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Congruence Identities Satisfied
in n-Permutable Varieties.

PA0OLO LIPPARINI(*)

Sunto. - In [Lpl] Uautore ha dimostrato che ogni varieta n-permutabile sod-
disfu ad identita reticolari non banali. Sorprendentemente, questo risul-
tato ¢ stato ottenuto coll’esclusivo ausilio di tecniche note da almeno un
decennio: essenzialmente, alcune proprieta del commutatore. Scopo del
presente lavoro & quello di ricavare, come conseguenze della n-permuta-
bilita, identita pin forti delle precedenti. St indicano anche alcuni metodi
di dimostrazione che non fanno uso della teoria del commutatore.

In[Lpl] we showed that, for every n = 2, there is a non trivial
identity (in the pure language of lattices) holding in every congru-
ence lattice of algebras in n-permutable varieties, thus generalizing
results obtained by A. Day and J. B. Nation[Jo, Lemma 3.10] and
D. Hobby and R. McKenzie [HMK, Theorem 9.19].

The identity found in[Lpl] is rather weak (stating that certain
interval sublattices are modular): the aim of this paper is to give
much stronger identities; also, we analyse in more details the cases
when 7 is small.

To this purpose, we prove and apply a very strong version of a
theorem of W. Taylor asserting that every abelian algebra belonging
to an n-permutable variety is affine; and, as in[Lpl], we use this
theorem together with a rather rough commutator theory.

In{Lp2] a general commutator theory is provided, which applies
to a broad class of varieties, and even to single algebras (see Defini-
tion 1.4); and some interesting and concrete results are obtained.
However, for n-permutable varieties, it is likely that a much finer
commutator theory can be developed: though this goes outside the
scope of the present paper, it may happen that some of our results

will serve in future as a basis for such a theory.
We assume the reader is familiar with the basic concepts
of universal algebra: [BS] or [MKNT] can be used as accessible

(*) Work performed under the auspices of G.N.S.A.G.A. (C.N.R.).
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textbooks; see also[MK] and the introduction of [Sm] for a less
technical presentation of the subject and of its aims. The
books [Sm], [FMK], [Gu] develop commutator theory for per-
mutable and modular varieties: knowledge of such theory is not
necessary for a formal understanding of this paper, but is fundamen-
tal in order to grasp the entirety of motivations.
| A large part of commutator theory for modular varieties has
been developed in Darmstadt; curiously enough, the main ideas for
proving the quoted result of [Lpl] came to us there, while attending
the Symposium on Lattice Theory in honour of the 70th birthday of
(z. Birkhoff. | |

Most of the results of this paper have been announced
in [Lpl].

If not otherwise specified, we use the notations of [FMK]. We re-
call only the basic notions: an algebra (algebraic structure) is just a
set together with some operations; a class of algebras of the same
type is a variety just in case it is closed under taking direct prod-
ucts, substructures and homomorphic images (a celebrated theorem
by G. Birkhoff states that variety is the same as a class of algebras
satisfying a given set of equationa). A term (or word, or derived op-
eration) of an algebra A is just an operation obtained by composition
from the basic operations of A. A congruence on an algebra is just a
compatible (admissible) equivalence relation, that is, the kernel of
some homomorphism. Con (4), the set of all congruences of the alge-
bra A, is naturally equipped with a lattice structure, with meet, de-
noted by juxtaposition, set theoretical intersection, and jotn denot-
ed by +. Given two congruences a and 3, we can form the relational
product « o8, which is a compatible relation on A, but not necessarily
a congruence. If » = 2, two congruences « and 8 are said to n-per-
mute iff Boaofoa...=aof oaof... (n factors on each side): so that,
In particular, a + S=a of ca of... (n factors). Permute is the same as
2-permute. A variety V is (congruence) n-permutable iff every pair
of congruences of every algebra in V n-permute.

W denotes the end of a proof.

1. — Taylor’s theorem revisited.

We now introduce some commutators which will play an essen-
tial role in what follows. Since their definitions may appear very
technical, the reader is referred to[Lpl] for simple applications
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(more exactly: deep applications with relatively simple proofs: see in
particular Remark a) after Theorem 1 of [Lpll).

DEFINITION 1.1. — Let A be any algebra, and «,3c Con(A).
M(a,pB) is the set of all matrices of the form:

Ha,b) ta.b")
ta',b) Ha',b)

where a,a' €A™, b,b'eA™, for some n,m = 0, t is any (m + n)-ary
term operation of A, and axa’, b3b'.

The commulator of « and 8 truncated at the n-th concatenation,
denoted [«,8|n], is defined as follows: |

[a:‘BIO] = OA!

[a,8|n +1]=Cg [(z,w)l :: ' e M(a,B), for some m[a,ﬁ\n]y},

where Cg means «the congruence generated by».
By notational convenience, we also put [a,3] —1]=0,.
The commutator [«,3] is n\E/m[a, B|n]. This last commutator was

denoted by C(«,3) in[FMK]; as a consequence of Proposition 4.2
there, within modular varieties, [«,8] =[«,3]|1].
The solvable series are defined as follows:

a(0|0)=cx(0|_1)=0A;
a@ =0 =4 for every s=1;
o M+1]8) — [a(WIS),a(MIS) |s];

a(mﬂ) — [a(m)’ a(""‘}] _

Now for the generalization of [Ta, Theorem 2] (see also the re-
mark on p. 23 there).

