Analisi Matematica I

Terzo Appello (18-06-2002)

1. Dire quale dei seguenti numeri è il maggiore

$$2^{10!}$$
; 1000000^{200} ; $(1000!)^2$.

2. Dire per quali $q \in \mathbb{N}$ si ha che

$$\frac{q+1}{q-1} \in \mathbb{Z}.$$

3. Mostrare che, per ogni $q \in \mathbb{N}$, si ha che

$$\sum_{n=q+1}^{\infty} \frac{1}{n!} \le \frac{1}{q!q},$$

e che, se q > 3, $p \in \mathbb{N}$,

$$\left| \frac{p}{q} - \sum_{n=0}^{q} \frac{1}{n!} \right| \ge \frac{1}{q!}.$$

Si usino queste due disuguaglianze per dimostrare che $e \notin \mathbb{Q}$.

4. Si studi la convergenza della serie e si calcoli il limite

$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n} \right)^{n^2} \; ; \quad \lim_{n \to \infty} n \left\{ \sqrt{n^2 + 1} - n \right\}.$$

5. Si determini il dominio e si disegni il grafico della funzione

$$f(x) = \sqrt{2 - \sqrt{4 - x^2}}.$$

6. Sia $\ell_0 = 2$ e si definisca, per ogni $n \geq 0$, $\ell_{n+1} = f(\ell_n)$ (dove f è la funzione definita nella domanda (5)). Si dimostri che la successione $a_n := 2^n \ell_n$ è limitata.

Avete 3 ore di tempo. Ogni esercizio vale sei punti. La sufficienza si ottiene con un punteggio ≥ 18 . Solo le risposte chiaramente giustificate saranno prese in considerazione. ELABORATI ILLEGGIBILI O CONFUSI VERRANNO IGNORATI. La sintesi sarà particolarmente apprezzata