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After J.D.H. Smith's monograph [Sm], and subsequent

generalizations (see [Gu, FMK]) the commutator has become a

ma jor tool for a refined analysis of congruence modular
varieties.

Outside modular varieties commutator theory cannot be
applied as it stands, since the commutator may be defined in
-several ways, which turn out to be non equivalent, in
general; nonetheless, some applications have been found,
under rather mild assumptions [HMK, Lpl-4].

Recently, it has been discovered that a substantial
part of the modular commutator theory follows already from
the existence of a difference term: see [Kel], parts of [Lp4l],
[Lp5] (mainly in connection with [Ki]) and, especially,
[Lp6]; recall that every algebra in a congruence modular
variety has a difference term, but there are non-modular
varieties still having a difference term.

Actually, in [Lp4-6] we develop commutator theory for
single algebras with a difference term, and use it to provide
improvements and simplified proofs of many results obtained
for modular varieties. For example, in [Lp6] we show that if
A has a difference term and 5=(aO+BO)(a1+Bl)(a%+Bz) , then

for every n: &6=(ag o Bgl(a; o By)(ag o By) o & n) (B(H)
denotes the solvable series). The above identity is used to
solve a problem in [Ts] (condition C there is equivalent to
congruence modularity), and to improve the main result from
[FJ] to: if A has a difference term and Con A is modular then

Con A is arguesian.



The present paper is a complement to [Lp4-6]: we show
that if a single algebra has a difference term, then many
definitions of the commutator coincide. In particular, we
strengthen a result from [Ki]: there he showed, among other
things, that in every congruence modular variety the usual
commutator (defined by the Term Condition) coincides with the
commutator defined using the Two Terms Condition. Here we |
furnish a very direct proof of this result, actually using
only a difference term, and indeed we get a stronger
conclusion: the TC-commutator coincides with a w-commutator,

whose definition involves n terms.
The conditions defining the w—-commutator are

specializations of the m—-implications introduced in [Qu];
taking all m-implications into account leads to the
definition of the linear commutator (see [KQ], [KP, p.167]):
we also show that there exists a finite algebra in which the

linear and the o commutators are distinct.

A preliminary version of this work has been circulating
since April 1994 (the result in the Proposition has been
obtained in July 1994). K.Kearnes has provided many

suggestions which have been used in order to improve the

manuscript.

We are going to define a commutator [a,B] 6 in such a
way that an algebra A satisfies [1,1] =0 iff in AXA the
congruence 6 generated by {(a,a)|a€Ap is a common complement
of the kernels ny , ny of the two canonical projections;
that is, €, my; and n,) generate a lattice isomorphic to Mj
(actually, 6ny=0 is enough to imply [1,1],=0).

[a,B], will be the union of an increasing chain of

commutators [a,B]h-(nzl); the definition of each [a’B]fl

involves n terms.



For n=1 we get the "classical"” commutator [a,Bl=[a,Bly
of, say, [FMK, Definition 3.1(3)] (that is, the commutator
defined by the specialization of the Term Condition; the Term

Condition then becomes [1,1]=0).
For n=2 we get the Two Terms commutator defined in

[Ki] (actually, [Ki] defined the a-B two terms condition
which, in the present terminology, corresponds to [a,B]2=Oj.

The most general form of "conditions"” involving n terms
are the "n-implications” of [Qu] (but here we deal with
terms, rather than operations); it is trivial to see that
every l-implication is equivalent to the Term Condition; and
that a 2-implication either reduces to the Term Condition or
is equivalent to the two terms condition.

For n>3 there are many different kinds of n-
implications: each one can be described by a pair of
permutations (on the set {},...,n}o : in defining [a,B]n we
select those n-implications which are described by two
identical cycles; thus we sometimes call [a,B], and [a,B],

the (n-terms) cycle commutator.
The proof of [Qu, Theorem 6] shows that, for every n,

there exists a finite groupoid in which 0=[1,1].<[1,1],41 ;
so that, in general, [a,B], grows larger as n grows larger
(since we are dealing with terms, rather than basic
operations, the proof of [Qu, Theorem 6] has to be slightly
modified: the groupoid has to satisfy x(yz)=x(y'z') and
(xy)z=(x'y')z ; but this can be easily obtained: it goes
exactly as in the proof of the Proposition belod‘.

