finally, in Section 1.6.3 we show that J =T,
hence concluding the theorem.

1.6.1 Large deviations. Upper bound

Note that it suffices to study the set
1 n—1
Afal@)i=x e T2 =3 g0 f5(x) —uelp +a) = 0.
k=0

since Agn(9) = Af,(0) N AL, (—0).
On the other hand, setting ¢ := ¢ — u«(¢), for each A = 0 we have

(AT @) = pllx : FTE=0@S W) 5 ) < gmnhay A Ximodort)

Accordingly, arguing exactly as in Equations (1.5.5), (1.5.6) and (1.5.7) (and re-
calling that du = h d Leb),

(AL, (9)) < e Leb(L0h) (1.6.2)

where we have defined the operator £, g := E(e’w g), L being the Transfer oper-
ator of the map f.
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Lemma 1.33. For each A € R the operator L, acting on C', has a simple maxi-
mal eigenvalue, i.e. is of Perron—Frobenius type. Accordingly, L) = ay 1)+ Q;,,
where ay > 0, Iy is rank one, I"[f =1II), 10y = QI1) = 0and | Q%] <
Cy B} for some Cy, > 0 and By, < ay. Also, ay, Iy and Q are analytic in A.

Proof. Consider the cone C; = {h € C' : h = 0, V;:((;)) | < a}. Comput-
ing as in the derivation of Equation (1.1.1), we see that, given 0 € (A7, 1),
for each A € R there exists @y > 0 such that, for alla = a,, £;C; C Cgsq.
The fact that £, is Perron—Frobenius type follows then by the analogue of Prob-
lem 1.19, Theorem D.2 and Lemma D.4 where the norm can be chosen to be
Ihlla = allhllco + ||A'||co, which is equivalent to the C! norm and, finally, Theo-
rem D.8. The spectral decomposition follows from Lemma A.24 and the analytic-
ity can be argued as in Problem A.29. O

Hence, there exists ¢ € R such that
WA () < eTnhaminanrte,

Since A has been chosen arbitrarily we have obtained
AL, () < e @ (1.63)

where 7 (a) := supyer+{ta —Inwy}. The problem is then reduced to studying
the function /' (a) which is a version of what it is commonly called the rate func-
tion. Note that I is not necessarily finite. Indeed, if @ > ||@||oo, then clearly
(A, () = 0.

To better understand the rate function it is helpful to make a little digression
into convex analysis.

Recall that a function g : R4 — R4 is convex if for each X,y € R and
t €[0,1] wehave g(ty + (1 —t)x) < tg(y) + (1 —t)g(x) (if the inequality is
everywhere strict, then the function is strictly convex).

2
Problem 1.34. Show that if g € C? (R%,R), then g is convex lﬁ"ng is a positive
matrix.”’ Give a condition for strict convexity.

Problem 1.35. If a function g : D C R? — R, D convex,” is convex and
bounded, then it is continuous.

27 A matrix A € GL(R, d) is called positive if AT = A and (v, Av) = 0 for each v € R4,
28 A set D is convex if, forall x, y € D and ¢ € [0, 1], holds true ty + (1 —f)x € D.
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Given a function g : R — R let us define its Legendre transform as

g (x) = sup {(x,y)—g()}. (1.6.4)
yeR4

Remark that g* can take the value +oo.
Problem 1.36. Prove that g* is convex.
Problem 1.37. Prove that g** < g.

Problem 1.38. Prove that if g € C*(R?,R) is strictly convex, then the function
h(y) := g—‘i(y) is invertible and g* is strictly convex. Moreover, calling { the
inverse function of h, we have

g7 (x) = (x, l(x)) — g o £(x).
Problem 1.39. Show that if g € C? is strictly convex, then g** = g.

Problem 1.40. Show that, for each x,y € R?, (x,y) < g*(x) + g(y), (Young
inequality).

From the above discussion it follows that the rate function is defined very simi-
larly to the Legendre transform of the logarithm of the maximal eigenvalue, which
is commonly called the pressure of ¢.

In fact, setting J(a¢) = max)cr(Aa — Inay) we will see that, fora = 0,
J(@a) = T (a). Unfortunately, to see that the rate function is exactly a Legendre
transform takes some work. Let us start by studying the function .

Lemma 1.41. There exists hy € C' and £; € (CY)* such that IT) (g) = h)£;.(g),
Uy (hy) = 1, Ly (k) = 0. In addition, L), is a measure and 5 (-) := £y (hy, -) is
an invariant probability measure. Moreover everything is analytic in A.

Proof. By Lemma 1.33 we know that I7, is rank one and analytic, hence h 2=
IT;1 € C! is analytic as well and IT; (h) = fzkla (h) for some Z;L e (CY)*, which
must be analytic in A as well. Also, since [T} is a projector, it must be l 2 (l7 ) =1
Next, note that, by Lemma 1.33 again

N T oo

= Illco = 1€ (D)]|17]|co-
Jy 12 oo Rz ‘ ‘

(G| = lim_
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Hence, £, 1 € (C%*. That is, it is a measure. Also, if # > 0, then
hyly(h) = nlggo a;”EKh =0,
hence it is a positive measure. Obviously, for all # € C!,

Lihy = ayhy,
0 (Lah) = a; 05 (h),

(1.6.5)

and ap = 1, }70 = hy and EO = Leb. Notice that /1 2 and l , are not uniquely
defined: for any analytic function B, with B¢ = 0, the eigenvectors /1; = e h A
and £) = e P2 l » are such that IT; = h) ® £, and satisfy all the other properties
aswell. Thus £, ((hy)") = EA(h %)+ B Choosing f; = — fo Zt(h )dt we obtain

the wanted property £;((h)’) = 0. To conclude, note that

palho f) = (Lo(ho fhy) =ay Ui (hL)(hy)) = Ly(hhy) =

and pp (1) = £y (hy) = 1.

Lemma 1.42. The functions o), and In oy, are convex. Moreover,

d .
e | < [floo.
Proof. Note that
d? ooy — (a})?
_lnaA — A‘—(A)’
d\? oz%

thus the convexity of In ) implies the convexity of «.
In view of the above fact we can differentiate (1.6.5) obtaining

ﬁ;hx + ﬁkh& = Olih)t + O{Ah;.
Applying £, yields

day,
dr

Thus o, = 0. Note that, as claimed,

= o) lx(9hy)) = arpr(@).

1A (D)) < @)oo

‘—lnal

wa(h),

O

(1.6.6)

(1.6.7)

(1.6.8)
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Differentiating again yields
d?a;,
d)\?
On the other hand, from (1.6.7) we have
Ly — LRy = L) (pahy),

where ) = ¢ — (). Since, by construction, IT)h', = I (prhy) = 0, the
above equation can be studied in the space V; = (1 — IT;)C! in which 1oy — £},
is invertible.

Setting £ := a;lﬁk, we have

== L) Lalpaha). (1.6.10)

Using similar considerations on the equation £, (£, g) = «,£,(g), we obtain

= a2 (9)? + aplh (Phy) + 05 (Ph)). (1.6.9)

ax — a)L/L,\((/AJ)Z + o)y (pp(1 — ACAA)_I(]I + ﬁk)((ﬂihk))

o
= o ua (@)’ +ax Y Lalpa L1+ L) (paha))

n=1

1\2 00
- ((Zx) + [M(V’f) +2)  liealy (mhx))} o

n=1

(1.6.11)

Finally, notice that

G(pa Ll (9ahi)) = (L2 (@a 0 fMpahs)) = malea o f¢n)

and

_ - k J
nlglgonm [ZWOf} —nlggon Z malero fHopo f7)

k,j=0
) n—1
= pa(ep) + im = > (n—k)palpr o fFon)
n—-oon k=1

= i (p3) +2 Z a(ea o fXoy).
k=
1 (1.6.12)



34 1. Expanding maps

The above two facts and equations (1.6.6), (1.6.11) yield

2

oz o = lim_ m |:Z¢Aofk:| > 0. (1.6.13)

O]

Note that equation (1.6.8) implies oy, = 0, hence o) %, > 0 for A = 0. Since
the maximum of Aa — Ina, is taken either at ja = o/, 3, or at infinity (if @ >
SUPj o %), it follows that

I(a) = sup(Aa —Ilnay) = sup()ta —Inay) =:J(a) (1.6.14)
220
as announced. In fact, more can be said.

Lemma 1.43. Either the rate function J is strictly convex, or there exists § €

R,¢ € COsuchthato —B=¢ —¢o f.

Proof. By Problem 1.38 it suffices to prove that In, is strictly convex. On the
other hand equations (1.6.6) and (1.6.13) imply that if the second derivative of
Inw,, is zero for some A, then, recalling Lemma 1.33,

n—1 2 n—1
—k
[wafk} =n[M(@z)-i-ZZHTM(mOfkm)}

k=1
n—1
= —2n Z @A Ly (@aha) =2 k(9L (pn h)) — anpn ()
k=n k=1
<CQ) [nﬂz + ) kﬁ’/{}
k=0

Accordingly, the sequence ZZ;}) @5, o f* is bounded in L2(T?, ;1) and hence
weakly compact. Let ZZ; :)1 @50 % be a weakly convergent subsequence.?’ That
is, there exists ¢; € L? such that for each ¢ € L? holds

n;—1

Jim pa(e 3 eao £ = maleda).

k=0

29Such a subsequence always exists, e.g. see Lieb and Loss (2001).
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It follows that, for each g € C!,

nj—1
1 (8lor —da+ a0 fD) = palgen) + lim D7 pua(ggno 111 —ggro f5)
k=0

Jim pa(ggno f1) = lim G(@a Ly (gha))

ma(g)ialgpa) = 0.

Thus, since C! is dense in L2, it follows that

pr=¢r—¢rof.  pi—as (1.6.15)

A function with the above property is called a coboundary, in this case an L?
coboundary since we know only that ¢, € L?(T, ;). In fact, this it is not enough
to conclude the Lemma: we need to show, at least, that ¢ € C°.

First of all notice that, since for each 8 € R we have ¢y = ¢ + B — (pp +
B) o T, we can assume without loss of generality that p  (¢) = 0. But then

Li(paha) = La(paha) —pahy = —(1 — Ly)pa .

Hence ) R
¢s=h (1 —Ly)  Lo(pahy) e wh c .

O]

Remark 1.44. The above result is quite sharp. Indeed, it shows that if J is not
strictly convex, then for each invariant measure v one has v(p) = B. So it suffices
to find two invariant measures for which the average of ¢ differs (for example the
average on two periodic orbits) to infer that J is strictly convex.

Note that Equations (1.6.3) and (1.6.14) imply the upper bound
(AT, (9)) < Che™™ @, (1.6.16)

Problem 1.45. Set o := ”(0). Show that, for a small, J(a) = % + O(d3).
Show that if a > sup, (@), then J(a) = +oo. In particular, this implies that
J(a) = +ooifa > [¢llco-

The above discussion allows us to conclude

02 k
(AT, (9) < (L) _h) < Co~rozn+0(@n)
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Since similar arguments hold for the set A;:n (—¢), it follows that we have an
exponentially small probability to observe a deviation from the average. Moreover,

the expected size of a deviation is of order n=2. To see if this is really the case we
need a lower bound.

1.6.2 Large deviations. Lower bound

IfJ (a) = oo then, by Equations (1.6.14) and (1.6.3), we have /L(A;::n) = 0, hence
we can restrict ourselves to the case J (a¢) < oo. Note that, by Problem 1.45, this
implies that it must be a < sup, w1 (¢). In the case @ = sup; u,(¢) we content

ourselves with the trivial bound p(A4,,) = 0. We can thus consider only the case

a < sup; pp(9).
Note that the derivative of Aa —Ina, by Equation (1.6.8), is a — p11 (¢). Thus

the maximum of Aa — Ina,, takes place for A such thata = uj ((,5)
For each § € (0, [supk (@) —a)) let Ag be such that g + 3 8 = ij, (¢) and

let Is = (a + 8, a+28)
Recall that S, = Y"3_o ¢ o £, then 15 (Sp) = npu5(¢) and, by (1.6.12),

n—1 2
[Z go [k —nm(@)} < Can,

k=0

where C; depends continuously by A.
Next, we set Ay 7y = {x € T! : 1S, (x) € I4}. Note that

An,15 C Aa,n(9). (1.6.17)

Recalling the definition ) = ¢ — (@), we have

|

Z(plsofk

ofk

ne
Mls(A” Is) < Has ({

<8~ /LM < Cu8n7 L.

It follows that there exists n, 5 € N such that, for alln = n, s, I3 (An,15) = %
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Since, by Lemma 1.41, £, is a measure, we can then write, for all m € N,

1
—<u; (A ={5 (1 h;
5 < #i,An) = 45, (La,,  h,) (1.6.18)

< Cye” M lnai"’gis (%:m(hn,z)) '

To conclude we must analyse a bit the characteristic function of A, y. First of
all, notice that if | f¥x — f¥y| < e foreach k < n, then | fkx — f¥y| <A77 tke
for all k < n. Accordingly, for each z € [x, y]

n—l1
|Dxfn N szn| < |Dxfn| . (eZk=0|lankxT_lansz| 1)
< Do f7|(eSTimo i e — 1) < Gyl Do 7.

By a similar estimate, |Dy f* — D, f"| = Cu| Dy | as well. Moreover,

n—1
S0 (x) = Su(] < Y [ flerCedFe < Ce.
k=0
We can then write U; J; D Ay, 15 where J; are disjoint intervals such that | 7 J;| =

&. Choosing ¢ < Cy6 small enough it follows that the oscillation of S}, on each J;

: +
is smaller than §/2, hence we can assume An’a 182 2 Y J;. Moreover

1" lmy = sup /Jcp’Of”
l

l@loo=<1
d
< sup / —[(Df") T po f"] + BLeb(J)
lploo<1 Ji X
<2 sup | Dy f"7! + BLeb(J;) < C48 ! Leb(J)).
xeJ;

We can then continue our estimate started in (1.6.18),

L Cpe™ M N +nLs (13, (§)+38)+mC; S 4 (£ ()

l
_ C#e—(n-i-m) lna16+nkg(uis((ﬁ)+38)+mc# Zeia(l) Leb(J;)(1 + 0(5_1pm))
l

[\

< C#e—n[lna;\’s—)_tg(uia((ﬁ)+38)]—c#IHSM(An’IS)’
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where we have chosen m = c4In§~!. The above computations, together with
Equation (1.6.17), imply that

1W(Ana) = 1(Agy) = Cye" s~ 803 @) 30+ e

Next, note that, by hypothesis, there exists ¢, > 0 such that As < g, thus, re-
calling that As has been chosen as the place where A(a + 2) — Alnay has the
maximum, we have

M(ffn ) = Cs oI (@+38)+3¢48]
Next, note that -2 Zad(a) = Ao < ¢4. Collecting the above facts yields

,bl/(z‘i’n a) > CS e—n[J(a)-i—SEg(g]‘

It is then sufficient to choose § = €(5¢,)~! and ¢4¢ = Cs to obtain the wanted

lower bound .
(1(An.q) = cae e M@ Fe], (1.6.19)

To express the rate function in terms of entropy, an extra argument is necessary.

1.6.3 Large deviations. Conclusions

Itis possible to give a variational characterization of the rate function in the spirit of
general Large deviation theory, Dembo and Zeitouni (2010) and Varadhan (2016).

Lemma 1.46. Calling M ¢ the set of invariant probability measures invariant
withrespect to f and h, the Kolmogorov-Sinai entropy , we have, setting M r(a) =
fveMys V(@) =a},

J(a) = (a).

Proof. Foreachv € My,
Inay = sup {hy(f) +Av(@) — v(in|f')}
VEM f

— Iy () + 2a(@) = pua(in] 1)),

The first equality is a formula for the spectral radius (e.g. see Baladi (2000, Remark
2.5)).3Y The second equality is called the variational principle. For more informa-
tion on this and, more generally, on the so called thermodynamic formalism, see
Keller (1998) for details.

(1.6.20)

301n fact, the remark contains a misprint: the first formula is the logarithm of the spectral radius,
not the spectral radius.
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Thus, recalling Equation (1.6.14), we can write

J(a) = Slip(la — sup {hy(f) +Av(@) —v(in|f'D})

VEM s
<sup(la— sup  {h(f) + Av(@) —v(n|f'D})
A VEM 5 (a) ’
<— sup  {h(f) —v(n|f')} = I(a).
VEM 7 (a)

In particular, if J (a) = oo then we have [ (a) = oo. We can thus assume J (a) <
o0. Also, note that Equation (1.6.20) implies

J(a) = sup Aa —{hy, (f) + Apa(@) — pa(n | £D).

If for some A we have u 7(¢) = a, then

J(@) = —{hy; (f) — pz(nl £} = 1(a).

Otherwise, recalling Problem 1.45, it means that ¢ = sup; ) (¢). Then, since
hv(f) < hiop(f) < oo, where h;op is the topological entropy (e.g. see Katok
and Hasselblatt (1995)) and In | /| > 0, J(a) < oo implies

supApy(a — @) < oo.
A

Accordingly, if A — oo, then wy(a — ¢) — 0. By the weak compactness of
probability measures we can then choose a sequence A ; such that 1 ; = v, in
the sense of weak convergence, and A u; (@ — @) = 0. Note that it must be that
v«(¢) = a. Hence

J@ 2 lim (dja—hu,, (/)= A, @)+ pa, (0| )
> i (<, () + pa, Al fD) = = [, (/) = valin| /)]

where in the last equality we have used that %, is (as a function of v) an upper-
semicontinuous function with respect to the weak topology (see Keller (1998, The-
orem 4.5.6)). It follows that J (@) = [(a). O

Note that Lemma 1.46 and Equations (1.6.16), (1.6.19) conclude the proof of
Theorem 1.32.

Remark 1.47. Using the previous techniques it is possible to obtain much sharper
results, see De Simoi and Liverani (2018) for details.
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1.7 Perturbation theory

Another natural question is: how do the statistical properties of a system depend
on small changes in the system?

Indeed, in real life situations the dynamics is known only with finite precision,
hence it is fundamental to know how small changes in the dynamics affects the
asymptotic properties of the system.

To answer such a question we need some type of perturbation theorem. Several
such results are available (e.g., see Kifer (1988), Viana (1997) for a review and
Baladi and Young (1993) for some more recent results), here we will follow mainly
the theory developed in Keller and Liverani (1999) adapted to the special cases at
hand.

We will start by considering an abstract family of operators £, satisfying the
following properties.

Hypotheses 1.1. Given two Banach spaces as in Theorem 1.1, consider a family of
linear bounded operators Le € L(B, B), ¢ € [0, 1], with the following properties.

1. Uniform Lasota—Yorke inequality: There exist C > 0, A, > 1 such that for
all e € 0, 1]

IL2hls < CAL"IRl|B + CllkllB,.  1£5hlB, < Cllhls, :
2. For L : B — B define the norm

LI == sup |[Lf]B,-
IAlls<1

that is the norm of L as an operator from B — By,. Then there exists D > 0
such that
I11£0 — Lell| < De.

Hypothesis 1.1-(2) specifies in which sense the family £, can be considered
an approximation of the unperturbed operator £ := L. Note that the condition
is rather weak, in particular the distance between L, and L as operators on 5 can
be always larger than 1. Such a notion of closeness is completely inadequate to
apply standard perturbation theory. To obtain some perturbation results it is then
necessary to restrict the type of perturbations allowed, this is the content of Hy-
potheses 1.1-(1) which states that all the approximating operators enjoy properties
very similar to L.
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To state a precise result consider, for each bounded operator L, the set
Vs (L):=1{z€C||z| <rordist(z,o(L)) < §}.
By R(z) and R,(z) we will mean respectively (z — £)~! and (z — £,)~ .

Theorem 1.48 (Keller and Liverani (ibid.)). Consider a family of operators L :
B — B satisfying Hypothesis 1.1. Let Vg , = V5 (L), r > 271 8 > 0, then
there exist eg,a > 0 such that, for all ¢ < g9, 0(Le) C Vs (L) and, for each
z ¢ VS,r:

IIR(z) = Re(2)]]| < Ce”.

A simpler proof, although less optimal, than that given by Keller and Liverani
(ibid.) can be found in Appendix C. Actually, in Appendix C it is proven a slightly
more complete result and it is also shown how to use it concretely to investigate
the spectrum of L.

The above perturbation theorem has proven rather flexible and able to cover
most of the interesting cases, as we show next.

1.8 Stability and computability

1.8.1 Deterministic stability

Let the £, be Ruelle—Perron—Frobenius (Transfer) operators of maps f; which are
Cl—close to f, thatis do1(fe, f) = & and such that dp2(fe, f) < M, for some
fixed M > 0. In this case the uniform Lasota—Yorke inequality is trivial. On the
other hand, for all ¢ € C° holds

[ =g = [ hwo fi=go .

Now let @(x) := (Dx f)! ff(gg) @(z)dz, since

®'(x) = (D f) "' D2 fB(x) + Dy fo(Dx f) "0 fo () — 9 (£ ().
It follows
/ (Loh — Lhyg = / ho' + / Dy /)" D2 fd(x)
+ (1 - Dxfe(Dxf)_l)‘P(fe(x))]-
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Given that |® oo < A7 e|@|0o and |1 — Dy fo(Dx )7 oo < A7 e, we have

f(ﬁah — Lh)g < |hlwradl M gloos + 1Al L1 AT (B + Delploo
< D|hlwr.1€lp]|co-
Taking the sup on such ¢ yields the wanted inequality
|Leh — Lh|p1 < DJh|lwiae.

We have thus seen that all the required Hypotheses are satisfied. See Keller (1982)
for a more general setting including piecewise smooth maps.

1.8.2 Stochastic stability

Next consider a set of maps { f,,} depending on a parameter @ € £2. In addition
assume that £2 is a probability space and P a probability measure on §2. Consider
the process x, = fu, © - © fo, X0 Where the w are i.i.d. random variables
distributed accordingly to P and let E be the expectation of such process when x¢
is distributed according to u. Then, calling £, the transfer operator associated to
fw, we have

B(vnsn) | 50) = LohCin) i= [ Loh(in) P(do),
If, forall w € £2,
|Lohlyia < ANAlp1a + Bolhlp,
then integrating yields
Lph()lyr1 < EGGYIhlyrs + E(Bu)lhlL1.
Thus the operator £ p satisfies a Lasota—Yorke inequality provided that E(A,!) <

1 and E(By) < oo.
In addition, if for some map f and associated transfer operator L,

E(|Loh — Lh]) < elhly.

then we can apply perturbation theory and obtain stochastic stability.
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1.8.3 Computability

If we want to compute exactly the invariant measure and the rate of decay of cor-
relations for a specific system we must reduce the problem to a finite dimensional
one that can then be solved numerically. To this end we can introduce the function

0 ifx < —1
_Jx+1 xe[-1,0]
PI=V 10 e
0 x = 1.

Note that ) ;.7 ¢(x —i) = 1. We can then introduce the operators

n—1

Pal=n Y ¢tx =) [ gy~ Dh(3)dy
i=0

Ly, = P,L.

Note that P, (C°) c C° and

[ Pnhtllr < (7]l L1
[ Pnltllrt < [l

1
1= Puhlpr < —lllwor

So we can again apply Theorem 1.48 to show that the finite dimensional operator
Ly, has the peripheral spectrum close to the one of £. The problem is thus reduced
to diagonalizing a matrix, which can be done numerically (provided the matrix is
not too large). There exists a wide literature on the subject, see Liverani (2001) for
more details.

1.8.4 Linear response

Linear response is a theory widely used by physicists. In essence it says the fol-
lowing: consider a one parameter family of systems f; and the associated (e.g.)
invariant measures g, then, for a given observable ¢ one wants to study the re-
sponse of the system to a small change in s, and, not surprisingly, one expects
Ws(@) = po(p) + sv(p) + o(s), for some measure or distribution v. That is, one
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expects differentiability in s, which is commonly called /inear response. Yet dif-
ferentiability is not ensured by Theorem 1.48. It is then natural to ask under which
conditions linear response holds.

For example linear response holds if the maps are sufficiently smooth and the
dependence on the parameter is also smooth in an appropriate sense. These types
of results follow from a more sophisticated version of Theorem 1.48 that can be
found in Gouézel and Liverani (2006, Section 8) and Gouézel (2010, Theorem 3.3).
A baby version of such a theory, useful to understand the basic ideas, can be found
in Appendix C.

In fact, linear response for certain observables can be obtained even when the
map is not very smooth, provided some extra conditions are satisfied, see Keller
and Liverani (2009b) for more details.

However, the reader should be aware that there exist natural and relevant cases
when linear response fails. See Baladi and Smania (2012) and references therein
for an in depth discussion of this issue.

1.9 Piecewise smooth maps

The set of maps treated in the previous sections is rather special. Here we apply
similar ideas to piecewise expanding multidimensional maps. We provide only an
introduction, see Liverani (2013) and Saussol (2000) for more general results. In
fact, similar ideas can be applied even to infinite dimensional expanding systems,
Keller and Liverani (2006, 2009a).

More precisely, let X := [0, 1]¢ together with a (possibly countable) collection
of disjoint open sets {A; };e7cN be such that

* Uiezdi = X;

* For each orthogonal basis £ := {e;} let Li(x, j, E) be the number of
connected components of {x + feg};e[—1,1] N 4. Then we assume that
L; = infg SUPxeA ; SUPk Li(x,j, E) < oo.

Next, let /' : X — X be such that, foreachi € Z, f|a; isa C? invertible map.
Finally we ask that the map be expanding and not too singular

I(Dxf)7' I <A7! <1 forallx € Aj:

1.9.1
IV(Dx f)~pa < oo D
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1.9.1 A bit of measure theory

Let us define the following two norms on M (X):

- p(p)
lul:= sup ——

ox,R) ¥l
peCO LR T (1.9.2)

o 1(0x, )
[l == sup sup ——K72,
kel....d} peC'(X,R) |Ploo

Note that, for each ¢ € C°(X,R) and & > 0 one can find ¢, € C!(X, R) such that
lo — @e| < &]¢loo, hence

xq
0 < lelylos + 2600) = lilelploo+ 1 ([ 02) < Qe Ll + el
Taking the sup on ¢ and by the arbitrariness of ¢, it follows that

el < pell- (1.9.3)

Lemma 1.49. Let B := {u € M(X) : ||n]| < oo}. If u € B then it is absolutely
continuous with respect to the Lebesgue measure m. Moreover

d d
ﬁ e LP(X,m) forall p < FRE

Proof. Let ¢ € C°(X,R), then for each & € (0, 1) there exists ¢, € C}(R?,R),
supported in [—¢, 1 + €]¢, such that | — Pelcox R) < & |@eloo < |@loo(l + €).
In addition, if we define

1€ ifd =1
rE) = 41—» || ifd =2 (1.9.4)
1 .
dd—agEe—=  1d =3,

where «; is the d-dimensional volume of the unit ball in Rd, we can define the
Newtonian potential wg(x) = [ga I'(x — z)@e(z)dz. It is then well known from
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potential theory that Aw, = ¢,, thus

d

(@) < plge) + |ule = ) (B, we) + |le
k=1

d
<3l sup / 19 T (x — 2)ge(2)dz] + el
k=1 xeX

d 1
Xk —zxl? 1”7
<C ) lnllleelLa U kPR dz |+ e,
kz=:1 ) (121 [lx —z]|P
where g~ + p~! = 1. Since the integral in square brackets is finite for p < %,

we have, by the arbitrariness of ¢,

pu(p) < C(lpll + lxDlelLae.

This means that the linear functional 1 : C® — R can be extended to a bounded
functional on L4. Since the dual of L9 is L? it follows that there exists h € L?
such that u(p) = [y h(x)g(x)dx. O

Remark 1.50. In fact it follows from the Gagliardo—Nirenberg—Sobolev inequality
_ d
that the above Lemma holds also for p = 7=.

Problem 1.51. Show that, for all @ € B, setting h = g—ﬁ holds || = |h| 1 and
lull = 1hlBy.

Remark 1.52. 7o connect the present notations with the one of the previous sec-
tion, recall that if diu = hdx, then d( fxp) = (Lh)dx.

The following characterization will be useful in the following: given h €
LY (X, m) we define

1
h LI ] —1> ) g e e ey / d
Vark(h)(x) = sup Jo hx: Mk—1, 2, Xk+1 xq)¢'(z) z
pec! ([0,11,R) (PSS

Lemma 1.53. For each u € B, setting h = 5_%,

M oo | Vark ()| 1.



1.9. Piecewise smooth maps 47

Proof. First,

Il < sup sup /haxk<p =sup sup /Varkhsup|g0| < sup|Vark(h)|L1.
k |¢locs k |ploo<l Xk k

For the opposite inequality one needs a bit of preparation.

For each n € N and a function 5 € Cg([—l, 11", R4), [ n = 1, let us define
ne(x) = e (e~ 'x) for e > 0. Then, for each h € L'([0,1]",m) and ¢ €
CoR",R) let he(x) = [dz h(z) ne(x — z). Then,

/ B he () - 9(x) = / 7)o (x — 2) - (x)
(1.9.5)

. f 7(2)0z, 76 (x — 2) - 9(x) < 1] BY[0]oo-

That is supy |dx, he|p1 < |h|py. On the other hand, for each § > 0 and k €
{1,...,d} there exists ¢ € C!, |¢p|oc = 1, such that |h|py < [hdx ¢ + 6.
Next, consider a compactly supported extension $ € Cé of ¢ on all R” such that
|$|oo < 1 + 6 and choose ¢¢ > 0 such that, for all ¢ < g,

sup
x€[0,1]”

)= [ melx = 200, 2)dz| <l
Hence,

|hlBy < /haaxk$+ 28 = —/axkhg$+ 28 < |0 he| 1 (1 + 8) + 26.
Thus, by the arbitrariness of §,

liminfsup |y, kel 1 = |h|By. (1.9.6)
e—0 k

Finally, let 7 : R — R and n¢(x) = e~ 1%(¢ 7' xy), using first (1.9.6) forn = 1,
then Fatu and finally arguing as in (1.9.5),

| Vark (h)| ;1 = /dxl---dxk_ldxk+1---dxd Var® h(x)
= /dxl"'dxk_ldxk+1"'dx” 1iminf[ dxp|0x, he(x)]

< 11m1nf|3xkh |1 < liminf sup /h(x)axkgos(x) |h|Bv.
g—0 (pGCl
[ploo<



48 1. Expanding maps

O]

This concludes the preliminaries concerning the choice and the properties of
the Banach spaces. The next Lemma shows that the Banach spaces have the wanted
compactness properties.

Lemma 1.54. The ball B = {u € B : ||u|| < 1} is relatively compact in
(M(X), |- ]).

Proof. For each t € N, let us consider a partition {4} of [0, 1] into intervals of
size ! and, for each k € {1,...,d}, define

Praco() = ¢ L4, ) [ dzplons Xtz xa)
r 4; (1.9.7)

Piop =Py Prgo.

First of all note that
Pli(p) = w(Prig) = [hPt,k¢ =/Pt,kh‘(p~
Next, if j # k
P its;0) = [ 1Pk, = [ 105, Prso < Ll
and

Xk
Pt/,k/‘(axk‘/’) = /hPt,kan‘/’ = |l '/(; dxi P j0x, @

< 4l

o0

In addition,

Xk
w(Pigo —¢) = Il ‘ /0 dxi (P g — w)‘ .
o0

Ifxg € Aj = [jt™1,(j + 1)t7!], then

Xk Xk .
/0 dxi(Prig —9) / 0 < I¢loot ™.
J
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Accordingly, || P/ut]| < 49| u] and [P/ — | < 4971t~ In addition, notice
that P/ = 4 Zil,...,id /,L(]].Ail IlAl.d )mAIX"'XAid , where l_dmA1x~-~xA,-d is
the Lebesgue measure restricted to the set A1 x---x A4; ,. In other words the range
of P/ is a finite dimensional space. This implies that if {i;} C B, then {P/u;}
lives in a finite dimensional bounded set, hence it is compact. Thus there exists p¢
and n; such that lim; o [| P/ ftn; — ft¢|| = 0. In addition, for " > ¢,

|/’Lt_,ut’| < |Mt_Pt/P~nj| + |l’l/t_Pt/’/"Lnj| + |Pt//"l’nj _Pt/’l’l/nj| < Ct_l

provided one chooses j large enough. It follows that there exists a sequence ¢;
and a measure j such that limj 00 |t — Pr; jin ;| = 0. O

1.9.2 Dynamical inequalities (Lasota—Yorke)

There exists C > 0 such that for each @ € (0,1), ¢ > O and i € Z, there are
smooth functions ¢? supported in a a_’ki_lL,-e—neighborhood3] of A; and such
that [¢7|oo = 1, [¢]]c1 < Cais_l)\iLi_l and ¢7(x) = 1 forall x € A;. Letus

define
> #iAiL,
ieT

o’ = lim
e—>0

o0
We shall adopt the following complexity assumption on the map f:

o <1.

Note that, in the simple case in which the partition {A;} is finite and can be
chosen (eventually by refining it), such that L; = 1, and if A = A;, then 0/ =
CaA~1 where C 4 is the complexity of the partition:

Cr:=sup#{icl : xeA}
xeX
If this is not satisfied by the map f, it will be satisfied by a higher iterate f”° if
the complexity of the map grows at a subexponential rate. In this case, we would
replace f by £ in the following.

Remark 1.55. Note that, in the following, we find more convenient to iterate mea-
sures rather than densities, even though Lemma 1.49 ensures that the measures
we are interested in are indeed absolutely continuous. Recall that the relation
between the pushforward fy and the transfer operator L (used in the previous
sections) is given by d( f«p) = (Lh)dx, if du = hdx.

31Recall that L; is defined just before (1.9.1).
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Lemma 1.56 (Lasota—Yorke inequality). For each o € (0”, 1) there exists a con-
stant B > 0 such that, for each p € B, holds

| fapt| < [l
I fepell < o]l + Blul.

Proof. First of all notice that, if u € B, then (Remembering Lemma 1.49 and
Problem 1.51)
| feml = sup p(po f) < |ul.

|(p|00s1

Next, forall ¢ € C1, |p|oo < 1and k € {1,...,d} we have

S0 @) =Y p(la; (0, 0) © f)

i€

d d
=33 u@a 0, (Df)if oo /) =YY ula;@o fox, (D)

ieT j=1 ieT j=1

. d _ _

Setting h = 75 and Yy = ('Df)kjl(p.o f, note that .Zj [Vkjloo < ).tl- 1. More-
over, we can rotate the coordinates as is most convenient (by redefining v ; as
well), such that

u(La,; 0x,; Vi) = p(@f L, 0x,; Vij)
xj
< [ b, 07 [ tade vl vz
0
+ A7 Lilulliler
Hence, remembering the hypotheses on f,
DALl + Y AT Liluligiler + CuIV(DS)TH)

ieT 0o i€

< llullo + Blul + (0 — o) l|ull-

fonl) = [ Va

1.9.3 Peripheral spectrum

It is then natural to start looking at the eigenvalues of modulus one. By the usual
facts about the spectral decomposition of the operators (see Kato (1995) for the
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general theory or look at Lemma A.24 and subsequent problems for the minimal
facts needed here) it follows that there exists a finite set @ C [0, 277) such that we

can write’?
fa=) €Iy +R
O
where [y are finite rank projectors and the spectral radius of R is strictly smaller
than one. Moreover, [Tgllyg: = 8gg/ Iy, [T9R = RIly = 0. It follows that, for
each 0 € R,

1S e ex Nme o ifeece
nlgr;o;];)e (fo)" = 0 otherwise.
Also, by Lemma 1.56 it follows that |[[Tgu| < C|u|. Since Iy is a finite rank
projector, there must exist g € B, £g; € B* such that [Ty = ) ; ug; ® £g,
MOreover fxjlg = eieug,l and £g 1 (fapt) = eigﬁg’l(,u) for all u € B. Hence, it
must be [£g ;(w)| < Clu| = C [ |hy|dm. Since L®(X, m) is the dual of L1, it
follows that there exists 579’1 € L°°(X,m) such that

Lo () = /EG,th = o).
Hence, for each u € B,

(o) = Lo () = e g (fup) = e fin(loy) = e 1u(lyy o f).

The above implies that 59’1 of = e—i%J Lebesgue a.s..
Let us set wy := Igm.

Lemma 1.57. For each { € L°°(X,m) such that { o f = {, m-a.s., if we define
the measure (@) 1= (L), then [ is invariant and 1 € B.

Proof. First of all notice that fiu(¢) = pus( -9 o f) = pux((p) o f) =
wx(Le) = u(e), that is p is an invariant measure. Next, for each ¢ > 0 there
exists £ € C! such that |€g|oo < 2|€|0o and s (|€ — Le|) +m(|€ — Lg|) < &. Then,

setting e (¢) 1= wx(Le)
|(f)" (@) — (fi)" e(@)] < elploo

32Remark that there cannot be Jordan blocks with eigenvector of modulus one, since this would
imply that ||( /%)™ | grows polynomially, contrary to Lemma 1.56.
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implies

-1

RO (fk (e — )| <&
k=0

N

1
|[[ope — p| < limsup |—
n—oo |N

Hence, for each ¢ € C!, |¢]oo < 1,
P (0x, ) = lim Tope(dx, @) < lim [[Mopell < C lim |pe| < C.
e—>0 e—0 e—>0
O

Thus, for each p € N and 6 € ©, the measure 11, g(¢) := /L*(Egi(p) isin B
and futp g = eil’eup,g. But this implies that {p0} ,en C o5(f«) N {|z| = 1}
and since the latter is finite it must be & = 277 for some 5,7 € N. We have just
proven the following

Lemma 1.58. The peripheral spectrum of f«, op(fx) N {|z| = 1}, is the finite
union of cyclic groups.

1.9.4 Statistical properties

Lemma 1.59. Ifthe map f is topologically transitive then 1 is a simple eigenvalue
for f«. If all the powers of [ are topologically transitive, then {1} is the entire
peripheral spectrum.

Proof. We do the proof only for d = 1, as in higher dimension it is more complex
(see footnote below). If one is not simple, then there exists an invariant set A,
ux(A) € {0,1}. But then 14 € BV which implies that A contains an open set,
and the same applies to A€ (this is true only for d = 1).3* But then, by topological
transitivity, there is an orbit that visits both these open sets, hence the sets are not
invariant. The same argument applied to f” concludes the Lemma. O

331n higher dimensions one can have a Cantor like set with characteristic function in BV. Hence
one must either use a different functional space (a convenient one in this respect has been introduced
in Saussol (2000)) or use explicitly the dynamics: for example note the one can easily bound the
& neighborhood of the boundary of the partition and this, by a commonly used argument, implies
that there is a large measure of points with an open neighborhood whose preimages are all bounded
away from singularities. One can then proceed to prove that on such open sets the density must be
continuous, showing that any invariant set must contain an open set.
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In conclusion, we have obtained conditions under which the system has a
unique invariant measure (4 absolutely continuous w.r.t. Lebesgue. In addition,
there exists p > 0 such that for each u € B we have

()" 1= sl < Cllalle™".

1.9.5 Birkhoff averages

From now on we assume that one is simple and is the only eigenvalue of modulus
one. Letp € L°°(X,m), and let = ¢ — u«(¢), then

R 1 n—1 R n—1 A - B
m@p) = — | dom@ o Yy +2 37 m@o /oo ff)| < Cnlgleo.
k=0 j>k=0

By Chebyshev’s inequality, we have

L2
mlx :gal < L7 < C—.

The above, by Borel-Cantelli, implies

n—1

1
lim — Z @o fk(x) = u«(¢) m-almost surely.
n—oon ko

Actually one must apply Borel-Cantelli with some care (but this is a quite standard
general strategy):
Consider the set A" := {4K + j2¥ : k e N, j < 3.2k} Then

oo 32K

o
omx gl <Y <cL?d Y aF<cr?) 3207 <o

leN k=0 j=0 k=0

Hence Borel-Cantelli implies that every infinite sequence in N converges. Next
notice that

A~ A~ m
|On — Pntm| < |f|oo;

which readily implies the wanted result.
In conclusion, w« is a physical measure (also SRB) and the unique one. In fact
one can obtain much sharper results on the behavior of the ¢,,.



Having illustrated the power of the transfer operator approach in the expanding
case, it is natural to investigate to which extent it can be generalized. A first remark
is that, when it works, it automatically implies that the system either does not
mix or mixes exponentially fast. Accordingly, the direct application of the above
strategy is ill suited to cases in which the decay of correlations is only polynomial
(although one can still apply it after inducing).

On the contrary, when the decay of correlations is expected to be exponential
one can reasonably try to implement a transfer operator approach directly. In par-
ticular, it is natural to investigate the possibility to apply it to uniformly hyperbolic
systems and partially hyperbolic systems. To this end there are several technical
difficulties, some of them still outstanding.

