Esercizi di Topologia (definizione di topologia, funzioni continue, basi, ottobre 2021)

- (1) Sia $\mathbb{N} = \{0, 1, 2, \dots\}$ l'insieme dei numeri naturali. Ricordiamo che ogni sottoinsieme non vuoto di \mathbb{N} ha un minimo.
 - (a) Dire quali delle seguenti famiglie di sotto
insiemi di $\mathbb N$ sono topologie su $\mathbb N.$
 - (A) Tutti i sottoinsiemi finiti;
 - (B) Tutti i sottoinsiemi infiniti;
 - (C) Tutti i sottoinsiemi finiti più ℕ;
 - (D) Tutti i sottoinsiemi infiniti più l'insieme vuoto;
 - (E) Tutti gli insiemi del tipo $(n, \infty) = \{m \in \mathbb{N} \mid n < m\}$, al variare di n in \mathbb{N} ; più l'insieme vuoto.
 - (F) Tutti gli insiemi del tipo $[n, \infty) = \{m \in \mathbb{N} \mid n \leq m\}$, al variare di n in \mathbb{N} ; più l'insieme vuoto.
 - (G) Tutti gli insiemi del tipo $[n, \infty) = \{m \in \mathbb{N} \mid n \leq m\}$, al variare di n nell'insieme dei numeri naturali pari; più l'insieme vuoto.
 - (b) Lo stesso esercizio, sostituendo ovunque \mathbb{Z} , l'insieme degli interi, al posto di \mathbb{N} .
 - (c) Dire se la seguente famiglia di sottoinsiemi di \mathbb{Z} è una topologia su \mathbb{Z} : la famiglia degli insiemi del tipo $\mathbb{Z}_{m,n} = \{z \in \mathbb{Z} \mid z \leq -m, \text{ oppure } z \geq n\}$, al variare di $m,n \in \mathbb{N}$. E se si aggiunge alla famiglia l'insieme vuoto?
- (2) Siano (X,τ) e (Y,σ) spazi topologici e sia $f:X\to Y$ una funzione. Se $x\in X$, verificare che le condizioni seguenti sono equivalenti.
 - (a) f è continua in x.
 - (b) Per ogni aperto V di (Y, σ) tale che $f(x) \in V$ esiste un aperto U di (X, τ) tale che $x \in U$ e $f(U) \subset V$.
 - (c) La controimmagine di ogni intorno di f(x) è un intorno di x ("controimmagine", "preimmagine" e "immagine inversa" sono sinonimi).

Fornire un controesempio che mostra che le condizioni precedenti non sono equivalenti a

- (d) La controimmagine di ogni aperto a cui appartiene f(x) è un aperto che contiene x.
- (3) Siano X, Y, Z spazi topologici e $f: X \to Y, g: Y \to Z$ funzioni (non necessariamente continue) ed $h = g \circ f$ quindi $h: X \to Z$.
 - È vero che se f e g sono chiuse, allora anche h è chiusa?
 - È vero che se f e g sono aperte, allora anche h è aperta?
 - È vero che se f e g sono omeomorfismi, allora anche h è un omeomorfismo?
- (4) È vero che ogni topologia è anche una base? Se sì, è sempre una base per se stessa?

Quali delle famiglie definite nell'esercizio (1) sono basi per qualche topologia?

(5) Siano $X_1 = \mathbb{Q}$, l'insieme dei numeri razionali, $X_2 = \mathbb{N}$, $X_3 = \mathbb{Z}$, $X_4 = [0,1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$, $X_5 = (0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}$, $X_6 = [0,1) = \{x \in \mathbb{R} \mid 0 \le x < 1\}$.

In ciascun caso, sia \mathcal{B}_i la famiglia degli intervalli aperti del tipo $(a, b) = \{x \in X_i \mid a < x < b\}$, con $a < b \in X_i$. (NB: qui a e b devono appartenere ad X_i , non sono numeri reali qualunque)

In quali casi \mathcal{B}_i è la base per una topologia su X_i ? In quali casi \mathcal{B}_i è la base per la topologia discreta?

