Analisi Matematica I

INFORMATICA

Quarto Appello

Mercoledì 03-09-08

- 1. Per ogni $a \in \mathbb{R}$ si consideri il segmento rettilineo ℓ_1 che unisce il punto (-1,-1) e il punto (a,0) e il segmento rettilineo ℓ_2 che unisce i punti (1,-1) e (a,0). Si dica per quale a la somma delle lunghezze di ℓ_1 e ℓ_2 è minima.
- 2. Si consideri la funzione

$$f(x) = \begin{cases} e^{\frac{1}{x}} & \text{per } x < 0\\ 0 & \text{per } x \ge 0. \end{cases}$$

Se ne tracci il grafico. Si dica se la funzione è continua in zero. Si dica se la funzione è derivabile in zero.

- 3. Sia $a_0=3$ e, per ogni $n\in\mathbb{N},$ $a_{n+1}=\frac{a_n}{2}+1.$ Si studi il limite $\lim_{n\to\infty}a_n.$
- 4. Si studi la convergenza della serie

$$\sum_{n=1}^{\infty} n! e^{-n^a}$$

al variare di $a \in \mathbb{N}$.

5. Usando il fatto che sin $\frac{\pi}{6} = \frac{1}{2}$ verificare (senza usare il calcolatore) che la differenza tra $\frac{\pi}{6}$ e $\frac{5}{9}$ è inferiore a $\frac{1}{10}$.

Avete 2:30 ore di tempo. Ogni esercizio vale otto punti. Il punteggio finale si ottiene con la formula: punteggio totale degli esercizi meno due. La sufficienza si ottiene con un punteggio \geq 18. Solo le risposte chiaramente giustificate saranno prese in considerazione. Le parti degli elaborati scritte in maniera disordinata o incomprensibile saranno ignorate.