Clearly the first obstacle is the existence of contracting directions. Hence, our
first question is: can we find appropriate Banach spaces for which the transfer
operator of a contracting map has good spectral properties? The answer is yes.
In fact, again, there exist several possibilities. They all have the same flavour,
although they might be quite different in the details.

For the contracting case the following choices may not be the best, e.g. see
Aratjo, Galatolo, and Pacifico (2014) and Blank (2001), for interesting alterna-
tives. Yet, we present them because they serve as a stepping stone for the more
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general cases treated in the following chapters.

2.1 Smooth maps

In this section we illustrate the simplest possible case: let f € C3>(T,T) be an
orientation preserving diffeomorphism with two fixed points, one attracting and
one repelling. Without loss of generality we can assume that zero is the attracting
fixed point. Let ¥ € C2(T,R) be a positive function such that + = 1 in a
neighbourhood of zero and ¥ = 0 in a neighbourhood of the repelling fixed point.
Also let us assume that the support of ¥ be small enough so that

1V f lleco < 271 < L.

Consider the transfer operator Li = (Yh[f']"1)o f~!. Forameasure du = hdx
we have

[otnax = [ atfmn

Hence L is the restriction to L' of the operator u — fi(¥1t). In other words £
can be naturally extended to the space of measures; abusing notation, we will still
call £ such an extension. With such a notation we have

/ <de‘ -

[eaww| = s |[ oo rvan
lplo<1

Moreover, L9 = &, thus the spectral radius of £, when acting on the space of
measures CO(T,R)*, is one. However, as in the previous example, to obtain a
Lasota—Yorke inequality we need to consider the operator acting on a different
space. This time the space cannot be C! otherwise we would obtain a spectral
radius larger than one. We need an idea.

Idea:! let £ act on (C!)*, the dual of C!.? For each ¢ € CL, ||¢[o1 < 1, we
use the following notation?

Lhig) = /(pﬁh - /wofwh = g o f9).

Sup
|¢|C0s1

< sup
|<P\CO$1

'The following idea is more natural than it may look at first sight: the dual of £ is, essentially,
the composition with f, a contractive map. We have seen that, in such a case, looking at the action
on C! is a good idea. This suggests that we consider £ acting on the dual of C1.

ZRecall that (C™)* is the set of continuous linear functionals from C” to C (or R if one wants to
restrict to real functions) and it is a complete Banach space when equipped with the norm || €|| (¢ry+ =
Sup | .r <1 [E(P)].

3This is equivalent to using the same notation for a measure and its density.
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which is particularly useful when 2 € L! C (C')*. Note that ||[po f ¥ ||co < ||@]|co
while [[(go f¥) [lco < A7 |@ ||co + Csll¢||co. The above gives a promising esti-
mate for the derivative but not enough to establish a Lasota—Yorke type inequality.
To this end note that, for each ¢ > 0 there exists ¢, € C? such that ||ge|o1 < 1
and [|¢ — @¢||co < &.* Then, there exists Bo > 0 such that

L/wﬁh

where we have chosen ¢ small enough.

s/l(co—sos)OfwhlJr‘[%Of‘ﬂh‘
<227 hllerys + Bollhll 2y

2.1.1)

Problem 2.1. Use computations similar to the above to show that there exists

C, B > 0 such that, foralln € N and h € (C')*,

[ Ma<|WW) 2.1.2)

Problem 2.2. Prove that the unit ball {h € (C)* : Al 1y« < 1} is relatively
compact in (C?)*.

Problems 2.1 and 2.2 and Theorem 1.1 imply that £, when acting on (C!)*,
has spectral radius one and essential spectral radius bounded by A~'. We have
already seen that one belongs to the spectrum. Suppose that e?? is in the spectrum,
then there exists g € (C!)* such that, forallp € C! andn € N,

On = n = (B o o f"
/?GM¢—/LM¢—meEy ﬂ}¢f~

Note that, if supp ¢ N {0} = @, then there exists n large enough so that .o " =
0. By density this implies that supp hy = {0}, thatis [ hgp = ap(0) + b¢'(0).
But then Lhy = e hg implies, for all ¢ € C1,

¢®lag(0) + b¢'(0)] = ap(0) + by’ (0) f(0)

which has a solution only for § = 0 and » = 0. In other words, one is the
only eigenvalue of modulus one and it is a simple eigenvalue. It follows that

4Simply use a mollifier.



2.1. Smooth maps 57

the only invariant measure supported outside the repelling fixed point is the delta
function at zero. In addition, such a measure is exponentially mixing, that is, any
measure converges (in the (C1)* topology), to such an invariant measure.’ In the
present simple situation the above fact can be proven with much simpler geometric
arguments. However, we just showed that the convergence takes place also in the
space of distributions, and this is a useful fact that is a bit harder to prove.

The reader who is asking herself how convergence in (C!)* relates to the more
usual convergence for measures can gain some intuition by solving these exercises.
First, we recall the notion of coupling.

Remark 2.3. Given a compact metric space X and two Borel probability measures
i, v a coupling of the two measures is a probability measure G on X? such that

f o(x)G(dx. dy) = f o()u(dx) and / 0()G(dx. dy) = / oV (dy).
X2 X X2 X

Let G(u, v) be the set of couplings of i and v. We can then introduce the Kan-
torovic¢ (sometimes called Wasserstein) distances: for each p = 1,

1

P

dp(u,v) = inf d(x,y)?G(dx,d

sy = | ot [ donri.ay)]

In the following we will be mostly concerned with d.

Problem 2.4. Let X be a compact metric space and let M1(X) denote the set of
Borel probability measures. Show that d, defines a distance on My (X).

It is worth mentioning an important representation theorem, which we state
below, but not in its most general form.

Theorem 2.5 (Kantorovi¢ and Rubinstein (1958)). Let X be a compact metric
space and p,v € M1(X), then

di(p,v) = sup {/X @(xX)(—v)(dx) : ¢ € C°(X,R),Lip(p) < 1

where Lip(¢) denotes the minimal Lipschitz constant for ¢.

Problem 2.6. Show that if X is a compact manifold, then on M1(X), dy is equiv-
alent to the distance d(,v) = || — vl 1y

Finally, all the transfer operator theory previously developed can be applied to
this situation. Indeed it is a good exercise to do so.

3To be precise it is exponentially mixing for observables that are supported away from the ex-
panding fixed point. Given the above estimates, it is a simple exercise to study what happens to a
general observable.
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2.2 Piecewise smooth maps

Next, we treat contracting piecewise smooth maps. Let M C R? be an open set
and P = {P,-}fv= | be a partition of M. That is, the P; are disjoint open sets such
that UlN: 1?,- D M. Finally, we consider a map f : M — M such, for each
ief{l,....N}, flp, € C3(P;) and | Df oo <A™ < 1.6

Remark 2.7. Note that if | Df ||co < 1, we can always achieve | Df ||co < % by
considering ", instead of f, for n large enough. We use the condition | Df ||co <
% only to simplify the exposition.

If we set A, = f*(M), then A,4+1 C A,. Hence, it is well defined and not
empty
A = NpeNAp.

The study of the general case is subtle due to the presence of discontinuities. Since
we are treating this problem only for didactical purposes we are going to introduce
a simplifying assumption.” Let 0P = U,Nz ,0P;, then we assume

ANIP = 0. 2.2.1)

In particular the above condition implies that, if x € A, then x € f”*(M) for each
n € N,and x € 9P, hence f(x) € f*+1(M). Thus

fA) CA. (2.2.2)

To study the statistical properties of our map we would like to define a suitable
transfer operator. To this end it would be convenient to avoid the discontinuities
of the map. This is possible thanks to condition (2.2.1). Indeed, we can consider
a function ¥ € C® such that ¥ (x) = 1 for all x € A while ¥(x) = 0 and
Vi (x) = 0 for all x € 9P. We can then define the transfer operator

. v(y)
Lh(x) = yej;(x) mh(y). (2.2.3)

®The derivative is meant only for points outside the boundaries of the P;.
7Such an hypothesis is likely generic in a reasonable topology, but we are not aware of such a
result in the literature.
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Next, we define the norms

Wl = / he
<1

el o2
e (2.2.4)
i) = / ho.
”(pncl(M C)<1
Problem 2.8. Prove that the closure of C*° in the || - || norm is the space of distri-
butions (C')*, while the closure in the || - || norm is the space (C?)*.

The first step is to check that the above norms satisfy a Lasota—Yorke like
inequality.

Lemma 2.9. There exists a constant B > 1 such that, for each h € L*°,
|Lhllw < Bllh|lw
LAl < 227 A + BllA]lw.

[M oLh = /M 0o fyh,

Note that ¢ o f¥|loo < [|¢]lco. Moreover, ¢ o f € C? since ¥ and Vi are
zero on the discontinuities of f. Hence,

IV(@o f¥)lloo < AT Vol + @0 V¥ lloo

1D 0 f¥)lloo < 272D%lloo + 22 V0ol V¥ oo + [@ ool DY -
The first inequality of the statement follows. To prove the second, let ¢, € C? be

such that [l¢ — @sllec < & [Veelloo < [|V@lloo and [ D?pellco < Be™'. Then,
write p o fy = (p —@e) o U +@eo fr =: ¢y + ¢o. It follows

[¢1lloo < &
l$2l < (1 + &)l@lloo
IVé1illoo <227 HIVelloo + 19lloo | VY lloo-

Hence, choosing ¢ < 217!, we have, for all ¢ € C!,

‘/ oLh| < ‘/ $2h

Proof.

¢1h <27k + Blhlw.
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Note that the second inequality of Lemma 2.9 can be iterated yielding, for each
neN,

2\" B"
et < (3) Wb+ 1= el

Recalling Problem 2.2, Hennion’s Theorem 1.1 implies that the spectral radius of
L, when acting on (C!)* is B and the essential spectral radius is at most 2A~! < 1.

Lemma 2.10. The spectral radius of L, when acting on (C1)*, is one. In addition,
the peripheral eigenvalues have no Jordan blocks and 1 € o(L).

Proof. Suppose that v € o(L), with |v| = 1 is a maximal eigenvalue. Then, we
have the spectral decomposition

L= i (eieivni + Ki) +Q
i=0

where 69 = 0, N is the number of maximal eigenvalues, IT; are projectors, K; are
nilpotent operators, I1;I1; = §;;I1;, [IT;, K ;] = 0, [I1T;, Q] = [K;, Q] = 0 and
there exists C > 0 and ¢ < |v| such that, foralln € N, |Q"|| < Ca”. Suppose
thatK(l) < 0 forl < d while Kl.d =O0foralli € {0,..., N}. Then

m—1 m—1 n
lim m™! n 4ty = lim E m- E n d+1( O 4+ v~ K,-)
m-—00 m—00

n=0 i=0 n=0

m—1d—1
lim Zm Z Z ( ) —d-‘rleie[(n—l)v—lni Kll
N m—1 1

o -1 _ b ibim—d+) g pd—1
—mlﬂnooigm X(:)(d—l)!e K
i= n=

On the other hand, if 0 # 27k, k € N, we have

1m_1 0 1 —elfm 1
_ ion| _ _
m Z e = T a0 0 <Cm .
n=0
Thus,
m—1 1
. -1 —d+1,,—npn _  pd—1
mlgnoom Zn v "L _—(d—l)!HlK’ .

n=0
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On the other hand, let # € C° and ¢ € C! be such that fM oll; Kid_lh # 0, then

we have
m—1
. pd—1 . -1 —d+1, |—n n
079‘/M(p17,K1 h Smh_l)l?)om ';)n [v] /M(pﬁh

m—0o0

m—1
< lim m™! Zn_d+l|v|_n/ lpo f"]1h]
n=0 M
m—

1

<C lim m™' 30 a7 fhlsellgloo = 0.
n=0

It follows that the maximal eigenvalue must have modulus one with d = 1, oth-
erwise the above equation yields a contradiction. Finally, if /& is a probability
measure supported on A, then, recalling Equation (2.2.2) and the definition of v,

L'h = Vo f"Vewof" 2.y -h=|[ h
M M M

which implies that the spectral radius cannot be smaller than one. To conclude,
note that for any measure / supported in A we have

1 n—1 1 n—1 1 n—1
o [ eth=2 3 [ gorth= Y fra).
k=0"M k=0"M k=0

Thus, by the weak compactness of measures, there exists a weak accumulation
point /i, such that fx/« = h. Obviously such a measure is also supported on A.
This implies that Lhy = h, thus 1 € 0(L£), which concludes the Lemma. O

Note that in this case it is possible to have complex eigenvalues. For example,
see the next problem.

Problem 2.11. Suppose that there exists x € A such that f7(x) # x, for j < p,
and fP(x) = x, that is {x, f(x), ..., fP7N(x)} is a periodic orbit of period p.
Define

p—1
= Z eank/pka(x).
k=0
Show that Ly = e =271/ Py,



The next step is to treat higher dimensional systems in which both contraction and
expansion are present. The simplest such case is the uniformly hyperbolic case in
which only expanding and contraction directions are present. Before describing
some elements of the general theory we discuss in detail the simplest possible
example: Toral automorphisms. For such simple systems we will discuss three
different approaches that illustrate the basis of three different general theories used
to investigate the statistical properties of dynamical systems.
Let us consider the map from T?2 to itself defined by

f(x) = Ax mod 1,

with A € SL(2,Z). Also, for simplicity, let us assume that A* = 4 and 4; ; > 0.
In analogy with the previous section we can define the operator £Lh = h o f~ 1.

Note that
/ oLh =/ po f-h.
T2 T2

Simplifying even further, the reader can consider, as a concrete example,

A:G })
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Note that the Lebesgue measure is invariant since det(4A) = 1. Moreover Tr(A4) >
2. Accordingly, the characteristic polynomial reads 2 + Tr(A4)¢ + 1 and has roots
A, 271 for some A > 1. We call v¥#, v* the two normalized vectors such that

Av* = Lo

_ (3.0.1)

AvS = A1,
Note that, since the matrix is assumed to be symmetric, (v¥, vS) = 0. We have
thus a natural reference measure. In fact, ( £, T2, Leb) turns out to be mixing, that
is: for each h, ¢ € C°

lim / h(x)e(f"(x))dx = / h(x)dx/ p(x)dx.
n—-oo r]I‘z T2 Tz
Alternatively, the mixing can be stated in the following equivalent way: for each

probability measure p such that % = h € L' and, for each ¢ € C°,!

Jim 2 1u(p) = Leb(g). (3.0.2)

This is a very relevant property from the applied point of view: it says that asymp-
totically our system is described by the Lebesgue measure regardless of the initial
distribution (provided the initial condition was distributed according to a measure
absolutely continuous with respect to Lebesgue).

Of course, property (3.0.2) is truly useful only if the speed in the convergence
to the limit is fast enough. From this consideration follows the basic question that
we want to address in the following:

What is the speed of convergence in the limit (3.0.2) ?

3.1 Standard pairs

The first technique that we are going to illustrate is based on the idea of coupling in
probability. This is a widely used tool to study the convergence to equilibrium of
Markov chains. A similar technique was previously used in abstract ergodic theory
under the name of joining. The form we are going to describe was introduced in
smooth ergodic theory by Young (1999) and further developed by Dolgopyat.
The basic idea is to consider a special class of measures that behave under
push-forward in a manner similar to that encountered in expanding maps. Such a

IRecall that (u(¢) = [12 ¢(x)h(x)dx and fep(p) = u(p o f).
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class of measures has a long history (e.g. from Pesin and Sinai (1982) to Liverani
(1995a)), but they have been systematically developed and used by Dolgopyat
under the name of standard pairs, Dolgopyat (2004a,b). Fix some a > 1 and
define

Dy =h e COR,Ry) : Vi,5 €R, h®) < ettt
h(s)

Also, foreach b € Ry, x € T?and h € C°(R,R), ffbh = 1, define the
measure on T ? (standard pair)

b
Mp,x,n(®) = /_b h(t)e(x + tv*)dr.

The collection of standard pairs will be designated by

Sa:

b
Mbx,h - be[l/z,l],xeTz,heDa,f h=1}_
—b

The above are our building blocks. Let us see what we can construct with them.
First of all, we can take the convex hull: for each finite set { p; } of positive numbers
such that ), p; = 1 and set {; } C S, we can consider the probability measure

= piti. (3.1.1)
i

where the p; are called the masses of the standard pairs. The set {i;, p; } is called a
standard family and is often confused with the measure it defines via (3.1.1). Note
however that the representation of a measure by a standard family, if it exists, is
far from being unique. We will call S, the set of all standard families. The first
important fact is the following.

Lemma 3.1. The Lebesgue measure belongs to the weak closure of Sy.”

Proof. Letting v¥ = (1 + uz)_%(l, u), for each ¢ € C,

1 1 1 V1+u?
Leb(p) 2/0 dt/o dso(t,s + ut) =/0 ds/o dto(sey + tv").

Note that the the second integral can be written as the convex combination of
finitely many standard pairs. The result follows since the first integral is the limit
of finite sums. O

2Recall that , converges weakly to u if, for all ¢ € C?, we have limy—so00 itn (@) = w(g).
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Next we want to know how the standard pairs behave under push forward.
Lemma 3.2. Foreachn € N and pu € S, it holds true that fl'iu € Sy—ng.

Proof. 1t suffices to prove that if u € S, then f'u € Sy—n,. Then, recalling
(3.0.1),

A"b

b
P = [ 1000 #1200 = [ H (@) + 1),

Next, let § € [1/2,1] and K € N such that A”b = 2K 4§ and define t; = —A"b +
(2i 4+ 1)$. We can then write

K—-1 s
Fitsn0) =Y o | O + 1]+ )
i=0 -

8
pi = / hA™"(t; +1))dt
-8
hi(t) = py ThQA 7" (1 + 1)),
Accordingly, the Lemma is proven provided h; € Dj—n,. This follows from

hi) _ hQ7"G+1) _ aanji—s)
hi(s) ATt +5)) '

O

Remark 3.3. Note that the unbounded parameter contraction proven in the previ-
ous Lemma is a peculiarity of the linear systems we are studying. However in the
nonlinear case a fixed contraction still takes place (provided a is large enough)
and this is all we will use in the following.

To continue, we call two standard pairs 11 = up x p and 2 = Wp x45v5 k>
s € [1,2], matching, while we call prematching two standard pairs of the form
M1 = Mpxh> W2 = b x+svs,h,- 1he basic fact underlying our strategy is the
following:

Lemma 3.4. Let 11, jip be two matching standard pairs, then, for each ¢ € C!,?

|fPu1(9) — [T pa(@)| < 2be®? 050l 00d ™.

3We are using the notation dg¢ = (v5, Vo).
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Proof. 1t follows by a direct computation:

b
| 1() = fil ()| = /_b hOlp(f" (x) + A7"sv° + A"10") — (" (x) + A" 1v")]

< 2be® | 35¢lloor ™.
O

The above Lemma is really a coupling between the two measures, see Re-
mark 2.3. The Lemma shows that the convenient topology in which to study the
convergence of the push-forward of standard pairs is (C!)*. In other words, it sug-
gests that it is natural to consider distributions rather than measures. Indeed, this
is consistent with our discussion of the contracting case in Chapter 2.

Remark 3.5. The following is a coupling between two matching standard pairs
M1 = Wpx,h and o = [p x+svs,h -

G(p) = f @(x + tv*, x + sv° + tv"*)h(r)dt.
[_ 2

s

Using such a coupling we can reinterpret the proof of Lemma 3.4 to obtain,* re-
calling Remark 2.3,

di(fluqg, £* /dx G'(dx.dy) < 2be®? )™,
1S, 7 p2) = G/eg(f*m,f*uz) (x,y)G'(dx,dy) <

where d(x,y) = infycy2 ||x —y + k||. Also it is not hard to prove that in this
case the topology associated to the distance d is the weak topology.

With these definitions in place we are now ready to argue: given two standard
pairs p1, 2, we know that £ iy, f. o are standard families in Sy —»,. Note that
there is some freedom in how to divide a segment of length A”b in segments of
length between 1 and 2. In particular one can check that, if n is large enough, one
can make the division so that the two families contain two prematching standard
pairs. That is, there exists a standard pair in the first family supported on {y +

“4Indeed, for the stated coupling G of 1, fI' iz,

|1 (p) — fipale)| = ’A4[¢(x)—¢(y)]G(dx,dy) < 18s¢lloodt (f3 1. £ 12)-
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tv*},e[—p,p] and a standard pair, in the second family, supported on {y + sv° +
tv*} e[—p,p) forsomeb € [1/2,1],s € [1,2]and y € T2. This is a consequence of
the fact that the flow ¢, (y) = y +tv¥ is ergodic, since the ratio of the components
of v* is irrational.

Accordingly, for n large enough, A” > 2 and there exist prematching standard
pairs for any initial couple of standard pairs. Let n¢ be the smallest such n. Also,
we call the two prematching standard pairs [ig,1 and jio 2 respectively. Thus we
can write’

o) = filu2(p) =

mi mi
=Y Fiallia(e) = Y Piafij2@) + Poafo1 (@) — Foaio (@)
j=1 j=1

for some weights p;j; > 0 and standard pairs [t ;; € Sy—no,. Note that, if p;; #
0, then p;; = (2A"0¢2%)~1 by construction. Also we know that

bo
Ro,1(p) = . ho, 1 (H)e(y + tv*)dt
—00
bo
Ro.2(p) = . ho2(H)e(y + sv° + rv¥)dt
—00

for some bg € [1,2], y € T? and ho; € Dy—noq.

To obtain a convergence to equilibrium we want to show that some part of
the push-forward measures behaves similarly. The tool to do so will be to use
Lemma 3.4. To this end we have to exhibit matching standard pairs.

The idea to construct matching standard pairs is to single out a common part
of the density by using the fact that hg; > o2 noaba 1. Of course we want to
still have standard pairs, hence a small computation is called for. For each ¢ > 0

>We can always arrange it so that the two standard families obtained by pushing forward have the
same number of elements 71, for example by allowing some of the 5 ; to be zero or by duplicating
the same standard pair giving half of the mass to each copy.
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small enough,

ot
hoi (1) — 555 _ ho,i (s)e? "0l =s| — S

0
ho,i(s) — 2CTO ho,i (s) — chO

~

_€_o—AT"0alt—s]|
hoi(s) — C o A7 "0a

A""0qlt— ot 2bg
S e al S‘

ho,i(s) — 355

_ ,—AT0qa|t—s]|
< o+ "oali—s] [1 +cl e }

26—2A_”0a _

_ A7"0alt — 5|

AT "0a|t—s|
< - O
<e [1 + o2 ma g |

Finally we choose ¢ so small that

¢
= — <
V= e 2m0a S 8

Hence
. _ ¢
hO,l (t) 2bo

—n —
2 < e)L 0Oa(l+y)|t—s| < ealt sl'
hO,i(S) 2bo

~

This means that we can write

bo 1
Foa(9) = Tioa@) =c [ 5loy +10%) — gl +50° + 0")ds
—bg 0
bo ho1(t) — 55— bo ho2(t) — 55—
F(1-0) U u(p(y—i-tv")—/ 2T 2B0 yy g s+ vty |
—bg l—c —bo 1—c

Note that we have constructed two matching standard pairs with mass c.

We are almost done. The only remaining problem is that the two prematching
standard pairs come with different masses. To take care of this we have to rearrange
a bit the standard families. Unfortunately the notation is rather unpleasant but if
the reader manages to see through the notation she will realise that the strategy is
the obvious one.
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Let p« = min{po,1, Po,2}, Po,i = Po,i — P« and define

Do,i — P«C Dji .
pO,izll—*; Pj,i=4 VJE{I,...,ml}
— pxC 1 — pxc

DxC

bo po,1ho,1(2) — 5
poate) = [ F 2 p(y + 1)t
—bg Po,1 — PxC

DxC

bo poho(t) — L5
Ho2(p) = / = 260 e(y + sv® 4+ tv¥)dt
—bg P0,2 — PxC

ki@ = [ Stots + 1) =l +
—bo 0

bo

1
1é () = / Lo+ 10 — gy + sv° + 10t
—bo 2bg

Wji =i Yje{l,...,m}.

The p ; are matching standard pairs, i,; are standard pairs, ZT;O pji = land

mi
SEOwi (@) = cpapy ;(9) + (1 —cp) Y pjittji(®).
j=0

Then, for each n = ng, by Lemma 3.4 we have

fwi(p) = finz(@) — (1= pxc) [Z P T (@) = Y pia ST uan (w)} ‘
j=0 j=0

< cpudbe®®||dp ) oA T
Thus,

SEua(p) = fluna(@) = (1= pac) D piapka [0 11 (@) = 27 ti2(p)]
J,k=0

< cpe2be®?||d5p)l oA T

To conclude it suffices to iterate the above formula, applying it to each pair of
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standard pairs 1, ik 2. Let n = £ng, then

| f2 1) = fn2@)] < 21 = pse) il
{—1
+ D epi2be®5plloo(l — preyf AT HEF D0
k=0
< OV (el + 1195@ll00)
forsome C > Oand v = max{(1—psc) /™0, A1}, The same estimate carries over

to standard families and hence to the weak closure of S,. The reader can check,
arguing similarly to Lemma 3.1, that the above implies that for each € C!,

/ h(x)p o T"™(x)dx —/ @(x)dx
T2 T2

We have thus established that the map is mixing and that the speed of mixing is
exponential with a prefactor depending on the smoothness of /1 along the unstable
direction and the smoothness of ¢ along the stable direction.

< C([1hlloo+119uhllo0) (ll¢lloo + 195 @ [loo) V™.

3.2 Fourier transform

The standard pairs method is very flexible and can be adapted to a large range of
situations. Yet, since the maps we are presently studying are linear, a much more
powerful tool is available: Fourier series. Indeed, for each k € Z?2,

(L7h) =/ 2T kX) P () d x =/ 2 A" )y () d x

”o T (3.2.1)

=/ 2THAKX) (Y dx = hgng.
'][‘2

Accordingly, for each i, ¢ € C",

L= [ol< X lonhaond

keZ?/{0}

Sy <||A2"k”||hlcll>lf<l|||z||+1)r
keZ2/{0}

< 2 G ﬂhln)ir(l:lil”—ikn T
keZ2/{0}
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For each k € R2, we write k = av¥ 4 bv® (recall (3.0.1)). It follows that A%k =
aA™v¥* + bA7"vS and ATk = aAT"v* + bA™ VS, Thus

JAT K2 4+ A7K]? = (02 + a®)22" = kP22,

Accordingly,
A"k + DA™ K] + 1) = [[k[A".

We can thus conclude, for all r > 2,

Jueemn=J o
T2

for some constant C, independent on /4 and .

We have thus proven, again, that toral automorphisms enjoy exponential decay
of correlation but we have also uncovered a new phenomenon: the speed of decay
depends very much on the smoothness of the functions.

Yet, there are also reasons of unhappiness: the requirement on the smoothness
of the functions (more than C?) is stronger than the one obtained by using standard
pairs. In addition our argument does not look very dynamical and seems to take
too much advantage of the special features of the example at hand. What to do
with a nonlinear map is highly non-obvious.

It would then be very desirable to obtain the above results via a different, more
dynamical, strategy. In particular it would be nice if we could find a Banach space
on which it is possible to study the spectrum of the operator £ and such that the
above properties can be understood as consequences of the spectral picture.

This can be done in various ways. Let us start with a possibility still based on
the Fourier transform.

hlerlleller , — _
< ) %A "< Crlhllerl@ller AT,
keZ2/{0}

3.3 A simple class of Sobolev like norms

To define a Banach space we can first define a norm on C*°(T 2, C) and then we
obtain the Banach space by completing C*°(T 2, C) with respect to such a norm.
The usual Sobolev norms are ||2]|3, = Y ez (k)P hk|* where (k) = 1 + ||k||?
and p € R. If p > 0 then a finite norm implies some regularity while if p < 0
also distributions can have a finite norm. However we have learned that hyperbolic
dynamics have very different behaviour depending on the direction. Typically £"h
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will be a function regular in the unstable directions but with very wild oscillations
in the stable directions. Hence along the stable directions we can have convergence
only in a weak sense: in the sense of distributions. To handle this problem different
strategies have been proposed. The simplest one is to consider anisotropic Sobolev
spaces, that is spaces defined by a norm of the type

172 = > (k)P |2 (3.3.1)
kez?

where p € Ry, k = (k1 : ko) is the projectivization of k = (k1, k), that is
the equivalence class containing k with respect to the equivalence relation de-
fined by k ~ Kk’ iff there exists A € R \ {0} such that k = Ak’. Finally,
a € C°(PY(R),[—1,1]). In other words « depends only on the direction of the
vector k. In the following, to simplify notation, we will write a(lg) as a(k).

We have seen that the action of the dynamics in Fourier coefficients is also
given by Ak. It is then natural to consider the dynamics in the projective space
P!(R). Obviously there are two fixed points, v* and v* (or, rather, their equiva-
lence classes); the first is attracting while the second is repelling. Fix v € (A1, 1).
It is easy to check that in P{(R) there exist intervals /4 3 v*, I_ 3 v’ and a con-
stant K > 0 such that®

> v 2(v) forallvely, |[v]| =K
(Av) <v2(v) forallve I_, ||v| = K.
Let fi = A*1], c I.. We choose then an o with value 1 in f+, value —1in /_
and strictly monotone in between (it is possible to be more explicit about o and
optimize it in various ways, but we think it is more important to point out that the

above qualitative properties suffice). Note that in PI(R) \ (f + U I —) we have that
d(v, Av) = ¢ for some fixed constant ¢,’ thus there exists y > 0 such that

a(v)—a(A )=y forallv gl UI_. (3.3.2)
This defines the norm.

Problem 3.6. Let, o, B € CO(PY(R),R) and ¢ > 0 such that B(k) + ¢ < a(k).
Prove that the set {h : ||h|lq < 1} is weakly compact in the norm || - || g.

%0f course, I, I— correspond to cones in the vector space R%. We will abuse notation and use
I, I_ also for the cones of the vectors whose equivalence class belongs to /4, I, respectively.

"The definition of the distance is not really important, for example the angle between the two
vectors will do.
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From equation (3.2.1) it follows that, for all p € R,

|: <A—1k>oe(A_1k)

2 _ &5 2 _
1hlpe = 3 U7 Olhar? = 3 | 5w

p
} ()P g 2.
keZ? keZ?2
Ifk € Iy and ||v| = K then

-1 (A7 k) -1
(AT TR (A _
(k) (k)

Ifk € I_ and ||v|| = K, then Ak € I_ and

(A=A k),
(k)e® (AT T

Ifk & I_ U I then, setting B = |A!|| and recalling (3.3.2),

<A—1k>a(A_'k) <A—1k>oz(k)—y
(kYo = (kye®)

< B(k)7.

It is then natural to consider the set®
I'=1{keZ? : (k) <max{[v2B]" K} =: L.

Hence,
(A—lk>oz(A71k)
sup ————
k§£‘ (k) ()

112 =" el

kel

< ve.

Define the weak norm,

We can then write

LAl pa < \/vzl’llhllﬁa + BlAl% < vPllhllpa + B*PLP |Allw.  (3.3.3)

Problem 3.7. Use equation (3.3.3) to obtain a Lasota—Yorke type inequality and
deduce the quasi compactness of L (recall Remark 1.2).

8Note that I is a finite set.



74 3. Toral automorphisms

For the reader’s amusement, let us deduce quasi -compactness by an alternative
argument. Note that setting Ph(x) = ) ;crh keZ” (k.x) we have

1£(1— P)h”pa X Vp”h“pa-

We can thenset A = LP and Q = L(1 — P), then, for each u > v?, we can
write
(u1=L£)=1p-Q) A -Alp-0)7.

The claim follows then by the Analytic Fredholm alternative. We then conclude
that the essential spectrum of £ when acting on the Banach space obtained by
closing C* with respect to the norm || - || p¢ is contained inthe set {z € C : |z] <
v?}. To study the discrete spectrum and obtain independently that it consists only
of {1} requires a little extra argument that we postpone to the end of Section 3.4,
see Lemma 3.12 if you cannot contain your curiosity.

The above is not as precise as our explicit computation (also due to the choice
to reduce the technicalities to a bare minimum) but it provides the main idea for a
much more far reaching approach.

3.4 A simple class of geometric norms

We have seen how the anisotropy of the dynamics can be reflected by the norms
using a weight (at one time called escape function) in the Fourier transform. Here
we present (always in a simplified manner, adapted to the special case at hand) a
different, more geometric, approach that has both advantages (it has been adapted
to more general systems, e.g. Baladi, Demers, and Liverani (2018)) and disadvan-
tages (for example, the dual of the space is not a space of the same type). The
presentation is a bit more detailed than the one in Section 3.3 as we will use it as
the basis for further generalizations, see Chapter 4.

Let dyp = (v, Vo), fix § > 0, 9 € C$°([-4,8],C) and h € C®(T2,C).
Define,’

plg = sup sup |99 (1))
qg’'<gteR

By ={p € C5°([=4,8],C) : |plg < 1} (3.4.1)

8
lillpg = sup sup sup f @ h)(x + 1v°) - p(1)d1.
xeT2 p’<p p€By; J—§

9We use the notation (@) (1) = %QD(I)-
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We will call BP9 the completion of C*° with respect to the above norm. The first
thing we want to understand is which kinds of objects we obtain by this completion.
The next Lemma shows that we are inside the usual space of distributions.

Lemma 3.8. Foreach p,q € N, p > 0, we have i : BP9 — C4(T?,C)*, where
i is bounded and one-to-one.

Proof. Asusual, define i : C*®°(T?2,C) — C4(T?2,C)* by i(h)(p) = J2 oh.
Let {¢; }9’21 be a smooth partition of unity such that supp ¢ is contained in a
ball of radius §/2 with centre x;. Let h € C*°(T2, C). For each ¢ € C4(T?2,C)

we have
hg{)(ﬁ j
/2 /

o= | [ | <3
J
8

/8 dth(xj + sv® + tv")(e¢;)(x; + sv° + tv¥)

8
$Z/ ds
j 78

< 28|\hllo.g D ledjles < Cs gllhlpgleles.
j

From which it follows that i is bounded and can be extended to B?>4.
Fix g € C°([-1.1],R4), fg = 1. Foreachx € T?, ¢ € C5°([—6,6],C)
and ¢ > 0 define

0e(y) = p({y —x, v*))g((y — x,v")e el
Then, for h € C*°(T?,C) we have

/h(ps = /a’sg(ss)s_1 /d[h(x + sv¥ + tv¥)e(r)

= /dr h(x 4+ tv%)e(t) + O(e||h|l1,q)-

Finally, suppose i(h) = 0 for some h € B?-4. Let h,, C C* such that h, — h in
BP9 then

0= it (g0 = Jim_ [ hup

= lim /dzh,,(x+ws)<p(t)+(9(e||h,,||1,q)

n—o00

= /dt h(x 4+ tv%)e(t) + O(e||h||1,q).
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Taking the limit ¢ — O we obtain
0= /dth(x + tv%)p(2).

Also, since i(h) (05 /<p8) = 0, arguing as before and integrating by parts yields, for
all p’ < p,

0= /dt O h(x + 1v*)p(1).
Taking the sup on x we obtain |||, 4 = 0. Hence i is injective. O

Before continuing it is convenient to make sure that the derivative acts in the
natural way on the spaces B?4.

Lemma 3.9. For each p,q € N the operator 0, is bounded as an operator from
BP9 to BP9 and 0 is bounded as an operator from BP*4 to BP4T1. Moreover,
their kernels consist of the constant functions.

Proof. The boundedness follows immediately from the definition of the norms
(and integration by parts in the case of dy).

Next, for each h € C*®, x € T? and ¢ € Cg+1([—8, 4], €) let us define

$
he(x) = / h(x + tv¥)(t)dt.
i
Then
$
Ouhe(x) = /—8 Ouh(x + tv¥)e(t)dt
$ ]
dshe(x) = /—8 %h(x + tv%)p(t)dt = _/—8 h(x + tv)¢'(t)dt.

It follows that | VAg|loo < ||h]l1.4]¢]g+1. Hence, for i € BP9 and ¢ € C1T1 we
have that i, is Lipschitz (which follows by density of C*° in BP9 ).
We can now study the equation
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forh € BP+14, Let ¢ € C*. Then we have hy, € C! and d,h, = 0. This implies
hy = const. Accordingly, for each set Oy s = {x + sv® +tv" : 1,5 € [-6,6]}
and ¢ € C5°(Qx,5.C),

) )
he = / dtf dsh(x + tv¥ + sv¥)p(x + tv* + sv°)
T2 -8 -8

8 8
= / dt/ ds h(x + sv¥)p(x + tv* + sv°).
§ -6

We can then set @y (s) = ff(g dte(x + tv* + sv’%) and obtain

/T2 he = hg, (x) = [TZ hg (y)dy = /T2 dy /;Z ds h(y + sv°)@x(s)

=t
T2 T2

This shows that & — [ h is zero as a distribution, but then, by Lemma 3.8 it is zero
in BP 114 thus the Lemma. Similar arguments hold for the study of the kernel of
as . D

Lemma 3.10. For each p,q € N we have that BP9~ embeds compactly in
BPA.

Proof. Since the spaces are separable, it suffices to prove that each sequence {1, } C
C®(T2,C), |lhnll p+1,9—1 < 1, admits a convergent subsequence. Using the lan-
guage of Lemma 3.9, for each ¢ > 0, let {x; }; ¢y, be a finite ¢ dense set. Then for
each h € C*°, ¢ € B,y there exists x; such that ||x — x;|| < ¢ and

|he(x) = he(xi)| < €l|Vhglloo < €llhl1,q-
On the other hand, if |¢ — @|; < &, then
lhe(xi) — hg(xi)| < ellhllo,q-

Finally, since the set B, 1 is compact in By, there exists a finite set {¢; }jej. C
Bg 1 such that, forall ¢ € By, infj |¢ — ¢j|ce < e. Accordingly,

Ihllpg+1 < sup  |hg; (xi)| + €l|hll p41,q-
(i,j)elexJe
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We can then conclude by the usual diagonal trick: Note that, for each ¢ > 0, the
set {(hn)e; (xi)} is bounded, thus contained in a compact set, hence it is possible
to extract a subsequence {/, } such that each sequence (/i )y, (x;) is conver-
gent. Accordingly, we can set ¢, = 27, and construct recursively the sequences
g b C A hng_y it thng 3 = {hi} such that for each m there exists Ky, € N
such that, for all k, k' = Ky,

”h”mk - hnm,k’ “ < 28’"'

We can then choose the sequence Em = hn,, g, it is easy to check that this is a
convergent subsequence. O

Having thus described the Banach space, it is now time to study how the trans-
fer operator acts on it.

Lemma 3.11 (Lasota—Yorke type inequality). For each h € C*° and p,q € N we
have

1L p.q < Cullhllp.g
1L Rl p.g < Cod™ ™MD R, 0+ Collhll p—1,g+1-

Proof. Leth e C® and ¢ € Cg([—a,a], C), then

a

/a (L"h)(x + tv5)ho(t)dt = | h(x + tA"v)g(t)dt

—a

—a
Ala

- A‘”/ h(x + tv*)p(A"t)dt.
—Alla

Next, we consider a C* partition of unity {¢; } of R such that the elements have
support of size § and ||¢;||cq+1 < C, for some fixed C > 0. Clearly [-A"a, A" a]
intersects, at most, 44" 4+ 1 < 51" such elements. Let #; belong to the support of
¢;. Then

/a(ﬁ”h)(x + 10 ho(t)dt

ti+6
/ | G g (s
ti—

<y A
i

= > A" hllog < SlAllog.
i

(3.4.2)
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This proves the first inequality of the Lemma for p = 0. To treat p > 0 define
gi(1) =3, ; M)L "/ (t—t;)7 and redo the above computation as follows:

a ti+6
/ (L") (x + tv5)he(t)dt = ZA‘"/ h(x +tv)p(A7"1)¢; (t)dt
a i ti—8
ti+6
=0 [ e ) 0T — Ol
l ti+48
+ Zr" / h(x + tv); (1) (1)dr.
-8
To continue notice that

ti+6
/ G 10 OB 0| < ClolglBlo g,
ti—

and
lp(A™") —p(A"1i)lg < ClolgA™1.
The above yields

1£"hllo.q < CATIAllo.g + Cllhllo.g+1-

Next, notice that

’ A2 (Lh)(x + tvS)he(t)dt = AP / ’ (L"[9P ) (x + 1v°)ho(t)dt

—a

which, remembering Equation (3.4.2), implies

p—1
Il p.g < SAT2 Rl pg + C Y A"PTFD 0L hlog + Cllkll p—1.4+1
i=0
which proves the Lemma. ]

The above, together with Lemma 3.10, allows us to apply Theorem 1.1 and
conclude that the essential spectrum of £, when acting on 57+, is bounded by
A~ min{p.a} To complete our alternative derivation of the results obtained by Fourier
Transform we need to understand the discrete spectrum.
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Lemma 3.12. For each p,q € N we have opra(L)N{z € C : |z| > A7P} =
{1}.

