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Abstract:
Since Kaneko [1] introduced coupled map lattices around 1984, many authors investigated
numerically systems (on the lattice Λ = (Z/LZ)d) of the type

xi(t+ 1) = τ(xi(t)) +
ε

2d

∑
j∈N (i)

τ(xj(t)) (1)

where τ is a chaotic 1D map, e.g. a logistic or a tent map on [0, 1].
The first rigorous mathematical result on the statistical properties of coupled map lattices

in the limit of infinite system size (i.e. Λ = Zd) was published by Bunimovich and Sinai [2] in
1988. It dealt with piecewise expanding local maps τ on [0, 1] with onto branches and with
a very special class of couplings which ensures that the symbolic dynamics of the system
is a full d + 1-dimensional shift over finitely many symbols. Despite numerous efforts and
beautiful results by many authors [3] it was not possible so far to treat systems with the
simple diffusive coupling (1) and a mixing piecewise expanding map (e.g. a tent map or a
β-transformation) as a local map τ . Here I will report about some progress on these systems
that was achieved between 2004 and 2007 in various cooperations with C. Liverani, J.-B.
Bardet and S. Gouëzel. All results assume that inf |τ ′| > 2.

For systems as above (and more general variants of them) we prove:

Theorem 1 ([6] with reference to [4, 5]) For sufficiently small coupling strength ε > 0,

the dynamical system on Ω := [0, 1]Z
d

given by (1) has a unique invariant probability
measure µε in the class of all measures which have densities hΛ0 on finite “boxes” Λ0 ⊂ Λ
and for which the variation of hΛ0 grows subexponentially with the diameter of Λ0. With
this measure the system has exponentially decaying correlations both in time and in
space, and µε is the SRB measure of the system in the following sense:
- µε is stable under small perturbations of the dynamics by smooth noise, and
- for each continuous observable ψ : X → R, the limit

lim
n→∞

1
n

n−1∑
t=0

ψ(x(t)) =
∫

X
ψ dµε

exists for almost every initial configuration x(0) – “almost every” with respect to the infinite
Lebesgue product measure on X.
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The key ingredient of the proof is a new decoupling procedure for the coupled system. A
refinement of this procedure yields:

Theorem 2 ([7]) If ψ : Ω → RΛ is a local Lipschitz observable, then the partial sum
process (

∑n
t=1 ψ(x(t)))n=1,2,3,... defined on the probability space (Ω, µε) satisfies a central

limit theorem and also a local limit theorem.
Finally I plan to describe the construction of a piecewise linear Markov map τ giving rise

to the coupled dynamics (on Ω = RZ2
)

xi(t+ 1) = τ(xi(t)) + ε ·
(

1
2

(
τ(xi+(0

1)
(t) + τi+(1

0)
(t)

)
− τ(xi(t)

)
(2)

which shows a phase transition in the coupling strength ε:

Theorem 3 ([8])

a) On a finite periodic lattice Λ = (Z/Z)2 holds: For all ε ∈ [0, 1
4 ] the system has a unique

invariant density with respect to which the system is exponentially mixing in time.

b) On the infinite lattice Λ = Z2 holds: There are 0 < ε1 < ε2 < ε3 ≤ 1
4 such that

i) For 0 ≤ ε ≤ ε1 the systemn has a unique SRB measure µε as described in Theorem 1.

ii) For ε2 ≤ ε ≤ ε3 the system has at least two invariant measures with densities on finite
boxes as described in Theorem 1.

The proof relates the dynamics of the system to those of a stochastic cellular automaton
of Toom’s type [9].

Tentative schedule:
1. lecture: Introduction of the model, main results, relevant spaces of functions and measures
2. lecture: Main ideas in the proofs of Theorems 1 and 2
3. lecture: Main idea in the proof of Theorem 3.
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