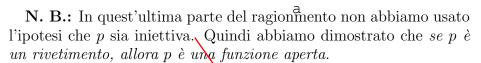
Esercizio 23.2.7. Sia $p: \tilde{X} \to X$ un rivestimento [e \tilde{X} connesso per archi.]. Dimostrare che se X è semplicemente connesso, allora p è un omeomorfismo.

Dimostriamo innanzitutto che p è iniettivo. Sia $p(\tilde{x}_1) = p(\tilde{x}_2) = x$, e sia $\tilde{\gamma}$ un cammino da \tilde{x}_1 a \tilde{x}_2 . Siccome $p(\tilde{x}_1) = p(\tilde{x}_2) = x$, allora $\gamma = p \circ \tilde{\gamma}$ è un laccio di base x. Siccome X è semplicemente connesso, allora γ è equivalente al cammino costante e_x , cioè $\gamma \approx_{\{0,1\}} e_x$. Per il lemma di unicità dei sollevamenti, $\tilde{\gamma}$ è il sollevamento di γ in partenza da x_1 e $e_{\tilde{x}_1}$ è il sollevamento di e_x . Per il Teorema di monodormia 22.1.2 $\tilde{\gamma} \approx_{\{0,1\}} e_{\tilde{x}_1}$ quindi $\tilde{x}_2 = \tilde{\gamma}(1) = e_{\tilde{x}_1}(1) = x_1$.

Quindi p è iniettiva, ed è continua per definizione di rivestimento. Resta da dimostrare che p è aperta. Sia A un aperto di \tilde{X} e $x \in p(A)$. Dobbiamo dimostrare che x ha un intorno contenuto in p(A). Siccome p è un rivestimento, x possiede un intorno aperto ben rivestito U. Siccome $x \in p(A)$, allora $p(\tilde{x})$, per qualche $\tilde{x} \in A$. Per definizione di rivestimento, $\tilde{x} \in V_i$, per qualche i, e V_i è omeomorfo ad U. Siccome A è aperto in \tilde{X} , allora $A \cap V_i$ è aperto in V_i , quindi $p(A \cap V_i)$ è un aperto in $p(V_i) = U$, quindi un aperto in X, siccome U è aperto in X (notiamo che $p(A \cap V_i) \subseteq p(V_i) = U$). Ma $x \in p(A \cap V_i)$, quindi $p(A \cap V_i)$ è l'intorno cercato.

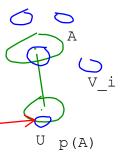


e nemmeno che X sia semplicemente connesso

Esercizio 23.2.8. Sia X connesso per archi. Sia $p: X \to X$ un rivestimento (notare che lo spazio totale e lo spazio base sono uguali). Dimostrare che se il gruppo fondamentale di X è finito, allora p è un omeomorfismo.

Per l'ultimo commento nell'esercizio precedente basta dimostrare che p è iniettiva. (è suriettiva per def di rivestimento) Sia $p(\tilde{x}) = x$. Per la Proposizione 23.2.2, $p_* : \pi_1(X, \tilde{x}) \to \pi_1(X, x)$ è iniettiva. Siccome X è connesso per archi, $\pi_1(X, \tilde{x})$ e $\pi_1(X, x)$ sono isomorfi. Una funzione iniettiva fra due insiemi finiti con lo stesso numero di elementi è biiettiva, quindi p_* è biiettiva.

Per l'Osservazione 23.2.3, quindi, ogni laccio γ di base x si solleva ad un laccio in partenza da x_0 (poiché p_* è suriettiva, quindi ogni laccio di base x sta in $p_*\pi_1(X,\tilde{x})$). Se fosse $p(\tilde{x}_1) = x$, con $\tilde{x}_1 \neq \tilde{x}$,



1

avremmo un cammino $\tilde{\gamma}$ da \tilde{x} a \tilde{x}_1 , ma allora $p \circ \tilde{\gamma}$ è un laccio di base x che si solleva a $\tilde{\gamma}$, per l'unicità del sollevamento, ma questo contraddice la frase precedente.

il periodo

Sapreste trovare un controesempio all'esercizio nel caso in cui il gruppo fondamentale di X sia infinito?

Esercizio 23.2.9. Sia $p: \tilde{X} \to X$ un rivestimento [e \tilde{X} connesso per archi.]. Sia $x_0 \in X$ e \tilde{x}_0 nella fibra $p^{-1}(x_0)$. Assumiamo che il sottogruppo caratteristico $p_*\pi_1(\tilde{X},\tilde{x}_0)$ sia normale. Mostrare che per ogni laccio γ di base x_0 abbiamo due casi: o tutti i sollevamenti di γ sono lacci, o nessun sollevamento di γ è un laccio.

Un sottogruppo di un gruppo e normale se e solo se coincide con tutti i suoi coniugati, cioè è coniugato solo con se stesso. Quindi per il commento al Teorema 23.2.4, se $p(\tilde{x}_0) = p(\tilde{x}_1) = x$, allora $p_*\pi_1(\tilde{X},\tilde{x}_0)$ e $p_*\pi_1(\tilde{X},\tilde{x}_1)$ sono lo stesso sottogruppo di $\pi_1(X,x)$.

Sempre per l'Osservazione 23.2.3, un laccio γ in X di base x si solleva ad un laccio in partenza da \tilde{x}_0 se e solo se $[\gamma] \in p_*\pi_1(\tilde{X}, \tilde{x}_0)$. Per quanto detto sopra, questo equivale a $[\gamma] \in p_*\pi_1(\tilde{X}, \tilde{x}_1)$, in altre parole, l'eventualità che γ si sollevi o meno ad un laccio non dipende dal punto di partenza.

gng⁻¹ N