Proof. Suppose that Lh = ph, || > A7P. Then
woyh = d,Lh = A1 LA,h.

Thus 9,4 € BP~1+4 is an eigenvector of £ with eigenvalue Au. Doing it p times
we have that 057 € B%4 is an eigenvector with eigenvalue A? ., but |AP | > 1
while the spectral radius of £ is bounded by one, hence it must be 054 = 0.
But then Lemma 3.9 implies that 37 ~!h is constant. Integrating we see that the
constant is zero. Iterating this argument p times we have & = const, but then
w =1 O



In this section we build on what we have learned in the previous sections to treat
the general non-linear case in which expanding and contracting directions are both
present simultaneously but there is no neutral direction.

The goal is to develop Banach spaces on which the transfer operator has nice
properties. This can be done in various ways: Baladi and Tsujii (2007, 2008),
Blank, Keller, and Liverani (2002), Faure, Roy, and Sjostrand (2008), and Gouézel
and Liverani (2006, 2008). Here we will describe the so called geometric approach
which generalizes the construction detailed in Section 3.4. Alternative approaches
are the Sobolev space approach and the (similar) semiclassical approach, which
generalise the norms detailed in Section 3.3. The description below is intended
as an introduction, see Gouézel and Liverani (2006, 2008) for more details and
Baladi (2018) for a much more in-depth discussion of all the different functional
spaces.

In the geometrical approach one would like to divide the stable and unstable
directions in such a way that one can integrate along the stable direction, similarly
to what we did in Section 3.4. The simplest possible generalization would be to
integrate on pieces of stable manifold (as in Section 3.4). This is possible (it was
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indeed the case in the first successful attempts to construct such spaces Blank,
Keller, and Liverani (2002)) but it has the drawback that the Banach space depends
strongly on the map. Such a feature is very inconvenient if one wants to study
an open set of maps, a necessity when investigating the dependence of the SRB
measure on some parameter or in the study of random maps. The construction
described in the following avoids such a problem, at the price of some extra work.

The type of result that can be obtained with the machinery described in this
chapter are as follows:!

Theorem 4.1. If M is a compact Riemannian manifold and f € Diff" (M) is
Anosov and topologically transitive,” then there exist a unique measure (the Sinai—
Ruelle—Bowen measure) (L and y > 0, such that, for each ¢, h €

cC% a >0,

furormn= [,

Our strategy is to prove Theorem 4.1 using Hennion’s Theorem Theorem B.14.
To this end we need a Lasota—Yorke type inequality and a compactness result.

The actual details depend on the choice of the Banach spaces. For example,
Lemma 4.9 and Lemma 4.16 will do. Given this ingredients the proof of Theo-
rems like Theorem 4.1 are standard and we leave to the reader to fill the details in
complete analogy with what we have done before.

Also we do not provide a detailed description of the statistical and stability
properties that can be derived with the present approach (a part form a brief dis-
cussion in Section 4.5) as they are either totally general facts (as the ones discussed
in Appendix C) or can be obtained in complete analogy with the arguments used
in the first chapters.

< CellglleellAllcae™".

4.1 Anosov maps

Let us define more precisely the class of maps we want to study: C” Anosov maps,
r = 2. A diffeomorphism f € Diff" (M, M),’ where M is a d-dimensional com-
pact Riemannian manifold, is called an Anosov map if there exist two uniformly

By Diff" (M) we mean the set of diffeomorphisms of M, r times differentiable with continuity.

2 A map is called topologically transitive if for every pair of non-empty open sets U and V/, there
is a non-negative integer n such that f*(U) NV # @.

3In fact endomorphisms can be treated in the same way, but let us keep things simple.
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transversal closed, continuous cones fields C*(x), CS(x) C TxM and A > 1 such
that D, fC¥(x) C int C¥( f(x)) U {0}, Dy f~1C%(x) C intC*(f~1(x)) U {0}
and

IDx foll > Avll ¥ v e C*x)

. s (4.1.1)
IDx f~ vl > Allvl] Vv eC(x).

Note that in higher dimensions, cones can have a variety of shapes.* We ask
that for each v € C*(x) there exists a d* dimensional subspace E of Tx M such
that v € E C CY(x), and for each v € C*®(x) there exists a d° dimensional
subspace E of Tx M such thatv € E C C%(x).”

It is well known that the above cone invariant and contracting properties are
equivalent to the existence of two invariant distributions, Katok and Hasselblatt
(1995). More precisely: at each point x € M there exist two transversal subspaces
ES(x) C C*(x) and E*(x) C C*(x) such that DfE*/$(x) = E*/S(f(x)) and,
in addition, E*/S (x) vary in a H5lder continuous way with respect to x.

It is possible to choose an atlas {U; };Nz , so that for each U; there exists a special
point x; € Uj, call it the centroid, such that Dy, ¢; E*(x;) = {(§,0) : & € R%}
and Dy, ¢; E¥(x;) = {(0,n) : n € R4}, Also, without loss of generality, we
can assume that ¢; (x;) = 0 and ¢; (U;) = By, (0,r;) x By, (0, r;) where, for all
d € Nandz € R?, Byi(z,r) = {x € RY : ||z = x| < r}. Clearly, there
exists § > 0 such that M = Uiqﬁi_l(BdS (0,r; —28) x By, (0,1, —26)) =: Ui(/]\i.
In other words, a small shrinking {((/J\i , ¢,-)}IN= , of the charts still forms an atlas.
Finally, we can always arrange so that (4.1.1) holds with respect to the Euclidean
norm in the charts for vectors in {(0,7) : 7 € R%}and {(£,0) : n € R%},
respectively.®

By the continuity of the distributions and the contraction of the cones it follows
that, provided the r; are chosen small enough, the constant cones C; = {(§,n) €
RY |l < [1§]} and C¥ = {(€, ) € RY - [[€]| < |Inl]}, are invariant. That is,
when the composition makes sense,

D¢;DfDy;'CY C intC¥ n {0}
D¢;Df D¢ 1CE CintCE N {0}

4A cone is a subset C of a real vector space such that if v € C, then Av € C for each A € R.

3The sophisticated reader will recognise that it might be more elegant to define the cones as
subsets of the Grassmannian.

®For example one can use the exponential map at x; composed with a linear coordinate change
to define the chart.

(4.1.2)
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Remark 4.2. Maps for which there exist cones Cy 'S that satisfy (4.1.2) and the
equivalent of (4.1.1), with respect to the Euclidean norm in the charts, are called
cone hyperbolic. Note that if the map is smooth we just argued that cone hyper-
bolic is equivalent to Anosov. Yet, the notion of cone hyperbolicity applies more
generally, for example to piecewise smooth maps, see Baladi and Gouézel (2010).

Remark 4.3. Note that lf f is cone hyperbolic, then there exists a neighbourhood
U C CY such that each f € U is cone hyperbolic with respect to the same cones.”

4.1.1 Transfer operator

Let us compute the Transfer operator. A change of variables yields®
/ h-gpof= / ho f~detDf|™ o f g,
M M

It is then natural to define, for each / € CP, the transfer operator
Lh(x) = (h|detDf|™Y) o f71(x). (4.1.3)
The reader can easily check that

L'h = (h|detDf"|™ V) o f7".

/Mwm=/Mc|h|-1=/M|h|-1of=/M|h|,

L is a contraction in the ! norm. Hence we would like to define, as in the previous
chapter, a norm for which the spectral radius is one and the essential spectral radius
is strictly smaller. In other words, we would like a Banach space on which £ has
spectral radius one and is quasi-compact.

Since

"It follows from a standard compactness argument.
8Unless stated otherwise the integrals are always meant with respect to the volume form associ-
ated to the metric.



4.2. A set of almost stable manifolds 85

4.2 A set of almost stable manifolds

By the general theory of hyperbolic systems, Katok and Hasselblatt (1995), a less
local statement also holds for Anosov diffeomorphisms: there exist two invariant
foliations, the stable and unstable foliations. More precisely, at each point x €
M there exist two local C"-manifolds W¥(x), W¥(x), of fixed size, such that
WS(x) N W%(x) = {x} and, for each y € W3/%(x), ES/*(y) is the tangent
space to WS/%(x) at y. The invariance means that f W¥*(x) D W*(f(x)) and
FWix) C WH(f(x)).

Clearly the above foliations yield a natural candidate for the direction on which
to integrate and indeed this was the original approach in Blank, Keller, and Liv-
erani (2002). However, as already mentioned, such a choice has at least two draw-
backs: first, although the manifolds are as regular as the map, the foliation is, in
general, only Holder, Katok and Hasselblatt (1995). Second, if one would like
to have a Banach space in which to analyze not just one map but an open set of
maps, then it is necessary to integrate on manifolds that are relatively independent
of the map. Both problems have been solved in Gouézel and Liverani (20006), the
idea being to introduce an “invariant” set of manifolds rather than an invariant
distribution (in some sense, the equivalent of an invariant cone, see Remark 4.3).

To make precise the above idea it is more transparent to work in charts. Let,
4 > 0 be small enough and define

£l =1G e C"R%,R™) : |[Glco <135 IDG} < 1,

where || - ||} is equivalent to the || - ||;~—1 norm and will be defined in Equa-
tion (4.2.2).

Given G € X[ we have (y,G(y)) € By, (0,1;) x By, (0,r;) forall y €
B4, (0, r;), thus the manifolds

Wizc = {(15,'_1()/, G(y))}yeBds(z,S) ; I/’Vi,z,G = {¢i_l(ya G(y))}yeBdS (z,28)
(4.2.1)
are well defined ds dimensional C" submanifolds of M for anyi € {1,..., N},
z € By, (0,r;—28)and G € X/ . We finally define the announced set of manifolds:

N
= g U Wi (42.2)

i=1 z€By;(0,r;—28) GGEl-r

Given W = W; , g € X" we will call W = W; , g its enlargement.
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The above set of manifolds will play the role of the invariant stable foliation
(but it is much more flexible) as is illustrated by the next Lemma.

Lemma 4.4. For each Anosov map f € Diff’ (M) there exist norms || - ||cr and
|- 1%, constants § > 0 and i € N such that for all W € X" and n =  there exist
m € N and a collection {W;}/L, C X7 such that,’

f7W W c f ).
i=1

Moreover, there  exists a constant Cs >0, dependin& only on 8, and a partition
of unity of f~"W, subordinated to {\W; {7, U{f "W\ f=" V[i} with C" norm
bounded by Cg. That is, a set {@;}7_, of functions, from f~"W to [0,1], such
that supp @i C Wi, sup; llpillerawy gy < Cs, and Y i(x) = 1 for each
x e fw.

Proof. Since we will need to control high derivatives it is convenient to use the
fact that, for each finite dimensional Banach algebra A, ck (Rd, A) is a Banach
algebra as well, provided we choose the right weighted norm. For example

Igllco = sup [lg(x)

xeRd (4.2.3)
Igllck+1 = sup [|ox; gllex + allgllex
1

for @ > 2 will do. Note that this implies'®

k
k .
lgllex = (j)ak 7 sup [|0%gloo- (4.2.4)

j=0 lo|=J

From now on we use such a norm with an a that will be chosen shortly.

Let W € X" and n € N large enough. Then /™" W will be a larger manifold
and the distance between the boundaries df ~" W and df " W will be (in charts)
larger than 2§ due to the backward expansion in the stable cone. First of all note
that, for each point x € f "W there exist jx € {l,...N}, zx € Bz (0,r;, —

9With a bit more work one can prove it for each i € N, but let us keep it simple.
19Here we use the usual PDE notation in which @ = (i1,--- , i) is a multiindex, |o| = k, and
% = axil ...Bxik.
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26) and Gy € C"(R%,R%), with x = ¢7!(2x, Gx(2x)) and [|Gx oo < 1), —
28, such that ij,zx,gx C f~"W. Then {W;
a § neighbourhood of f~"W in f iy, Accordingly, we can extract a finite
covering {Wy 7L, := {Wij ,Zxk,ka} of f~"W by compactness. The existence
of a partition of unity with the wanted properties and subordinated to the covering
is a standard fact, see Hormander (1990, Theorem 1.4.10).

To conclude it remains to show that Gy, € ¥ j’.Xk . Note that, by hypothesis,

v sZxp -Gy s covers the closure of

—7 _ AT BisJ iy
D sy Dx f " Dy, wybi | = (Ci,jgc; Di,jgc;) =: 5 (x)

where, by construction, if f”(x;) = X, then

i Ay 0
257 (x;) = ( (*)‘ Di’j) (4.2.5)

with ||(Af';j)_1 | <A™ and ||Di’j | < A", Thus, by continuity, for each y > 0
we can write

[

i,j — Eis] 4 Ai’j,
where = i] is a constant matrix with the same properties of &%/ (x;) in (4.2.5) and
1A% ]loo < v, (4.2.6)

provided the ; = 2§ have been chosen small enough. i
IfWien C f7"Wi .z, thensetting F(x) = ¢jo f7"o ¢i_1 we have that
there exista € C" (D, By, (0,7;)), D C Bg, (0, r;), such that

F(x,G(x)) = (a(x), H(a(x))). 4.2.7)
Hence, for each £ € RYs,

(Dat. DH oaDag) = 516,068 = (2 pi ) (€06

which implies
Da = A" + BY DG
DH = {(c"’f + D DG)(A + Bi’-fDG)_l} oq™!
={(C" + DY DG)(1 + (4™~ B DG)_l(Ai’j)_l} ool
(4.2.8)
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To estimate the higher order derivatives it is convenient to consider &%/ (and its
block constituents) as an operator mapping a vector filed in the chart i to a vector
field in the chart j. The norm of such an operator is naturally defined to be'!

1217 = sup [IEv]cr.
loller <1

To estimate such a norm it is helpful the following results.

Sub-lemma 4.5. For eachr € N and & € C" (R4, GL(R4,R?))
sup a 9% E |00 < |E|F < " (r)? sup a1 |3% E | 0o (4.2.9)

la|<r la|<r

Proof. Remembering (4.2.4) we have

r
r —, —
IEvller = (k)a’ “ sup [8%(E)loo

k=0 lo|=k
r k
< Z (;)ar_k Z (|ﬂ|)”aaE”oo”an”oo
k=0 la|+|B|=k
a’ kP gk—1Bl g 1198
\le: 2“:3| 18] (k—|,3|)'” loo 07 Voo

_|a|r alr
< Z (|0 E[|oo |Vl
|e|=0

<e (r)? sup a—'“'||a“5||oo||v||cr.

le|<r
That is
1217 < e"(r)? sup a™3% 5 oo
le|<r
On the other hand, if we restrict to v that are constant vector fields with ||v|| = 1

we have, for each || < r,

— r - - =
1217 = a '“'(M) sup [[(3%E)v)loo = a0 & g

lvll=1

Note that, by definition, |AB|} < | A|l* || B|*.
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From Sub-lemma 4.5 and equation (4.2.6) it follows that, by choosing a large
enough (depending on y and 1),

”Al’] ”: < Gry.

Accordingly, for each constant C. ; > 1, choosing y small enough and 7 large
enough, we obtain

sup || B/ CH|I* <
l,ljpll 17+ 1CHIE < 3Cry

H

sup | (A") 71 < (4.2.10)
l’j

2Cr,d

. 1
sup [ DV |7 < :
i " 2Cy

From the above and equation (4.2.8) it follows

(D)™ |1¥ = ||(11 + (A"’f)—lB"’f DG)~ (A )TH|x
2 (4.2.11)
3Cr,d .

AMYTIBM DG) T <

2C

Note that, by similar arguments, we can prove

I((Da)) M <

: 4.2.12
3C, ( )

where A’ is the transpose of the matrix A.
Unfortunately, to estimate (4.2.8) we need to control the norm of & o o™
rather than simply the norm of Z'. To this end we need another technical Lemma.

1

Sub-lemma 4.6. For each k € N and C¥ function g, we have

-1
lgoa™ ek < llgllck-

Moreover

18 oa™ 5 < CHIEI.
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Proof. By equations (4.2.3) the Lemma is true for £k = 0. Moreover we can write
lgoa™ flextr = sup 19x; (g o™ ek +allgoa™ ek
We can thus argue by induction and, remembering (4.2.12), conclude
g oa lgr+1 < sup 1@, D) "] o™ ek + allgller

< 1P Vglex + allgllex
< @) TEIVEler + allgller

< sup || (0x ; +a < )
e, P 16x 9l + algler < lglewss

provided we have chosen C, ; large enough.
To conclude, recalling (4.2.3), (4.2.4) and Sub-lemma 4.5,

&0 [F <e(r)? sup a*0%(E 0™ oo
la|<r

< e’ (r")? sup a_|°‘|||E oOl_1||c\0tI
la|<r

<e"(r)? sup a ) & pra

le|<r
||
< e’ (r!)? sup Z (M) sup a 811192 Z |00
wlsr 72o \J ) 181=)

< (2]
O

Applying Sub-lemma 4.6 to formula (4.2.8) and recalling (4.2.10), (4.2.11)
yields

IDHI; < I{(C™ + D™ DG)(1 + (A™) ™ B DGY ™ (4%) ™!} o o™
<G ||(C"’f' + DM DG)(L + (A™) "B DG)TH(AM) TNy

2
1+ |IDG|F) < —<1

6C3

provided, again, we have chosen C, 4 large enough. This concludes the Lemma.
O
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Remark 4.7. Note that, given fo € C" and norms ||-||cr, ||| for which Lemma 4.4
holds, there exists a neighbourhoodUU C C" of fo such that Lemma 4.4 holds, with
the same norms, for each f € U. This is the equivalent of Remark 4.3.

4.3 High regularity norms

IfW =W, € X and ¢ € C§(W,C), we define

lplex = [l o ¢z_1 ° GllC"(Bds(z,S),C)

where, again, G(x) = (x,G(x)). We are finally ready to define the relevant
norms.
Foreach p e N,g e Ry and h € C"(M,C) let'?

Ikl pg = sup sup bl sup / [0%h] - @, (4.3.1)
la|<p WeXr (oecg+|°‘|(W,<C) w
lolog+iar<1

where, for W = W; , ¢ € X/ and g € Co(W, C) we define

/ ¢ = / g 067 (x. G(x))dx.
w Bds(z,é')

and b will be chosen later. 3774 is the completion of C" (M, C) with respect to
I .-

The above norms have been introduced in Gouézel and Liverani (2006) and
are a generalization of the norms (3.4.1). They allow us to prove that the transfer
operator is quasi-compact with essential spectral radius smaller than A ~™in{P.q},

Here, to simplify the presentation, we discuss only the case p < 1 < g and we
do not attempt to obtain sharp bounds. We refer to Gouézel and Liverani (ibid.)
for the general case and more precise estimates.

Remark 4.8. From now on we consider § fixed once and for all, hence we will
often not mention the fact that several constants depend on 4.

Lemma 4.9. For eachq € (0,r —2), p € {0,1} and v € (A~™n{La} 1) shere
exists C, B > 0 such that, for allh € C"(M,C) andn € N,
I£%hll0.q < Cllhllo.q
1£"llpg < CV" lpq + Blllo.g1.
12Since, by definition, W belongs to one chart we can define ij h:= (axj (ho q)i_l)) o ;.




92 4. Uniformly hyperbolic maps

Proof. By a change of variables we have
[ o= [ hideaDs o s 0o s
w fw

where Jy f™ is the Jacobian of the change of variables.'> We can then use Lemma 4.4
to write

‘/ L he
14

[ B det Df* [ T f" g0 [T,
w;

m
<)
Jj=1

m
j=1

< |h

where Wi = Wi, ;. G,
Remembering Sub-lemma 4.6 and equation (4.2.7) we can write

[1det DF "I ™M w " 0 0 £"0; |caqw,) <Cs [1det DI 7 ooy
X |Jan|cc1(Wj) |‘P|Cg(Wj) :
To estimate the above integral we need a technical distortion Lemma.

Sub-lemma 4.10 (Gouézel and Liverani (2006, Lemma 6.2)). There exists con-
stants Cg > 0 such that, for eachn € N and g < r — 1, it holds

m
> deth"l_l\cq(Wj) w [ leaw;) < Cs.
i=1
Remark 4.11. We refer to Gouézel and Liverani (ibid., Lemma 6.2) for the proof;
however, let me give some intuition about this estimate. If A],, A% are, roughly, the
expansion and contraction in the unstable and stable directions, respectively, then
|det Df"|~Y ~ A,"A[™ while Jw f™ ~ A". Hence the summands are roughly
equal to A,;". However, if we consider a thickening of size A,;"*, in the unstable
directions, of each W;, then it corresponds to the image of a thickening of size one
of W under f~". Since the map is a diffeomorphism, this implies that all such
regions are disjoint, thus their total volume (essentially j A;”c?ds ) is uniformly
bounded by the total volume of M, hence the Lemma. The above argument is

essentially correct, apart from some standard distortion estimates.

I3Note that we are changing variables on a submanifold, hence the Jacobian differs from
| det Df™| which corresponds to a change of variables on the full manifold.
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Hence we have the first inequality in the statement of the Lemma:'*

1£"hllo.q < Cllhllo.g- (43.2)

To prove the second inequality we first consider the case p = 0. We can write'”

/ L he =/~L’"hgo =/~£"h<p8+/~£"h(<p—goe).
w w w w

where |9 —¢|ca—1 < l@|ca, |9 —@elca < Cuand |@e|ca+1 < Cue™ L. Tt follows!®

(¢ —@e) o f"lca < |(0%¢ — 3pg) o £ - (3x ) |co + Cil(@ — @e) © [ ]ca—1
< Cymax{e, A 71"},

Arguing as before, and choosing ¢ = A79", the above considerations yield
I£%hl0.q < CsA™" |[hllo.g + Crllhllo.g+1- (4.3.3)
To continue we must compute

(B (Lo @77 1)) 0 gy (x).

To this end we must exchange the order of 0, and £". Unfortunately, doing so will
produce a multiplicative factor larger than one due to the contracting directions. A
natural idea to overcome this problem is to decompose the vector fields dy, into
a vector field along the manifold W, that can then be integrated by parts without
the need of commuting it with £, and a vector field in the unstable direction that,
upon exchanging the order of dx, and £" will produce a contracting multiplicative
factor. The obstacle to this strategy is that the unstable vector field is, in general,
only Hélder, and hence a vector field along the unstable direction cannot have the
required regularity.

To deal with this last problem we will use an approximation instead of the real
unstable direction. Indeed, what is really necessary is that the vector field contracts,

l4Recall that § has been fixed and its choice depends only on f and M, hence we will no longer
keep track of the dependence of the constants on §. Also we will use, as before, Cy to designate a
generic constant depending only on f and M.

I5E.g., given a mollifier j, having support ¢ < §/2, define @z = [ jo(x — y)g o ‘f’i_l o G(y)dy
and @g(z) = @g o w 0 ¢j(z), where w(xg, Xy) = X;s.

16We use 3y f™ to mean dx(¢; © [ o br; © G ). This is nothing other than the contraction of
the dynamics in the stable direction.
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while being pushed backward, only for a time n. If E = {(0,7) € R% x R%},
then

En(¥) = Do -nogict ) @k, © f" 0 97 VE = {Un (0. g (434)

is a C" approximation of the unstable direction with the required property.

Sub-lemma 4.12 (Gouézel and Liverani (2006, Appendix A)). Given the decom-
position (4.3.4), we have

1Un o ¢i o f" od ! 0Gjllery, 2.5 < Co

Remark 4.13. The Lemma is technical and the proof is rather uneventful, so we
refer to Gouézel and Liverani (ibid., Appendix A) for the details. However, the
reader unwilling to look at another paper can simply carry out a proof by herself
using the analogues of (4.2.8) and (4.2.10) in the future rather than the past.

Sub-lemma 4.14. For each k € {1,...,d}, n € Nandz € W € X" we can
write
er =v(z) + w(z)

where v(z) € T, W, w(z) € En(¢;(2)) and such that

lvo fn|cr(f—nW,Rd) +wo fn|C’(f—”W,Rd) < Gy

Proof. Since T, W and E,(¢;(z)) are transversal (the first belong to the stable
cone while the second to the unstable one), we can uniquely decompose a vector
field along two such subspaces and the decomposed vector field will have uni-
formly bounded C° norm. It remains only to check is that the decomposition
has the required regularity. Since W is a regular manifold, the issue is reduced
to analysing E,(¢;(z)). The result follows then from Sub-lemma 4.12. Indeed,
the computation boils down to computing the norms of (1 — DGU,)™ ! o ¢; o
f"and (I — U,DG)™! o ¢; o f". These are uniformly bounded in C°, since
|Unllooll PG loo < 1 (provided we have chosen the r; small enough), and the C¥
norm can be computed by induction recalling the definition (4.2.3). O

Accordingly, foreach k € {1,...,d},

/ (paxkﬁnh:/ o(w,VL"h) + (v, VL h). (4.3.5)
w w
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By construction and Sub-lemma 4.14 there exists W, ||W||c1+¢®a gasy < C, such
that (pw) o ¢! o G = D¢ ' DGW. Hence

/ (w,V)L"h :/ (Dd)l-_lDG@, [Vﬁnh] o¢i_1(G(x)))dx
w B (2,6)

—[ @V eg oGl
By, (2,6)

__ / (div @) [£"h] 0 ¢ (G (x))dx
By, (z,8)

= / GLh
w

where ¢ = [div] o 7w o ¢, m(x, y) = x. Since |@|ca < Cy by (4.3.2) it follows

b ‘/W(w, V)Lh

To conclude we must analyse the second term on the right hand side of equation
(4.3.5). Recalling (4.1.3) we can write

< Ciblihlog < Cibllh]1q- (43.6)

/ (0. VL h) = / (. V [(h] det DF"[ ) o £))
w w
_ /W¢(Df_”v,[V(h|deth”|_1)] o f7)

:/ (17,£"Vh)+/ GLh,
w w

where 0 = ¢Df v and ¢ = (Df v, [V(|det Df"|71)] o 7).

By construction we have ||¥]cc < CyA™", and the usual distortion estimate
yields ||V]|c1+¢ < CyA™". We can then use (4.3.2) and the obvious inequality
bl|ox, hllo,g+1 < [I2]l1,4 to write

b ‘/W ¢(v, VL h)| < CuA™"||hll1,qg + Cabllhllg+1. (4.3.7)

Collecting equations (4.3.3), (4.3.5), (4.3.6) and (4.3.7) yields

I1£7hll1,q < Cxmax{A ™4, "™ A7y Ihll1,4 + (0 + DCallhllog+1,
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for some constant Cyx. We are almost done, the only remaining source of unhap-
piness is that the constant in front of the weak norm seems to depend on n. Also,
we have still to choose b.
Let us first choose the smallest 77 such that at C, A 7M1} < 7 Then we
choose )
b=v"Cc; L.

At last, for eachn € N we write n = kn +m, m < n, and

1L"hl1.g < VHIL " hl1.q + 2CHIIL" " hll0.g+1
VL " h1,q + Cellllog+1
- k_l o -
<VFIL Rl g + Co Y v hlog
Jj=0
< Co"|hll1,g + Cellhllog+1-

<
<

This concludes the Lemma. O

Remark 4.15. Note that the Lasota—Yorke inequality is proven in Lemma 4.9 only
for h € C". However by density it follows immediately that it holds for all h €
BPA.

The last ingredient of the argument is the compactness of L.
Lemma 4.16. For each ¢ > ¢’ > 0 the operator L : BY4 — %4 is compact.

Proof. The proof proceeds along the same lines as Lemma 3.10 and is left to the
reader as a useful exercise. O

Lemmas 4.9 and 4.16, together with Theorem 1.1, imply that £ has spectral
radius one and essential spectral radius bounded by v.

4.4 Low regularity norms

Here we consider norms adapted to maps with minimal regularity. Such norms are
inspired by Demers and Liverani (2008) (of which they constitute a simplification)
where they have been developed to treat maps with singularities. Subsequently
they have been modified to study the statistical properties of billiards by Baladi,
Demers, and Liverani (2018) and Demers and H.-K. Zhang (2011, 2013, 2014).
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However, such norms turn out to be useful also in treating C! ™% maps, with a €
0, 1).

The problem with handling f € C'™%, « € (0, 1), comes from the fact that
p € N, thus the minimal, non trivial, allowed p is 1 while the arguments of the
previous section need, at least, that p < «. To overcome this limitation one must
introduce the equivalent of a Holder or Sobolev norm in the unstable direction.
This can be done in many ways, the one proposed in Demers and Liverani (2008)
being the most geometrical.

The basic idea is that any distribution /4 that can be integrated along a stable
curve naturally gives rise to a function

U(h): 2, ={(W,p) : Wex!te, lellcsw,cy < 13— C

defined as
W)W, ) = / ho.
w

Thus it suffices to define a distance on £2, and impose Holder regularity on ¥ (/)
with respect to such a distance. Since we find it convenient to work in charts we
will define a distance in each £2; ;, = {(W,¢@) : W € Ei1+“, ||§0||Cg(W,(C) < 13
Note that the sets £2; 4 are not disjoint, yet we will consider their disjoint union, so
an object with two different representations will be treated as two different objects.
Then, for each (W; ;. G, ¢), (Wi z.6'.¢") € £2i 4 we define

d(Wiz,6,9), Wiz609") = |z =2/l + |G o 7z — G o Tl cogs,, (0,26))

+lgod oGor —¢ ol oG otrllea(n, 0.6
(4.4.1)

where 7;(x) = x 4+ z and G(x) = (x, G(x)). The reader can easily check that the
above is a semi-metric in £2; 4. Indeed, two curves with the same centre that differ
only outside a ball of radius 26 have zero distance. This is reasonable as the value
of G outside such a ball is totally irrelevant and we defined G on the whole space
just for convenience, while the introduction of enlarged manifolds was simply a
device to avoid invoking some fancy extension theorem to enlarge our manifolds
when needed. Thus, it is natural to consider the equivalence classes with respect to
the equivalence relation W ~ W' iff d(W, W’) = 0. In the following we will do
so without further mention. We have thus defined a metric and we can now define,
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for each p < g < @, and a > 0, to be chosen later,

|fw he — [w he'|
1721 p.g = allhllo.q—p + sup sup :
e P W) et AW.0), (W, ¢9)P

d((W,p),(W’,9"))<8/4

Once the norms are defined we can again complete the C! % functions with respect
to the norms || - [|o,4 and || - || p,¢ to obtain the spaces B%9 and B4, respectively.
Next, we need to prove the Lasota—Yorke inequalities.

Lemma 4.17. Foreachl > a > g > p > 0and v € (A~™P-4=P} 1) there
exist C, B > 0 such that, for allh € C*(M,C) andn = 0,

1€ hllo.g < CllAlog
1Ll p.g < CV* [kl pg + Bllhllog-
Proof. The first inequality has been proven in Lemma 4.9. In addition, by (4.3.3),”
1L ho.g-p < CeA™ """ |Ihllo,g—p + Calllt]0.g- (4.4.2)

For the second, let (W, ¢) = Wi 2.6, ¢), (W', ¢') = W c.¢') € -Q,g and
recall from the beginning of the proof of Lemma 4.9 that

/ L”h(p—Z/ h|deth”|_1JWf”-(p0f”<pj.
z z.G

Let ij 2;,G; = ¢,:1({G j(X)}xeBy, (z;.8/2)) be the restriction of Wy, ;. G-
Since the construction of the decomposition holds for any choice of 6, we can
arrange that supp@; C ij z;,G,; and that U; ij 2;G; 2 f . Let G/ be
the function describing the part of the graph of f~" W’ in the chart Uy, Wthh is
Cud(W, W)L close to Wi, .z;.G6;- Then {Wk.i’z.i’G//} is a covering of f"W’.
Next we define ¢/; : ij,zj,G} —> Wk,.z;.G,; as

Vi) = ¢ 0Gjomody; ()

where 7 (x, y) = x. Setting (p/j = @ o ¥j we have

@i o 0Gi(x) = @j oy oG (x).

7Since [|h]lo,q < llkllo,q” forallg” < ¢’ andg —p + 1> q.
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Ifle ={j : @jo f7"(f) > 0}, then, by definition, }_ ;¢ ) @j o /7" () = 1.
For all j, j/ € I({), we have d(¥;(0), ¥ ;7(0) < CyA™"d(W, W').'¥ Accord-
ingly,

Do -1 < CdW.W). (4.4.3)
j Cl
Next we set

Zj=|1det Df"[" Jw [ leaqwy : Z; = | |det D7 I f7 leaqwry
vy = Z;det DF" [TV 7 vy = (Z))7 et DF T s £
pj=¢of"; ¢;=¢' o f"
¢j=¢o ["oy;.
By the usual distortion arguments if follows that
|Z;-)/}—Zj)/j01ﬂj|cafp < Cyd(W,WHPZ;. (444
In addition,
Piodr) 0Gi(x) = Fjo¢; ! 0Gl(x) = @) oy 0 Gl(x) =g 0! 0G(x)
hence, recalling Sub-lemma 4.6 and definition (4.4.1),
0} — @jlca—r < Cod(W, @), W', ¢")P. (4.4.5)

Then, recalling (4.4.3) and Sub-lemma 4.10,

< Cyllhllo.g-pd (W, W').

m
[ ehe =30 [ mdetnsi g o g7
W i=17Wg

i.z/.G’

. . ’
JZJ ,Gj

Moreover, by (4.4.4) and (4.4.5),

/W Lhe' =Y Z; f hyj oV -¢;9;
/ =1

el w, ’
i.z/.G kj-.zA,-,Gj

< Gyllhllo.g—pd((W. ). (W'.¢")".

lgIndeed,. Vi(Q) # ¥/ (C) only if kj # .kj/. In su?h a case -the.vertical movement in the

chart k j» will correspond to a movement in a different vertical direction in the chart k ; (but always

inside the unstable cone). Since the manifolds Wi;z,.G; and ij z;,G, areata distance less than
25, :2j,G;

CyA™"d(W, W’), it follows that the point can move horizontally by at most CxA ™" d(W, W').
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We can finally compute

/ L he —/ L he’
Wiz.c I/Vi,z/,G’

m
<>z,

j=1
+ Cillhllog-pd(W. @), (W', ¢"))".

/ hyjpjp; —/ hyj oy;¢;9)
Wk;.2;.6; W,

- . . /
kj.zj.G}

At last notice that, recalling (4.4.1),
d((Wi;,2,,6,-7i9i®i) Wi, z;.6,-vi 0 Vj@j @) < CAT d(W.W).
Taking the sup on the manifolds and test functions and recalling (4.4.2) yields
1£"Rl p.g < Comaxia™ . a= ' AP=D" R g + Callhllog.

for some constant Cx > 0. To conclude we choose 71 such that
. 1/n
pmintp.g—p} > [C* max{1"?, A(p—q)n}] )

and then choose @ = V™" Cy. The Lemma follows arguing exactly as at the end of
Lemma 4.9. O

We leave to the reader the (simple) proof that the unit ball of B?-? is weakly
compact in B%4 for each ¢ € (0, ) and p € (0, g). Hence the transfer operator is
compact as an operator from B7*9 to 3%4. We obtain thus the quasi compactness
also in this case. Note however that, due to the low regularity of the map, the
essential spectral radius is rather large and it cannot be shrunk by using smaller
Banach spaces since on them the transfer operator is not well defined.

Remark 4.18. The above discussion proves that the essential spectral radius of
L can be made arbitrarily close to A~%/2. The factor 1/2 in the exponent first
appeared in the pioneering work of Kitaev (1999) and is most likely unavoidable.

4.5 Decay of correlations and limit theorems

In Section 4.3 we have seen that £ is quasi compact, hence it has only finitely many
eigenvalues of modulus one. Moreover, since L is a positive operator (it sends
positive functions to positive functions) it is possible to prove that the spectrum
on the unit circle forms a group under multiplication. In addition, the operator is
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power bounded and hence it cannot have Jordan blocks, thus the geometric and
algebraic multiplicity of the peripheral spectrum are the same. Hence, since one
is an eigenvalue, the dimension of the eigenspace associated to the eigenvalue one
corresponds to the number of SRB measures. This is quite a bit of information;
however, the fine structure of the spectrum is not known in general.

In particular, it is not known if Anosov maps always have a unique SRB mea-
sure. This depends on global topological properties that are not easily read from
the study of the transfer operator. If the map has a unique SRB measure, then there
is a dichotomy: either the map is not mixing (there are other eigenvalues, besides
one, on the unit circle) or it mixes exponentially fast (one is the only eigenvalue
on the unit circle and hence the operator has a spectral gap).

Accordingly, if the system is mixing, then the rate of mixing is determined by
the eigenvalues of the point spectrum of L. In particular, if an observable belongs
to the kernel of the spectral projection of the largest eigenvalues, then it will mix
faster.

Without entering into any detail let us conclude by pointing out that we have
now the technology to upgrade all the results of Chapter 1 to the case of uniformly
hyperbolic maps. In particular, we can study operators with a smooth potential
hence obtain the CLT, Local CLT and large deviation estimates. Also the pertur-
bation theory of Appendix C applies and we can prove stochastic and deterministic
stability. Moreover, the slightly more general perturbation theorem in Gouézel and
Liverani (2006, Section 8) implies linear response. In addition, using weighted op-
erators one can construct manifold invariant measures and use the thermodynamic
formalism to estimate the Hausdorff dimension of many dynamically relevant sets.
There is however an issue that we have not discussed: if one wants to study, e.g.,
the measure of maximal entropy, then one has to consider a transfer operator with
a weight given by the expansion in the stable direction. This, unfortunately, is (in
general) only Holder even in the case of very regular maps. Of course one could
study such a situation using the norms detailed in Section 4.4, however the ques-
tion remains whether it is possible to shrink the essential spectral radius or whether
one has to live with a very large essential spectral radius also for very regular maps.
The answer is that the essential spectrum can be shrunk exactly as in Section 4.3.
In order to do so however, it is necessary to consider slightly more general Banach
spaces; the details can be found, e.g., in Gouézel and Liverani (2008).
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4.6 A comment on the discontinuous case

Another case in which a map has low regularity is when it is only piecewise smooth.
This requires a new idea.

Up to now in the definition of the norms we used manifolds of a fixed, possi-
bly small, size (§) and the test functions were always of compact support. If the
map is discontinuous, then f~!'W will be cut by the dynamics into several pieces
and hence one cannot avoid arbitrarily small manifolds and test functions that are
different from zero at the boundary of the manifold. We are thus forced to include
in the set of allowed manifolds X arbitrarily small manifolds and for W € X to
consider ¢ € C4(W, C) rather than ¢ € Cg w,C).

This implies that we cannot integrate by parts (otherwise we would produce
boundary terms that we do not know how to estimate). Hence we are limited to
p < 1, even if the map is very regular away from the discontinuities.

Luckily a second look at Section 4.4 shows that we never integrated by parts,
thus we could have worked with C4 (W, C) as well.'” However, a quick inspection
of the previous arguments shows that they do not work for arbitrarily small mani-
folds, as the constants in the Lasota—Yorke inequality depend on §. It is necessary
to treat small manifolds differently.

A possible solution to this problem, first implemented in Demers and Liverani
(2008) and inspired by Liverani (1995a), is to add to the strong norm a term of the

form
1 / "
sup ¢,
w.oyees WY Jw

for some @ € (0,1). This means that the integral of # on small manifolds is
small, but not proportional to the volume of the piece, hence /4 is not necessarily
a function and it can have very wild behaviour on small scales.

This idea has enabled the extension of this approach to piecewise hyperbolic
maps, as already mentioned, as well as to dispersing billiard maps and their per-
turbations by Demers and H.-K. Zhang (2011, 2013, 2014), including a weakened
form to treat the measure of maximal entropy by Baladi and Demers (2020), and
to billiard flows by Baladi, Demers, and Liverani (2018).

9Indeed, there was no need to restrict to functions vanishing at the boundary of the manifold.



In this chapter we turn our attention to one of the simplest types of partially hy-
perbolic systems: uniformly hyperbolic flows. The flow direction is neutral and
does not enjoy the contracting and expanding properties in the stable and unstable
directions that we have exploited in previous chapters when studying the transfer
operator for hyperbolic systems. Our goal in this chapter will be to describe how
to modify the anisotropic Banach spaces successfully implemented for hyperbolic
maps to the case when the flow preserves a contact form. Here we restrict our
exposition to the smooth case. In the next chapter, we will address the changes
necessary for implementation in the presence of billiard-type singularities.

5.1 Setting

For ease of exposition and to more clearly identify the key features of the tech-
niques we shall present, we will limit our setting to that of a 3-dimensional man-
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ifold. This will suffice for the purposes of explaining the main ideas of this tech-
nique, as well as its eventual application to dispersing planar billiards.