- (6) Sia \mathbb{R} l'insieme dei numeri reali.
 - (a) Sia \mathcal{B}_1 la famiglia degli intervalli aperti del tipo $(a, b) = \{r \in \mathbb{R} \mid a < r < b\}$, con $a < b \in \mathbb{R}$. Verificare che \mathcal{B}_1 è la base per una topologia τ_1 su \mathbb{R} . Verificare che τ_1 è la topologia euclidea.
 - (b) Sia \mathcal{B}_2 la famiglia degli intervalli chiusi del tipo $[a,b] = \{r \in \mathbb{R} \mid a \le r \le b\}$, con $a \le b \in \mathbb{R}$. Verificare che \mathcal{B}_2 è la base per una topologia τ_2 su \mathbb{R} .
 - (c) Sia \mathcal{B}_3 la famiglia degli intervalli semiaperti del tipo $[a, b) = \{r \in \mathbb{R} \mid a \leq r < b\}$, con $a < b \in \mathbb{R}$. Verificare che \mathcal{B}_3 è la base per una topologia τ_3 su \mathbb{R} (viene chiamata topologia di Sorgenfrey).
 - (d) Sia \mathcal{B}_4 la famiglia degli intervalli semiaperti del tipo $(a, b] = \{r \in \mathbb{R} \mid a < r \leq b\}$, con $a < b \in \mathbb{R}$. Verificare che \mathcal{B}_4 è la base per una topologia τ_4 su \mathbb{R} .
 - (e) Verificare che le topologie $\tau_1 \dots \tau_4$ sono tutte distinte.
 - (f) Per quali $i \in j$ la funzione identica da \mathbb{R} ad \mathbb{R} è continua da (\mathbb{R}, τ_i) ad (\mathbb{R}, τ_i) ?
 - (g) Dimostrare che (\mathbb{R}, τ_3) è omeomorfo a (\mathbb{R}, τ_4) .
 - (h) Sapreste dare una caratterizzazione più semplice di τ_2 ?
 - (i) Se si modifica la parte (b) definendo \mathcal{B}_2' la famiglia degli intervalli chiusi del tipo $[a,b]=\{r\in\mathbb{R}\mid a\leq r\leq b\}$, con $a< b\in\mathbb{R}$ (qui abbiamo < anziché \leq). \mathcal{B}_2' è una base? Una sottobase? Se sì, per quale topologia?
- (7) Sia X un insieme e \mathcal{B}_1 , \mathcal{B}_2 basi per due topologie, rispettivamente, τ_1 e τ_2 su X. Verificate che $\tau_1 = \tau_2$ se e solo se ogni elemento di \mathcal{B}_1 è esprimibile come unione di elementi di \mathcal{B}_2 , e viceversa.
- (8) (a) Sia \mathcal{B} la famiglia degli intervalli aperti del tipo $(a,b) = \{r \in \mathbb{R} \mid a < r < b\}$, con $a < b \in \mathbb{Q}$. Verificare che \mathcal{B} è una base per la topologia euclidea su \mathbb{R} . (NB: qui a e b variano in \mathbb{Q} , non in \mathbb{R}).
 - (b) Sia \mathcal{B} la famiglia degli intervalli aperti del tipo $(a,b) = \{r \in \mathbb{R} \mid a < r < b\}$, con $a < b \in \mathbb{R} \setminus \mathbb{Q}$. Verificare che \mathcal{B} è una base per la topologia euclidea.
 - (c) Sia \mathcal{B} la famiglia degli intervalli semiaperti del tipo $[a,b)=\{r\in\mathbb{R}\mid a\leq r< b\}$, con $a< b\in\mathbb{Q}$. Verificare che \mathcal{B} è una base per una topologia su \mathbb{R} . Si tratta della topologia di Sorgenfrey? (vedi esercizio sopra)
- (9) Sia X un insieme e siano τ e σ due topologie su X.

Verificare che $\tau \cap \sigma = \{U \subseteq X \mid U \in \tau \text{ e } U \in \sigma\}$ è una topologia su X. $\tau \cap \sigma$ è la topologia più forte fra le topologie che sono più deboli sia di τ che di σ .

La famiglia $\tau \cup \sigma = \{U \subseteq X \mid U \in \tau \text{ oppure } U \in \sigma\}$ è una topologia su X? È una base per qualche topologia? È una sottobase per qualche topologia?

(10) Sia $f: X \to Y$ una funzione continua fra spazi topologici (X, τ) e (Y, σ) .

- (a) È vero che se \mathcal{B} è una base per σ , allora $f^{-1}(\mathcal{B}) = \{f^{-1}(B) \mid B \in \mathcal{B}\}$ è una base per qualche topologia τ' su X? È una base per τ ?
- (b) È vero che se \mathcal{B} è una base per τ , allora $f(\mathcal{B}) = \{f(B) \mid B \in \mathcal{B}\}$ è una base per qualche topologia σ' su X? È una base per σ ? È una sottobase per qualche topologia su X?