Moreover, the proof of the quoted theorem from [Qu]
can be adapted to build a finite groupoid G satisfying
O=[1,1]m<[1,1]L ([-,-];, denotes the linear commutator [Qu,
KQ, KP]); in other words, G is not quasi affine, that is,
does not satisfy the Additive Term Condition [Qu]; actually,
a 3-implication fails in G (see the proof of the Proposition

below).
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In conclusion, we get that [a,Bl=[a,B]i<...<[a,B], <
[a,8] 41¢...¢[a,B] ¢[a,B]; , and that each inequality may
be strict.

The situation changes if we assume the existence of a
weak difference term: in the case a=B all the above
commutators coincide, as shown in [Lp3, Remark 3.3(a)]. On
the other side, [Lp4, Remark 4.9] shows that there is an
algebra with a weak difference term (even, belonging to a 4-
permutable variety) and with two congruences a, B for which
[a,Bl<[a,B]y .

We show in the present paper that if there 1is a
difference term then [a,B]=[a,|3]n=[a,B]m , for every n; a
and B. -Heaﬂ\’/l?fle, k‘.Keakncs gné A gzeﬁn_élﬁgc ;m‘r’r"/etl

Ehis €o [a,Bl=[a,B]y * actually-, they vsed 3 mvch wey S
bytgt\,\i <ls (Lt' 'no_!"i%:;:uﬁge particular case of conﬁ:&uence
modular varieties)‘E.Kiss’and R. Quackenbush [KQ] proved that

in modular varieties [a,B]=[a,B]; when a and B permute).

Now for the relevant definition$,

Let A be an algebra, and a, B, Y be congruences on A
(actually, the definitions make sense and have some interest
even when a,B and Yy are relations on A),

M(a,B) denotes the set of all matrices of the form:
t(a, D) t(a, b')
t(a',b) t(a',b")

where a,a'€Al! , 5,b'eA™ , for some n, m 20 , t is any

m+n-ary term operation of A, and aaa' , bBb' .

K,(a,B;Y) denotes the set of all couples (c,d) such
that there are matrices
a1 bq as boy a, bp
C1 dl{ Co dz{ Ch dn{
in M(a,B) such that b, ,vay , bjvaj;q (1<i<n), djvcy4q
(1¢i<n), and c=cq , d=d, .

K,(a,B;Y) is Unem K,(a,B;7).
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For n{w, the n-cycle commutator [a,B], is the least
congruence Y such that Kn(a,B;Y)ﬁY. Thus, the cycle

commutator [a,B]m 1S U nEam [a,B]n o
| Notice that (mainly for n=1) some authors denote the
relation K, (a,B;Yv)<y by C.(a,B;v), and say that a

centralizes B modulo v (in the sense of the n-Cycle
Condition).

REMARKS. (a) It is well-known that an algebra A
satisfies [1,1]=0 iff {(a,a)|a€Ay is a block of some
congruence 6 on AXA; similarly,tl,l]w=0 means that 6 and
the (kernels of the) two projections generate a lattice
isomorphic to M3 . More generally, it is immediate from (the
symmetric version of) [FMK, Lemma 4.8)] (which is proved
without using modularity) that [a,B]w=O iff in the algebra
A(a) ﬂa,B * ny=0 , iff &G,B . n2=0 (see [FMK, Definition
4.7] for notation; m; is the kermel of the restriction of
the i-th projection). _

(b) As a consequence of (a) and of [FMK, Theorem
4.9(i)=(iv)], in every modular variety [a,Bl=[a,B] .

Indeed, many properties of the modular commutator
follow just from the fact that [a,B]=[a,B] 6 , as implicit in
[FMK, chapter IV], and explicitly pointed out to us by
K.Kearnes (cf. also [KMK]).

(c) Notice also that the proof of [FMK, Theorem 4.10]
shows that C(V)(a,B)g[a,B]w holds in every variety. (and
hence also C(V)(a,B)g[a,B]m * [B,al,, , since c(V) s
commutative). Actually, the proof shows that C(V)(a,B)g

K,(a,B;0) in every variety.

(d) Also Condition (iii) in [HH, Theorem 1.4] can be

used to define a commutator operation C*(a,B). The proof of

[FMK, Theorem 4.11] shows that in every variety
C*(a,B)<la,B], .



(e) There is a useful bound for [a+B,Y] (see [Lpl]);
also left semidistributivity of [a,B] has very_important'
consequences.

In this respect, [a,B], 6 seems to be not so well
behaved. However, suppose (for the rest of this remark)
ata'=a o a' : then we can compute K (a+a',B;v)<
Ko(a',B;K,(a,B;(a+y)(a'+y)); and, in particular,
Kp(ata',B;v)<(B+y) (a'+(a+ty) (B+(a+y)(a'+y))). This identity
can be iterated as in [Lpl, Lemma 1(ii)] in order to give a
bound (not depending on nfw) for [a+a',B], : define
[a,8]|0],=0 and [a,B|m+1]_=CgK_(a,B;[a,B|m], ) and observe
that [a,B],= Umew [a,B|m], ). |

Also a weak form of semidistributivity holds: if
[a,8],=[a’,B] 20a' then [a+a’,Bl =la,B], .