Let £2 be a 3-dimensional compact, smooth Riemannian manifold, and let &; :
2 — 2 be a C? Anosov flow. By this, we mean that {®; },cR is a family of c?
diffeomorphisms of §2 satisfying the group properties: (a) @9 = Id; (b) ;0D =
@, forall s, t € R.

Moreover, at each x € £2, there is a D @;-invariant splitting of the tangent
space, Tx2 = ES(x) @& E€(x) & E¥(x), continuous in x, such that the angles
between ES(x), E¥(x) and E€(x) are uniformly bounded away from 0 on £2.
E€(x) is the flow direction at x € £2. We assume there exist constants C, C’ > 0,
A > 1,such that forall x € £ andt = 0,

|D®:(x)v|| < CA|v|| Y ve ES(x) (5.1.1)
|D®; (x)v]| = C'A*|v|| VY ve E"(x) (5.1.2)

We shall assume throughout that our Anosov flow is contact, i.e. it preserves a
contact form on £2. More precisely, we assume there exists a C2 one-form w on
£2 such that w A dw is nowhere zero. We assume that @; preserves w:

(D (x), DD (x)v) = w(x,v), Vx e 2,ve T S2. (5.1.3)

It is clear from the invariance described by (5.1.3) that ker(w) = ES(x) & E*(x).
It follows that if vy € E€(x) is a unit vector in the flow direction, then w(vg) # 0.
Thus replacing w by w/w(vg), we may assume without loss of generality that
w(vg) = 1 and that the contact volume w A dw coincides with the Riemannian
volume on §2. It follows from these considerations that the Jacobian of the flow is
identically equal to 1, i.e. J&; = 1, and that the flow preserves the Riemannian
volume on £2, which we shall denote by m.

5.2 Decay of correlations

The main question we shall address in these notes is that of the rate of decay of
correlations of the contact Anosov flow defined in the previous section. Fora > 0
and ¢, ¥ € C%(£2), define the correlation function,

/Qsowoétdm—/gwdmfgwdm‘.

If C; (¢, ) — 0ast — oo for all Holder continuous functions ¢ and v, then we
say the flow is mixing. The question then becomes, at what rate? The main result
that we shall establish in these notes is the following.

Ct(gl)? W) =
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Theorem 5.1. Let &; be a C? Anosov flow of a smooth, compact 3-dimensional
Riemannian manifold 2 preserving a C? contact form w. Then for each a > 0,
there exists n = n(a), and C > 0 such that for all p, ¥ € C*(§2) and all t = 0,

‘/Q(/Npoqﬁtdm—/ggodm/Qde

This is a special case of a more general result proved for any odd-dimensional
manifold by Liverani (2004). We will limit our exposition to three dimensions in
order to maintain the focus on the essential elements of the technique.

From the definition of the correlation function, one can see immediately that,
due to the invariance of the measure m, a simple change of variables yields,

< Clolca@)|¥lca@e™.

/(pg[/ocbtdmzf goocb_tlpdmzf Lio¥dm, (5.2.1)
M M M

where for each ¢, L;¢ = ¢ o @_; is the transfer operator, or Ruelle—Perron—
Frobenius operator associated with @;, defined pointwise, for example, on con-
tinuous functions. From this change of variables, it follows that the rate of decay
of correlations is tied to the spectral properties of the semi-group {£; };>0. This is
the perspective that we will continue to develop in this chapter.

5.3 Some history and present approach

The proof of exponential decay of correlations for some classes of uniformly hy-
perbolic flows has proved to be much more subtle than the analogous proof for
hyperbolic diffeomorphisms. For uniformly hyperbolic diffeomorphisms, there is
a type of dichotomy: either the map is exponentially mixing on smooth observ-
ables, or it is not mixing at all. This does not hold for uniformly hyperbolic flows.
In Ruelle (1983), a class of Axiom A suspension flows with piecewise constant
roof function were constructed that mix at a polynomial rate. Pollicott (1985) then
generalized this class of examples to obtain polynomial decay of correlations of
any power, indeed even logarithmically slow decay.

Some early success in proving exponential decay for geodesic flows on mani-
folds of constant negative curvature in 2 and 3 dimensions was achieved by Moore
(1987), Ratner (1987) and Pollicott (1992), and certain perturbations were consid-
ered by Collet, Epstein, and Gallavotti (1984), but the techniques were algebraic
and did not generalize to manifolds of variable curvature.
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The first dynamical proof of decay of correlations for Anosov flows was given
by Chernov (1998), who exploited the ‘twist’ provided by the contact form in or-
der to estimate a key quantity, the temporal distance function (see (5.7.14) and
Remark 5.24), yet he was only able to obtain a stretched exponential bound us-
ing Markov partitions. Next, Dolgopyat (1998) was the first to prove exponential
decay of correlations for Anosov flows, using an assumption of C! stable and un-
stable foliations to estimate a crucial oscillatory integral (see Lemma 5.30). This
work was further extended by Liverani (2004), who proved exponential decay for
contact Anosov flows by combining a functional analytic approach with the ideas
of Dolgopyat and Chernov. These ideas were then adapted to piecewise cone hy-
perbolic flows by Baladi and Liverani (2012), and finally' to some dispersing bil-
liard flows by Baladi, Demers, and Liverani (2018). It is this line of argument that
we shall follow in the present chapter, and we shall limit our discussion primarily
to the smooth, Anosov case, in order to present the key ideas most clearly.”

Given this approach, several choices are available with regards to the func-
tional analytic framework in which to view the transfer operator.

(1) The approach via Markov partitions used by Dolgopyat (1998).

(2) The norms originally used by Liverani (2004), which define norms integrat-
ing over the entire phase space of the flow. These were based on the paper
by Blank, Keller, and Liverani (2002), which introduced a set of Banach
spaces for Anosov diffeomorphisms and subsequently inspired a series of
papers constructing norms for hyperbolic maps from several points of view
(see Baladi (2017) for arecent survey of these approaches, and Baladi (2000)
for a more in-depth treatment).

(3) The Sobolev-type spaces used by Baladi and Liverani (2012) for piecewise
cone hyperbolic contact flows. These norms use Fourier transforms and
were based on work of Baladi and Tsujii (2007) and Baladi and Gouézel
(2010) who constructed the analogous norms for diffeomorphisms.

(4) The ‘geometric’ approach of Gouézel and Liverani (2006), which modified
the norms of Blank, Keller, and Liverani (2002) to integrate over cone-stable
curves only. This modification turned out to be essential for the adaptability

'n the meantime, Chernov (2007) and Melbourne (2007) had proved a stretched exponential
bound for dispersing billiard flows using the techniques adapted from Chernov (1998) and Dolgopyat
(1998).

2A different mechanism for exponential mixing has been proved in the recent work of Tsujii
(2018) and Tsujii and Z. Zhang (2020), but this lies outside the scope of the present notes.
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of this method to piecewise hyperbolic maps requiring only Holder continu-
ity in the unstable direction by Demers and Liverani (2008) and finally to
dispersing billiards by Demers and H.-K. Zhang (2011, 2013, 2014). Impor-
tantly for these notes, it was recently extended to prove exponential decay
of correlations for the finite horizon Sinai billiard flow by Baladi, Demers,
and Liverani (2018).

In the present chapter, we will define a functional analytic setup for contact
Anosov flows which follows the technique described in (4) above. As a result, our
exposition and some proofs will differ from Liverani’s published proof (Liverani
(2004)). Yet we choose this method since it combines a relatively simple exposi-
tion with a flexible framework. To date, the geometric version of norms integrating
over stable curves has proved to be the most versatile in terms of its applicability
to a wide range of hyperbolic systems with discontinuities.

We provide a brief organizational outline of the chapter for the reader’s conve-
nience. In Section 5.4, we introduce necessary definitions and define the Banach
spaces on which our transfer operators and resolvents will act. We also outline
some properties of these spaces regarding embeddings and compactness. Unfor-
tunately, Proposition 5.8 does not provide true Lasota—Yorke inequalities for our
semi-group {L;}s=0, so in Section 5.5 we introduce the generator of the semi-
group X and the related resolvent R(z), z € C. As evidenced by Proposition 5.13
and Corollary 5.14, we are able to prove quasi-compactness for R(z), and so ob-
tain useful information about the spectrum of X (Proposition 5.17). In Section 5.6,
we introduce an improved estimate on the spectral radius of R(z) when [Im(z)] is
large, which implies a spectral gap for X, and leads to the proof of Theorem 5.1.
This in turn is reduced to a Dolgopyat-type estimate, Lemma 5.22, which is proved
in Section 5.7. In Chapter 6, we briefly sketch some modifications needed to gener-
alize the present approach to dispersing billiards, as carried out by Baladi, Demers,
and Liverani (2018).

5.4 Functional analytic framework

In order to define the Banach spaces on which our transfer operator will act, we first
extend its definition from acting on continuous functions introduced in Section 5.2
to acting on spaces of distributions.

For o € (0, 1], and W a smooth submanifold of £2, define the C*-norm for
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functions on W by

lolcaqw) = sup lp(x)| + Hy (¢), (5.4.1)
xeW
Hy(p) == sup |o(x) —o(y)|dw(x,y)™%, (5.4.2)
x#yeWw

where dyy (-, -) is the Riemannian metric restricted to W. Notice with this definition
that C1 (W) is the set of Lipschitz functions on W.

Since the flow is C2, if y € C1(£2), then ¥ o ®_; € C'(£2). Thus we may
define £; acting on (C 1(£2))*, the dual of C1(£2), by

Lif(¥) = f(Yody), forally € CL(R), f e (CHR))*.

If f € L'(m), then we identify f with the measure fdm € (C'(£2))*. With this
identification, £; has the pointwise definition stated earlier, L; f = f o @_;, and
its action is consistent with (5.2.1).

5.4.1 Admissible curves

Due to the uniform hyperbolicity of @; given by (5.1.1), we define stable and
unstable cones C*(x), C¥(x) C E®(x)® E¥(x), lying in the kernel of the contact
form. The cones satisfy the strict invariance condition,

Dd_;C*(x) C C¥(P_4x), D®,C*(x) C C*(Psx), forallt >0. (5.4.3)

Note that, in contrast to the families of cones used for hyperbolic maps throughout
Chapter 4, these cones are ‘flat’ since they lie in the plane E¥ (x)&® E¥(x), and have
empty interior in 7% §2. We may choose these cones so that they are continuous
and uniformly transverse on §2. Moreover, the uniform contraction and expansion
given by (5.1.1) extends to all vectors in C*(x) and C*(x), respectively, with
possibly slightly weaker constants C, C’ and A.

Let do > 0 denote the minimal length of a closed geodesic on £2.

Definition 1. We define a family of admissible cone-stable curves,W* =
W5 (80, Co), in §2 satisfying:

(W1) forall W € WS and x € W, the unit tangent vector to W at x belongs to
CS(X);

(W2) there exists 8o € (0,do/2) such that |W| < 8¢ for all W € WS,
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(W3) there exists Co > 0 such that the curvature of W is bounded by Cy.

For brevity, we refer to W € WW*® simply as stable curves. A family of admis-
sible cone-unstable curves W (referred to simply as unstable curves) is defined
similarly.

Due to the strict invariance of the cones, we have @_ WS C WS, ¢ = 0, up to
subdivision of curves longer than length 9. Similarly, &, W* C W¥, ¢ = 0.

In order to compare different curves in YW*, we will introduce a notion of dis-
tance between them, reminiscent of (4.4.1), but with the added consideration that
we only want to measure distance transverse to the flow direction. To do this,
we place finitely many local sections X; in §2, which are smooth surfaces with
piecewise smooth boundary, such that

(a) there exists 79 € (0, do/2), such that each W € WS projects as a smooth,
connected curve onto at least one X; under {@; }o<s <105

(b) each X; is uniformly transverse to the flow direction;

(c) for each i, there exists a common family of stable and unstable cones for all
X € E,‘ .

On each section, we distinguish a point X; in the approximate center of X;, and
define local coordinates (x*, %) with X; at the origin, and the X (x*) axis tangent
to ES(x;) (E*(X;)) at X;. We may construct the X; so that they are approximately
rectangular in these coordinates: X; = {(x*,x¥) : X € I’,x" € I}'}, where I’
and I} are two intervals centered at 0.

On each domain® of the form D; = {P_: (X)) }osr<ro» let Pl.Jr denote the
projection onto X;, defined at x € D; as the first intersection of @;(x) with X,
fort = 0. For W € W¥*, if Pi+W is defined, then we may view it as the graph
of a function G;,w : I;w — I}, where I; yy C I}, in case the curve W is very
short.

Now if W1, Wo € W¥, we define a notion of distance between them as follows.
If there exists U € WY such that U N W £ @ and U N W, # @ and at least one
i such that Pl.+ Wi and Pl-+ W, are both defined, then

dyys (W, W2) = min{|Liwy Aiws | +1Giw = Gimal v w, 01wy 3 5:44)

Otherwise,* set dyys (W1, Wa) = oo.

3Note that these domains may overlap for different .
4That is, if W} and W do not project onto a common X, or if there is no U € W* with the
required property.
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The purpose of requiring the existence of U € W* intersecting both curves is
to ensure that they are sufficiently close in the flow direction (since the distance
in (5.4.4) only quantifies the distance between projected curves in X;, which quo-
tients out the flow direction).

Remark 5.2. The choice to compare curves on sections rather than directly on
the manifold §2 may seem unnecessarily awkward at this stage. Yet, it simplifies
certain norm calculations considerably by introducing a convenient set of local
coordinate systems. In addition, it allows for an immediate generalization to bil-
liards since then one can simply take the sections X; to correspond to the smooth
parts of the boundary of the billiard table.

A second point to notice is that the distance defined by (5.4.4) does not define
a metric, or even a pseudo-metric since it does not satisfy the triangle inequality
(compare with (4.4.1) which does not contain the term |I; w, Al w,| and does
satisfy the triangle inequality). This does not affect our analysis at all since the
norms we define will satisfy the triangle inequality, and this is sufficient for our
purposes.

For two curves Wy, W, € WS with dyys (W1, Wa) < oo, we can use the same
coordinate system to define a notion of distance between test functions supported
on these curves. Let y; € CO(W;), i = 1,2. Define

do(Y1,¥2) = miin{Wl o Giwy = V20 Gimlcow; w,ni;wy) >

where the minimum is taken over all i such that both Pi+(W1) and Pi+(W2) are
both defined.

5.4.2 Definition of the norms and Banach spaces

Givena € (0,1) and W € W*, define C*(W) to be the closure® of C (W) in the

C*(W) norm, defined by (5.4.1). This definition of C%* (W) guarantees that the

embedding of our strong space into our weak space is injective (see Lemma 5.4).
Now fix « € (0, 1]. Given f € C1(£2), define the weak norm of f by

flo= sup  sup /fwdmw,
Wews yecr(w) Jw
[¥lcemw)<1

SCY(W) is strictly smaller than the set of functions with finite | - |ce (w) norm, yet it contains
all functions with finite | - | ce’ (w) horm foralla’ > a.
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where myy is arc length measure along W'

By contrast, our strong norm will have three components, one for each of the
stable, unstable and neutral directions. Choose 1 < ¢ < o0, § € (0,) and
0 <y <min{a — B,1/g}.

For f € C1(£2), define the strong stable norm of f by

Iflls = sup sup / 7 dm.
Wews veCB(W) w
|¢|CB(W)S|W|_1/(]

Define the neutral norm of f by

Iflo= sup  sup /%(foqz)h:owmw.
WeWws yeCe(W) JW
[¥lcomw)<1

And finally, define the unstable norm of f by

I flu = sup sup sup &7
>0 Wy ,WoeW’ 4 eC*(W;)
dyys (W, Wa)<e Wfi|C0‘(W,-)sl
do(¥1,¥2)=0

Define the strong norm of f by
IA s = 11Flls + 1./ o + cull full

where ¢;, > 0 is a constant to be chosen later.

Now our weak space By, is defined as the completion of C2(£2) in the | - |y
norm, while our strong space 3 is defined as the completion of C2(£2) in the || || 5
norm.

7y dmw, — /W v dmw,

wi

Remark 5.3. The restrictions on the parameters are placed due to the following
considerations. That B < « is required for compactness (Lemma 3.10). Then
y < a— B is required when adjusting test functions for the unstable norm estimate
(5.4.10), while y < 1/q allows us to account for short unmatched pieces due to
our use of sections in the same estimate. Finally, ¢ > 1 is required to obtain
contraction in the strong stable norm estimate (5.4.9). For a C? flow, one may
take o = 1.

In order to use the Dolgopyat estimate (Lemma 5.22) to prove Proposition 5.20),
we shall introduce additional restrictions on the parameters when applying the
mollification lemma (Lemma 5.23). For this proof, we shall need B to be suffi-
ciently small and q sufficiently close to 1 so that (1 + B —1/q)/y < yo, where yy
is from Lemma 5.22.
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5.4.3 Properties of the Banach spaces

The spaces B and By, are spaces of distributions, and the following lemma de-
scribes some important relations with more familiar spaces.

For notational convenience, for v € C*(£2) and f € (C%(£2))*, we denote
by f () the action of f on . Any f € C°(£2) can be identified with an element
of (C*(£2))* (which we still denote by f') via the equality f(y¥) = f_Q wfdm.

Lemma 5.4. The following set of inclusions are continuous, and the first two are
injective,
Cl(R2) = B < By < (C¥(2))*.

Indeed, there exists C > 0 such that for all f € C1(£2), we have

[flw < Iflls < Clflcig)- (54.5)

Moreover,

IS < Clflwl¥|ce2) VY [ € Buw,

| <
5.4.6
W< ClfIsllene) ¥ f €B. (5.46)

Proof. The bounds in (5.4.5) are clear from the definitions of the norms, proving
the continuity of the first two inclusions. Moreover the injectivity of the first inclu-
sion is obvious, while that of the second follows from the fact that C 1 (W) is dense
in both C*(W) and C# (W) because of the way we have defined these spaces of
test functions.

It remains to prove the inequalities in (5.4.6), which in turn imply the continu-
ity of the last inclusion. We prove the first inequality in (5.4.6), since the proof of
the second is similar.

Let f € C2(2), ¥ € C% ). We subdivide £ into a finite number of
boxes B; and foliate each box by a smooth foliation of stable curves {Wg}eeg, .
To see that this is possible, we can choose each box B; to lie inside one of the
domains D; corresponding to surface X;. Choosing a smooth family of stable
curves intersecting X;, we can simply flow it to fill B;.

Now on each B;, we disintegrate the measure m into conditional measures
pgdm we on each Wg and a factor measure m; on the index set Z;. Since the
foliation is smooth, we have |P$|C'(Wg) < Cq forsome C; > Oand all £ € &j.
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Then,

dm;

f@)] = ‘/wadm

/ SV pgdmw,
We

s /
i VEi

< Z/, | flwl¥lcamwelpelceweydmi < C|f|lwl|¥]ce(g)-
i v

Since this bound holds for all f € C?(£2), by density it holds forall f € B,,. [

Remark 5.5. The third inclusion in Lemma 5.4 can be made injective as well
by adding a factor |W|™Y4" to the weak norm for some q' > q, and requiring
that « < 1/q’. This is done, for example, in Demers and H.-K. Zhang (2014,
Lemma 3.8), but we omit this added factor in the present setting since the injectiv-
ity is irrelevant for our purposes.

Lemma 5.6. The unit ball of B is compactly embedded in By,.

Proof. The compactness follows from two important points: the compactness of
the unit ball of C*(W) in C#(W) for each W € W*; and the compactness in
the C! norm of the set of graphs G; y with C? norm bounded by Cy on each
section X;. This allows us to prove that for all ¢ > 0, there exists a finite set
of linear functionals £; on B, with £; ;(f) = ij fYdmy,, W; € W3,
Y € C¥(W;), such that

ri_likn(lflw —Lix(f) < C| f s, (54.7)

for a uniform constant C > 0 and all f € B. This implies the required compact-
ness. For the details of the approximation needed to carry out the above estimate,
see Demers and H.-K. Zhang (2011, Lemma 3.10) or Baladi, Demers, and Liverani
(2018, Lemma 3.10). O

Problem 5.7. Assume that (5.4.7) holds. Show that it implies that the unit ball of
B is compact in By,.

5.4.4 Lasota—Yorke type inequalities for the semi-group {£;};>

The semi-group of transfer operators {L; };>¢ satisfies the following set of dynami-
cal inequalities, often called Lasota—Yorke, or Doeblin—Fortet, inequalities follow-
ing their seminal role in the development of the spectral theory of transfer operators
Doeblin and Fortet (1937) and Lasota and Yorke (1973).
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Proposition 5.8. There exists C > 0 such that for all f € Bandt = 0,

1L flw < Clflw (5.4.8)
1L flls < CAP 4 A=A=VDY| £110 4 C|f |w (5.4.9)
ILefle < CATY fllu+Clfllo+Clfs (5.4.10)
I1L:fllo < Clfllo- (5.4.11)

If £; were the transfer operator for a hyperbolic diffeomorphism of a 2-di-
mensional manifold, the inequalities (5.4.8) - (5.4.10) would be the traditional
Lasota—Yorke inequalities (there would be no neutral direction), and we would
conclude that £; is quasi-compact with spectral radius 1, and essential spectral
radius strictly smaller than 1. Unfortunately, in the case of a flow, we are left with
the inequality (5.4.11) for the neutral norm, due to the lack of hyperbolicity in the
flow direction. Thus the above inequalities do not represent a true set of Lasota—
Yorke inequalities since the strong norm does not contract. So we do not prove
that £, is quasi-compact on 5.

Before proceeding to the next step in the argument, which is the introduction
of the resolvent and the generator of the semi-group, we prove several items of the
proposition, to give a flavor for the estimates required (which are in the spirit of
the one in Section 4.4).

A full proof of analogous inequalities in a variety of settings can be found
in, for example, Gouézel and Liverani (2006) for Anosov diffeomorphisms, De-
mers and H.-K. Zhang (2011) for dispersing billiard maps, or Baladi, Demers, and
Liverani (2018) for some dispersing billiard flows.

Proof of Proposition 5.8. Due to the density of C2(£2) in B, it suffices to prove
the inequalities for f € C2(£2). We first prove (5.4.9).

When we flow a stable curve W € W9 backwards, @_; W may grow to have
length greater than 8p. If so, we subdivide it into a finite collection G; (W) =
{W;}i C W¥ sothateach W; has length between §y /2 and 8y, and U; W; = &_, W

Let f € C2(R), W e WS and ¢ € CE(W) with [ | sy < IW[71/9. We
must estimate, for ¢ = 0,

/Wﬁthdmwz > /meOCD,JWiqﬁtdei, (5.4.12)

Wi €G (W)

where we have changed variables and subdivided the integral on @_; W into a sum
of integrals over the W; € G;(W). The function Jy;, ®; denotes the Jacobian of
@; along the curve W;. Due to (5.1.1), this is a contraction.
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Case I |P—W| > 8o.
Foreach i, define ¥, to be the average value of / o ®; on W;. Then subtracting
the average on each W;, we can rewrite (5.4.12) as,

| et wamw = 3 ff(wwt To) Jw s dm,

W;eG, (W)
+J,-/ f Jw, @ dmy,
w;

< S NS Usl¥ 0 D = Wil es | Wil 91 Tw, ®el s
i
+ | f lwl¥i lcoewi Iw, Pt | caw,).
(5.4.13)

where we have applied the strong stable norm to the first set of terms and the weak
norm to the second set.

The C# norm of Y o, — 1, is easy to estimate using the uniform hyperbolicity
of @; given by (5.1.1), as well as the fact that we have defined stable curves which
are transverse to the flow direction, and whose tangent vector lie exactly in the
plane where the hyperbolicity of the flow dominates. Thus for x, y € W},

[V 0 Bi(x) =¥ 0 B ()] < Hy ()d(@(x), 21 (0))F < CA™Prd(x, y)P.
(5.4.14)
This, together with the fact that ¥; = v o &;(y) for some y € W; yields,

Vo @~ Vilcsamy < CAP Wicogny < CATPIIWTVE. (54.15)

Then, since /; is constant, |/, |cow;) < Ylcowy < W[~ 1/a,
In order to complete the estimate on the strong stable norm, we need the fol-
lowing lemma.

Lemma5.9. Let W € W5, t = 0, and suppose O_, W = {W;}; C W*.

(a) There exists Cq > 0, independent of W and t, such that for all W; and
x,y €W,

‘JW,- P (x)

Jw, Pt (y)

®) 1Jw; Prlcrwyy < (1 + ClIw; Prlcow,y-

— 1' < Cyd(x,y).
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(c) There exists C, independent of W and t = 0, such that

ZUW Pitlcow;) < C.

Proof. Item (a) is a standard distortion bound in hyperbolic dynamics. It can be
proved, for example, by choosing ; > 0 and subdividing [0, #] into [¢ /71 ] intervals
of length 71, plus a last one of length s < 77. Then using again (5.1.1)

Jw @ (x) 2
log m < 2:1 | log Jd?”l w; Pz, (@jr, (x)) — log Jd?”l W; Py (Pjr, ()]
+ | log J@,_SW,- D5 (Pr—5(x)) —log J@;_SW,- Dy (Pr—s(y))|
[t/71]
< ) Cd(Pjry (%), Djr, () + Cd(Py—s(x), Br—5(y))
j=1
t/nl
<C' Y AT, y) + A7 Vd(x.y) < Cd(x. y),
ji=1

where C” depends on the maximum C? norm of &g, 0 < 5 < 17.
Item (b) is an immediate consequence of (a).

Item (c) also follows from (a). To see this, note that if @_; W has length less
than §p, then there is only a single W;, and the fact that the Jacobian along stable
curves is a contraction implies the inequality. If @_; W has length longer than
80, then each W; has length at least §¢ /2. Thus using bounded distortion from (a)
yields,

WDl
|Jw; Pt cow,y ~ < 24 |D: (W)
2 o~ 2 2 1o (5.4.16)

<255 \W| < 2.
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The items of the lemma allow us to complete the proof of (5.4.9). Recalling
(5.4.13), and using (5.4.15) and Lemma 5.9(b) yields

|W|1/q 1w Doy

/ Luf v dmy <3 CA° ey £ 2

+C|f|w|W| Y4) Iy, 4| coqwny-

The first sum is uniformly bounded in ¢t and W by Lemma 5.9(a),(c) and a Holder
inequality,

1-1/q
|Wi |P: (W)
Z|W|1/q|JWi(pt|C0(Wi)$ Z(l—i—C) iWII Z|Jm¢t|co(m)
i

< +Cytact-ta,

The second sum is bounded uniformly in # and W since by an estimate similar to
(5.4.16),
D WV T @il cogwyy < 285 WA
i

Putting these estimates together yields,

/W Lifvdmy <CAPY s+ Clf |- (5.4.17)

Case Il |P_;W|<$
In this case,’® we do not subtract an average for the test function, and there is
simply one term in (5.4.12), to which we apply the strong stable norm,

D ()[4
Wi/a

where again, we have used (5.4.14) and Lemma 5.9 to estimate the norms of the

/ Lof v dmw < |f]s
w

| Jo_,ow)Ptlco,

test functions. By bounded distortion, |Jg_, (w)P:|co ~ %, so that

1-1/q
W] < C|lf s A=O=1/0

L d <C — <
| cervamy s 5=

%This case can be eliminated entirely by requiring that curves in WW* have a minimum length
of say, §o/2. Then Case I would suffice to estimate all curves, and (5.4.9) would simplify to
IL: flls < CABY| flls + C|f|w. Since we are interested in presenting norms which can be
applied to discontinuous maps and flows, we do not place this additional restriction on curves in
WS,
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Putting Cases I and II together and taking the supremum over W and ¥ proves
(5.4.9).

The proof of (5.4.8) follows more simply since the weak norm needs no con-
traction so we do not subtract the average value of the test function on each curve.
Also, there is no weight of the form | W |~1/4 since for the weak norm, the test func-
tion ¥ € C*(W) satisfies | |caw) < 1. Thus following (5.4.12) and applying
the weak norm to each term yields,

/W Cof v dmw < 31 f Ll 0 @lcawylIw; elceny
i

<Y ClSf lwldw; ®lcowyy < C'1f -

1

where again we have used Lemma 5.9.

The proof of the neutral norm bound (5.4.11) is similarly straightforward. Us-
ing the group property of @;, we have,

d oy — flod_
%((Etf) © q§s)|s=0 = sh_f)% (f Sf) !

d
= d—(f 0 ®y)|s=0 0 P—;.
s

(5.4.18)
Taking € C*(W) with |/ |cew) < 1, weuse (5.4.18) and change variables
asin (5.4.12),

d d
/W (L) o ®)ls=o ¥ dmp = Z /w,- S (f o @)ls=0 ¥ 0 &1y, &, dmy,

<Y N1 f llolvr 0 ®elcaqwy | Iw; Pelcewy).
i

and the sum is uniformly bounded in  and W, again using Lemma 5.9.

The proof of (5.4.10) is more lengthy, and uses a graph transform-type argu-
ment to show that if dyys (W1, W?) < ¢, then ®_;(W') and ®_;(W?) can be
(mostly) decomposed into matched pieces W}, sz such that dyys (W1, sz) <
CA™"¢. Unfortunately, to obtain this strict contraction, we compare distances
on the sections X; and so this decomposition will also create (short) unmatched
pieces which must be estimated using the strong stable norm, taking advantage of
the weight |W |1/4. To avoid cumbersome technicalities, we shall omit the proof in
these notes. We refer the interested reader to Demers and H.-K. Zhang (2011) for
the map version or Baladi, Demers, and Liverani (2018) for the flow version. [
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5.5 'The generator and the resolvent

The novel idea introduced by Liverani (2004) was to shift attention away from the
semi-group of transfer operators, and onto the generator of the semi-group, and
the associated resolvent. Indeed, the path we shall follow to prove Theorem 5.1
will be to prove a spectral gap for the generator.

For f € C1(£2), define

Xf:nmfﬁ:l.

t—0t t

The operator X is called the generator of the semi-group {L¢}s=0. Since &y is
invertible, in fact {£; };<R is a group when acting pointwise on functions; however,
since we are interested in its action on the Banach space 3, we consider only the
semi-group. This is because the dynamical properties of £; for ¢+ < 0 will not
preserve the norms: the roles of the stable and unstable directions are exchanged,
and so the definition of the anisotropic spaces would also need to be changed in
order to study ¢ < 0.

Remark that if f € C2(£2), then Xf € C!(£2),s0o Xf € Bby Lemma 5.4.
By definition, this implies that the domain of X is dense in B.

The following lemma provides additional information about the behavior of
L; for small ¢.

Lemma 5.10. There exists C > 0 such that for all f € B,
(@) lim [[L;f — fls=0;
t—0+

b) 1L f — flw <Ct||f]s t =0.

Proof. For the proof of (a), see Baladi, Demers, and Liverani (2018, Lemma 4.6).
We prove (b).
Let f € C?(2), W e WS and ¢ € C¥(W) with |¥|cew) < 1. Then using
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(5.4.18), we estimate

td
/W(z:tf—fwczmw =/W/O S(fod )y dsdmy

t
d
:/0 /W E(foq)’)“:oo@—swdmwds
! d
=[) Z/W E(foqu)lr:()wocps.]m@sdmu/l ds
i i

t
sfo 1£ 10 319 © @yl Tw; Bslceqnny
i

< Ctl| fllo.

where we have changed variables in the third line, and used Lemma 5.9 in the
fourth. Taking the supremum over ¥ and W proves (b). O

Remark 5.11. Item (a) of Lemma 5.10 implies that the semi-group {L; };>¢ acting
on B is strongly continuous. This in turn implies that X is closed as an operator
on B, with a dense domain, Davies (2007).

Next, for z € C, we define the resolvent R(z) : B — B by
R(z) = (zI — X)™L. (5.5.1)

When Re(z) > 0, R(z) has the following representation,

R(2)f = /Ooo e ?1L, f dt. (5.5.2)

The importance of (5.5.2) is that the operator R(z) integrates out time, and so elim-
inates the neutral direction. This will be the key point that enables the subsequent
analysis.

Problem 5.12. Use the definition of X to verify that R(z) defined by (5.5.2) satis-
fies R(2)Xf = —f + zR(z) f. This implies that R(z) satisfies (5.5.1).

5.5.1 Quasi-compactness of R(z)

Define A = max{A™# A77 A~(0-VD} <1,
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Proposition 5.13. There exists C = 1 such thatforallz € C withRe(z) =:a > 0,
andall f € Bandn = 0,

IR)"flw < Ca"|flw. (5.5.3)
IRZ)"flls < Cla—log)™|flls +Ca™"|flw . (5.5.4)
IRZ)" fllu < Cla—log) ™| fllu+ Ca (I flls +1Ifllo) . (55.5)
IR fllo < Ca'™1 + |z|/a)|f|w - (5.5.6)

Due to the integration over time provided by (5.5.2), Proposition 5.13 repre-
sents an essential improvement over Proposition 5.8. The key improvement is the
weak norm | f |, appearing on the right hand side of (5.5.6) in place of the neutral
norm || f ||o which appeared on the right hand side of (5.4.11). This permits the
following corollary.

Corollary 5.14. Letz = a + ib € C with a > 0. The spectral radius of R(z) on
Bisatmosta™'. Foranyo > (1—a~'logA)~!, we may choose c,, > 0 such that
the essential spectral radius is at most ca™'. Thus the spectrum of R(z) outside
the disk of radius ca™' is finite-dimensional, and if it is nonempty, then R(z) is
quasi-compact as an operator on .

Proof. Using the definition of the strong norm, we estimate,

a"lIR(2)" flg = a"|R@)" flls + cua” [ R(2)" fllu + a" | R(2) flo
< Cl(1—a " og )™ + culll fls + Ceu(l —a™ og )71 f |l
+ Ceul fllo+CA +a+[zD|f|w.

Now choose o € (1 —a"'logA)~!, 1) and N > 0 so large that oV /2 > C(1 —
a1 log )L)_N . Finally, choose ¢;, > 0 so small that Cc¢,, < oV /2. Then the above
estimate yields,

aVIIR)N flls <oV flls + Cla+ |z + D f |w, (5.5.7)

which is the traditional Lasota—Yorke inequality. Since this can be iterated, it fol-
lows from a classical result of Hennion (1993), together with the compactness of
the unit ball of B in By, (Lemma 5.6), that the essential spectral radius of R(z) on
Bis at most ca 1. O

The following two facts will be useful for proving Proposition 5.13.
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Problem 5.15. Starting from (5.5.2), prove by induction that

R)"f = / 1)' e F L fdt.

Problem 5.16. Let z = a + ib witha > 0. Show that

o0 tn—l ;
—Zh dt
/0 n—1°

Proof of Proposition 5.13. As usual, by density, it suffices to prove the inequali-
ties for f € C2(£2). We begin by proving the weak norm estimate (5.5.3).
Let W € W's, ¥ € C¥(W) with [{|cew) < 1. Then forn = 1,

00 tn—l
< / ( 1)'6_‘” dt <a " foralln > 1
0 n—1):

n—1

‘/WR(z)"fwde‘ - ‘/oo/ Lof v dmy (nt_l)!e_”dt

1
< e dt <C|flwa™".
[ o

(5.5.8)

where in the first line we have used Problem 5.15 and reversed the order of inte-
gration since the integral of £; f on W is uniformly bounded in ¢; in the second
line we have used (5.4.8) and Problem 5.16 to complete the estimate. Taking the
appropriate supremum over W and i proves (5.5.3).

The proof of (5.5.4) is similar, except that we take advantage of the extra con-
traction provided by (5.4.9). Taking W € W* and v € C# (W) with YV lcsmw) <
|W|~1/4, we estimate for n > 1, following (5.5.8),

n n_ _at
[ e sy amw| < [Tt e
o —(a—log)c)t
< [Tlen e "
tn 1 _at
+Cl gy = Jar

< Cla—log)™" [ flls + Ca™| f |w.

where again we have used Problems 5.15 and 5.16, as well as (5.4.9).
The estimate for (5.5.5) is again similar, now using (5.4.10).
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Finally, we prove (5.5.6). This differs from the previous estimates since we
will not simply apply (5.4.11), which would result in no improvement over Propo-
sition 5.8. Rather we first integrate by parts in order to use the weak norm. Now
taking W € W¥ and ¥ € C¥(W) with ||cew) < 1, we estimate,

/ SAREY f)0 @9)lsmo ¥ dmy

oo n—1 d
B /W/o (nt ¢ g (Caf) o @s)ls=odiydmy

_/ /°° " Lt pydrydm
(n—1)! dr " v

l‘" 2 L —zt [n—l £ d d
// ((n—z)' e (n—l)!) oS dty dmy

tn 2 Zth 1 L
=/0 ((n—Z)! (n_l)!)e /Wc,fwdmwdt.

Now we use the triangle inequality, apply the weak norm estimate (5.4.8) to the
integral over W, and Problem 5.16 to both terms integrated over ¢ to obtain,

IR)" fllo < Cflw(@"™" +|z]a™"),
which proves (5.5.6). O

5.5.2 Initial results on the spectrum of X

Proposition 5.13 and Corollary 5.14 provide useful information about the spec-
trum of X, which we denote by o (X). First notice that since || ;|5 is uniformly
bounded in ¢ by Proposition 5.8, the spectrum of X on B is entirely contained
in the left half-plane, Re(z) < 0. Moreover, the invariant measure m, identified
with the constant function 1 according to our convention, is an eigenvector with
eigenvalue 0 for X.

Proposition 5.17. The spectrum of X on B is contained in Re(z) < 0. The inter-
section (X)) N{z € C :logA < Re(z) < 0} consists of at most countably many
isolated eigenvalues of finite multiplicity. The spectrum of X on the imaginary axis
contains only an eigenvalue at 0 of multiplicity 1.

We will not present a formal proof of Proposition 5.17, which by now is stan-
dard. We refer the interested reader to Baladi and Liverani (2012, Lemma 3.6,
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Corollary 3.7) or Baladi, Demers, and Liverani (2018, Corollary 5.4). However,
we discuss the main ideas, which are essential for what comes next.

The proof of the proposition relies on the observation that for z € C with
Re(z) > 0, we have,

pesp(R(z)) ifandonlyif p=(z—p)~!, wherepesp(X). (5.5.9)

Here R(z) and X are understood as operators on B. The proof of this is classical,
see for example Davies (2007, Lemma 8.1.9). Furthermore, the following fact
holds.

Problem 5.18. Suppose p € sp(X) and p = (z—p)~' € sp(R(z)). Show that for
anyk = 1and f € B, we have (R(z) — p)* f = 0 ifand only if (X — p)k f = 0.
This implies that p is an eigenvalue of R(z) of multiplicity k if and only if p is an
eigenvalue of X of multiplicity k.

Figure 5.1 summarizes this relationship. By fixing @ > 0 and considering the
family of parameters {z = a + ib : b € R}, we see that the essential spectrum of
X is contained in the half plane {Re(w) < log A}, and so is bounded away from
the imaginary axis.

Since the spectrum of R(z) in the annulus {(a — logA)™! < |w| < a™!}
contains only finitely many eigenvalues of finite multiplicity by Corollary 5.14, it
follows that for each by > 0 the intersection of ¢ (X) with the rectangle {Re(w) €
(log A, 0], |Im(w)| < bo} contains only finitely many eigenvalues of finite multi-
plicity. Once this identification is made, the fact that the imaginary axis contains
only the simple eigenvalue at 0 follows from the fact that contact Anosov flows are
mixing, see Katok (1994, Theorem 3.6), together with the classical Hopf argument
as in Liverani and Wojtkowski (1995).

5.6 A spectral gap for X

Unfortunately, Proposition 5.17 is not sufficient to prove the desired result on de-
cay of correlations that is the goal of these notes. The problem is that although the
spectrum of X in each rectangle {w € C : Re(w) € (logA, 0], |Im(w)| < bo}
is finite dimensional, and so the minimum distance from an eigenvalue p # 0 in
this rectangle to the imaginary axis is positive, it may happen that a sequence of
eigenvalues p = u + iv approaches the imaginary axis as |v| — oo.

In order to conclude exponential mixing, we will show that in fact, X has a
spectral gap.
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S
<)

(a) (b)

Figure 5.1: (a) The spectrum of R(z) is contained in a disk of radius a~! (solid
red circle), and its essential spectrum is contained in a disk of radius (@ —log 1) ™!
(dashed red circle).

(b) The red circles are the images of the corresponding circles in (a) under the trans-
formation w — z — w™!. Due to (5.5.9), the spectrum of X lies outside the solid
red circle, and its essential spectrum must lie outside the dashed red circle. This
forces the strip between the dashed blue line (Re(w) = logA) and the imaginary
axis to contain only isolated eigenvalues of finite multiplicity. The x’s are possible
eigenvalues of X, which may accumulate on the imaginary axis as |[Im(w)| — oo.



