(1) Calcolare, al variare del parametro α in \mathbf{R} , il rango della seguente matrice, sia col metodo dell'eliminazione di Gauss, che col metodo dei minori.

$$\begin{pmatrix} \alpha & 1 & 2 & -1 + \alpha \\ \alpha + 2 & 2 & 4 & \alpha \\ -\alpha + 2 & 0 & 0 & 0 \end{pmatrix}$$

(2) In \mathbb{R}^3 , si considerino le rette r_1 di equazione

$$\begin{cases} x = 2 + t \\ y = 3 + t \\ z = 4 + 2t \end{cases}$$

ed r_2 di equazione

$$\begin{cases} x = 3 + t \\ y = 3 \\ z = 3 + t \end{cases}$$

- (a) Verificare che r_1 ed r_2 sono sghembe.
- (b) Determinare equazioni per la retta r_3 perpendicolare ed incidente ad r_1 ed r_2 .
- (c) Determinare il punto di intersezione fra r_1 ed r_3 ; e determinare il punto di intersezione fra r_2 ed r_3 .
 - (d) Determinare la distanza fra r_1 ed r_2 .
- (3) Si consideri in \mathbf{R}^3 il piano π di equaziuone x+2y+3z=1.
 - (a) Determinare l'equazione del piano π in coordinate sferiche.
 - (b) L'equazione ottenuta rappresenta tutti i punti del piano π ?