Without the supposition a+a'=a o a' we still can get a
bound for [aea',B]_  (as mentioned before, the definition of
[a,B], can be given for a a relation, rather than a
congruence ) .

(f) Trivially, [a,Bls=[B,als. Probably n=2 is the only
n for which [-,-]_ is commutative (in [KP, Example 5.17] it
is shown that [-,-] is not necessarily commutative).

If A is an algebra, a ternary term t is a difference
term for A iff a=t(a,b,b) and t(a,a,b)[a,alb, for every
a€Con A and a,b€A such that aab.

The following theorem generalizes [Ki, Proposition

3.10], and gives another proof which does not make use of

quaternary terms:

THEOREM. If A has a difference term, then [a,B]=[a,B], ,

for every a,B€Con A.

Let us first exemplify the method by proving that
[a,B8]=0 implies [a,B],=0. Indeed, if
ab b a
c d d e




belong to M(a,B), then also

lt(a,b,b) t(a,a,a)] la a |

lt(c,d,d) t(c,c,e)] = |c t(c,c,e)]

belongs to M(a,B), so that [a,B]=0 implies c=t(c,c,e). But
caaae and cpdBe, whence caBe and t(c,c,e)l[aB,aBle, since t
is a difference term. In conclusion, t(c,c,e)=e, since
[aB,aB]l<[a,B], so that c=e, what we had to show.

Proof of the Theorem. Clearlﬁ, [a,B]<[a,B], . For the
converse, we prove by induction on n that C, (a,B;[a,B])
holds, for every n.

So, suppose that y=[a,B], and that c¢,d are as in the
definition of K, (a,B;Y).

If n=1, then clearly cla,B]ld.

Otherwise,

t(al ’ b]_ > an) t(al ’ al , bl’l)
t(Cl ’ d]. s Cn t(Cl » C1 » dn)
are n-1 matrices satisfying the conditions in the definition

of K, ,_q(a,B;v).

Indeed, clearly t(ay , by , bjlyt(a; , by , a;.1), and
t(cy , dy , dj)yt(ey , dy , c4471), for 2<i<n. Moreover,
t(al 3 31 . bn)Yt(al y 31 al)=31=t(31 ’ bl ’ bl)Y
t(a; , by , ag).

Whence, by the inductive hypothesis, t(cy , ¢y , d,)Y
t(cy , dy , c9). We have that t(cy , dy , c9)Y
t(cq , d; , dy)=cq ; moreover, cjaajybyad, , and cqBdyYCH
.o+ YC,Bd, , so that cjaBd, , since vZiaB, and hence
t(cy ,cq , dy)yd, , since [ap,aBl<[a,B] and t is a

difference term. In conclusion, cyvd, , what we had to show.
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PROPOSITION. There exists a finite algebra (indeed, a
groupoid G with 50 elementsé which satisfies [1,1]  but

which is not quasi affine.(BE(ofGIVe To g Lo wruy £:MITE VARIETY

Proof. The proof is very similar to the proof of [Qu,

Theorem 6].
The multiplication table of the groupoid G is:

£, £, f£5 £, f5 fg « o
£4 ay ap ¥ * * * C] s ©Cq
£, ag ay; * * * * Cy +es Cog
fq * * ag a; * * C3 «ss C3
£, * * a, ag * ® A A
fs * % * * a9 a5 Cg +.. Cg
fe * * * * ag 87 Cg ese Cg

where each * represents a different element from a set {:bl
e o s b24}>, and a1 , ..., fg are all distinct.

The disposition of the a;'s implies that G is not quasi
affine, because of Quackenbush's characterization [Qu,
Theorem 5]: a 3-implication fails in G, since ag # ay .

In comparison with [Qu, Theorem 6], here the bordering
of the multiplication table seems to be relevant: the

elements f1 , ..., fr have been added so that G satisfies * ;
x(yz)=x(y'z') and (xy)z=(x'y')z , for every x,x',¥,... % in "

particular, all matrices in M(1,1) are either trivial (that

G
Ce~eaivl

A Lol
?H‘/\Tﬁ V/t}f\ugq\/)

is, two pairs of entries are equal), or have the form:

Xy ZV
XW ZW

XY XZ
or

WY WZ



By looking at all possible pairs of matrices in M(l,l)
having a column in common, the probé%ﬁ.of showing [1,1] =

reduces to show1ng [1,1]5,=0, and thlS can be easily verlfled

§

PROBLEMS. (a) Can we generalize the Proposition showing
that there exists a variety satisfying [1,1] =0 which is not
quasi affine?