126 5. Uniformly hyperbolic contact flows

Theorem 5.19. There exists v > 0 such that
o(X)N{w e C :—v < Re(w) <0} =0.
Theorem 5.19 in turn will follow from the following proposition.

Proposition 5.20. There exist v > 0, C > 0and bo > 0 such that for all z =
a+ibwithl <a <2and|b| = by, |R(2)"|5 < (a+ D))" forall C log|b| <
n < 2C log |b|. Thus the spectral radius of R(z) on B is at most (a + v) ™" for all
1$a§2, |b|>b0

Proof of Theorem 5.19, assuming Proposition 5.20. Due to Proposition 5.20 and
(5.5.9), the set {Re(w) € (v,0], |Im(w)| = bo} is disjoint from o(X). On the
other hand, the set {Re(w) € (v, 0], [Im(w)| < bo} contains only finitely many
eigenvalues by Proposition 5.17, and 0 is the only eigenvalue on the imaginary
axis. The finiteness of this set guarantees a positive minimum distance between
the imaginary axis and the closest nonzero eigenvalue. O

5.6.1 Reduction of Proposition 5.20 to a Dolgopyat estimate

Turning our attention to Proposition 5.20, we note that the strength of the claim
can be reduced by a couple of straightforward reductions.

The first point to notice is that the constant |z| appearing in (5.5.6) and (5.5.7)
ruins the uniformity of our estimates when |b| is large. To compensate for this, we
introduce the following modified norm, which depends’ on |z|,

u 1
1A = 1N + 0 f e + =1L To. (5.6.1)

|| 2|

It suffices to prove Proposition 5.20 for the norm | - ||, as long as C and v remain
independent of |z|. For this would imply that the spectral radius of R(z) acting on
the space (B, | - ||5) is at most (¢ + v)~!. And since

-l <118 <zl - I3,

the two norms are equivalent for each |z|, and so the spectral radius of R(z) on
(B, - |B) is at most (a + )~ as well.

"Note that |z| > 1 since @ = 1 in the context of Proposition 5.20.
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Problem 5.21. Show that the same choice of N and ¢, as in (5.5.7) yield the
inequality,

IRG)" flIg <o™a™ "I flz+Ca™"|flw. VY [€B,
foralln = N and some 0 < 1 and C > 0 independent® of z.

Next, using Problem 5.21 we have the inequality,
IR)*" flI5 < 0"a " |R@)" fllg + Ca"|RE)" flw. Y f €B.

For the first term on the right hand side, we estimate || R(z)" f || < (1+C)a™"| f ||,
again using Problem 5.21 and the bound | - [, < || - |ls < | - [|5. Interpolat-
ing between oa~! and a~!, and possibly increasing N to overcome the effect of
(1 + C), this implies the existence of v > 0 such that the first term contracts at a
rate (a +v) 2" f ||5- Thus to prove Proposition 5.20, it suffices to show that the
weak norm decays exponentially at a rate faster than a™", i.e.

IR@)" flw <@+w)"Ifllz  VfeB, (5.6.2)

for some v > 0, and z and » as in the statement of the proposition. Due to the
density of C2(£2) in B, it suffices to prove (5.6.2) for f € C?(£2). In fact, we
will prove the following key lemma.

Lemma 5.22 (Dolgopyat inequality). There exists C4 > 0 and for all 0 < a < 1,
there exists Cp, yo,bo > 0 such that for all f € C1(£2),

Cy
R flw < o (1 floo + (14 a7 og A)"V o), (563)

b
foralll <a <2, |b|=byandn = Cplnb.

Here, | - |00 denotes the L °° norm of a function.

Equation (5.6.3) is the Dolgopyat-type estimate that will prove the existence
of a spectral gap for X. Given (5.6.2), one might expect || f||; on the right hand
side of (5.6.3) rather than the C! norm of f. In fact, the C! norm of f can be
replaced by the strong norm of f due to the following mollification lemma.

14a+|z|

8Use the fact that 1 < @ < 2 to obtain a choice of & independent of a. Also, note that T

3.

<
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Let n : R3 — R be a nonnegative C* function supported on the unit ball
in R3, with /ndm = 1 and a unique global maximum at the origin. For ¢ > 0,
define ns(x) = e 3n(x/e).

For f € C%(£2) and ¢ > 0, define the following mollification operator,

Mo(f)(y) = /M Fo(y — ) f(0)dm(x), (5.64)

where 7, is the function 7, in a local chart containing y.

Lemma 5.23. There exists C > 0, such that for all f € C°(2) and & > 0,

IMs(f)— flw < C&|flg: (5.6.5)
IMe(floo < Ce™ 7PV 1) (5.6.6)
IV(Me(f))loo < Ce27PFVa| 7. (5.6.7)

The estimates on the mollification operator are fairly standard, and follow the
same lines as the proof of Lemma 5.4: the integral in an e-neighborhood of a point
x € £2 is disintegrated using a foliation curves in V¥, and the strong stable norm
is applied to the integral on each stable curve. The interested reader is referred to
Baladi, Demers, and Liverani (2018, Lemmas 7.3 and 7.4), or Baladi and Liverani
(2012, Lemmas 5.3 and 5.4).

Proof of Proposition 5.20 using Lemma 5.22. As already noted, it suffices to show
that (5.6.2) holds for all f € C!(£2). Fix z as in the statement of Proposition 5.20
and without loss of generality, assume b = 1. If necessary, increase by from
Lemma 5.22 so that Cp loghg = N. Then forn = Cplogb and ¢ > 0 to be
chosen later, we have,

IR (f = Me(/Nw + [R(2)*" Me(f)w
Ca™"(|f = Me(f)lw + b7 |Me(f)loo

+ (1 +a " og A) ™|V (Me(£))loo)
< Ca_Z”(SyllfHB + b—yog—l—ﬂ+1/q||f||s

+ b7 2B a7 og A)T £ Is)
< Ca_2”||f||fg(8yb 4 pvog1-B+1/q
+ b0 27 BHa (1 4 g7 og A7),

IR(2)*" f|w

<
<



5.6. A spectral gap for X 129

where for the second inequality we have used (5.5.3) for the first term and
Lemma 5.22 for the second, while for the third inequality we have used Lemma 5.23,
and for the fourth inequality || f|I5 < |||l f || ;-

Choose p > 1/y and set ¢ = b~P. Next, choose 8 sufficiently small, and
g > 1 sufficiently close’ to 1, so that p(1 + 8 — 1/¢) < yo. Then,

IR()*" flw < Ca | flE(d™" + b2+ b772bP(1 +a ' log A)™"),

where y; = py —1 > 0and y», = y9 — p(1 +  — 1/q) > 0. Finally, choosing
n = % implies b?(1 + a~'log A)™ < 1. Putting these estimates
together yields,

[R(2)*" flw < Ca™"| fllg=b7" .

for 7 = min{y1, >}, and n = C logh := max{ Cp}logb. Next,

choosing bg sufficiently large so that Cbh, v/2 < 1 eliminates the constant C
from the estimate on |R(2)®" f|w. Finally if also n < 2C logh, then b=%/2 <
e 7/(4C) "and (5.6.2) is proved. O

5.6.2 Corollary of the spectral gap for X: Proof of Theorem 5.1

Using Proposition 5.17 and Theorem 5.19, we apply the results of Butterley (2016)
to obtain the following decomposition for £;. Let v be as in Theorem 5.19 and v
be as in Proposition 5.20.

There exists a finite set of eigenvalues {z; }9’:0 =sp(X)N{w € C : Re(w) €
(—v,0]}, with zg = 0 and Re(zj) < —v for 1 < j < N, a finite rank projector
I1, a bounded linear operator P; on B satistying P;I1 = I1 P; = 0, and a matrix
X0 (B) O having {z; }?’zo as eigenvalues such that

Lo=eXm+ P, 120
Moreover, for each v; < v, there exists Cy,, > 0 such that for all f € Dom(X),
|P: flw < Cy e V|| Xf|lg, forallz = 0.

Note that according to the above equation, the weak norm of P; decays on Dom(X),
but not on all of B. Indeed, if || P; f ||z decayed at a uniform exponential rate for

9Note that this choice of ¢ does not effect the requirement y < 1/¢ from the definition of the
norms, since we may safely take y < 1/2, and so make it independent of 1/g when ¢ is close to 1.
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all f* € B, this would imply a spectral gap for L;, ¢ > 0. The above inequality is
significantly weaker, yet sufficient to conclude exponential decay of correlations.

For f € B,letIlj f = c;(f)g; denote the projection onto the eigenvector g ;
corresponding to z ;. Note that by conformality of the measure m, for f € C?(£2),

we have co(f) = [o f dm.
Now let ¢ € C%(R2), ¥ € C¥(£2). Then

/Q(p-wodftdm:/QE,(p-wdm:/Qth-de—i-/getX(Hf)-de

N
=/QP’(p'wdm+/Q(60(‘/))+;€’Z"CJ(¢)gj)wdm.

Thus recalling (5.4.6),

‘/go-wocb,dm—/<pdm/ wdm‘
2 2 2
N

< ClPiglwl¥lce + Y cillellsl¥]cuze™
j=1

< C(e™Xgls + e gls) ¥ cace)
< Ce ™Mol ¥ice@) -

where we have used the fact that ¢ (¢) < ¢, |l¢||5 for some ¢; independent of ¢,
and recalling (5.4.5), that [| X¢ |5 < C|X¢|c1(2) < Clolc2g)-

To complete the proof of Theorem 5.1, it remains only to approximate ¢ €
C%(2) by ¢ € C?(£2). This is by now a standard approximation, which we recall
here for the convenience of the reader.

Let ¢,y € C%(£2) such that [, dm = 0. Given any ¢ > 0, define ¢ €
C?2(£2) such that |¢—¢| ;1 m) < €|@|ce(g) (for example, by using a mollification
as in (5.6.4)). One has then that |¢|c2(g) < Ce*2|@|cu(g2). Now forz = 0,

[o-vovian=[G-orvoviam+ [o-vodam
< elglce@)|¥lcow) + Ce " olc2oy [V Ice ()
< (8 + Ce—”é‘“_z)|¢|ca(rz)|1ﬁ|ca(9) :

Now choosing & = e~"!/2 completes the proof of Theorem 5.1 with = va/2.
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5.7 Dolgopyat estimate: Proof of Lemma 5.22

We conclude this chapter with a proof of the Dolgopyat estimate, which is the
content of Lemma 5.22. The reader is advised that this is by far the most technical
part of the exposition.

Let f € CLY(2), W € WS, and ¢ € C¥(W) with |{/|ceqw) < 1. Let
z =a+ib € C such that 1 < a < 2 and without loss of generality, take b > 1
For n = 0, we must estimate [;;, R(z)" f ¥ dmw .

Remark 5.24. Most of the calculations in this section are made simply in or-
der to arrive at the oscillatory integral appearing in (5.7.17) and estimated in
Lemma 5.30(c) using the smoothness of the temporal distance function established
in Lemma 5.30(a) and (b). In order to accomplish this, we will localize in both
space and time using partitions of unity in order to exploit the presence of cancel-
lations occurring on small scales according to the oscillation provided by e’ bt

First, we localize in time. Let © > 0 be a small time to be chosen later. Let
P : R — R be an even function supported on (—1, 1) with a single maximum at
0, satisfying ) . p(t —£) = 1 forany t € R. Define p(s) = p(s/t). Then p
and p both define partitions of unity on R. Next, using Problem 5.15,

- 1 o _ T n—l s
REP S = [ et d = [ o) e g ds .
E ol
n Z/ (s—l— ri)! e~ L, (£ F)ds

LeN* """

where N* = N \ {0}. To abbreviate the notation, we introduce the following
notation for the kernels,

(S + Zf)n_l e—z(s-l—ﬁr)
(n—1)!

n—1

(n—1)!

Pnt,z(s) = p(s) , forl > 1,

e “ls>o,

and  pp,0,z(s) := p(s)

where 1 4 denotes the indicator of a set A.
Using this notation, we write the integral needed to estimate the weak norm
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as,

T

/WR(z)"demW -/

eN’ 7T

-> > [

pn,e,z(s)/ JWjCDE‘Ew o®p Lsf dejds,
LeN W; €6 (W) "7 Wj

Ptz (5) /W U Loo (Lo f) dmuds

(5.7.2)

where in the first line we have reversed order of integration since the integral in ¢
converges uniformly as x ranges over W, and in the second line we have changed
variables for each £, recalling the notation G; (W) introduced in the proof of Propo-
sition 5.8.

Next, we introduce partitions of unity in space as well, dividing 2 into ‘flow
boxes’ in which we shall compare integrals on stable curves.
Letr € (0,8¢) and ¢ > 2 to be determined below. Set,

r=rl/3, (5.7.3)

At the end of this section, r will be taken sufficiently small with respect to 5!,
We choose a finite collection of points x; so that U; Ny (x;) = M, where N} (x;)
denotes the r-neighborhood of x; in £2.

Definition 2 (Darboux coordinates). Using the fact that 2 and w are smooth, and
the splitting of the tangent space is continuous, we may choose cr sufficiently
small, so that the following local coordinates exist in a 3cr neighborhood of each
xio x = (x5, x%, x%), where

a) xi = (0,0,0) is placed at the origin;
b) {(x%,0,0) : |x*| < 2cr} is a stable curve;
¢) the tangent vector (0, 1,0) at x; belongs to E*(x;);

d) in these local coordinates, the contact form w is in standard form, @ =
dx® — xSdx*.

The last item (d) in the definition above, distinguishes x° as the flow direction.
In these local coordinates, define for any ¢ € (0, ¢r], the flow box

Be(xi) = {y € Nacr(xi) : max{|x] — y*L. |xj' = y"[.x]) = y°I} < e}
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Notice that two faces of the box can be obtained by flowing a single stable curve
(in our coordinates, this would be the top and bottom faces). We call these the
stable sides of Bg(x;). Similarly, we define the unstable sides, and the remaining
two side we call the flow sides of each box.

Finally, choose ¢ > 2 sufficiently large (depending on the maximum curvature
of stable curves in W¥, and maximum width of the stable cone) so that if W € W*
intersects By (x;), then @3(W) does not intersect the stable sides of B, (x;) for
all s € [—cr,cr].

Now we return to our required estimate of (5.7.2). We subdivide each curve
W; € Gy (W) into curves W, ; = W; N B(x;), and define
Agi =1{J : W; € Gy (W) crosses B, (x;) completely in the stable direction}.

If W; € Gy (W) intersects B (x;), but does not cross B, (x;) completely, then
we place W;; := W; N Ber(x;) € Dy, the set of discarded pieces, and note that

f Jw,; P ¥ 0 Py Ls f dmw; < cr|Jw; Peclcow;)|¥ ool f loo-
W/nBcr(xz) .

Then summing over £, we have that the contribution to the integral from discarded
pieces is at most,

Z Z / Pn t,z($) JWj¢€r Yoy, Ls f dej < Cr|flea™,

£=0jeD, W/'nBcr(xi)
(5.7.4)
for some C > 0.

Problem 5.25. Prove (5.7.4). Hint: Use the fact that due to the choice of c, there
are at most two curves in Dy for each W; € Gy (W). Then Lemma 5.9(c) and
Problem 5.16 complete the argument.

Next, set £g = aen_2'c We estimate the contribution from the terms with £ < £g.
These are the ‘short times’ 7 < _75 in the integral (5.7.1).

Problem 5.26. Use Stirling’s formula to show that the contribution from terms
with £ < Lg is bounded by

foz (nt—l)' / Lof wdmydi <Clflea™e™, (575

for some C > 0 independent of n and a.
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Now choose n sufficiently large that
max{e ", A_an?} <r. (5.7.6)

It remains to estimate terms in the sum (5.7.2) for large times £ > £ and com-
ponents W;; C W; € Gy (W) that completely cross the box B¢, (x;). Define a
partition of unity {¢,;}; comprised of C*° functions ¢,; centered at each x; and
supported in B;(x;). We may choose this partition such that,

IVérillLee <Cr~! and #{¢,;i}i < Cr 3, (5.7.7)

for some C > 0. Then recalling the definition of Ay ; together with (5.7.4) and
(5.7.5), the sum from (5.7.2) that we must estimate is,

[ Ry svamy =¥ 3 [ pest) /W,,,. Jw, Bue ¥ 0 yg i Ly f dmy, ds,

L=y @ jEAg;

+0@™"r|floo) -

We would like to use the oscillation in the kernel p, ¢ , to create cancellation
in the integrals against Lipschitz functions. Unfortunately, our integrands are not
Lipschitz, but only Holder continuous. To correct for this, define

Vo= Wl / Vo e dmy,,
Wi.i

and
Jo i = Wiil™ / Jw; @y dmyy, ;.
i
Due to the regularity of ¢ and Jy, @¢,, in particular (5.4.15) and Lemma 5.9(a),
we have

1V jideji =V ° o Jw; Peclcogw; ;) < Cr¥ide i s

for some C > 0. Then summing over £ and using the fact that | jiloo <1, we
must estimate,

/W REY fdmw =33 Y e [ Pt 2(5) /WN_ bri Lo f dmy,ds,

L2y 1 jEAg,

+0@™"r% floo) -
(5.7.8)
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Now for each W; ;, define Wﬁi = {DsWj,i}se(—cr,er) N Br(xi) to be the weak

stable surface'’ containing W ;. In the local coordinates in B (x;), we view W]Qi
as the graph of the function

WP (x*, x%) = W;(x*) 4 (0,0, x°),

where
W) = (¢ E; (%), Fy(x*). [x°L.Ix°] <. (5.7.9)

and E;, F; are uniformly C? functions. Due to the contact form v = dx° —
x5dx" in the local coordinates, it follows that F j’ (x%) =xE ; (x%).

On each B, (x;), we use these functions to change variables in each integral
on the domain S, = {(x*,x%) : |x*| < r,|x°| < r}. Thus,

T
/ Pni,z(s) /W ¢ri Lsf dmwy,ds =/:g pjbrj fidx*dx®, (5.7.10)
Jii r

—T
where

Pi 0, x%) = P (=x0), br (2%, x%) = i 0 WP(x*, x0) - [ W] ("),
fix5,x% = fo W]Q(xs,xo).

At this point, given two curves, W ;, Wy ; € Ay ;, we would like to slide these
two curves to the same reference weak stable surface in B, (x;). Let us define this
surface to be

W = {(x*,0,x% ¢ 1x°|, [x°] < 1},

which, by choice of coordinates, is precisely the surface obtained by flowing the
stable curve through x; given by {(x*,0,0) : |x*| < r}, according to Defini-
tion 2(b).

In order to carry out this sliding, we will use a local foliation of real strong
unstable manifolds'' in B, (x;).

10rf Wi is alocal strong stable manifold, then iji is the corresponding local weak stable man-
ifold. ’

HEor systems with discontinuities such as billiards, the real unstable manifolds do not create a
nice foliation of By (x;), so a smooth local foliation of unstable curves lying in the kernel of the
contact form must be constructed. This is quite laborious and outside the scope of these notes. The
interested reader should refer to Baladi, Demers, and Liverani (2018, Section 6) for the details of
the construction.



136 5. Uniformly hyperbolic contact flows

Definition 3 (Unstable foliation). For each i, define a foliation ¥ on By (x;), such
that for all x° € [—cr/2,cr/2],

F(x*, x*) = {(G(x*, x¥), x*, H(x*, x*) + x°) : |x%], [x*| < cr/2},

and each curve x* + y¥ (x") = (G(x*,x%),x¥, H(x*, x¥) + x%) is a local
unstable manifold through (x*,0,0). Moreover, for all x° € [—cr/2,cr/2],

(i) 0xuH = G, so that y¥; lies in the kernel of w;
(ii) G(x*,0) = x5, H(x%,0) = 0;
(iii) P_s(y¥s) € WY, forall s = 0;

(iv) there exists C > 0, independent of x°, such that C™' < ||0xsG|leo < C,
(and so by (i), ||0xsdxu H || < C);

(v) |0xu0xsGllcn < C, for some n > 0 and C > 0 independent of x*;
Vi) 9xs Hco < Cr, [|[9xs Hcn < C.

Remark 5.27. We list properties (i)-(vi) for the convenience of the reader: it is
known that the foliation by local strong unstable manifolds enjoys these properties
for Anosov flows (see, for example Liverani (2004, Appendix B) for the Anosov
case or Baladi and Liverani (2012, Appendix D) for the piecewise Anosov case).
Indeed, item (i) is immediate since unstable manifolds lie in the kernel of the con-
tact form;, (ii) is simply a normalization that we take, choosing our parametrization
to be the identity on the stable manifold of x;; (iii) holds due to the invariance of
unstable manifolds.

To justify the estimates in (iv)-(vi), we present the following suggestive cal-
culation, which while not a complete proof, does give a flavor for the estimates
involved. We consider the 2-dimensional case on one of the sections X; defined in
Section 5.4.1. On such a section, we adopt local coordinates (x*, X%).

For§ € [—r,r], let Ve = {(x*,x") : X* = &)} denote a stable curve in X;. We
project the foliation F onto X; and normalize G (x*, X%) so that dzs G (¥*,0) = 1.
Define

h,:.-,o . VE — 1

to be the holonomy map along the projected unstable foliation. It follows that the
Jacobian J hg  satisfies the following relation,

9 G(E5,0) 1
G (x5, E)  0uG(x5,€)

Jhe
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so that 3zsG can be expressed in terms of the Jacobian of the holonomy map,
which is known to be Hélder continuous. This is the content of (iv).
Moreover, using the invariance (ii),

J¢_g Vo Dy (¢—Z (X))
Jo_,ve P1(P_g(hg o(x)))

Theo(x) =]

{=1

and taking dzu of this product converges since the unstable direction is the con-
tracting direction for @_y. This is the main idea behind (v).

Lifting these calculations to the flow yields (iv) and (v) for G. Item (vi) follows
from the normalization (ii) together with (iv).

Having defined our foliation, for j € Ay ;, we consider the associated holon-
omy map hj; : Wj; — WP. As a function of x*, we have,

hjio Wjx®) =t (1% (x°),0,h% (x*)). (5.7.11)
This yields in particular that F(hj- (x%), Ej(x*%), h?.(xs)) = W, (x*), so that,

G(h5(x), Ej(x*)) = x* and  H(h$(x%), Ej(x) + h9(x) = F;(x*).
(5.7.12)
On S;, define

p(xO) (Ut —x0* 1 0
Kgpij(x*,x% = Wl =) e e g, (x5, x0).
Jii !

Then (5.7.10) yields,
/ pjbrj fidx®dx® = |Wj,i|/ Ko (6%, x0) F(W; (%) + (0,0, x°))e 2> dx® dx®
Sy S,

= |Wj,i|/ Ko (. x0) f(15(x).0, A9 (x*) + x°)e'®** dx* dx”
Sr

(Et)n_l —alt

. u 2
+ Wi lO(19% f loor )(n_l)! :

where 0% f denotes the derivative of f in the unstable direction. Changing vari-
ables twice, first x? > x0 — h?- (x*), and then x° (hj-)_l(xs), results in the
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following,

* s 10
Kﬁ,n,i,j(x X0

o .
- (x5, 0, x0)efbO7 =A%) g8 450
s, [(h5) o (1) 1(xs)|f

/S D) e £ dx® dx® = Wy,

. u 2 (ef)nil —alt
+ |Wj,l [O(10% floor )(n — 1)!‘3

= Wil / K} i 0020 £(x%,0, x0) o004, ) s 1

W10 Flos + 1/ oo et
(5.7.13)
where
K*(x*,x% = K((B5)"1(x*), x% — A; (x* and
( ) ((h5)"(x%) i (x%) (5.7.14)

Aj(x*) = hG o (B~ (x*),

and in the second line we have used the fact that (h;)/ ~ 1 + r due to items (ii)
and (iv) of Definition 3 (see also the proof of Sub-lemma 5.31). The function A

is the so-called temporal distance function alluded to in Remark 5.24.
Next we use (5.7.13) to sum over £, i and j in (5.7.8).

/ REY'f  dmw

=30 X TesalWil [ K (x50 A g

Li jEAg
u 2(6‘[)” ! —alt
+ZZ Z J£11|W11|O(|8 f|oo+|f|oo) ( 1)'
{=Ly @ jEeAg, '

+0@@™"r% floo) -
(5.7.15)

Problem 5.28. Reverse order of summation and use bounded distortion to show
that

> Z]GA[ JejilWiil < C, for some C > 0 independent of W and n.
Problem 5.29. Use (5.7.3) to show that

n—1
Z Ee‘f) 1)'€—aﬁr < Ct_la_" < Cr_1/3a_n,
n —
£=Lo
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for some constant C > 0 independent of £o and t.

Summing over £ and using Problems 5.28 and 5.29 yields,

u 2(6‘[)”_1 —alt
3200 X JeidlWidl O fleo + 1fleo)r> e
0=y i jEAy; : (5.7.16)

= 0@ r>3) (|8 floo + | floo) -

Next, we estimate the sums over the integrals in (5.7.15). Setting Zy ;; =
Jg,j’i | Wj,i |, we have

i O_A . (x%
SN X ZusiKipy A v

[?go 12 rjEAg’,'
1/2
- xibaO—4;(%)|? 2\ /2
SUNN X Zeiki et () 1r1)
by i \"5 jedy, Sr

1/2
—=* ib(Ap—A ;
D) SN oY R

=Ly 1 J.k€Ay i

1/2
_ —% ; A
< | floor™? (Z > Z@,j,izli,k,i/s Kf i i Ko e?@ A’))

=L i jkeAg;
(5.7.17)

where in the second line we have used the Cauchy—Schwarz inequality, in the

third line we have used that | 3 ; v; |? = (2=, v;)(Q_k Vi) for any set of complex

numbers {v; } ;, and in the fourth line we have used the Holder inequality together
with the fact that the cardinality of the sum over i is at most Cr 3 by (5.7.7).

The last integral remaining in (5.7.17) is the oscillatory integral which has been

the object of the rearrangements and changes of variables of this entire section. It

is at the heart of the Dolgopyat estimate. Define the flow surface, Wﬁi = By (x;)N

(Use[—cr,cr] ¢S(Wj,i))’

Lemma 5.30. Recalling n > 0 from Definition 3, there exists C > 0, independent
of r, n and W, such that:

@) inf|dys (A; — Ap)(x*)] = CA(W P WP,);
xS ’ ’
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b) |Aj = Aklci+ns,) < Cr;

¢)

x ib(Ax—A}) 75 1.0
‘/S KyniiKenike 7dx”dx
§

<o " aare s P :
[(l’l — 1)']2 d(Wﬁi, Wk()’i)l'i"]b’/ d(W]?i’ ngl)b

Proof. Items (a) and (b) are preliminaries needed to establish the estimate (c) on
the key oscillatory integral.

We choose a curve W;; with j € Ay ; crossing the box B¢y (x;). Without
loss of generality (by flowing it if necessary), we may assume W ; intersects the
x" axis in the local coordinates. For a fixed £ € (—r, r), we consider the closed
path starting at (£, 0, 0) on Wi0 (i.e. x* = £ on the strong stable manifold of x;),
running to x; along the stable manifold of x;, and up the coordinate axis of x*
(which lies in WW*) to W; ;. From there, the path runs along W;; until it reaches
the point W ((h;)_l(é)), then follows the strong unstable manifold yé‘ (this is

an element of the foliation defined in Definition 3) down to W2, and from there
follows the flow direction back to (£, 0, 0). We call this path I"(£). See Figure 5.2.
Recalling (5.7.14), we notice that A;(§) = h(]). ((h”;)_l(é)) is precisely the

distance in the flow direction from (£, 0, 0) to the point of intersection of yé‘ with

Wio. In addition, every other smooth component of I"(§) lies in the kernel of w by
construction of WS and W*. Since w(v) = 1 for every unit vector v in the flow
direction, and using Stokes’ theorem, we have,

Aj(§)=/ w = dw + dow,
re D by}

where X1 is the ‘vertical” surface defined by the part of the foliation FF connecting
Wi, to Wio, and X is the ‘horizontal surface’ comprised of the part of Wi0 en-
closed by I"(§) and the curve & ; (W ;) (remembering (5.7.11). The integral over
X5 is 0 since the flow direction lies in the kernel of dw. Writing the integral over
2’1 in local coordinates and using (5.7.9) and Definition 3 yields,

& E () ()
Aj(f):/O /0 Oxs G(x*, x*)dx" dx*. (5.7.18)
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X; § X

Figure 5.2: Part of a flow box B;(x;) with path I"(§) and the unstable foliation
shown. I'(£) starts at £, goes along the x*-axis to x;,, up the x*-axis to Wj ;, across
Wi, to yé , down yé to the flow surface Wio, and then in the flow direction back to

&. The length of the dotted line is A (§).

And so, assuming that W ; with k € Ay ; is also in standard position intersecting
the x¥ axis, we obtain

Ey ((h?;)_l(i"))
Do Ap(E) — s A (£) = / D G, £) dx®
E;((h5)-1(®)

/Ek((h‘fc)l(é))

xu
[1 +/ 9 s G, £) du]dx“
B (%)) 0

= [Ex((h)71(©) — E; ()71 EN]( + O(r)

= dWji, Wi ,i)(1+ O(r)).
This proves item (a) of the lemma, and immediately gives the required bound on the
C° norm for part (b). The bound on the C norm follows from the same integral
expression for dxs (Ax — A ), together with property (v) of the foliation.

For item (c) of the lemma, we follow Baladi, Demers, and Liverani (2018,
Appendix B). Define

0 (Ny7a 0
Lj’k(xs’x ) = Kz:nyisj(xs’x )Keyn,i,k(xs’x ) and AJak = Ak - AJ *

We shall need the following preliminary result.



142 5. Uniformly hyperbolic contact flows

Sub-lemma 5.31. In the present setting, we have

dxA

A ‘ Cr and

AL =1+ 00,

Proof of Sublemma. The first inequality follows from (5.7.18),
E;((h5)™1(x*))
Ixs Aj(x%) = / xsG(x*, x*)dx* < Cr,
0

using Definition 3(iv) and recalling (5.7.9) so that | E; ((hj-)_1 (x%))] < Cr since
the foliation is in B (x;).

For the second statement of the lemma, differentiate the first expression in
(5.7.12) to obtain,

1= HG((x*), E; (x*)) E};(x°)
01G (S (x*). E; (%))

5) (%) =

Then we use the fact d;G(s,0) = 1 by Property (ii) and then 0;G(s,u) = 1 +
O(r) by Property (v) of the foliation whenever |s|, [u| < cr/2. Thls 1mphes that
(hs )’(xs) = 14 O(r). Then since hs is invertible, we have d 5 (hs) 1(x%) =

=14+ O(r) as well. O

(G ((hs) T(xs))

Problem 5.32. Show that there exists C > 0, independent of W, n, £, i, j and k,
such that

CUD*" 2 ate CU™ —2ate
Bikloo S Sz e Perbikles S S, e

We define a sequence {sm}m o C R such that so = —r, and Oxs A x (sm) -
[Sm+1—Sm] = 27b~ ! andlet M € N be such thatsps_; < r and sy > r. Such
a finite M exists by part (a) of the lemma. By part (b) of the lemma,

1Ak (X*) = Ak (sm) — 0xs Ak (Sm)[Sm41 — Sm] < Crlsm — x°|' 7,
for all x5 € [sm, Sm+1]. Moreover, using Problem 5.32, we have

|Lj,k(xs,x0) — Lj,k(sm,x°)| < CSmeg,nr_B',
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for a uniform C > 0, where 6, = Spm+1—sm and ey , = [((8’221")‘—]226_26141. Notice
then that by part (a) of the lemma,

bém < 2md(W), W)™ (5.7.19)

Now we fix x° and estimate for each m,

Sm+1 .
/ e PAIKCDL (%, x0) dx®
Sm

S
/ T b0 A k()X =]+ O X0 —sim |14 )]
Sm

X (Lj,k(sm, x%) + O(I”_35m€g’n))dxs

< C (B84 +1728m) Smewn

r 1 r 3
<C + Smet n
(d(WJQ,.,W,gi)Hnbn d(W]Qi,W,gl.)b) mein

where again we have used Problem 5.32 and in the last line we have used (5.7.19).
The last integral over the interval [sps—1, 7] is trivially bounded by Cr=28y <
Cr_z(bd(W;?i, Wko,i))_l’ again using (5.7.19). Then summing over m yields
Z%;OI 8m < 2r, and integrating over x° yields another factor of r, completing
the proof of part (c). O

The bound given by Lemma 5.30(c) is nearly what we need to complete the
Dolgopyat estimate. We require one more lemma, which allows us to neglect the
contribution from curves in Ay ; that are too close together.

Lemma 5.33. There exists C > 0 such that for each { = Lo, i € N and j € Ay,
Y Zyki <Clr(p?+ A7)

keAy ;i
dW?; W )<p

Proof. Let A(p) = {k € Ay; : d(W})i, Wkol.) < p}. First notice that by bounded
distortion,

3 Zuki= Y Wiilldwe, Peclcoom )
keA(p) keA(p)

=C* Y D (W)l
keA(p)

(5.7.20)
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where the notation P = C~!Q means C™1Q < P < CQ forsome C > 1

Let Wr0 = Use[—2r,2r]Ps(W). Fix p* > 0, and consider the set of local strong
unstable manifolds {y¥ }erro having length p* in both directions, and centered

x. Let Gio,k ={xewWl:xe ¢er(W;2i)} and note that the sets UxeG,(-)ky)’cl are

disjoint for different k. On the one hand, due to the uniform transversalify of ES,
EY and E€, we have

D mUsego v¥) = 0P Y 1Pee(Wii)l. (5.7.21)

keA(p) keA(p)

On the other hand, for each k, @ (U . GY, y¥) is approximately a parallelepiped

having length in the flow and stable dlrectlons of about r, and having length in
the unstable direction at most 2p* A~¢T. Moreover, these sets are disjoint for dif-
ferent k and their union lies in a set of length in the unstable direction at most
p + 2p* A~7_ Then using the invariance of the measure,

Y mUsego ) = Y m(@u(Uyego 1)) < Crip+p*A™5).
keA(p) ; keA(p) i

(5.7.22)
Using (5.7.20) in (5.7.21) and equating this with (5.7.22) yields,
> Zuki <Cr(p) N+ p* AT,
keA(p)
and choosing p* = p!/2 completes the proof of the lemma. O

We will apply Lemma 5.33 with p = r2. For each j € Ay ; define Aclose =

7 7]
tkeAg; - dW2 W) <12} and A = Ay \ ADS. Then,

Yo D ZujiZegi <Cr(r+ A7) <Cr?, (5.7.23)

i jEAy; keA(élci)s;?

remembering (5.7.6) and using Problem 5.28.
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Finally, we apply Lemma 5.30(c), summing over Ag‘“l o

1/2
(Z Z Z Z(Jzsz,/ K“”K“l lb(AkA))

i jEAg; keAfar

. (e.[)Zn — —2alt[,.—1-2n3—n —3;-1
$(Z > > ZujiZewiC CE [r b~ +r 73 ])

i jeAg, keAfar ;

1/2

<Cr 1/2[ “20pTN 4 T 2p 1]1/2 ()™ ef"“
(n—1)!
(5.7.24)
where again we have used Problem 5.28.

Problem 5.34. Show that for all £,n,1i, j, k,

. ) Zf)Zn—Z
K* . -K* . ib(Ax—A4)) <C ( —2alt
Cni,j S lonik € [(n— D2

Sy

Now combining Problem 5.29 and Problem 5.34 with with (5.7.23) and (5.7.24)
in (5.7.17) yields,

1 O_A (xS
DX X Zusiki 1

=0y 1 jEAg i

< Z 0" _aZtlfloo< 12 4 12 +r_2b_1]1/2)
=Ly (n B )

<@ floo (r1/ 4 r 4227 4 7271 2)
(5.7.25)

Now we use (5.7.16) and (5.7.25) in (5.7.15) to estimate,
/ R fvydmy <Ca™ (|f|oo(r°‘ + 733 4 16
w
+ r 4B 2p T 4 r‘zb_l]l/z) +r5/3|3”f|oo) )

We can assume without loss of generality that n < 1 so that the first term in the
__n_
square root above is the larger of the two. Setting r = b~ 8+67, bounds the term
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with the square root by by b~"/3. Since all other powers of r are positive, we
obtain,

/W R £ dmy < Ca=b=7( floo + [6* foo). (5.7.26)

for some y9 > 0, and all b = by, where by depends only on the maximum size of
r determined by Definition 2. As a final step, we apply (5.7.26) to R(z)" f rather
than f.

Problem 5.35. Use (5.1.1) and Problem 5.15 to show that
10“(R(2)" f)loo < Cla + 1og A)™"|V floo.

Now Problem 5.35 together with (5.7.26) and the bound |R(2)" f|oo < Ca™"| oo
(from Problem 5.16) yield,

fW R f ¥ dmy < Ca"b™"°(|R(2)" floo + [0 (R(2)" f)lco)
<C'ab7(| floo + (1 +a T og A"V floo) s

which completes the proof of Lemma 5.22.



In this section, we briefly describe some of the ideas needed to adapt the technique
and framework presented in these notes to the continuous time billiard flow asso-
ciated with a dispersing billiard table. This is done in full detail in Baladi, Demers,
and Liverani (2018) for the finite horizon periodic Lorentz gas, and we only re-
call here in broad terms some of the adjustments that must be made. We remark
that although presently a proof of exponential decay of correlations exists only in
this context, these results are expected to generalize to dispersing billiard tables
with corner points, and cusps (the fact that the discrete time billiard map for tables
with cusps has a polynomial rate of decay of correlations will not prevent the as-
sociated continuous time flow from having an exponential one), and some billiard
tables with focusing boundaries, such as those studied in Balint and Melbourne
(2008). The flow associated with the infinite horizon periodic Lorentz gas, how-
ever, is known to have decay of correlations at the polynomial rate of 1/¢ (Balint,
Butterley, and Melbourne (2019)).
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6.1 The billiard table

Let T2 = R?/Z? be the two-torus, and place finitely many open convex sets I},
i =1,...d,in T? so that their closures are pairwise disjoint and the boundary of
each set I is a C3 curve with strictly positive curvature. We shall call these sets
scatterers and the billiard table is Q = T2\ (Ul‘.i=11“i).

The billiard flow is defined by the motion of a point particle traveling at unit
speed in Q and colliding elastically at the boundaries of the scatterers. The par-
ticle’s velocity changes only at collisions, which are defined when the particle
belongs to d1; for some i. We assume that the table satisfies a finite horizon con-
dition: there is a finite upper bound on the time between consecutive collisions in
0.

Define 29 = Q x S' C T3. In £, we may describe the billiard flow in
the coordinates (x, y, §), where (x, y) € Q denotes position and § € S! denotes
velocity. Then,

Pi(x,y,0) = (x +tcosb,y +tsinb,9), (6.1.1)

between collisions, and at collisions the velocity changes from 6~ (precollision)

to O (post-collision) according to the usual law of reflection. If we identify
(x,y,07) ~ (x,y,07), then the flow becomes continuous on the phase space
2 := ¢/ ~. We will find it convenient to work in both the spaces £2¢ and 2
depending on the context.

Analysis of the flow is often aided by appealing to the associated discrete time
billiard map. This is defined by introducing coordinates to track each collision
(r for position on d/; parametrized by arc length, and ¢ for the angle the post-
collision velocity vector makes with the normal to d/3). The two-dimensional
phase space for the map is then a union of cylinders M = Uleal‘,- X[—m/2,7/2]
and the billiard map 7'(r, ¢) = (r1, ¢1) maps one collision to the next.

6.2 Hyperbolicity and contact structure
In the coordinates described above, the flow preserves the one form defined by,
w=-cosfdx +sinfdy.

Between collisions, this is obvious from the definition (6.1.1) since 8 is constant
except at collisions. That the one form is preserved through collisions is a simple
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calculation (see Chernov and Markarian (2006, Section 3.3)). Since (cos 8, sin 6)
is the direction of motion of the particle in the table Q, we see that geometrically,
the kernel of the one form is the plane perpendicular to the flow direction in 2,
and w(v) = 1 for any unit vector v € R3 pointing in the flow direction.

Problem 6.1. Show that w AN dw = dx Ad6 A dy.

Problem 6.1 shows that the contact volume is Lebesgue measure on £2, and
this is preserved by the flow. Thus the flow and one form are already normalized
according to the requirements of Section 5.1.

Due to the strictly positive curvature of the 173, both the map and the flow are
hyperbolic. Let tymin, Knin > 0 denote the minimum time between collisions and
the minimum curvature, respectively, and let t,,x < 0o denote the maximum time
between collisions, which is finite due to the finite horizon condition. The constant
Ao = 1 + 2tminCmin represents the minimum hyperbolicity constant for the map;
then setting A = A(l)/ fmax oives a lower bound on the hyperbolicity constant for
the flow satisfying (5.1.1).

The billiard map T preserves the following stable cone on all of M,

CS5(r,9) = {(dr,dp) € R? : —Kpin = d@/dr = —Kmax — Tk}, (6.2.1)
and an analogous unstable cone C* is defined by Kunin < do/dr < Kmax +
Tr;i}r Then flowing C¥ forward between consecutive collisions and C* backwards
between collisions defines a family of cones in £2 that is invariant under the flow
(satisfying (5.4.3)) and lies in the kernel of w. This family of cones is continuous on
each component of £2¢ that does not cross one of the singularity surfaces (defined
below). See Baladi, Demers, and Liverani (2018, Section 2.1).

6.3 Singularities

The singularities for both the map and the flow are created by tangential collisions
with the scatterers. For the map, this is the set So = {(r.¢) € M : ¢ = =7 }. For
n =1, thesets S, = U;’=0T_i Spand S, = U?=0Ti So are the singularity sets
for 7" and T™", respectively. The map T is discontinuous at S;. Moreover, its
derivative satisfies

IDT(2)|| ~ d(z,81)" 2, forz = (r,¢)e M,

so that the derivative becomes infinite at tangential collisions.
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The local sections X; introduced for Anosov flows in Section 5.4.1 can be
defined naturally for the billiard flow as the boundaries of the scatterers, d77;. The
projections P+ and P~ are defined for Z € £2 as the first intersection of &;(Z)
with one of the I}, for t > 0 for P* and fort < 0 for P~.

While the flow remains continuous on 2, its derivative also becomes infinite
at tangential collisions (with the same order of magnitude as the map). Thus the
flow is only Holder continuous with exponent 1/2 due to the tangential collisions.
Let SJ denote the surface in £2 created by flowing Sp forward to its next collision
(on S—1). Then the family of unstable cones C* is continuous in £2¢ away from
the surface S(T . Similarly, let S;;” denote the surface obtained by flowing S under
the inverse flow to S;. The family of stable cones C* is continuous in §2p away
from S

In order to regain control of distortion, one introduces homogeneity strips,
which are artificial subdivisions of the phase space on which the derivative has
comparable rates of expansion and contraction. For the map, the standard choice
is to choose k¢ > 0 and then define the homogeneity strip

Hy = {(rne):k2<Z—p<(k+1)"% fork = ko,

with a similar definition for H_ for ¢ near —7.. Since expansion factors for the
map are proportional to 1/cos ¢, when T(r,¢) = (r1, ¢1), these subdivisions
of the space imply that the Jacobians of the map satisfy distortion bounds as in
Lemma 5.9(a), but with! Holder exponent 1/3.

Problem 6.2. Suppose z,Z € Hy, for some k € Z. Show that

cos ¢(z)
cos p(2) B

1‘ < Cd(z,ﬂl/s, for some C > 0 independent of k.

Here, ¢(z) denotes the second coordinate of z = (r, p) € M.

One extends this distortion control to the Jacobians of the flow by only compar-
ing derivatives at points whose next collisions lie in the same homogeneity strip
under the forward flow (for the unstable Jacobian) or the backward flow (for the
stable Jacobian).

'The exponent 1/3 is a simple consequence of defining the homogeneity strips to decay like k2.
If, instead, one chooses a decay rate of k=7, p > 1, then the Holder exponent becomes 1/(p + 1).
Thus it is possible to obtain a Holder exponent arbitrarily close to 1/2 by choosing p close to 1.
However, p = 1 is not an acceptable choice since it ruins the summability of the series and the
growth lemma needed for the analogue of Lemma 5.9(c) fails.
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6.4 Admissible curves and definition of norms

Since our invariant cones C* and C* satisfy (5.4.3), we may define a family of
admissible cone-stable curves VWV’ which is invariant under @_;, t > 0, and satis-
fies the requirements of Definition 1. In addition, we require stable curves to be
disjoint from d£2¢. Thus if a stable curve is in the midst of a collision, we omit the
collision points, and consider each of the two or three connected components as
separate stable curves.

Due to our definition of C*, we have that P T (W) is a stable curve for the map
whenever W € W¥. Due to our discussion of distortion in Section 6.3, we call a
stable curve W € WS homogeneous if P (W) C Hy, for some k € Z. Similarly,
we define an invariant family of unstable curves W* and call an unstable curve U
homogeneous if P~ (U) C Hy for some k € Z.

Using the (global) coordinates (r, ¢) in M and (6.2.1) allows us to view each
map-stable curve P (W) as the graph of a function Gy over the r-coordinate.
We then use the same definition of distance between stable curves, dyys (W7, Wa),
as given in (5.4.4), with the added requirement that dyys (W, W,) = oo unless
Pt (Wy) and Pt (W>) lie in the same homogeneity strip.

With these conventions in place, we may define the weak and strong norms
for f € C!(£2¢) precisely as in Section 5.4.2. Due to Problem 6.2, we choose
a < 1/3 in order that the Jacobian along a stable curve may be a viable test
function. The other restrictions on the parameters remain the same.

The definitions of the weak and strong Banach spaces are again the closures
with respect to | - |, and || - |5, respectively, but now C1(£2p) is replaced by
slightly different function spaces, see Baladi, Demers, and Liverani (2018, Defi-
nition 2.12). However, Lemma 5.4 (embedding) and Lemma 5.6 (compactness)
continue to hold as stated.

6.5 Lasota—Yorke inequalities and complexity bounds

The Lasota—Yorke inequalities of Proposition 5.8 continue to hold as written as
well, except that their proofs change considerably.

As an example, consider the proof of the weak norm inequality, (5.4.8). Fol-
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lowing (5.4.12), we write,

/W['tfwde: Z / S Yo @ Jw, @ dm,

Wi €6 (W)

< D Il o @lcagmldw Py (6.5.1)
W;eG: (W)

<Clflw Y. 1w Pilcogmy
WieG: (W)

where we have used bounded distortion and the equivalent of (5.4.14) to estimate
the Holder norms of ¥ o &; and Jw, ®;. However, the counterpart of the bound
on the sum over the Jacobians, Lemma 5.9(c), is not immediately available due
to the cutting caused by the singularities. Indeed, the set G; (W) contains a count-
ably infinite number of stable curves since in order to have bounded distortion for
Jw, ®;, we must subdivide @_; W so that for each W; € G (W), P (®sW;) lies
in a single homogeneity strip for all s € [0, 7].

Despite the countable subdivision of @_; W which defines G;(W), one can
show that the sum over Jacobians in (6.5.1) remains uniformly bounded in ¢ and
W e WS, This is an essential property of both the map and the flow: that the
hyperbolicity dominates the complexity due to cuts created by singularities, in-
cluding the countable collection of cuts made by the boundaries of homogeneity
strips. The key estimate which encapsulates this property is the one step expansion
for the map, due to Chernov. Let W’ denote the set of homogeneous stable curves
for the map.

Lemma 6.3 (One Step Expansion). For any W € W', let V; denote the con-
nected homogeneous components of T~\W . There exists an adapted metric || - ||,
equivalent to the Euclidean metric in R2, such that

lim sup [Jv, Tls« <1,
810 35 Z )
[W|<§

where |Jy, T |« is the minimum contraction factor on V; in the adapted metric || -|| «.

This is proved, for example, in Chernov and Markarian (2006, Lemma 5.56).
The main idea is that on homogeneity strips, the contraction factor is ~ k=2, so one
can choose kg sufficiently large to make the sum } ;> k=2 as small as one likes.

The constant Ag > 1 defined earlier gives the minimum contraction factor AO_1
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in the adapted metric, and then choosing § small enough guarantees that 7! W
can contain at most one component in M \ (Ug|>k,H), and a bounded number
of components” that must be divided according to homogeneity strips Hj with
k| = ko.

Then choosing &g in the definition of W* (Definition 1) and the analogous map-
stable family w’ according to Lemma 6.3, the one-step expansion can be iterated
for the map (Demers and H.-K. Zhang (2011, Lemmas 3.1 and 3.2)) and then
extended to the flow (Baladi, Demers, and Liverani (2018, Lemma 3.8)), yielding
finally that the sum in (6.5.1) is bounded uniformly in ¢t and W, proving (5.4.8)
for the billiard flow.

Similar adjustments must be made for the strong norm estimates, with in-
creased complexity due to cutting and distortion control.

6.6 'The generator and the resolvent

The definition of the generator X and the resolvent R(z) proceeds as described in
Section 5.5. Lemma 5.10 and the Lasota—Yorke inequalities of Proposition 5.13
go through with minor changes. Thus the characterization of the spectra of X and
R(z) given by Corollary 5.14 and Proposition 5.17 hold for the billiard flow.

To prove that in fact, X has a spectral gap, one can follow again the path
outlined in Section 5.6. The major difference is in the proof of the Dolgopyat
estimate, Lemma 5.22. In Section 5.7, we used a local foliation of strong unsta-
ble manifolds to compare the integrals on stable curves in the same flow box in
Lemma 5.30. Unfortunately, the foliation of unstable manifolds for the billiard
flow is only measurable due to the density of the sets {®;(Sp)}:er in £2, so that
Definition 3 is no longer valid.

Instead, one must construct a foliation of flow-unstable curves, lying in the
kernel of the contact form, which approximate the properties enumerated in Def-
inition 3. Since the curves are not real unstable manifolds, in item (iii) of the
definition, they only remain invariant for a specified amount of time y, chosen
proportional to log |b|. And due to the singularities, there are gaps in the parts of
the foliation that can be mapped backwards for time y. We must interpolate across
these gaps in order to obtain the required smoothness for the foliation. Finally,
item (v) of the foliation fails, yet a four-point estimate does hold which suffices to
prove the items in Lemma 5.30. The construction of this foliation is carried out in

2Indeed, the number of components is at most ;mf”‘ + 1.
min
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detail in Baladi, Demers, and Liverani (2018, Section 6), and is one of the most

technical parts of that paper.
With the Dolgopyat estimate proved, the proof of Theorem 5.1 can proceed as

in Section 5.6.



The following is really super condensed (although self-consistent). If you want
more details see Dunford and Schwartz (1988), Kato (1995), and Reed and Simon
(1980) in which you probably can find more than you are looking for.

A.1 Bounded operators

Given a Banach space B we can consider the set L (15, B) of the linear bounded
operators from B to itself.! We can then introduce the norm

IBll = sup [|Bv].

lvl<1

Problem A.1. Show that (L(B,B), | - ||) is a Banach space. That is that | - || is
really a norm and that the space is complete with respect to such a norm.

Recall that a Banach space is a complete normed vector space (in the following we will consider
vector spaces on the field of complex numbers), that is a normed vector space in which all the Cauchy
sequences have a limit in the space. If you are uncomfortable with Banach spaces, in the following
read R? instead of /3 and matrices instead of operators, but be aware that we have to develop the
theory without the use of the determinant that, in general, is not defined for operators on Banach
spaces.
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Problem A.2. Show that there exists a norm such that the set of n X n matrices
forms a Banach algebra.’

Problem A.3. Show that (L(B, B), || - ||) forms a Banach algebra.’

To each A € L(B, B) are associated two important subspaces: the range
R(A) ={ve B : 3w e Bsuchthatv = Aw}

and the kernel
NA)={veB : Av =0}.

Problem A.4. Prove, for each A € L(B,B), that N(A) is a closed linear sub-
space of B. Show that this is not necessarily the case for R(A) if B is not finite
dimensional.

A very special, but very important, class of operators are the projectors.
Definition 4. An operator I1 € L(B, B) is called a projector iff [1> = I1.

Note that if [T is a projector, so is 1 — I1. We have the following interesting
fact.

Lemma A.5. IfIT € L(B, B) is a projector, then N(IT) & R(I1) = B.

Proof. Ifv € B,thenv = ITv + (1 — IT)v. Note that R(1 — IT) = N(IT) and
R(IT) = N(1 —II). Finally, ifv € N(IT) N R(I1), then v = 0, which concludes
the proof. O

Another, more general, very important class of operators are the compact ones.

Definition 5. An operator K € L(B, B) is called compact iff for any bounded set
B the closure of K(B) is compact.

Remark A.6. Note that not all the linear operators on a Banach space are bounded.
For example consider the derivative acting on C'((0,1),R). However, if the op-
erator is linear, continuous and everywhere defined, then it is bounded.*

2A Banach algebra A is a Banach space in which multiplication between elements is defined
with the usual properties of an algebra and, in addition, for each a, b € A holds ||ab|| < ||a| - ||P]|-

3The multiplication is given by the composition.

4Indeed, if A is continuous in zero, then there exists § > 0 such that, for all || x| < § we have
||[Ax|| < 1. Then, by continuity, we have, for each x,

1Ax]| < 87 Xl [ AGIxI X)) < 87 ]l
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A.2 Analytical functional calculus

First of all recall that the Riemannian theory of integration works verbatim for
function f € C°(R, B), where B is a Banach space. We can thus talk of integrals

of the type | f f(t)dt.> Next, we can talk of analytic functions for functions in
CO(C, B): a function is analytic in an open region U C C iff at each point zg € U
there exists a neighborhood B > z( and elements {a,} C B such that

f(z) = Z an(z —zo)" Vz € B. (A2.1)
n=0

Problem A.7. Show that if f € C°(C, B) is analytic in U C C, then given any
smooth closed curve y, contained in a sufficiently small disk in U, holds®

/ f(z)dz =0 (A.2.2)
Y

Then show that the same holds for any piecewise smooth closed curve with interior
contained in U, provided U is simply connected.

Problem A.8. Show that if f € C°(U, B) is analytic in a simply connected open
set U C C, then given any smooth closed curve y, with interior contained in U
and having in its interior a point z, the following formula holds

_ 1
16 = 5 [ €27 s (A23)

Problem A.9. Show thatif f € C°(C, B) satisfies (A.2.3) for each smooth closed
curve in a simply connected open set U, then f is analytic in U.

A.3 Spectrum and resolvent

Given A € L(B, B) we define the resolvent, called p(A), as the set of the z € C
such that (z1 — A) is invertible and the inverse belongs to L (B, B). The spectrum
of A, called 6 (A) is the complement of p(A) in C.

SThis is a special case of the so called Bochner integral, e.g. see Yosida (1995).
60f course, by fy f(z)dz we mean that we have to consider any smooth parametrization g :

[a,b] — C ofy, g(a) = g(b), and then fy f(2)dz := fab fog(t)g'(t)dt. Show that the definition
does not depend on the parametrization and that one can use piecewise smooth parametrizations as
well.
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Problem A.10. Prove that, for each Banach space BB and operator A € L(B, B),
if z € p(A), then there exists a neighborhood U of z such that (z1 — A)~ ! is
analytic in U.

From the above exercise follows that p(A4) is open, hence o (A) is closed.
Problem A.11. Show that, for each A € L(B,B), a(A) # 0.
Problem A.12. Show that if I1 € L(B, B) is a projector, then a(IT) = {0, 1}.

Up to now the theory for operators seems very similar to the one for matrices.
Yet, the spectrum for matrices is always given by a finite number of points while
the situation for operators can be very different.

Problem A.13. Consider the operator L : C°([0, 1], C) — C°([0, 1], C) defined
by
1 1
(L) = 57/ + 5 f(x/2+1/2).
Show thato (L) ={z € C : |z| < 1}.

Problem A.14. Show that, if A € L(B, B) and p is any polynomial, then for each
n € N and smooth curve y C C, with 6(A) in its interior,

P =5 [ eI 7Nz
Problem A.15. Show that, for each A € L(B, B) the limit
r(A) = lim [|4"||"
exists.
The above limit is called the spectral radius of A due the the following fact.

Lemma A.16. For each A € L(B, B), sup, ¢4y 2| = r(A).

Proof. Since we can write
o0
zl—-A)'=z1a-z14)t =1 Z z7 AN,
n=0

and since the series converges if it converges in norm, from the usual criteria for
the convergence of a series follows sup,¢4(4) 2] < r(A). Suppose now that the
inequality is strict, then there exists 0 < n < r(A) andacurve y C {z € C

|z| < n} which contains o (A) in its interior. Then applying Problem A.14 yields
|A"]| < Cn", which contradicts n < r(A). O
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Note that if f(z) = Y no o fnz" is an analytic function in all C (entire), then
we can define, for all A € L(B, B),

f(A) =) A"
n=0

Problem A.17. Show that, if A € L(B,B) and f is an entire function, then for
each smooth curve y C C, with o (A) in its interior,

_ 1 -1
ﬂM—Z;LﬂMﬂ—m dz.

In view of the above fact, the following definition is natural:

Definition 6. For each A € L(B,B), f analytic in a region U containing o (A),
then for each smooth curve y C U, with o (A) in its interior, define

_ -l
f) =5 /y F(2)(z1 — A)~Ydz. (A3.1)

Problem A.18. Show that the above definition does not depend on the curve y.

Problem A.19. For each A € L(B, B) and functions f, g analytic on a domain
D > 0 (A), show that f(A) + g(A) = (f + g)(4) and f(A)g(A) = (f - g)(A).

Problem A.20. In the hypotheses of Definition 6, show that f(o(A)) = a(f(A))
and [f(A), A] = 0.

Problem A.21. Consider f : C — C entire and A € L(B,B). Suppose that
{zeC : f(z) =0}No(A) = 0. Show that f(A) is invertible and f(A)~! =
f7HA).

Problem A.22. Let A € L(B, B). Suppose there exists a semi-line £, starting from
the origin, such that £ N\ o (A) = @. Prove that it is possible to define an operator
In A such that e™4 = A.

Remark A.23. Note that not all the interesting functions can be constructed in

0 1
-1 0
preted as a square root of —1 but it cannot be obtained directly by a formula of
the type (A.3.1).

such a way. In fact, A = is such that A> = —1, thus it can be inter-
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The next result is extremely useful as it allows one to decompose an operator
according to its spectrum.

Lemma A.24. Suppose that A € L(B,B) and c(A) = BUC, BNC = 0.
Suppose that the smooth closed curve y C p(A) contains B, but not C, in its
interior. Then

1
Pp = —./(z]l —A)Ydz (A.3.2)
2ni Jy
is a projector that does not depend on y. In addition, PpA = APp

Proof- The non dependence on y is proven as in Problem A.8. A projector is
characterized by the property P? = P. Thus we must compute

2 . 1 _ —1 _ —1
P3 ._—(27”,)2/y1 y2(21 A)N(e1 — A"V dzde

! / dz | dtz-0 'zl -A) = @1-4)7].
Y1

T (2ni)? v

If we have chosen y; in the interior of y», then (z — ) ™1 (¢1 — A) ™! is analytic in
the interior of y;, hence the corresponding integral gives zero. The other integral
gives Pp, as announced.

The commutation follows from the fact that A commutes with (z1 — A)~! and
the integral representation of the projector. O

By the above it follows that AR(Pg) C R(Pp) and AN(Pg) C N(Pp).
Thus B = R(Pp) & N(Pp) provides an invariant decomposition for A. The next
problems make more explicit the announced decomposition.

Problem A.25. In the hypotheses of Lemma A.24, prove that A = Pp APp + (1 —
Pp)A(L — Pp).

Problem A.26. In the hypotheses of Lemma A.24, prove that 6 (Pp APp) = B U
{0Y. Moreover, if dim(R(Pg)) = D < oo,’ then the cardinality of B is < D.

We conclude the section with an easy but useful Lemma.

Lemma A.27. Foreach A € L(B,B)ifa(A) = {b}UC, {b}NC = 0, then there
exists a projector P such that 6 (PAP —bP) = {0}. In addition, if dim(R(P)) =
D < oo, then P(b1 — A) P is Nilpotent.

7Given a vector space V, by dim(V) we mean the dimension of V.
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Proof. Since o (A) is closed, there exists a neighborhood of b disjoint from C. We
can thus define P = Py, by Equation (A.3.2). By Lemma A.5 and Problem A.26
we can restrict A to R(P) and have o (A|r(p)) = {b}, thus o ((bP — A)|g(p)) =
o((b1l — A)|rcp)) = {0}. Hence, by Lemma A.5 again,

o(PAP —bP) = o((A — b1)P)
=0o((A—=b1)|rp)) Uo((A—D1)P|yncp)) = {0} U {0} = {0}.

Next, note that if dim(R(P)) = D, then (4 — b1)|g(p) is isomorphic to a D
dimensional matrix K.® Thus o(K) = {0}, and since (z1 — K)~! is a rational
function (the ratios of polynomials of degree at most D) it follows that it has a
pole only at zero. Hence, for all |z| > || K],

D 00
(z1-K)'=) Bz " =) "k
n=1 k=0

Which implies that K = 0 forall n = D. This implies that [P(b1 — A) P]P = 0.
O

A.4 Perturbations

Let us consider A, B € L(B, B) and the family of operators A, := A + vB.

Lemma A.28. For each § > 0 there exists vg € R such that, for all |v| < vg,
p(A4,) D{z eC : d(z,0(A)) > 5}

Proof. Letd(z,0(A)) > 6, then
(z1—Ay) = (z1—A)[L—v(z1 — A)"'B] (A.4.1)

Now ||(z1 — A)~! B|| is a continuous function in z outside o (A), moreover it is
bounded outside a ball of large enough radius, hence there exists Mg > 0 such
that >z o(ay>s 121 — A)"IB| < Mjs. Choosing vs = (2M5)~! yields the
result. UJ

Suppose that z € C is an isolated point of o (A), that is there exists § > 0 such
that{z € C : |z—2Z| <8} N(c(A)\ {Z}) = 0, then the above Lemma shows
that, for v small enough, {z € C : |z — zZ| < 8} still contains an isolated part of
the spectrum of 6 (A4,), let us call it By, clearly By = {z}.

8Just, write A — b1 is a base of R(P).
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Problem A.29. Let Pp, be defined as in Lemma A.24. Prove that, for v small
enough, it is an analytic function of v.

Problem A.30. [f P, Q are two projectors and | P — Q|| < 1, then dim(R(P)) =
dim(R(Q)).

The above two exercises imply that the dimension of the eigenspace R(Pp,)
is constant. Next, we consider the case in which By consists of one point and
dim(R(Pp,)) = 1. It follows that also B, must consist of only one point. Let us
set P, := Pp,.

Lemma A.31. [f dim(R(Py)) = 1, then A, has a unique eigenvalue z, in a
neighborhood of z, zo = z. In addition z, is an analytic function of v.

Proof. From the previous exercises it follows that P, is a rank one operator which
depends analytically on v. In addition, since P, is a rank one projector it must have
the form Pyw = v, £, (w), where £, € B*.° Thenz, P, = P, A, P,. Next, setting
a(v) :=Lo(Pyvg) = £, (v9)Lo(vy), we have that a is analytic and a(0) = 1. Thus
a # 0 in a neighborhood of zero and z, = a(v) ™o (Py, A, P,vg) is analytic in
such a neighborhood. O

Problem A.32. Ifdim(R(Py)) = 1, then there exists h,, € B and £, € B* such
that P, f = hy€,(f) for each f € B. Prove that h,, £, can be chosen to be
analytic functions of v.

Hence in the case of A € L(B3, B) with an isolated simple'® eigenvalue Z we
have that the corresponding eigenvalue z, of A, = A + vB, B € L(B,B), for
v small enough, depends smoothly on v. In addition, using the notation of the
previous Lemma, we can easily compute the derivative: differentiating 4, v, =
Zy vy With respect to v and then setting v = 0, yields

/ / S,/
Bv 4+ Avy = zyv + Zvy,.

But, for all w € B, we have Pw = vf(w), with £(Aw) = z{€(w) and £(v) = 1,
thus applying £ to both sides of the above equation yields

zo = L(Bv).

By B*, the dual space, we mean the set of bounded linear functionals on B. Verify that B* is a
Banach space with the norm [[£]| = >, < %

10That is with the associated eigenprojector of rank one.
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Problem A.33. Compute vy,

Problem A.34. What happens if the eigenspace associated to Z is finite dimen-
sional, but with dimension strictly larger than one?



This appendix is devoted to providing a complete proof of Hennion—Neussbaum
theory.

While such results are routinely used in many papers devoted to the study of
the statistical properties of dynamical systems, as far as we know no elementary
complete account of the theory is available. Our goal here is to present such a
complete account in a manner that is accessible to a reader with a basic knowledge
of functional analysis and reduces the technicalities to a minimum. We start by
discussing the definition of essential spectrum. In fact, there exist many alternative
definitions of essential spectrum; here we use the most convenient for our goals.
The reader interested in more details can have a look the first chapter of Edmunds
and W. D. Evans (2018).

B.1 Essential Spectrum

Our aim is to divide the spectrum o (7) of a bounded, linear operator 7" into two
parts, 0 (T') and 055 (T'). The discrete spectrum of 7', o7 (T'), consists of isolated
points A € o(T) such that their associated Riesz projector has finite rank and
the range of A — T is closed, while the essential spectrum of 7', 0,5 (7T"), Will be
the remaining part of the spectrum. This motivates the following definition of the
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essential spectrum.

Definition 7 (Browder (1960/61)). Let T be a bounded linear operator on a Ba-
nach space X. The (Browder) essential spectrum of T, Gess(T), is the set of
A € o(T), such that at least one of the following conditions holds:

1) Therange of A — T, R(A —T), is not closed;
2) U,s1 N(A = T)" is infinite dimensional;
3) Ais a limit point of 6 (T) \ {A}.

There are many other definitions of the essential spectrum. For example, Wolf’s
(Wolf (1959)) essential spectrum is the set of those z € C such that z — T is not
Fredholm. Recall that an operator 7 : X — X is Fredholm if R(T') is closed and
the dimensions of both N(T') and the quotient X ~ R(T') are finite.

However, the essential spectral radius of a bounded operator 7" is the same
using all these different definitions, see Edmunds and W. D. Evans (2018, Section
1.4) and subsequent discussion.

B.1.1 Subspaces

Definition 8. Let V C X be a subspace of a normed vector space X. Given
x € X, we define the distance to 'V by:

dist(x, V) =inf{||x —y||: y € V}.

Definition 9. A subspace V is called a proper subspace of X if it is neither the
whole space X nor the zero subspace {0}.

Lemma B.1. Let X be a Banach space, V. C X a proper closed subspace. Then
for every & > 0 there exists xo € X with ||xo|| = 1 and dist(xg, V) = 1 —&.

Proof. Letx’ € X \ V, thend = dist(x’, V) > 0, (since V is closed). For each

4

n > 0 there exists y’ € V sothatd < |[x' —y'|| <d + n. Let xo = ﬁ and
n= <L Foranyz € V we have:
d d
xo —zll = - IX =y = Ix" = y'| 2| = = =1-g¢,
lx" = /Il X" =yl = d+n

since y' + ||x’ — y’|| z € V. The result follows since ¢ is arbitrary. O
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Definition 10. A normed vector space X is locally compact if any bounded se-
quence in X has a convergent subsequence.

Theorem B.2. (S. Banach) Every locally compact Banach space X has finite di-
mension.

Proof. Given a set of linearly independent vectors x1,--- , X, in X of unit norm,
let G, C E be the r-dimensional subspace of X spanned by these vectors. Being
finite-dimensional, G, is a closed subspace of X. If it is a proper subspace, by the
Lemma B.1 we may find a unit vector x,4+1 € X such that ||x,4+1 — x;| = %,i =
1,---,r.

If we may do this for each r, we obtain an infinite sequence (x),>1 of unit
vectors satisfying ||x, — x4| = % for each p # ¢, in particular admitting no

convegent subsequence. This contradicts the assumption that X is locally compact.
O

Definition 11. A continuous map F : U C X — Y between topological spaces
is called proper if F~Y(M) is compact whenever M C Y is compact.

Let L (X, Y) be the space of bounded linear maps from X to Y.

Lemma B.3. Let X and Y be complex Banach spaces and S € L(X,Y). If S
restricted to closed, bounded sets is proper then N(S), the null space of S, is finite
dimensional and R(S), the range of S, is closed.

Proof. Since S is proper, N(S) = S~1(0) is locally compact. By Theorem B.2,
N(S) is finite dimensional.

Next we prove that R(S) is closed. Let {x,} be a sequence in X such that
{S(xn)} is a Cauchy sequence on Y. We need to show that {S(x;)} converges to
apoint y € R(S). Since Y is Banach, {S(x,)} is convergent. The set {S(xz)}
with its limit is compact so by hypothesis {x;} has a convergent subsequence, let
us call x the limit. Since T is continuous, S(x) = y. O

B.1.2 Measure of Noncompactness

Let X be a complete Banach space and A a bounded subset of X .

Definition 12. We define y(A), which we call the measure of noncompactness of A,
to be the infimum of d > 0 such that there exists a finite number of sets S1,--- , Sp
with diameter(S;)< d and A =\ J;_ Si.



B.1. Essential Spectrum 167

Definition 13. We call the ball measure of noncompactness of A in X, yx (A), to
be the infimum of r > 0 such that there exists a finite number of balls Vy,--- , Vy,
with centers in X and radii r and A C Ul’-’zl Vi.

Definition 14. If Xy and X, are Banach spaces and T € L(X1, X»), we say that
T is a k-set-contraction if for every bounded set A C X,

vx,(T(4)) < kyx, (4).

We say that T is a ball-k-set-contraction if

Vx,(T(4)) < kyx, (4)

for every bounded set A in X.
We define

y(T) = inf{k > 0 : Tis a k-set-contraction}
y(T) = inf{k > 0 : Tis a ball-k-set-contraction}.

Remark B.4. The above ideas can also be defined for nonlinear maps between
metric spaces Darbo (1955) and Nussbaum (1969).

Denote the closed ideal of compact linear operators of X into X by K.! Let
Z=LX,X)/K.

Definition 15. We define a seminorm ||T ||g on L(X, X) by
T|g = inf |T +C].
ITllx = inf IT+Cl
Note that || T'|| ¢ induces a norm on Z with respect to which Z is a complete
normed space.

Lemma B.5. The measure of noncompactness and the ball measure of noncom-
pactness satisfy the following properties:

a) Let A C X, then A is compact if and only if 7 (A) = 0. Also, A is compact
if and only if y(A) = 0.

b) An operator T € L(X, X) is compact if and only if y(T) = 0. Also, T is
compact if and only if y(T) = 0.

Recall that an operator is compact iff the image of a bounded set is relatively compact, that is,
if its closure is compact.
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o) y(T) < |IT].

d) For bounded subsets A, B C X, we have y(A + B) < y(A) + y(B) and
V(A + B) < y(4) + y(B).

Proof. a) For ¢ > 0, since A is compact, A can be covered by a finite number of
balls of radius . Since ¢ is arbitrary, we have y(A) = 0. Therefore y(4) = 0,
because y(A) < Y(A).

Now assume that A is not compact, then there is a sequence {x, }nen < A which
has no accumulation point in A. Define B,(x,) 1= {y € X : ||x, — y|| < &}
Then there exists a subsequence {xy, };eN such that for any i, j € N, Bg(x,;) N
Bs(xnj) = @, for some ¢ > 0. If not, then for any ¢ > 0, there is N € N, such
that for any n,m = N, |x;, — xm| < 2&. So {X,}neN has a subsequence which
is Cauchy and therefore it has an accumulation point in A, which is in contrary to
the assumption. So we conclude that y(A4) = y(A) > e.

b) First suppose that 7" is a compact operator. For any bounded set A € X, T'(4)
is compact. So by (a), ¥(T(A4)) = 0 and y(T(A)) = 0. Hence forany k > 0, T
is a ball-k-set-contraction and a k-set-contraction. So y(T) = O and y(T) = 0.

Now assume that y(7) = 0. Let A C X, be aball of radius R > 0. Fore > 0,
we have y(T) < %. Therefore y(T(A4)) < £y(A) < &. So y(T(A)) = 0, then
(a) implies T'(A) is compact. So T is a compact operator. The same proof works
for the case y(T) = 0.

c) If y(A) = r, then for A > r, there is a covering of A by finitely many sets
{Bi}}_, of diameter not greater than A. So {T'(B;)};_, will cover T'(4). For any
I1<i<n

diam(7'(B;)) = sup [|[Tx =Tyl < [T sup |x—yll <|[T]A.

X,YEB; x,y€B;

which implies y(T) < ||T|.

d) Let y(A) = o and y(B) = B. Then for r > «, there is a covering of 4 by a
finite number of sets {a; }7_, of diameter not greater than r and for p > B, there is
a covering of B by a finite number of sets {b; }]".’=1 of diameter not greater than p.
So A+ B =1{x+ ylxeayeB C Ui jix + y}xeai,yebj- Foranyl <i <n,1<
Jj <mandx,x" €aj,y,y €bjwehave

[x+y—x"=yI<lx=xN+ly=yI<r+op.
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Therefore y(A + B) < y(A4) + y(B).

Now let y(A) = «x and y(B) = A. Then for u > «k, there is a covering of A
by a finite number of balls {B(a;, r;)}?_, of radius r; < p and for v > A, there
is a covering of B by a finite number of balls {B(b;, ,o]-)};’f‘:1 of radius p; < v.
So A+ B = {x + ylxeayeB S Uij{x + y}xeB(ai,rl-),yeB(bj,pj)- For any
Il<i<n/1<j<mandx € B(a;,r;),y € B(bj, pj) we have

[x+y—(ai +bp)ll < llx—aill +lly = bjll < p+v.
Therefore (A + B) < y(A) + y(B). O

Lemma B.6. Let X and Y be complex Banach spaces and T € L(X,Y). Then
we have y(T*) < ¥(T).?

Proof. Suppose T is a ball-k-set-contraction. To show that 7* is a k -set-contraction,
it suffices to show that if S is a set of diameter less than or equal to d in Y *, T*(S)
can be covered by a finite number of sets of diameter less than or equal than kd +¢,
for any ¢ > 0.

Consider T(B), where B = {x € X, ||x| < 1}. Since y(B) < 1 and T is a ball-
k-set-contraction, 7'(B) can be covered by a finite number of balls Bk+% (yi) in
Y, 1 <i < n,with centers at y;, and radii k + %. Select M such that ||y; || < M,
1 <i <n,and |y*|| < M forall y* € S. Hence, we have |y*(y;)| < M? for
each y* € S. Decompose the closed interval [—~M 2, M?] into a union of disjoint
intervals A;, 1 <i < p, of length less than 5. We consider an equivalence rela-
tion as follows: Given y} and y; € S, write yJ ~ yJ iff foreachi, 1 <i < n,
y1 (i) and y3(y;) lie in the same interval A (), 1 < j(i) < p. Then we divide
S into equivalence classes Sj,1 < j <gq,

We claim that diameter (7*(S;)) < kd + ¢. Take y; and yJ in S;. We have

IT*(Y) =T () = sup [yf (Tx) —y5(Tx)| = sup [y7(y)—y3 )l
x€B y€T(B)

Ify € T(B), we know that y € Bk+%(y,-) for some i, 1 <i < n. It follows that
VTO) =y W< T =y = y3 (0 =yl + [yT (i) — y3 (i)

& &
= 107 =)0 =yl + Fo) =33 00l S d(k + 55) + 5 = kd +e.

2By T *we mean the dual operator: for all continuous linear functional £ € ¥’ we have T*{ € X’
where T*£(x) = £(Tx).
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Thus, for each ¢ > 0, [|T*(y]) — T*(y>)|l < kd + &. This shows that diameter
(T*(S;)) < kd + €, and since T*(S) C U?:l T*(S;), we have covered T*(S)
by a finite number of sets of diameter less than or equal to kd + &. O

Lemma B.7. Let X be a complex Banach space and T € L(X, X). Assume that
for somen = 1,Y(T") < 1. Then for any r = 1,(1 — T)" restricted to closed,
bounded sets is proper.

Proof. Let A be a closed, bounded set in X and M a compact set. We have to
show that M; = {x € A: (1 — T)x € M} is compact. By Lemma B.5, in order
to show that M is compact it suffices to show that ¥ (M) = 0. Notice that (M)
is defined, since A is bounded. Suppose x € M1, so that x = T'x + m for some
m € M. Substituting for x on the right, x = T?x + Tm + m, and continuing in
this way we find
n—1
x=T”x+ZTim. (B.1.1)
i=0

If we write My = Z:’;& T'(M), M, is compact, since it is the continuous image
of a compact set. Furthermore, (B.1.1) implies that M; C T"(M1) + My, so
that y(M1) < y(T"(My)), by Lemma B.5. Since T" is a ball-k-set-contraction,
k <1,y(My) < ky(My). It follows that ¥ (M) = 0. Hence 1 — T is proper.
To show that (1 — 7")", r > 1 is proper we proceed by induction. Assume that
for r > 1, (1 — T)"~Y is proper, then for compact set M, (1 — T)~C~D (M)
is compact. So (1 —=T)7"(M) = (1 —T)"Y(1 — T)~"=D(M) is also compact.
Therefore (1 — T')" is proper. O

B.2 Nussbaum formula

In this section, we obtain a characterization of the essential spectral radius ro =
sup{|A| : A € 0ess(T)}. We essentially follow Nussbaum (1970).

Lemma B.8. Let X be a Banach spaceand T € L(X, X). Letr} := inf, (y(T™")) 5.

Then 1imn_>oo()7(T”))% and 1imn_>oo(y(T”))% exist and equal r),. Furthermore,
if |A| > r}, then N(A — T)" is finite dimensional for any r = 1 and R(A — T) is
closed.

Proof. We start showing that lim supn_,oo(f(T”))% <r,.
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For any & > 0, choose m such that ()7(Tm))% < r) + ¢. For large enough n,
writen = pm + q where 0 < g < (m — 1).
Forall § € L(X, X), A C X, we have:
V(S(A)) < ¥(S)y(4)

Hence forall S, 7T € L(X,X),AC X

V(ST (A)) < Y(SY(T(A) < ¥ (S)V(T)y(A).

Therefore ¥ has the submultiplicative property:

V(ST) < y(S)y(T).
Then, by the above fact and y(T) = 0 for T € L(X, X), we obtain

FTM)T < FIT™)T - FT)5 < (rh + )% FT))7.

1

P — land £ — 0asn — oo, we must have limsup,,_, o (¥(T™))#

Since =
/

e

N IN

r, + €. Since ¢ was arbitrary, we have proved lim supn_)oo(f(T”))% <r
lim infn_>oo()7(T”))%. Therefore limy—s oo ()7(T”))% exists and equals r,. In the
exact same way, we can prove that 1imn_,oo(y(T”))% exists.

Suppose |A| > r, and n is such that ()7(T”))% < |A]. Consider T} = (%)T
and notice that y(T}") = (#)V(T”) =k < 1. By Lemma B.7, (1 — T)", for
any r = 1 is proper on closed, bounded sets. By Lemma B.3, N(1 — T7)" is finite
dimensional for any » = 1, so R(I — Ty) is closed. O

Lemma B.9. [f'|Ag| > r], then Ag is not a limit point of o (T) \ {Ao}-

Proof. We show that all points A # A¢, in some neighborhood of the point A,
belong to the resolvent of 7" and so A¢ is not a limit point of o (7). The case
Ao € p(T) is trivial. Let Ag € o(T). First we prove that either N(Ag — T') # 0
or N(Ag —T*) #0.

Suppose that N(Ag—T) = N(Ao—T*) = 0. Then (Ag—T)"! : D — X exists
on D = R(Ag — T) which is closed, by Lemma B.8 applied to Ao. Assume that
D # X, then by Lemma B.1, thereis u € X, such that ||u|| = 1 and |[u —w| = %
forany w € D. Let V := span{u, D}, then for any v € V we can write v =

au + w with w € D. Define /(v) := «, then

- 1 1
Wl = leu +wl = e — (" w)| = Slel =Sl
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So
l1(v)| < 2|v].

We can then apply the Hahn—Banach theorem to produce an extension of / on all of
X and! # 0, since [(u) = 1. Foranyv € X, (Ao—T™*)I(v) = l((AO—T)v) = 0.
So (A9 —T*)l = 0. This contradicts N(Ag—T*) = 0. So D = X, which implies
that Ao — 7 is invertible on X and by the bounded inverse theorem, (Ag — 7)1
is a bounded operator. Therefore A¢g ¢ o(T') and this contradicts the assumption.
Suppose that there exists a sequence {In jo2q Co(T) \ {Ao} which accumu-
lates to Ag. Then there are either infinitely many i1, € N (X,, — T) or infinitely
many [, € N(A, — T™*). For each & > 0, there exists 7 € N such that, forn > 7,

|An — Aol < €[Aol.
In the first case, for any k € N, let M}, be the subspace spanned by the vectors
Ui, -+ Ujyk. Setug 1= Uzyx and Ag := Aj4k. Since Uy, us, - are linearly

independent, each My _ is a closed proper subspace of M. So, by Lemma B.1,
there exists vy € My, such that ||vg| = 1 and d(vi, Mj_1) = 1 —&.