(b) More generally, is there a variety V in which every
algebra satisfies (*), but V has an algebra which does not
satisfy (**)? (where (*) and (**) can be anyone of [1,1]y4=0,
[1,1],=0, [1,1],=0, [1,1];=0; [-,-]y denotes the weak
commutator implicitly defined in [Ké% §51).

(¢) If [a,Bl=[a,B]y holds in V, does [a,B]l=[a,B];
hold in V, too? (similar problems can be posed for other
commutators, as in (b)).

(d) Solve the above problems at least for locally
finite varieties.

(e) Are the following equivalent? (i) [1,1] =0 in A;
(ii) In AXA there exists a common complement & of the
kernels of the two projections. (iii) Same as (ii) and,

-1
j © 6 o n (i=1,2).

By Remark (a) above, (i)=>(iii); and (iii)=>(idi)
trivially. By Remark (e), if (ii) holds then (in AXA)
[1,56],=0, and also [1,1]=0, but this does not seem enough
to imply (i).

moreover, T



References.

[FJ] R.Freese, B.Jonsson, Congruence modularity implies
the Arguesian identity, Algebra Universalis, Vol. 6, 191-194

(1977).

[FMK] R.Freese, R.McKenzie, Commutator theory for
congruence modular varieties, London Math.Soc.Lecture Note N.

125 (1987).

[Gu] H.P.Gumm, Geometrical methods in congruence
modular algebras, Amer.Math.Soc.Memoirs N. 286 (1983).

[HH] J.Hagemann, C.Herrmann, A concrete ideal

multiplication for algebraic systems and its relation to
congruence distributivity, Arch.Math (Basel) Vol.32 (1979),

234-245,

[HMK] D.Hobby and R.McKenzie, The structure of finite
algebras, Contemp.Math. N. 76 (1988).

[Ke] K A. Kearnes, Commutator theory with a difference

5.0¢ Rlgebra ANt 926-960 (1395),

[Kel] K.A.Kearnes, An Order-theoretic Property of the
Commutator, International Journal of Algebra and Computation,

- Vol.3 (1993), 4£921-633%.

[Ki] E.W.Kiss, Three remarks on the modular commutator,
Algebra Universalis, Vol.29 (1992), 455-476.

[KMK] K.Kearnes, R.Mc.Kenzie, Commutator theory for
relatively modular quasivarieties, Trans.Amer.Math.Soc., Vol

331 (1992), 465-502.

[KP] E.W.Kiss, P.Prohle, Problems and results in tame
congruence theorv. A survey of the '88 Budapest Workshop,
Algebra Universalis, Vol.29, (1992), 151-171.

[KQ] E.W.Kiss, R.W.Quackenbush, General Commutator
Theory via Linear Algebra, Notes



[Lpl] P.Lipparini, n-permutable varieties satisfy non
trivial congruence identities, Algebra Universalis, Vol.33,

159-168' (1995).

[Lp2] P.Lipparini, Congruence identities satisfied in
n-permutable varieties, Bollettino Unione Matematica
Italiana, Ser.VII, Vol.8-B, 851-868 (1994).

[Lp3] P.Lipparini, A characterization of varieties with
a difference term, | Bull.Canad.Math.Soc. |

[Lp4] P.Lipparini, Commutator Theory without join-
distributivity, Trans.Amer.Math.Soc., Vol.346, 1/77-202

(1994).

[Lp5] P.Lipparini, A Kiss 4-ary difference term from a
ternary term, submitted.

[Lp6] P.Lipparini, Congruence modularity implies the
Arguesian law for single algebras with a difference term,
submitted, |

[Qu] R.Quackenbush, Quasi-affine algebras, Algebra
Universalis, Vol 20 (1985), 318-327.

[Sm] J.D.H.Smith, Mal'cev varieties, LNM N. 554 (1976).

[Ts] S.T.Tschantz, More conditions equivalent to
congruence modularity, in Universal Algebra and Lattice
Theory, proceedings of a Conference held at Charleston, Jjuly
11-14 (S.D.Comer, editor), LNM 1149, 1984.

Paolo Lipparini
Dipartimento di matematica
Universita di Cagliari.

Current address:
Dipartimento di matematica
Universita di Tor Vergata
I-00133 ROME

ITALY