Note that vy = apuy + wg where o € R, wy € Mp_;. So fork,r,s € N,
such that s > k,

1T vs — T" okl = IT" (tsras) + T"ws — T vge || = lletsAgus + T ws — T |

= A lllos—(ws =25 T ws+ A" T v | = [A71(1—e) = [(hs—Ro+A0) [(1—¢)

ks—kor r )Ls—/\()
i [ (1=e) = 2ol (1] -

This implies that 7" {|v| < 1} cannot be covered by finitely many sets of diameter
1140!" (1 — &) *1. Therefore, by the arbitrariness of &, 7(T") = y(T") = 1|Aol".
In the second case, exactly the same argument implies y(T*") > %|/\0|’ . By
Lemma B.6, Y(T") = %|)Lo|r.
Thus in both cases, r, = inf, (¥ (T”))% = |Ao| which contradicts the assump-
tion. So Ag is not a limit point of o (T'). O

1+

= |AD] ) (1—e) = Ao (1—g)" 1.

Corollary B.10. According to the definition of the essential spectrum, Lemma B.8
and Lemma B.9 imply that r, = re.

Lemma B.11. Let T be as above and re = supf{|A| : A € 0ess(T)}. Taker > re.

Then there exists a finite dimensional linear operator F such that o(T + F) C
{A|A <)
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Proof. Since a(T)N{A : |A| = r}is a compact set of isolated points, it consists of
a finite number of points A1, --- , A,. Let C; be a small circle about A;, C; NC; =
@ fori # j and containing only A; from o(7'), and P; = (ﬁ) ‘/Ci A—=T)"ldA
be the Riesz projector associated to A;. Since A; does not belong to the essential
spectrum, R(P;), which is the eigenspace associated to A;, is finite dimensional. If
we write P = Y 7_; P;, we therefore see that P is a finite dimensional projection.
We take F = TP.

Let us write N = N(P), the null space of P, and R = R(P), the range of P,
andnote that X = N@R. Consider A—T —F for|A| > r. For |A| > rand A # A;,
1 <i <n,wehaveA € p(T). Thenitisclearthat( A—T —F)|y = (A —=T)|n N
is a one to one map of N onto N. Furthermore (A — T — F)|g = A|g, which is
clearly one to one and onto for |A| > r. Thus A — T — F is a one to one map of X
for |A| > r. O

The following lemma is not necessary for our applications but we include it
for completeness.

Lemma B.12. Let X be a complex Banach space and T € L(X,X). Then
1imn—>oo(V(T"))%, limn—>oo()7(Tn))% and limn_>oo(||T"||K))% are all equal to
re.

Proof. We have already seen in Lemma B.8 that
lim (7(T™))"
n—->oo

and limy,— oo ()/(T”))% exist and equal r,. The same argument as in Lemma B.8
1

shows that r) := limy oo | T"||} exists. For S € L(X,X) and any compact
operator C € L(X, X), y(S) =y(S+C) < ||S +C|. Therefore y(S) < ||S|k,
which implies r, < r/.

Now we show that r}’ < r,. Suppose not, so that r, < r//, and selectr, < r <
r). For this r, let F be as in Lemma B.11 and write 71 = T + F. By the ordinary

. . 1
spectral radius theorem we know that lim, oo || 71* || < r. On the other hand,

1
IT™lx < [IT{*|l, so that we obtain r,’ = lim, 0 ||T" || % < r, a contradiction.
It follows that r) < r. Now by Corollary B.10, we have ro = r, = r]. O
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B.3 Hennion’s theorem and its generalizations

We start by proving Hennion’s theorem and then provide a more recent generaliza-
tion.

In fact, the next Theorem is itself a small generalization of Hennion (1993),
since it allows the weak norm to be just a semi-norm. A similar generalization
is contained in Hennion and Hervé (2001, Theorem XIV.3). To this end we need
a bit of notation: given a vector space X and a semi-norm || - ||, we call Xo,y
the space X equipped with the topology induced by the semi-norm. Next, we can
consider the vector space of the equivalence classes with respect to the semi-norm
(i.e. x ~ y iff |[x — y|lw = 0). This yields a metric space X,,. Let | - ||/, be the
associated norm, and its completion Xy, is a Banach space.

Definition 16. A normed space Y and a continuous (w.r.t. the topology induced
by the semi-norm) operator T : Y — X canonically induce an operator T:Y >
Xw. Wewillsay that T : Y — X is ||-|lw-compact if for each bounded set B C Y,
T (B) is relatively compact in Xy,.

Problem B.13. Show that the above constructions and Definition 16 make sense.

Theorem B.14 (Hennion (1993)). Let (X, | - ||) be a Banach space and T €
L(X,X). Assume that there exists a continuous’ semi-norm || - |l on X, and
M >0>0,A,B,C >0, such that, foralln € N and f € X,

IT" fllw < CM*|[ fllw: IT" fII < AG" | f 1| + BM"| fllw -

Then the spectral radius of T € L(X, X) is bounded by M. If, in addition, T is
| - llw-compact, then the essential spectral radius of T is bounded by 6.

Proof. Continuity of the semi-norm implies that there exists C’ > 0 such that
| Fllw < C’|| f| forall f € B. For if not, then for any n € N, there must exist
fu € Bwith || o] = 1,but || fullw = n. Butthen |1 £, | — Owhile |2 f,[lw = 1,
contradicting continuity of the semi-norm.

This fact plus the second assumed inequality yields | 7" || < (A+BC)M"|| f||
foralln € N, f e B. Using the formula for spectral radius, see Problem A.15,
we conclude the spectral radius is bounded by M.

For the second part, by Lemma B.12 we have

— N n/=(Tn 3 nIs(Tn
re = lim y(T") < lim Vy(T"B1)

3By continuous, we mean that if ( f,), C B is a sequence such that || f, || — 0, then necessarily
[ fallw — 0.
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where By :={f e X | | fIl <1}
Now we prove that 7" B; can be covered by a finite number of balls of radius
Cy - 0", which implies that r, < limy—eo VY (T"B1) < limy_oo &/ Cy - 0" = 6.
By hypotheses T By is relatively compact in X,,. Thus, for each ¢ > 0 we can
extract a finite subcover {Bg( fl)}l_1 from the covering {Bg( f )} 7 FeT B where

Bg(f) ={geXy : |E— f||/ < &}. Then, choosing * f; € f, N T31 and
setting U (f;) = {f € X : |If = filw <&} ={f € f : f e Be(fi)} we

have a finite covering of 7'Bj.
Next, if f = T(g), g € Bi, then again using the continuity of the semi-norm,
I/l <|ITgll < A6 + BC’'M. Accordingly, for each f € Ug(f;) N TB; we have

17" = Sl < A" f = fill + BM"M f = fillw
< A0"'2(460 + BC'M) + BM" .

Choosing ¢ sufficiently small we can conclude that for each n € N the set 7" (B)
can be covered by a finite number of || - ||-balls of radius Cy - 6" centered at the

points {77~ 1fl}z—1 O

To conclude we show that the hypotheses of the above theorem can be further
weakened to situations in which T is not necessarily continuous with respect to
the weak norm.’

Theorem B.15 (Bardet, Gouézel, and Keller (2007)). Let (X, | - ||) be a Banach
space and T € L(X, X). Assume that there exists a semi-norm || - ||y on X such
that any bounded sequence in | - || contains a Cauchy sequence for || - ||w. If there
existng € N and 0, B > 0 such that,

17" fII < 671 f 1l + Bl fllw- (B.3.1)
then the essential spectral radius of T is bounded by 6.

Proof. Note that there must exist C > 0 such that || f|l, < C||.f]. If not then
there would be a sequence { f,,}, || fz|| < 1, such that lim, . || fn|lw = oo, but
this contradicts that f;, must have a Cauchy subsequence.

4Recall that elements of X, are equivalence classes of elements in X .
SIndeed, note that the first displayed inequality in Theorem B.14 amounts simply to the continuity
of T in the weak norm.
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Let M = 2||T||, then we can define the new seminorm,

1/l = QO Y MTT" f .

n=0

Note that
1 &
1 <5 2 M7 1< 5 Y271 A1 = I

ITf Il < @C)T D MT* ! £l (B.3.2)

n=0

o0
=QC) "M Y MTT" fllw < M| £1I}.
n=1

Thus, if we set A = M™097"0 for each n € N we can write n = kng + m,
m < ng, and, iterating Equation (B.3.1),

k—1
1T £l < 0%moM™|| £ + > Bo*TI=Dnojpinotm gy,
j=0
OXmOM™ | f || + B max{g“TIImo p oty £
AO"| 1l + BM"I| £,

§
<

since it must be that 0 < ||T'|| = M/2.
Next, if { f,} is bounded in the || - || norm, so are the sequences 7™ f,,, m € N.

Then, by hypothesis, we can extract a sequence n} such that f,1 is Cauchy in the
J

|l - |[,p norm. From it we can extract a sequence n?, with n% =n i , such that T'f, »
J

is Cauchy in the || - ||, norm, and so on. Note that, by construction, nj = n;” for
J

; is such that 7™ f, ; is Cauchy in the || - ||, norm
J

for all m € N. Then, for each ¢ > 0, if (2C)~127L < ¢/2, then, by the definition
of the norm || - ||;,, we can write

m = j. Then the sequence n

L
1y = ol < @OV MPIT™ (s = fypll + /2.

m=0
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It follows that there exists m € N such that, if j,k = m, then || f ; — fnilg I < e,
J

i.e. we can extract a Cauchy sequence in the | - ||}, norm. So the || - ||}, norm
has the same property as the | - ||, norm. This implies that 7" is a || - ||/, -compact
operator. The statement follows then from Theorem B.14. O

Bardet, Gouézel, and Keller (2007) provide an application of Theorem B.15
to prove a local limit theorem for weakly coupled lattices of expanding maps in
which the relevant operators are indeed not continuous in the weak norm. For
more details, see Bardet, Gouézel, and Keller (ibid., Section 3).



This section contains some useful perturbation results. We follow and extend the
ideas in Liverani (2003, Theorem 3.2). Several such results are available (e.g., see
Kifer (1988), Baladi and Young (1993) or Baladi (2000) for a review). Here we
provide a simplification of the theory developed in Gouézel and Liverani (2006)
and Keller and Liverani (1999), see the original works for the full story.

We start by recalling, for the reader’s convenience, the setting introduced in
Section 1.7.

Hypotheses C.1. Let X C Xy be two Banach spaces, || - || and | - | being the
respective norms, satisfying | - lw < || - ||. Also assume that the unit ball of X
is weakly compact in Xy,. Consider a family of operators L. with the following
properties.

1. A uniform Lasota—Yorke inequality: There exist A, > 1 and A, B,C > 0
such that,

ILehll < AL R+ Blhlw,  |Lghlw < Clhly ;
2. For L : X — X define the norm

LI == sup |Lfw,
Inl<1
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that is the norm of L as an operator from X — Xy,. Then we require that
there exists D > 0 such that

£ = Lelll < De.

To state a precise result consider, for each operator L, the set
Vs (L) :={z€C||z| <rordist(z,o(L)) <}.
Since the complement of Vs ,. (L) belongs to the resolvent of L it follows that
Hy (L) = sup {[|(z = L)™' | z € C\Vp, (L)} < oo,
By R(z) and R.(z) we will mean respectively (z — £)~! and (z — £,)~ L.

Theorem C.1 (Keller and Liverani (1999)). Consider a family of operators L :
X — X satisfying Hypothesis C.1. Let Vs , = V5 (L), r > A7 8 >0, then,
ife < e1(L,r,6), 0(Le) C Vs (L). In addition, if e < eo(L,1,8), there exists
a > 0 such that, for each z & Vg .,

[I1R(z) — Re(2)]|| < Ce”.

In addition, for each r > )L:l and § > 0 there are constants a,b > 0, such
that a depends only on r and b depends also on §, such that, for all h € X and
e <ego(L,r1,0),

[Re(2)h]l < allhll + blhlw.

Proof.! To start with we collect some trivial, but very useful algebraic identities.
For each operator L : X — X and n € Z holds

1 = —1 i —1 n __
;;O(z LYz-L)y+ ¢ 'L)"=1 (C.0.1)
n—1
R(z)(z — L) + ! D ETL (Lo - L)+ REETLML— L) =1
z i=0
(C.0.2)

(2= Le) [Gne + T L)"R()] = 1= (7' Le)"(Le = L)R(z)  (C.03)
[Gne + (ZT1L)"R(2)] (2 = Lo) = 1= (27 Lo)"R(2)(Ls — L), (C.04)

This proof is simpler than the one in Keller and Liverani (1999), yet it gives worse bounds,
although sufficient for the present purposes.
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where we have set G, ¢ 1= % Zg:é (z71L,) .

Let us start applying the above formulae. Foreach € X andz ¢ V,. 5, and n
large and ¢ small enough,

I £0" (Lo = YR < (A0) " A (e ~ DRG]
D 1(Le— £YREH
< [FA) ™ A2Cs + Br " DelHy D) ] < )

To obtain the last inequality, choose n € N suchthatn = |— hll“f |. Then assuming

nr
r < 1 without loss of generality, we have r ™" < gihix so that both terms are

bounded by C 81+1‘£HTr*, and h]l“/{ — > —l since rA. > 1 by hypothesis. The claimed

inequality follows for ¢ > O sufficiently small.

Thus ||(z71Le)*(Le — L)R(2)| < 1 and the operator on the right hand side of
(C.0.3) can be inverted by the usual Neumann series. Accordingly, (z — £;) has a
well defined right inverse. Analogously,

1(z7"Le)" R(z)(Le — L)R] < (rA) " A||R(2)(Le — L)h]
+ Br *|R(z)(Le — L)h|yp.

This time to continue we need some information on the X, norm of the resolvent.
For g € X equation (C.0.1) yields

n—1

1 .
|IR(2)glw < " Z 7' glw + [R(2) (7' L) g
i=0

1glw + Hs r (LD)ArA) " I8l + Hs r (L)Br™"|glw

<

<r " (Hs ,(L)B + C(1 =) Dlglw + Hs (L)AL gl -
(C.0.5)
Substituting, we have
171 Le)" R()(Le — L)A]| < {(rAe) ™" AH;5 ,(£)2C1[1 + Br7"]
+ Br ?"[Hs ,(L)B + (1 —r)"'|De}||h| < 1,
again, provided ¢ is small enough and choosing n appropriately. Hence the op-

erator on the right hand side of (C.0.4) can be inverted, thereby providing a left
inverse for (z — L,). This implies that z does not belong to the spectrum of L,.



181

To investigate the second statement note that (C.0.2) implies

n—1

RG) = Relz) = = Y (7 ) (£e = )Re(2) = RE)E L) (L = £)Re(2).
=0

Accordingly, for each ¢ € X,

|R(2)p=Res(2)¢lw < {r 7" (1=r)" e+ Hs (L) (Aar) "2AC1+Hs (L) Be} || Re (2)9 .

To complete the argument, choose n = L—lrllnkij as before and note that by our

previous bounds on the inverse of z — L, we have | Rg(2)¢| < Cg, |||, for all
& < g9 and g9 > 0 small enough. The first inequality of the theorem follows with

_ Inr
a=1+ AL

To prove the second inequality, for |z| = r > A}!, we use Equation (C.0.1)
to write

m—1
Y 2R 4 T L™ (2~ L)
k=0
<A =AY YA + Crmlhlw
F AT (2 = Lo) T Rl + r T B(z — Le) " hlw,

Iz = Le)™' 0| =

for some constant C; ,,, depending on r and m. We can thus choose m such that
AX T < % and, recalling the first inequality of the Theorem, write

Iz = L)™' Rl < Crllhll + Crmlhlw + Ce*r ™ Bllhll + r~" B|(z = £) ™ hlw.
To conclude, we can use Equation (C.0.5) and write, foralln € N,
”(Z _ﬁs)_lh” < C#[Cr +e4r™" 4 AHB,r(ﬁ)(rk*)_nr_m]”h” + Cr,m,n,8|h|w-

Choosing n and ¢ so that Hg . (L)(rA.)™"r™™ < 1 and ¢?r™™ < 1 yields the
statement. O

Theorem C.1 shows that the point spectrum is stable. Yet, in applications it is
also important to control the multiplicity of the spectrum. This can be done thanks
to the following Lemma.
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Lemma C.2. Consider a family of operators L, : X — X satisfying Hypothe-
sis C.1. Letv € (L), |[v| > A, and let m be the dimension of the eigenspace
associated to v. Then, for each § small enough there exists e2(L, v, §) such that,
forall e < (L, v,68), 0(Le) N{z € C : |z —v| < 8} contains at most m
eigenvalues and the total dimension of their eigenspaces is m.

Proof. Since |v| > A, Theorem B.14 implies that v belongs to the point spectrum.
Hence, there exists §g such that {z € C : |z —v| < 8o} N o (L) = {v}. Then
Theorem C.1 implies that, for each § < 89/2 and € < (L, r, §), we can split the
spectrumas o (L) = 01 Uoy where o1 Nop = Bando; C{z € C : |z—v| < §}.
Accordingly, by Lemma A.24 we can define the eigenprojectors

1
I, = — | (z1—Ly) tdz, (C.0.6)
27i Jy,

where y5(t) = v+ 8e'!,and 0 (IT; L;) = [0(Le) N{z € C : |z —v| < §}JU{0}.
Note that the first inequality of Theorem C.1 implies, for ¢ < go(L, r, §), where
we can choose r = {A;! + |v]}/2,

|(ITg — Io)hlw < Cs&®|hll,

for some constant Cg, depending on the choice of §. While the second inequality
of Theorem C.1 implies that there exist constants a and bg, the latter depending on
8, such that

|Tehl| < ad|lh| + bs|hlw.

Since [T, is independent of § (see Lemma A.24) we have
IHT:h]| < (ado + bs,) IRl =: coll].
The above inequalities imply

|(ITe — Mo)*h| < 2a8||(ITe — Mo)h|| + 2bs || (ITe — o)A ||
< [4acod + 2bsCse?] ||h||.
Accordingly, if we choose § such that 8acod < 1 and &, such that 2b5Cse? < L

27
we obtain
(T, — )| < 1. (C.0.7)

This concludes the Lemma due to the following general fact.
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Problem C.3. Let 1,11, € L(X, X) be two projectors. Assume that
1Ty — )| < 1,
then dim(I1y (X)) = dim(IT2(X)).
O

The above two results are rather effective to study perturbations of transfer
operators. The reader can verify this directly by solving the next problem.

Problem C.4. Consider the maps f, : T' — T defined by
1

f(x) =2x + 2—sin2nﬁx mod 1
n

and use Theorem C.1 and Lemma C.2 to study the spectrum of the operators Lnh(x)
Zye £ ]}f,(—(yy)) for n large. In particular, show that, for n large enough, L,

1
has a spectral gap close to 5.

Given the above results it is natural to ask if the spectral data have some more
regular dependence on the change in the operator. These types of questions are
related to linear response.

Linear Response

In order to have linear response one needs more control on the operators £, than
that provided by Hypothesis C.1. Here we provide the simplest possibility, see
Gouézel and Liverani (2006, Section 8) and Keller and Liverani (2009b) for more
details.”

Hypotheses C.2. Let X5 C X1 C Xg be three Banach spaces, equipped with the
norms || - ||i, respectively, satisfying || - lo < || - [l1 < || - ||l2. Also assume that
the unit ball of X; is weakly compact in X; 1. Consider a family of operators L,
with the following properties.

1. A uniform Lasota—Yorke inequality: There exist A, > 1 and A, B,C > 0

such that,
|L2h|l; < AAM|\R|li + Bl|hlli—1,  fori > 0and forall h € X;
|L2h|l; < C\hli, fori=0andforallh € X;.

2Note that Gouézel and Liverani (2006, Section 8) contains an imprecision which is fixed in
Gouézel (2010, Theorem 3.3).
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2. We require that there exists an operator A € L(X;, X;), for each j > i,
such that

Del||h|1, forallh € X,
Del|lh|2, forallh € X,
De't¥|no,  forallh € X,

I(Le = L —eA)hllo <
[(Le = £ —eAh|1 <
I(Le = L —eA)hllo <

for some a > 0 and each h € X».

Remark C.5. The Hypothesis C.2 are a bit different from the ones in Gouézel and
Liverani (2006). This is made in order to present a simplified proof.

Remark C.6. Note that the Hypothesis C.2 imply Hypothesis C.1 for L, Ls both
with respect to the norms || - o, || - |1 and with respect to the norms || - ||1, || - ||2.

We will need the following well known fact.

Problem C.7. Prove that forany A, B € L(X, X) andz &€ 6(A)Ua(B) we have

z1-A) '—@1-B) '=@E1-4)"'A4-B)(z1-B)!,
which is called the resolvent identity.

Finally, let us define
Vs r (L) :={z € C||z| < rordist(z,ox, (L)) <8},
where ox (L) is the spectrum of £ seen as an operator in L (X, X).

Remark C.8. Note that [UXz(ﬁ) N{lz| = A:l}] C [O'XI L)yn{lz| = /\:1}] since
by Theorem B.14 this part of the spectrum belongs to the point spectrum. Accord-
ingly, if v € ox,(L£) N{|z| = A1}, then there exists h € Xy such that Lh = vh

and hence v € oy, (L).

We are then ready to provide the last result of this section.

Remark C.9. Theorem C.10 says that (z — L¢)™ Y, when seen as a function from
R to L(X2, Xo) is differentiable at zero. But then also the eigenprojectors Ilg
defined in Equation (C.0.6) are differentiable and so is I1; L¢. In particular, if the
projector Ilg is associated with a simple eigenvalue v, and hence has the form
I, = L, Q@ hg, then I1. L, = v Il,. It follows that v, is differentiable and ¢ — h,
is differentiable as a function from R to Xo.
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Theorem C.10. Consider a family of operators L¢ : Xo — Xo satisfying Hypoth-
esis C.2. Letr > A Y and 8§ > 0. If e < e2(L,1,8), then ox,(Le) C Vs r (L) and
ox,(Le) C Vs (L). Moreover, there exists n > 0 such that, for all z ¢ Vs (L)
and h € X»,

I[R(2) — Re(z) — R(2).AR(2)]hllo < Cse' 7|2
Proof. The factthatoy; (Ls) C Vs (L) follows from Theorem C.1 and Remark C.8.
Let Qp = L, — L — eA and, as before R(z) = (z1 — £)~! and Re(z) =
(z1 — L)~ L. By Problem C.7 we can write
Re(z) = R(2) = Re(2)(Le — L)R(2).
Thus if we define & = R.(z).AR(z), we have that
[(Re(z) — R(z) — eE)hllo = [|Rs(2) Qe R(2)R]fo.

Arguing as in Equation (C.0.5), recalling Remark C.6 and the second inequality of
Theorem C.1, we can show that there exists C,. s > 0 such that for all g € X,

IRe(2)gllo < Cs, [r™ligllo + (rA) "™ llgll)] -

Accordingly, using Hypothesis C.2-(2) and recalling ox, (£) C Vs (L), we have,
foreach h € X,

I(Re(z) = R(z) — eE)hllo < Csr [r™ Qe R(2)Alo + (rAe) ™[ Qe R(2)A]1)]

El

Cs.»D[r™™e!™® 4 (rd)™e)] [R(2)R2
Cs, [re"™ + (r2) ™8] ]2

ININ A

for some constant C 5/ .- Choosing m so that ¢* = A™, the above implies that,

. —1
setting no = (1 — lnh’;x ) > 0, we have

I(Re(z) = R(z) — eE)hllo < Cs&' |2
On the other hand, Theorem C.1 implies

IRe(2)AR(2) — R(2)AR(2)] hllo < Cse®| AR(2)h]|y
< Cse?|[R(2)h]2 < Cze|1h]2.

Which concludes the proof with n = min{ng, a}. O



In this section we will see that the Banach fixed point theorem can produce unex-
pected results if used with respect to an appropriate metric: a projective metric.
As already remarked projective metrics are widely used in geometry, and have
imprtant generalizations (e.g. Kobayashi metrics) for the study of complex mani-
folds, see Isaev and Krantz (2000a).
Here we limit ourselves to a few words on the Hilbert metric, an important tool
in hyperbolic geometry. For more details on Hilbert metrics see Birkhoff (1979),
and Nussbaum (1988) for an overview of the field.

D.1 Projective metrics

Let C C R” be a strictly convex compact set. For each pair of points x,y € C
consider the line £ = {Ax + (1 — Ay) | A € R} passing through x and y. Let
{u,v} = dC N £ and define'

[lx —ulllly — vl

O(x,y) =|ln
llx —vlllly — ull

(D.1.1)

IRemark that u, v can also be co.
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(the logarithm of the cross ratio).
Problem D.1. Prove that © defines a metric.

Note that the distance from an inner point to the boundary is always infinite.
One can also check that if the convex set is a disc then the disc with the Hilbert
metric is nothing other than the Poincaré disc. This points to the connection with
complex geometry that, however, we will not explore further.

The objects that we will use in our subsequent discussion are not convex sets
but rather convex cones, yet their projectivization is a convex set and one can
define the Hilbert metric on it (whereby obtaining a semi-metric for the original
cone). It turns out that there exists a more algebraic way of defining such a metric,
which is easier to use in our context. Moreover, there exists a simple connection
between vector spaces with a convex cone and vector lattices (in a vector lattice
one can always consider the positive cone). This justifies the next digression into
lattice theory.”

Consider a topological vector space V with a partial ordering “<,” that is a
vector lattice.> We require the partial order to be “continuous,”i.e. given{f,} € V
nll>néo fn = f,if fn = g for each n, then f > g. We call such vector lattices

“integrally closed.” *

We define the closed convex cone> C = {f € V| f # 0, f > 0} (hereafter,
the term “closed cone” C will mean that C U {0} is closed), and the equivalence
relation “~”: f ~ g iff there exists A € ]R{j\{O} such that f = Ag. If we call
C the quotient of C with respect to ~, then C is a closed convex set. Conversely,
given a closed convex cone C C V, enjoying the property C N —C = @, we can
define an order relation by

f<g & g— feCuio.

Henceforth, each time that we specify a convex cone we will assume the corre-
sponding order relation and vice versa. The reader must therefore be advised that

2For more details see Birkhoff (1957), and Nussbaum (1988) for an overview of the field.

3We are assuming the partial order to be well behaved with respect to the algebraic structure: for
each f,geV f>ge= f—g>0;foreach f € V,A e R", f > 0= Af > 0; for each
f eV, f>0and f <0imply f = 0 (antisymmetry of the order relation).

4 To be precise, in the literature “integrally closed” is used in a weaker sense. First, V does not
need a topology. Second, it suffices that for {o,} € R witha, - aand f, g € V,ifa, f > g,
then of > g. Here we will ignore these and other subtleties: our task is limited to a brief account
of the results relevant to the present context.

SHere, by “cone,” we mean any set such that, if f belongs to the set, then A f belongs to it as
well, for each A > 0.
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“<” will mean different things in different contexts.
It is then possible to define a projective metric @ (Hilbert metric),® in C, by

the construction:
a(f, g) =sup{d e RT | Af < g}

B(f. g) = inf{lﬁﬁier; g2 uf} (D.1.2)
=1 —,g]
o) =t

where we take @ = 0 and = oo if the corresponding sets are empty.
The relevance of the above metric in our context is due to the following Theo-
rem by Garrett Birkhoff.

Theorem D.2. Let Vq, and V, be two integrally closed real vector lattices;” L :
V1 — V, a linear map such that L(Cy) C Ca, for two closed convex cones C; C
V1 and Co C YV with C; N —C; = 0. Let O; be the Hilbert metric corresponding

to the cone C;. Setting A = sup O, (f, g) we have
f.8€T(C1)

O2(L S, Lg) < tanh (é) O1(fiy) Vigel

(tanh(oc0) = 1).

Proof. The proof is provided for the reader’s convenience.
Let f, g € C1. On the one hand if « = 0 or 8 = o0, then the inequality is
obviously satisfied. On the other hand, if @ # 0 and B # oo, then

O1(f. &) = lné
o

where af < g and Bf > g, since Vj is integrally closed. Notice that @ = 0, and
B = 0since f >0, g > 0. If A = 00, then the result follows from ¢ L f < Lg
and BLf > Lg. If A < oo, then, by hypothesis,

O2 (L(g —af), LIBf —g) <A

®In fact, we define a semi—metric, since f ~ g = O(f. g) = 0. The metric that we describe
corresponds to the conventional Hilbert metric on C.

Recall that a topological vector lattice (V, <) is integrally closed if for all sequences {fy},
limp—oo fn = f,if fu > gforalln € N, then f > g. In fact, this definition is a bit stronger than
the usual one, see Footnote 4 of this chapter.
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which means that there exist A, p = 0 such that

AL(g —af) < LBf —g)
nl(g—af) = LBf —g)

with In % < A. The previous inequalities imply

B+ Ax

144 £f=Ls

po + B
Lf=Lg.

1+ p f=Le

Accordingly,

(ﬁ—l-/\a)(l—i-u)_ne@‘(f’g)—l-k e
I+ D(pa+p) OO 4 p 1+u

/@1(ﬁg) (n—A)et
0

Ox(Lf Lg) <In

e lEsal g)(1+f)

< tanh ( ) O1(/. 8).

O

Remark D.3. If L(Cy) C Cy, then it follows that @ (L f, Lg) < O1(f, g). How-

ever, a uniform rate of contraction depends on the diameter of the image being
finite.

In particular, if an operator maps a convex cone strictly inside itself (in the
sense that the diameter of the image is finite), then it is a contraction in the Hilbert
metric. This implies the existence of a “positive” eigenfunction (provided the cone
is complete with respect to the Hilbert metric), and, with some additional work,
the existence of a gap in the spectrum of £ (see Birkhoff (1979) for details). The
relevance of this theorem for the study of invariant measures and their ergodic
properties is obvious.

It is natural to wonder about the relation of the Hilbert metric compared to
other, more usual, metrics and the connection with spectral theory. While, in
general, the answer depends on the cone, it is nevertheless possible to state an
interesting result.
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D.2 Hilbert Metric and spectral theory
We start with the relation between the Hilbert metric and norms. The following is
Liverani, Saussol, and Vaienti (1998, Lemma 2.2).

Lemma D.4. Let || - || be a semi-norm on the vector lattice V, and suppose that,
foreach f, g€V,

—f=2eg=xf=IfII=lgl

Let C C V and suppose p : C — Rxq is a homogeneous and order preserving
function, i.e.

VieC YAeRT  p(f)=Af
VigeC f=xg = p(f)=<p(@).
Then, for all f, g € C with p(f) = p(g) > 0,

1/ =gl < (e2Y — 1) ming] /1. gl

Proof. We know that ©(f, g) = In g, where af < g, Bf > g. Since p is order
preserving, this implies ap(f) < p(g) < Bp(f). Since p(f) > 0, this implies
o <1 < B. Hence,
g—f=2B-Df=2B-a)f
g—fzle-Df=-(B-a)f

which implies

lg— 71 < B-alfl < E=2) 71 = (B0 —1) 11,

o
Reversing the roles of f and g completes the proof. O
It is possible to take p = || - || in the above lemma since by assumption, the

semi-norm is order preserving. Yet it is convenient in many applications to be able
to separate the two. See Appendix D.3 for one such application.

Many normed vector lattices satisfy the hypothesis of Lemma D.4 (e.g. Ba-
nach lattices®). In particular, it is often possible to construct a standard norm with
the wanted properties.

8 A Banach lattice V is a vector lattice equipped with a norm satisfying the property || | f] || =
|| £l for each f € V, where | f| is the least upper bound of f and — f. For this definition to make
sense it is necessary to require that V is “directed,” i.e. any two elements have an upper bound.
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We say that V is Archimedean if there exists @ € C such that, for all f € C
there exists A € R: f < Ae. Foreach f € V we define

[ fll« =inf{A : —Ae < f < Ae}. (D.2.1)
Lemma D.5. The function |- ||« is an order preserving norm, thatis: —g < f < g
implies || fll«» < |lgll«. Moreover, (V,|| - ||«, X) is an integrally closed vector
lattice.

Proof. To start with, note that if || f||» = 0, then there exists A, — 0 such that
—Ane <X f < Aye. It follows that A,e — f € C and Ay,e + f € C, hence
f.—f € CU{0}, and thus f = 0 (since C N —C = @ by assumption).

Since f < g is equivalentto vf < vg, for v € R4, it follows immediately
that [[vf [« = vl /|«

Let f,g € V, then for each ¢ > O there exist a,b witha < & + ||.f||«,
b <&+ | gll«,suchthat —ae < f < ae and —be < g < be. Then

—(Iflk+llgls+28)e = —(a+b)e = f+¢ = (a+b)e < ([ fll«+lgl«+2¢e)e

implies the triangle inequality by the arbitrariness of €. We have thus proven that
| - ||« is a norm.
Next, suppose that —g < f < g, then

—llglhe = —g =< f 2g =gl

which implies || f ||« < ||g|l+. Hence, the norm is order preserving.

To conclude, let us prove that V is integrally closed. Assume that { f,} con-
verges to f in the || - ||» topology, and f;, > g for all n € N. Then there exists
a sequence ®, — 0 such that —aye < f — f, < ape. Hence, f — g + aye >
Jfn — g > 0 and since the cone is closed it follows that f — g > 0. O

Remark D.6. Note that we can always complete V with respect to the norm || - || «,
whereby obtaining a Banach space. From now on we thus assume that (V, || - ||«)
is a Banach space .

Among the order preserving norms, the norm || - ||« enjoys a special status, as
is illustrated by the next lemma.

LemmaD.7. Ifthenorm ||-||, on V, is order preserving, then there exists a constant
C > Osuch that, forall f € V, we have || f| < C| f |«
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Proof. By definition we have —| f'||xe < f =< || f|l«&. By the order preserving
property of the norm it follows that

A< LA Nsell = 1Lf Dl
O

Our last result allows us to link our cone language to spectral theory. In partic-
ular we show that a strict cone contraction implies a spectral gap for the operator
acting on a Banach space equipped with an order preserving norm.

Theorem D.8. Let L : V — V be order preserving, let || - || be an order preserving
norm, and assume
A= sup OLS Lg) < o0,
f.geC
then, setting v = p(L),” x := tanh (%), h e Vandl € V* such that L(f) =
vie(f) + Qf where £(h) = 1, Qh = 0, L(Qf) = O, forall f € V, and
10"l < x"~ v A.

Proof. Since L is order preserving, foreach f € V, —|| f||Le <X Lf < || f]Le.
Hence, |Lf] < ||Le|ll| f], that is, £ is bounded. Accordingly, Theorem D.2
implies that, for each f, g € C,

A
O(Lf, Lg) < tanh (Z) O(f,g) = xO(f. g, (D.2.2)

and note that y < 1 since A < oo. For f,g € C, let n,(f) = |L* f||71L" f.
Then Lemma D.4 implies, foralln > m > 0,

I90(f) = nmn (DI < [PEFED —1] < [ex" 4 1]
Inn(f) = (@)l < [eOE" 1" —1] < "4 —1].

It follows that 1, ( f) is a Cauchy sequence, and its limit 4( f) =: h does not
depend on f. Moreover,

Lrn+1
eun() = e ),

9By p(L£) we mean the spectral radius of £.
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Since 1€/ < II£]|, we can choose a subsequence 7 ; such that
= I d J
et
im ———— =
j—oo | L% f]
for some v > 0. Then,
1L+ A

Lh= lim Ln,,(f)= lim Nn; (Lf) = vh.
Jj—>00 J=

oo L% [l

Since by construction ||4| = 1, then v = || LA]||.

Since the cone is closed, # € C. Thus, & € LC C int(C). Hence, for each
f € V, there exists & > 0 such that —u|| ||k < f < ul|| f||h. Thus, since the
norm is order preserving, ||L" f|| < |l fINL R] < w| f||v"*. Foreach, f € C
let

Lo(f) = limsupv™"||L" f]|.
n—>oo
Note that £ is bounded, homogeneous of degree one and order preserving, more-
over it satisfies the triangle inequality, hence it is a seminorm. Since £o(h) = 1

andLo(v™ ™" L™ f) = Lo(f) we can apply Lemma D.4to f and £o( f)h and obtain

IL*(f = Lo(S I = IL" f = Lhlo(f)| < COL" £, L h)v"
< LAl (D.2.3)
On the other hand, for each f € Candt~! > || f||, we have

1£7 f =17 {lo(e + 1f) = Lo(@)} hll <t TH{IL" (@ + 1f) = Lo(e + 1f)h]|
+ (1" — Lo(e)hll}
<y,

Hence, if f € int(C), we have
bo(f) = Lol flle + 1) — Lol flle) = Lo(te + f) —Lo(re)
for all ¢ = || f|| We can then define, for all f € V,

) = Lo flle + f) = Lol f o).
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Note that equation (D.2.3) implies

0= lim [v7"L"(f + ¢+ I/ + llglle) —v"L*(f + [ flle) —vT" L7 (g + ligle)]
= [[{bo(f + & + [ILfII + llgle) = Lo(f + [ flle) = Lo(f + 1/ le)}hl.

Since Lo (f + g+l f I+ lIglle)—Lo(lllf 1+ lIglle) = Lo(f +&+ I/ +glle)—
Lo(|| f + glle) the above implies that £ is linear. Hence, we have that £ € V* and

the Theorem. By equation (D.2.3) it follows that v is a simple eigenvalue, that it
equals the spectral radius, and the spectral decomposition claimed by the Lemma
follows from spectral theory, see Appendix A.3. O

D.3 A simple application: Perron—Frobenius

Consider a matrix L : R” — R” of all strictly positive elements: L;; = y >
0. The Perron—Frobenius theorem states that there exists a unique eigenvector
vT such that viJr > 0, and in addition the corresponding eigenvalue v is simple,
maximal and positive. There quite a few proofs of this theorem. A possible one is
based on Birkhoff’s theorem. Consider the cone C* = {v € R? | v; > 0}. Then
obviously LCT c C™.

Problem D.9. Show that

O (v, w) = Insup vi.wj, (D.3.1)

ij VjWwi

where O is defined as in (D.1.2).

Then, setting M = max;; L;j, it follows that
M
O(Lv,Lw) £2In— := A < o0. (D.3.2)
14

We have then a finite diameter in the Hilbert metric and we can apply the theory
previously described.

Theorem D.10 (Perron-Frobenius). The matrix L has a simple maximal eigen-
value v € [min; Y"; Ajj, max; >_; A;j|, which equals the spectral radius of L,
and the associated eigenvector has positive entries. In addition, the other eigen-

M-y
mEy <V

values of L have size, at most, v -
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Proof. Remark that by Equation (D.3.2), y = tanh(%) = %—3’, Thus the theo-
rem follows directly from Theorem D.8, apart from the estimate of v. To see that,

let vT be the corresponding eigenvalue and normalize it so that ) ; vl.+ = 1. Then

V= UX:vi+ = Z:Ai,jv;L = |:mjinZAij:| ZU;L = |:mjinZAij:|'
i 1, 1 J 1

The upper bound follows similarly. O

Remark D.11. Note that an explicit estimate of the size of the gap (which is larger
than 1\?:}1))/ ) is not usually part of the Perron-Frobenius theorem. In this respect, it

may be possible to obtain better bounds on the gap by choosing more sophisticated
cones, especially in the presence of more information on the structure of the matrix

L.




Solutions to the
problems

Here we provide hints to solving the problems found in the text. We provide some
details only for the non trivial ones.

E.1 Problems in Chapter 1

(1.6) Differentiate further Equation (1.2.1) and argue exactly as in the proof of
Equation (1.2.2).

(1.7) For each o > A;! we prove that the essential spectral radius, when acting

on C?, is smaller than «?, the result follows by the arbitrariness of «. Let
us start with C°: there exist a constant C, > 0 such that

I1£%hllco < Allcol £ ico < llAllco I £ w11 < CxllRllco.

where we have used Equation (1.2.2). Then, by Equation (1.2.1) applied to
S,

1L Rller < AL IL hller + Cmllkllco < CAL" lAller- 4 CmllAllco
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(1.8)

Next, choose m € N such that C, A" < o™. We can then iterate (writing
n=km—+s,s < m)and obtain

I£7hller < Coa™ |[Rllcr + Celll|co-

The result then follows from Theorem 1.1 since the unit ball in C! is compact
in C% (by Ascoli-Arzela). The result with p > 1 is more of the same using
a derivative of Equation (1.2.1).

Note that, foreach h € L', [h = [L"h = limy—oeo [ L"h = [ hs [ h.
Thus [ hs = 1. Also,

Lhy = lim £ = lim £"1 = h,.

h—o0 h—o0

It follows that, for all ¢ € C°,

/<p°fh*=f<0£h*=f<ph*,

thus di := hsdx is an invariant measure. By Birkhoff’s ergodic theorem
the limit of% ZZ;}) @ o f*(x) exists for y almost all x. Thus, since /4 >
0, it exists Lebesgue almost surely. Let ¢4 be the limit. Then ¢4 is an
invariant function, hence for each interval / C R theset Ay = {x € T ::
@4 (x) € I} is Lebesgue almost surely invariant which implies 14, o f =
14, Lebesgue almost surely. Hence

[ooriam = [oeaan= [ oo o i
— [oracth = [ orah.

This implies that also 1 4, h«dx is an invariant measure, but then

n—-oo A[

which means that (A7) € {0, 1}. Accordingly, ¢+ is almost surely con-
stant which implies ¢+ = [ @hy which is the wanted claim.
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(1.4) Let j € C*°(R,R4)suchthatsupp j C [-1,1]and [ j = 1. Next, define
Jje(x) = e71j(e71x) (this is called a mollifier). Note that if h € C*(T, C),
then

Ih(x) — /T jex = Mh(n)dy] < /T jelx = V) (h(x) — h(»))dy

< Cue® /T Je(x — y)dy = Cye®.

While
/T ‘/T Je(x = Y)h(y)dy|dx < ||k ce
d
/T E/Tjs(x—y)h(y)dy dx = S_Z/T/T j' (e (x — y)h(y)dy| dx

< Cye M| |cor

It follows that, setting he(x) = [ je(x — »)h(y)dy, |hellpra < Cye™ L.

Hence,
/wf”hs—/wh*fhs
T T T

/(pofnh—/gah*/h
T T T
+ Gye®llellcollllce

< llglicollhlica (6% + Cye™'e™").

<

We can then conclude by choosing ¢ = e~ THa" which provides the result

with vy = l‘fa.

(1.12) (a) Consider (g) = [ g(x, y)u(dx)v(dy). Obviously & € G(u, v)
(b) Firstofall d(u, ) = 0 since we can consider the coupling

a(g) = / g (. )(dx).

Next, note that G(ut, v) is weakly closed and is a subset of the proba-
bility measures on X2, which is weakly compact. Hence, G(u, v) is
weakly compact, thus the infis attained. Accordingly, if d (v, u) = 0,
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there exists @ € G(v, ) such that «(d) = 0. Thus « is supported on
the set D = {(x,y) € X? | x = y}. Thus, for each ¢ € C°(X), we
have, setting 71 (x, y) = x and ma2(x,y) = y,

(@) = a(pomry) = a(lpgpomy) = a(lpgpoms) = a(pomz) = v(p).

The fact that d (v, ) = d (i, v) is obvious from the definition. It re-
mains to prove the triangle inequality. It is possible to obtain a fast
argument by using the disintegration of the couplings, but here is an
elementary proof. Let us start with some preparation. Since X is com-
pact, for each ¢ we can construct a finite partition { p,—}f‘i 1 of X such
that each p; has diameter less than ¢ (do it). Given two probability
measures u, v and o € G(u, v) note that if u(p;) = 0, then

D alpi x pj) = a(pi x X) = pu(pi) = 0.
J

Hence a(p; x p;) = 0 forall j. Thus we can define

) =% IRE y)lp,(X)ﬂp,()Wu(dX)V(dy)

where the sum runs only over the indexes for which the denominator is
strictly positive. It is easy to check that o, € G(u, v) and that the weak
limit of &g is . Finally, let v, i, ¢ be three probability measures and
leta € G(u,8), B € G(¢,v)suchthatd (1, ¢) = a(d) and d (v, () =
B(d). For each ¢ > 0, there exists § > 0 such that |a(d) —as(d)| < &
and, likewise, |8(d) — Bs(d)| < . We can then define the following
measure on X 3

e =Y [ gz 0L, (0)15,0)
i,j,k
a(pi X pj)B(pj % pr)
w(pi)(p;)?v(pr)

p(dx)v(dy)i(dz),

where again the sum is restricted to the indexes for which the denom-
inator is strictly positive. The reader can check that the marginal on
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(x,z) is ag, and the marginal on (z,y) is Bs. It follows that the
marginal on (x, y) belongs to G(u, v). Thus

d(u ) < /X . y)ysdx. dz=. dy)

S/ d(x,z)ag(dx,dz)+/ d(z,y)Bs(dz,dy)
X2 X2
<a(d)+ Bd)+2e=d(p, o) +d (&, v) + 2.

The result follows by the arbitrariness of ¢.

It suffices to prove that u, converges weakly to u if and only if
lim d(u,, pn) =0.
n—>o0

If it converges in the metric, then, letting o, € G(uy,, 1), for each
Lipschitz function ¢ we have

lin () — )| < /xz lo(x) —p(W)letn(dx. dy) < Loan(d)
where L, is the Lipschitz constant. Taking the inf on «, we have

lun (@) — (@) < Lod (in, ).

We have thus that lim,, —, oo tn (@) = (@) for each Lipschitz function.
The claim follows since the Lipschitz functions are dense by the Stone—
Weierstrass Theorem.

If it converges weakly, then, to prove convergence in the metric, we
need slightly more sophisticated partitions Py : partitions with the prop-
erty that £ (dp;) = 0. Note that this implies lim,— o0 Un(pi) = w(pi),
Varadhan (2001). Let us construct explicitly such partitions. For each
x € X consider the balls B,(x) = {z € X : d(x,z) < r}. Given
§ > 0,let S11 = {x € Eg \ B%S} and S;» = {x € E%S \
B 1 sJ- These two spherical shells are disjoint. Let o(1) € {I,2}

be such that (S 5(1)) = min{u(S1,1), 4(S1,2)}. Divide again the
spherical shell Sy 4(1) into three, throw away the middle part and let
S2,5(2) be the one with the smaller measure. Continue in this way
to obtain a sequence S, 5(,). Note that u(Bs(x)) = 2" (S, o))
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and S, 41.6(+1) C Sn’a(n), thus there exists r(x) € [§/3, 8] such
that 0B, (x)(x) = N;2; S8, 0 and pL(E)B,(x)(x)) = 0. Since X is
compact we can extract a finite sub cover, {B; }1_1, from the cover
{Br(x)(x)}xex . If we consider all the (open) sets B; N B they form a
mod-0 partition of X. To get a partition { p; } just attribute the bound-
ary points in any (measurable) way you like.! Also, for each partition
element p; choose a reference point x; € p;.

Having constructed the wanted partition we can discretize any measure
v by associating to it the measure

vs(@) =D e(xi)v(pi).

Define also

a@) =Y [ ot xiw(ax)
Di

i
and check that @ € G(v, vg), hence
d(,vs) <ald) <26.

Foreachn € N and § > 0 we can then write

d(p, pn) < d(pg, pys) +49.

Next, let z, ; = min{u(p;), un(pi)}, Z, ' = >, zn.i, and define
Bn(9) =Zn Zqo(xi,xi)zl-

+(1 U207 5 gt el — 2]l (pi) — 20

n i,j

and verify that 8 € G(us, [4,,s). In addition, for each § > 0, we have

lim, 00 Zn,i = Mn(pi). Hence, lim,_so0 Z, = 1. Collecting the

above facts, and calling K the diameter of X, yields

(1= Zn)?
72

n

nli)n;od(u,un) < nlgr;oﬂn(d)—l-48 < Knlgr;o +46 = 46.

1E.g., if C; are the elements of the partition, you can set p; = C1, p» = C5 \ (3C1) and so on.
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The result follows by the arbitrariness of §.

Comment: In the field of optimal transport one usually would prove
the above facts via the duality relation

d(p.v) = sup {u(p) —v(¢)}

¢eL,

where L is the set of Lipschitz functions with Lipschitz constant equal
to 1. We refrain from this point of view because, in spite of its effi-
ciency, it requires the development of a little bit of technology outside
the scope of these notes. The interested reader can see Viana (1997,
Chapter 1) for details.

(d) The first metric gives rise to the usual topology, hence convergence in
d is equivalent to the usual weak convergence of measures. The metric
do instead give rise to the discrete topology, hence each function in L *°
is continuous. Hence the convergence in d is equivalent to the usual
strong convergence of measures.

(1.13) Just compute.
(1.14) Argue as in Lemma 1.11.
(1.18) Note that

Lh(x)= Y.

zef~1(x)

h(z) h(w)
i Lh(y) =
TZE N Vi e

where |z — w| < A7!|x — y|. Hence

Lh(x)= Y_

zef~1(x)

h(w)ek_1a|x—y|+D|x—y|

J'(w)

< eGPyl £y,

(1.19) Note that if ¢ € Cq, then e™® [ ¢ < @(x) < e? [} ¢. Using the Equa-
tion (D.1.2) it follows that, for all g1, g2 € Csq We have

(1 + 0)2 4a.

O(p1.¢2) <In me
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(1.34)

(1.35)

Set p(t) = tg(y) + (1 —1)g(x) — g(ty + (1 — t)x). Note that p(0) =
@(1) = 0. Also ¢"(1) = —(y —x,D?g(ty + (1 —)x)(y — x)) < 0.
This implies ¢(¢t) = O for all ¢ € [0, 1]. Indeed, the function must have a
minimum, but the minimum cannot be in (0, 1) otherwise we would have
that ¢’ is increasing, which is not the case. Hence the minimum must be at
the extrema, hence the claim. Clearly strict convexity is equivalent to D2g
being strictly positive.

First of all consider ¢ : [a,b] C R — R convex and bounded. Let a <
t1 <t <t3 < bthen

p(12) —p(t) _ ¢(13) —p(11)
h—1 h 13 —11

(E.1.1)

To see this seta = % By hypothesisa € [0, 1]and t, = (1 —a)t; +at3.

Thus, by convexity,

p(t2) < (1 —a)e(f1) + ag(t3),

which implies

p(t2) —@(t1) < alp(tz) —e(t1)) =

I — 1

(p(13) — (1))
13—
from which Equation (E.1.1) follows. Similarly one can prove

p(13) —p(t1) _ 9(13) —(12)
13— h 13 —1 '

(E.1.2)

Next, suppose thata < s < s +h <t <t + h’ < b. Then, using first
Equation (E.1.1) and then Equation (E.1.2), we have

¢ +h) —¢@s) _ 9t +h)—e@) _ et +h)—e@)
h Tt —-s n '

(E.1.3)

Accordingly, for ¢ € (a,b) and min{t —a,b —t} > h’ > 0. We can then
use Equation (E.1.3) and write, for each i’ > h > 0,

ot +h+h)—e( +h) -

ot +h)—el)<h W

hCy
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by the boundedness of ¢. Analogously,

o(t) — ot —h')
h/

ot +h)—(t) = h > —hCy.

The above, by the arbitrariness of /2, implies the continuity of ¢ at ¢. Hence
@ is continuous on [a, b]. The last step is to extend the results to higher
dimensions: for each x € D and v € RY, ||v|| = 1, define (1) = g(x +
tv) and note that the above discussion implies that ¢ is continuous. The
statement then follows by the arbitrariness of v and x.

(1.36) Use the fact that the sup of a sum is smaller than the sum of the sups.

(1.37) Since, forall x,y € R4, g*(y) = (y, x) — g(x) we have

g (x) = sgp(x, y)—g*(y) < g(x).

(1.38) If g is strictly convex, then the sup is realized at the unique point at which
x = Dyg = h(y). Moreover, by Problem 1.37, D§ g is a strictly positive
matrix, hence, by the implicit function theorem, % (y) is locally invertible.
On the other hand if 4(y) = h(x), thenset o(¢) = (y—x, h(ty +(1—1)x)),
s0 ¢(0) = ¢(1). It follows that #'(t) = (y — x, D?>g(y — x)) > 0 which
yields a contradiction.

(1.39) Just compute using Problem 1.38.
(1.40) Tt follows directly from the definition of g*.

(1.45) The behaviour for small a can be computed similarly to Lemma 1.28. Note
that, recalling Equation (1.6.8). %(Aa —Inay) = a — uy(@). Thus, if
sup; 1 (@) < a we have J(a) = 4o0.

(1.51) The fact that || = [h|p1 follows from |2| 1 = sup,|, <1 [ ¢h, since
| [ @h| < |@|Le~ [ |h| and if ¢ = sign(h), then [ @h = [ |h|. The second
equality follows from the definition of the BV norm, e.g. see L. C. Evans
and Gariepy (2015).
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E.2

@.1)

(2.2)

2.4)

Problems in Chapter 2

Note that

n—1
/(pﬁ"hz/(pOf” [[vorkn ::/th.
k=0
It follows that

n—1 n—1
O =(f"e o fP []vosff+d (S of/ [[vor*

k=0 j=0 k+#j

Taking a further derivative and since in the support of Y we have | /| < A~1,
we have the first inequality. The second inequality is proven arguing as in
Equation (2.1.1).

Since the unit ball in C? is compact in C!, then for each & > 0 there exists
a finite set {¢7} C C! such that, for each ¢ € C2, ||l < 1, we have
infj |l — ¢fllc1 < e. Accordingly, if we have a sequence ||/, |1y« <
1, then we can consider the sequences f @i hy. Since they are bounded,
they admit a convergent subsequence. Hence, there exists a sequence nj
such that | ‘Pfhn§. converges for all i. We can then procede by the usual

diagonalization trick: choose a sequence &; which converges to zero; from
h,e1 extract a subsequence nj-z that converges on all the {(pf 2} and so on.

J
One can then consider the subsequence h,,, = hn?‘ that converges on all

the functions {(pf /1. Hence, for each € > 0 we have that, for each ¢ € C2,
l¢llcz < 1,and s > s’ large enough,

'/whms —fwhm; /sofshms —/sﬂfshm;

That is {h,,, } is a Cauchy sequence in (C?)*, hence the claim.

< + 2e5 < €.

Clearly, if dp (i, v) = dp(v, ). Also if dp(p,v) = 0 then, for any cou-
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pling G and ¢ € Lip(X), the set of Lipschitz functions,

‘ / o(0)u(dx) — / o)V (dy)
X X

< f 10(x) — 9(N|G(dx. dy)
X2

< C#/ d(x,y)G(dx,dy)
X2

N =

< Cy |:/ d(x,y)pG(dx,dy)] =0.
X2
Then ;o = v follows since Lip(X) is dense in C°(X). Finally, to prove the
triangle inequality one can proceed as in Problem 1.12.

(2.6) Since if ¢ € C! then ¢ € Lip, then Theorem 2.5 implies one inequality. On
the other hand, the same theorem implies that, for each ¢ > 0, there exists
¢ € C° Lip(¢) < 1, such that [ o) (e —v)(dx) = di(n,v) — &. Next,
note that there exists K > 0 such that, for all ¢ € C° such that Lip(¢) < 1,
there exists g, € C! such that ||p; —¢||co < eand ||¢| o1 < K (for example,
define ¢, by a convolution with a mollifier, using a partition of unity and the
charts of the manifold). Thus

vl > K70 [ e =)
> K1 /gos(x)(,u —v)(dx) —eK ' = K7d (., v) — 2eK?.

The result follows by the arbitrariness of ¢.

(2.8) More generally consider the norm

Il: = sup / he
leller vr.cy<1/M

(2.11) Simply note that, for all ¢ € C°, since the periodic orbit belongs to the
attractor and recalling the definition of v,

p—1
Lu(p) = pu@-go )=y X *ry(fFx)e(f 1 (x)

k=0

p—1
=) THIPG(fEH () = 2P ).
k=0
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E.3

(3.6)

(3.7)

Problems in Chapter 3

Let {h,} be a sequence such that |4, |¢ < 1. Then, for all L € N we that

= Y e | =3 k)PP )i

|k|<L B |k|>L

< L7 (k) B () > < L7°

lk|>L

On the other hand, for |k| < L, |(ﬁn)k| is a uniformly bounded sequence
and hence it admits a convergent subsequence. By the usual diagonalization
trick we can then construct a convergent subsequence.

Let ¢ > 0 sothat § = o — c satisfies the same properties as «. Then
Equation (3.3.3) implies

ILhllpp < Cllnl pp
since ||Allw < Cyllh|l pg. Using this last fact again yields
1L Al pae < VPN Rl pe + C ikl pp

which is a proper Lasota—Yorke inequality thanks to Problem 3.6. Then
by Theorem 1.1 we know that the essential spectral radius is at most v?.
However the spectral radius could be C. Yet, let t be a maximal eigenvalue,
and assume that its algebraic and geometric multiplicities are equal (i.e., £
does not have Jordan block). The discussion of the case of a Jordan block
is similar and is left to the imagination of the reader. Then, by the spectral
decomposition, there exists a smooth function /¢ such that

n—1
! —k pky
nlgréon];)f Lo = h.

But then, if || > 1 we have, for each smooth ¢,
—k k —k k
‘/wh‘ ngngo;Z /¢£ho<hm—2|f| [ 100 71l

< lim —er “lglicolholzr =0
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E.4

(5.7)

(5.12)

(5.15)

(5.16)

E. Solutions to the problems

It follows that the spectral radius must be bounded by one. In fact, since
L* Leb = Leb, it is easy to verify that the spectral radius is exactly one.

Problems in Chapter 5

Let B; denote the unit ball of 3 in the strong norm. For ¢ > 0, let F(¢) =
Wik : 1 <j < Je,l <k < K¢} be the finite collection of linear func-
tionals given by (5.4.7). We can associate to each f € B1, a finite J, x K,
matrix A(f), defined by A(f);jx = (£;x(f)). Note that |[{;;(f)] <
| fllz < 1. Thus the map A : B; — R7¢TXe has a compact image
and we can choose a finite set { fe}é’il C Bj such that {A( fg)}fil forms
an g-cover of A(B1). Then for each f € Bj, there exists £ < L. such
that min; x [€; £ (f) — £;x(fe)| < € and so by (5.4.7), | f — felw <
|min; x € (f — fo)| + Ce¥ < e+ CéeY, so that {fe}é’il forms a finite
2C &Y -cover of Bj.

Use the fact that as in (5.4.18), the group property implies that £;(Xf) =
XL f) = %(ﬁ, f), and then integrate by parts.

The case n = 1 is true by definition. Assuming the formula holds for n, we
calculate
tn—l

+1 >
R(z)" =
(@) f fo 5
o0 o0 tn—l
= by e e o

00 u vn—l 00 yn
0 0 (I’l — 1)' 0 n!

e F'L,R(z) f dt

where we have made the substitutionu =t + s, v = ¢.

The first inequality is just the triangle inequality. For the second, if n > 1,
integrate by parts to obtain,

[ee) tn—l [oe) tn—2
/ ——e YUt = a_lf e dt .

Then the required identity follows by induction and the fact that forn = 1,
[ e dt =a!
0 € .




E.4. Problems in Chapter 5 209

(5.18) Remark that by (5.5.1),
PRE)(X —p) = pR()(z — p— (z = X)) = R(2) —
Soif (X —p)k f =0, thenalso (R(z) —p)F f = pFR(F (X —p)k f =0
Similarly,
P le=X)(R@)-p)=(z-p—(z—-X)) =X —p.
which implies the converse statement.

(5.21) Using (5.6.1), we estimate as in the proof of Corollary 5.14,
a"|R@)" flg = a"lIR=)" flls + | | IIR( )" Sl + HIIR(Z)"fllo
C[(1—a"log )™ + culz| "I £ Is
+ Ceylz| 7' (1 —a M og )| f llu
+ CeulzI M fllo+CA+a+ 12Dzl flw-

Since a € [1,2], we have (1 —a~'logA)~! < (1 — %)_1, and (1 +a +
1z])|z]™! < 3. Fixo € ((1 — logx)_l, 1) (independent of z), and choose
N > Osuchthat 6V /2 > C(1 —a~'logA)™". Choose ¢, > 0 such that
Ccy < o™V /2. Then using |z| = 1 yields the required inequality forn = N,

n

a"[RE)" [z < oI flls + = | |||f||u ERE |||f||o+3C|f|w

<" Sl +3C1f|w-

(5.25) We use the fact that by choice of ¢, there can be at most two components
W;.i per W; € Gg (W), and each component has length less than cr. Then,
starting from the expression in (5.7.2), we estimate,

Z Z / pn@z(s)/ JW Dy Y °¢Zt£sfde ds

{=0W; €Dy
Z[ ez 26w, Prelcogy [ lool floo ds
020" " W;€Ger (W)

tn 1 _
e dt <2Cer| flooa™™,

< 2Ccr|f|oo/
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where for the second inequality, we have used Lemma 5.9(c) and for the
fourth we have applied Problem 5.16.

(5.26) Recall that by Stirling’s formula, n! = +/2xnn"e™ foralln = 1. Since
t = s+ £t and s < 7 on each interval in the sum, £ < £y — 1 implies
t <lot = a”? Thus,

Lo—1 % ln_l

) [ preeo) [ wEecens dmwds < flalvle [

< |/l al_”ez(l_”)—nn_l /Oo e dt
S (n—=1"Jo

n"1 1
(n—0""1 2mn’

which implies the required estimate since (n”Tl)”_1 <e.

e dt

< | floca™e! "

(5.28) By definition, Jg ; ;|Wj,i| = iji Jw,; @y dmyy, ;. Then, for each W; €
Ge: (W), UiW;; C W; and the number of overlaps on each subcurve is
bounded by C > 0 according to (5.7.7). Then using Lemma 5.9(c) we

estimate,
S sawal<e Y [ Tw, @z dmw, < CClbo) .
i JjEAy; W;€Ger (W)

(5.29) We want to compare the sum with the integral of the function

(t.[)n 1

n—1)!

The function g is increasing from 0 to ”a;rl and decreasing afterwards. Since
Lo = a:_Zr’ this maximum falls within the domain of integration. Still, the

sum for £ > ["a—_rl] is bounded by the integral on [I_%J, 00), and the sum
for £ € [{, I_"Q_rlj] is bounded by the integral on [y, [”a_t1'|] Thus,

Z (E.L,)n ! —a@r < 2/00 ([.[)n—l e~ YTt
L

P n—l)' o (m—=1)!

—att

g(t) =

oo Sn—l
<2t ! e ¥ds <2t la™",
0 (l’l — 1)'
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where for the second inequality we have made the substitution s = ¢7 and
for the third we have applied Problem 5.16. Finally, (5.7.3) completes the
required estimate.

(5.32) The bound on |L j x| follows from the definition of K* in (5.7.14) and K
justafter (5.7.11) since |Wj ;| = r and p, ¢, ; are both bounded by 1. Also,
|x°] < r on S, so that £z — x® < (£ + 1)z since T = r'/3 by (5.7.3).
Remark that £ > £y = _75- so that (HTl)” < (1+ ”‘;ﬁ)” < ¢2¢” since
a<2andt < 1.

The bound on |dxs L j x |oo follows similarly using the fact that
s Ky i (%, x%) = 91K i j (W) TH(x%), X0 = A (x5)) - (BT (x°)
02K (h5) 716, x0 = A5 () - A (x%),

together with Sub-lemma 5.31. The extra factor of r~! comes from the fact
that |V¢y. joo ~ 71, which term appears in both 91 K and 9, K.

(5.34) The required bound follows immediately from the first bound in Problem 5.32
by the triangle inequality, together with the fact that the integral over S, can-
cels the factor r—2.

(5.35) Use Problem 5.15 to compute
tn—l
(n—1)!
o0 tn—l
< Clvflf —e—(a—HogA)t dt
0 (l’l - 1)'

< CIV[fl(a+logA)™,

P(R(:Y f) = /0 O (Le f) di

where in the second line we have used (5.1.1) and in the third line we have
used Problem 5.16 with a replaced by a + log A.

E.5 Problems in Chapter 6

(6.1) This is a straightforward calculation, using that by definition of w, dw =
—sinfdf Adx 4+ cos8dO Ady.
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(6.2) Remark thatifz,Z € Hy, thencos ¢(Z) = ck—2 and |¢(z) —¢(Z)| < Ck™3

for uniform constants ¢, C > 0. Then using the differentiability of cos ¢,
cos ¢(z) {
cos ¢(2)

|cos ¢(2) — cos ¢(2)]

- cos ¢(2)
< T p(2) — ()] < cTREHCET3)2B)p(2) — 0(3) |13
<c'C?Plp2) — @)

Finally, |¢(z) — ¢(Z)| < d(z,%) by the triangle inequality since dz? =
dr? + dg>.

E.6 Problems in Appendix A

(A.1) The triangle inequality follows trivially from the triangle inequality of the
norm of B. To verify the completeness suppose that { B, } is a Cauchy se-
quence in L(B, B). Then, for each v € B, { B,v} is a Cauchy sequence in
B, hence it has a limit, call it B(v). We have so defined a function from B
to itself. Show that such a function is linear and bounded, hence it defines
an element of L (B3, ), which can easily be verified to be the limit of { B }.

(A.2) Use the norm ||A|| = sup,egn ”|1|3;f|"'

(A.3) Argue as in Problem A.2.

(A.4) The first part is trivial. For the second one can consider the vector space

2 = {x e RN >0 xi2 < oo}. Equipped with the norm || x| =

Y72 x7 it is a Banach (actually a Hilbert) space. Consider now the

vectors e; € {? defined by (e;) = 8; and the operator (Ax); = %xk.

Then R(A) = {x € £> : Y 7Z,k>x} < oo}, which is dense in £? but
strictly smaller.

(A.7) Check that the same argument used in the well known case B = C works
also here.

(A.8) Check that the same argument used in the well known case B = C works
also here.

(A.9) Check that the same argument used in the well known case B = C works
also here.
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(A.10) Note that, if ¢ € C belongs to a small neighborhood of z,
Cl-A)=@Cl-A-(-)) =(CEl-A)[1-(z-)@E1-4)7"]

and thatif ||(z—¢)(z1—A)™!|| < 1 thenthe inverse of 1 —(z—{)(z1—A)~!
is givenby Y o2 ((z —{)"[(z1 — A)~1]" (the Von Neumann series — which
really is just the geometric series).

(A.11) If 6(A) = @, then f(£) = (§1 — A)~! is an entire function, then the Von
Neumann series shows that (E1—A4) ™! = £71(1—£-14)~! goes to zero for
large £, and then (A.2.3) shows that (z1 — A)~! = 0 which is impossible.

(A.12) Verify that (z1 — 1)~ = z7' [1 — (1 — 2)~'11].

(A.13) Note that [|[L£f[|co < || flco, thus (L) C {z € C ; |z| < 1}. To prove
equality the simplest idea is to look for eigenvalues by using Fourier series.
Let f =) rez fre?™ %X and consider the equation £ f = zf,

Uy nik iex ik ik
ka_{enzx+enlxm}zzszem x
2

keZ keZ

Let us then restrict to the case in which f54; = 0, then

i kx 2mwikx
D Sk =23 fre :

keZ keZ

Thus we have a solution provided f,; = zfi, such conditions are satisfied
by any sequence of the type

2/ ifk=2/m,j eN
0  otherwise

S =

form € N. Itremains to verify that Y72 27 €272/ mx pelongs to C°. This
is the case if the series is uniformly convergent, which happens for |z| < 1.
Thus all the points in {z € C : |z| < 1} belong to the point spectrum and
have infinite multiplicity. Since the spectrum is closed, the statement of the
Problem follows.
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(A.14) Let p(z) = z". Then

1
— | 2"zl - A)ldz = A" + —,/(Z” — A" (z1 — A) " ldz
2wi J,y, 2wi Jy

n—1
1
=A"+ > %/ Karkgz = 4n,
k=0 4

The statement for general polynomials follows trivially.

(A.15) Note that r(A) = elimr—oo #1471 On the other hand In |A"] is a sub-

additive sequence. This implies the existence of the limit, by a standard
argument (e.g. see Katok and Hasselblatt (1995, Proposition 9.6.4)).

(A.17) Approximate by polynomials.

(A.18) Check that the same argument used in the well known case B = C also

works here.

(A.19) Use the definition.

(A.20) Forz ¢ f(o(A)) the function

(A.22)

_ _ —1eq _ ay—1
Koy =5 [ e rorte-aag

with y containing o (A4) in its interior, is well defined. By direct computa-
tion, using Definition 6, one can verify that (z1 — f(A))K(z) = 1, thus
o(f(A)) € f(o(A)). On the other hand, if f is not constant, then for
each z € C, one may define the function g(§) = %g@, & # z,and

g(z) = f’(z). Hence, applying Definition 6 and Problem A.19 it follows
that f(z)1 — f(A) = (z — A)g(A) which shows that if z € o(A4), then
f(2) € a(f(A)) (otherwise (z — A) [g(A)(f(2)1 — f(A)~'] = 1). The

commutator follows, again, from Problem A.19.

Since one can define the logarithm on C \ £, one can use Definition 6 to
define In A. It suffices to prove thatif f : U — Cand g : V — C, with
o(A) Cc U, f(U) C V,then g(f(A)) = g o f(A). Whereby showing that
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the Definition 6 is a reasonable one. Indeed, remembering Problems A.20
and A.21,

S =5 - / g1 — f(A)\dz
Y

i 1 g(2) -1
‘(2ni>2/y1/yz—f@>‘“ Azt
1

=5 s ENEL- A)THdE = fog(A).
V1

From this immediately follows ¢4 = A.

(A.25) Use the decomposition B = R(Pp) & N(Pp) and the fact that (1 — Pp)
is a projector.

(A.26) The first part follows from the previous decomposition. Indeed, for z large
(by Neumann series)

(z1—A)"!' = (z1— PgAPp) ' + (z1 — (1 — Pg)A(1 — Pg))~ L.

Since the above functions are analytic in the respective resolvent sets it fol-
lows that 6(A) C 6(PpAPB)Uac((1— Pp)A(1 — Pp)). Next, forz ¢ B,
define the operator

L N N
Koy =5 [ E-oTer-nas

where y contains B, but no other part of the spectrum, in its interior. By
direct computation (using Fubini and the standard facts about residues and
integration of analytic functions) verify that

(z1— PpAPB)K(z) = Pp.

This implies that, for z # 0, (z1—Pg APg)(K(z)+z~'(1—Ppg)) = 1, that
is(z1—PpAPp)~! = K(z)+z '(1—Pp). Hence o (Pg APg) C BU{0}.
Since Pp has a kernel, zero must be in the spectrum. On the other hand the
same argument applied to 1 — Pp yields o ((1— Pg)A)1 — Pp)) C C U{0}.
Hence o (PgAPp) = B U {0}.

The second property follows from the fact that Pp APp, when restricted
to the space R(Pp) is described by a D x D matrix Ap and the equation
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det(z1 — Ap) = 0 is a polynomial of degree D in z and hence has exactly
D solutions (counted with multiplicity).?

(A.29) Use the representation in Lemma A.24 and formula (A.4.1).

(A.30) Note that Q(1 + P — Q) = QP,sothat Q = (1 — (Q — P))"'QP, and
hence dim(R(P)) = dim(R(Q)). Exchanging the role of P and Q, the
result follows.

(A.32) Note that £,,(h,) = 1 since P, is a projector, hence they are unique apart
from a normalization factor. Then we can chose the normalization £,, (/) =
1 for all v small enough. Thus P, f = h,, that is h, is analytic. Hence,
for each g € B and v small, ¢, (g)¢o(hy) = Lo(Pyg), which implies £,
analytic for v small.

(A.34) Think hard.?

E.7 Problems in Appendix B

(B.13) The fact that ~ is an equivalence relation is obvious. The fact that the equiv-
alence classes form a vector space follows from the triangle inequality. In-
deed, given two equivalence classes ]7 , & to define their sum let f € f and
g € g and define the sum f + g as the equivalence class of f = g. This is
well defined since if f/ € f and g’ € & then

If+g=(f+&Mw<If—fllw+llg—¢glw=0

2This is the real reason why spectral theory is done over the complex rather than the real numbers.
You should be well acquainted with the fact that a polynomial p of degree D has D roots over C
but, in case you have forgotten, consider the following: first a polynomial of degree larger than zero
must have at least one root, otherwise ﬁ would be an entire function and hence

1 2 1
= lim — / — =0
p(z)  r—>0021 Jo p(z +ret?)
Let z; be a root. From the Taylor expansion in zj, one obtains the decomposition

p(z) = (z — z1) p1(2) where pp has degree D — 1. The result follows by induction.
3 A good idea is to start by considering concrete examples, for instance

G D)o oa) e o)
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E.8

(C.3)

(C.4)

hence f + g and f "+ g’ define the same equivalence class. Next, define
|1l = inffef | f1l. It is easy to prove that this is a norm on the vector
space of equivalence classes. So we have the announced normed space Xy, .
Its completion (e.g. one can obtain it by considering the equivalence classes
of Cauchy sequences, as in one of the standard constructions of the real
numbers) is, by definition, a Banach space.

It remains to prove that 7 : ¥ — X induces a map T:Y — X, inacanon-
ical way. Obviously we define T'(y) as the equivalence class associated to
T'(y). One can check directly that 7" is a bounded linear operator.

Problems in Appendix C

One can try to argue as in Problem A.30. Yet, for the reader’s amuse-
ment, here is a different proof. Let y := | [T, — I11|| < 1. Suppose that
dim([7(X)) > dim(/1;(X)), the other case being similar. Then
dim(IT 111 (X)) < dim([1;(X)) < dim(/12(X)). Next, by Lemma B.1,
there exists v € I15(X), ||v|| = 1, such that

I+y
7

dist(v, [ToIT; (X)) =

It follows that
|(Iy—IT))?v| = | T3v—IT [Tov—TT [T v+ 1130 = |[v—TTa T o] > v,
contrary to the assumption. Thus dim(I15(X)) = dim(I1;(X)).
By Equation (1.2.1) we know that, for n = 10,
ILahllr < |7l

D
ILahllLr < @—=mn=2) "kl + 222 hl L.

where 2 — 7n=2 > 1. Moreover, calling £ the transfer operator associated
to the map f(x) = 2x mod 1, we want to compute ||L,h — Lh| 1.

Note that each x has two preimages under f and any of the maps f,. If y is
one preimage of x under f, then we call y the corresponding preimage of x
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under f;,. By the implicit function theorem it follows that |y — ¥| < cxn~!.

Hence, setting a(x) = f(¥) we have |x — a(x)| < csn~!. Accordingly,

h(y)—h _
eah—chlpr < [ 30 OO g
S )
yef~l(x)

1 a(x)
< 2/ a’x/ dz|h'(z)| + c#||h||L1n_1 < c#||h||L1n_1
0 X

where, in the last line, we have used Fubini to exchange the integrals. We
are thus in the situation in which we can apply our general theory. First
of all Theorem B.14 implies that the essential spectral radius of £, when
acting on W1 is bounded by %, while the spectral radius is bounded by

one. Analogously, the essential spectral radius of £,,, when acting on W11,
is bounded by (2 — nn_%)_l , and the spectral radius is bounded by one.

In addition note that if £Lh = zh, then taking the derivative we have

1
2 > H(y) =zh(x).
yef~(x)
But then
1 1 1
W< [y X wo)dx< ] [ emieds < S,
T yer—1 T

Thus it must be that |[v| < % Hence, since £L* Leb = Leb and £ Leb =
Leb, we have that 6 (L) C {1} U{z € C : |z] < %} and 1 € 0(L,). We
can now apply Theorem C.1 to claim that, for each r € (0, %), there exists
ng € N such that, foralln = ng,we have 6 (L,) C{z € C : |z—1] <
jUlzeC @ |z] <L+

Moreover, Lemma C.2 implies that {z € C : |z — 1| < t} contains a
simple eigenvalue that must necessarily be 1.

We can then conclude that 0 (£,) C {1} U{z € C : |z| < % + t}.
(C.7) Note that

(z1—A) ' A=B)(z1—B) ' =(z1-A)"'(z1 - B)(z1 - B)"!
—(z1—A)"Y(z1 - A)(z1 - B)" L.
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E.9 Problems in Appendix D

(D.1) The key fact is that the cross ratio is a projective invariant and, by Equa-
tion (D.1.1), the metric is the logarithm of a cross ratio.

By figure Figure E.1 it follows that*

la = yllx =Bl
Ox,y) =

la — x|y — Bl
O(x.2) = In lu —z||l|x — v

lu —x|[llz = v

b — —
O(y.2) = In 16— yllllz —al

16 = z[lly —all

Figure E.1: Hilbert metric

#Note that w is the intersection of the line passing through x, y with the perpendicular to such a
line passing through z.
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On the other hand, if we project, from the point p, the points u, x, z, v to
the line passing from «, B, we obtain the points points x’, x, w, y’. Hence

u—ZzZ||x —v x/_w X — /
@(x,z):ln” il [ lx =yl

e —xllllz = vl  x" = xlllw =yl
Analogously, projecting, from the point p, the points b, z, y, a to the line

passing from «, B, we obtain the points points x’, w, y, y’. Hence

16 = ylllz —all _ <" = yllllw =yl
n

O(y,z) =In = .
16 —zllly —all %" = wlllly = ¥l

It follows that

O 2) + 0(n,2) = 1n XM =31
[x" = x|[ly" = I
But
"=yl _ o=yl —lle=x"I _ o=yl
[x"—xI fle— x| = fle = x| = [l — x|

lx =yl _ 1B=xI—MB=y1 _ 8-~
Iy =yl 1B =yI=1B=y1 " 1Bl

which yields the triangle inequality. The other properties needed to show
that © defines a metric are easily checked.

(D.9) Just apply the definition.
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exponential mixing, 12

F
finite horizon, 148
finite multiplicity, 123
flow
Anosov, 104
billiard, 148
contact, iii, 104
geodesic, 105
Sinai billiard, 106
suspension, 105
uniformly hyperbolic, 103
flow box, 132
foliation, 112
Fourier coefficients, 72
Fourier series, 70
Fredholm, 165
function
characteristic, 21
correlation, 104
delta, 2
Hoélder continuous, 104
Lipschitz, 134
rate, 29, 30
roof, 105
temporal distance, 138

G
generator, 119

H

half-plane, 123
Hausdorff dimension, 101
Hilbert metric, 188
homogeneity strips, 150
homogeneous, 151

I
inequality

Index

Cauchy—Schwarz, 139
Chebyshev, 53
Doeblin—Fortet, 113
Dolgopyat, 127
Gagliardo—Nirenberg—Sobolev,
46
Holder, 117, 139
Lasota—Yorke, 3, 121
integrally closed, 187, 188
invariant foliations, 85
isolated eigenvalues, 123

J
Jordan blocks, 51

K
kernel, 156

L
Large deviations, 101
law of reflection, 148
lemma
distortion, 92
mollification, 127
linear response, 44, 183
Livsic theory, 25
Lorentz gas, 147

M
map
billiard, 148
contracting piecewise smooth,
58
holonomy, 136
piecewise expanding
multidimensional, 44
smooth expanding, 1
Markov chains, 63
Markov partitions, 106
matching standard pairs, 65
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measure
conditional, 112
invariant, 123
Lebesgue, 149
physical, 8
probability, 1
SRB, 101
measure of maximal entropy, 101
mixing, 63

(0]
one step expansion, 152
open partition, 2
operator
compact, 167
mollification, 127
nilpotent, 60
positive, 100
quasi-compact, 4
Ruelle-Perron—Frobenius, 3,
105
transfer, 3, 105

P

partition of unity, 75, 134

periodic orbit, 61

Perron—Frobenius type, 30

perturbation theory, 22

Polish space, 11

polynomial decay of correlations,
105

positive curvature, 149

pre-matching standard pairs, 65

prestandard pair, 10

projective space, 72

projector, 60, 156

push-forward, 1

Q

quasi-compact, 121

R
random variable, 18

Gaussian, 25
range, 156
rate of decay of correlations, 43
resolvent, 120, 157
resolvent identity, 184
Riemannian manifold, 104
Riemannian volume, 104
Riemann—Stieltjes integral, 20

S
scatterers, 148
semi-group of transfer operators,
119
simple eigenvalue, 52
Sobolev-type spaces, 71
spectral decomposition, 5
spectral gap, 106
spectral radius, 5, 121, 158
spectrum
discrete, 79
essential, 4, 165
peripheral, 43
speed of mixing, 70
standard family, 11, 64
standard pair, 9, 64
Stirling’s formula, 133
strong stable manifold, 140
strong unstable manifold, 140
system
deterministic, 1
partially hyperbolic, 54
uniformly hyperbolic, 54
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T perturbation, 41
theorem Von Neumann, 9

Analytic Fredholm alternative,
74

central limit, 18

Hennion, 5, 174

Hennion (generalized), 175

Krylov—Bogoliubov, 2

Large Deviations, 29

Local Limit, 28

mean value, 4

Perron—Frobenius, 194

thermodynamic formalism, 38
topological entropy, 39
topologically transitive, 52, 82
Toral automorphisms, 62
transform

Fourier, 21

Legendre, 31

\%
variational principle, 38
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