THEOREM 1.2. — Suppose that V is an (n + 2)-permutable variety,
$,t20 and m = 1. Then there are ternary terms 1,0, ..., Py—s—t+1

such that, for every AeV, acCon{A), a,beA, aab, the following
wdentitries hold:

a) If s+i<sn—2:
(1,m, ) a=p(a,b,b) (mod «™9) |
(2,m,3) p(a,a,b) =p,(a,b,b) (mod ™15~ 1)
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(3,2) pi(a,a,b)=p;,,(a,b,b) for 2<sisn—-s—-t-1,
(4,m,t) Pn-s-t(@,0,0)=p, . _;:.,(a,b,b) (mod & ™/# -1y
(5,m,1) Pu-s—t+1(a,a,b) =b (mod a™1%)
b) If s+it=n—1:
a=p(a,b,b) (mod & ™19)
pi(a,a,b) =p.(a,b,b) (mod o (™5 {s-1,¢-1hy
p:(a,a,b)=b _ (mod « ™19 .
¢c) If s+i=mn:
. a=p(a,b,b) (moda("’“"‘*"“p{s*""l})),
(a,a,b)=b ' (mod o (™Isup{s—Lthy

PROOF. — The case s =t=0, m arbitrary is the Hagemann
Mitschke Mal’cev charaeterization of (n + 2)-permutability. The
general case is proved by triple induction on m, s, ¢: induction on s is
a variant of the procedure of [Ta, Theorem 2]: induction on ¢ is the
symmetric argument, and induction on m is a broad generalization
of the methods in [Gu, p. 64].

Now for details: the basis of the induction (s = ¢ = 0, m arbit-
rary) i1s just a restatement of the main result of [HM], since «™¥ =0,
for every m.

From terms satisfying the theorem for given s, £, m, we shall con-
struct (in many steps) other terms satisfying the theorem for s + 1,
t, m. A completely symmetric argument gives the step from £ to
t + 1, so that the result follows from simultaneous induction on s and
t (by checking that we get exactly parts &) and c¢) when starting with
3 or 2 terms).

S0, let us start with terms p;, 25, ..., 9o 11 satisfying (1,m,s),
(2,m,s8), (3,1) (for 2<ism—s—-t—1), 4,m,1), (5,m,t). Define:

plr(myz) = P2 (pl (x?lx):?l(@/ym)spl (2'?!37)) ’
i =Piv1, (A<i<n-—s-—1t).

The arguments of [Ta, Theorem 2] apply verbatim to show that
Pi1:sP2s-yDy-s—y satisfy (2,m,s+1) and (1,1,s+ 1), as’ well as,
~trivially, (3,2) (for 2<i<n—s—1), (4,m,1), (5,m,1): just replace

= with =, and use the fact that «™!9 = 4™is-D anq that 119 >

219,
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CLAIM. - If for some 7 = 1 there are terms q1>G2, -..Qyn_s_¢ Satisfy-
ing (1,7,8+1), (2,m,s+ 1), (3,2) (for 2<i<n—g— t), (4, m,t),
(9,m,1), then there are terms ¢, vq2 ..., qn-s— Which in addition sat-
isfy (1,7+1,s + 1).

Using the claim, we obtain terms satisfying (1,m,s + 1),
(2,m,8+1), (8,7) (for 2<i<n—gs— t), (4,m,t), (5,m,t), by induc-
tion on r < m: the basis of the induction are P1,Pz,...; and the claim
1s the induction step.

S0, it remains to prove the claim. Define:

q; (wyz) = q; (x,q;(xyy), q;(xyz)), (for 1Si<m—s—1).

If aab, then aa"**Vq,(a,b,b), by (1,75 + 1), hence, again by
(1,r,s+1):

a = q,(a,q,(abb),q, (abb)) = q{ (abb),

where the congruence is modulo (x1#+D)rls+D) < (r+11s+1) o ¢pay
(1,7+ 1,8+ 1) is proved.
Now compute:

q1 (aab) = q,(a, q:(eaa), q,(aab)) = q,(a,a,q,(aab)) =

¢:(a,a,qz(abb)) = g, (a, g, (abb), g (abb)) = g (abb) .

where = is congruence modulo «™®; and ¢,(a,e,a)=a and
q1(a,a,b)aaaqgs(a,b,b), since all terms we have constructed are
idempotent (that is, they satisfy g(x,x,2) =« identically): this is be-
cause we started with the Hagemann Mitschke terms, which all are
idempotent.

That ¢/,q9s,...,q,_,_, satisfy (8,7) (for 2<i<n—s — t), (4, m,1),
(0,m,t) is proved exactly in the same way as (Z2,m,s+1). ®

REMARK 1.3. - Notice that the hypothesis of ( + 2)-permutabili-
ty 1s used only in the basis of the induction (the Hagemann Mitschke
terms). Hence, if an algebra possesses n — s — ¢ + 1 terms satisfying
the conclusion of Theorem 1.2 for given m, 8, t, then it has terms sat-
isfying Theorem 1.2 for every s’ = s and ¢’ = ¢ and the given m, pro-
vided n —s'"—¢t' +1=1.

A similar remark applies to most of the results of this paper. In
particular, it has applications to the following notion introduced

In[Lp2]:
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DEFINITION 1.4. — If A is an algebra, a ternary term d is said to be
a weak difference term iff for every aeCon (A), aabeA:

d(b,b,a)=a=d(a,b,b), (mod [a, x]).

The proof of the claim in 1.2 gives (in the simplest particular case
of just one term): |

PROPOSITION 1.5. — If d is a weak difference term for the algebra
A, then for every k there is a lernary term d, such thal
d.(a,a,b)a®ba®dy(b,a,a), for every aabecAeV. W

Algebras having weak difference terms include all algebras In
modular and n-permutable varieties, in locally finite varieties
omitting type 1 [HMK, Theorem 9.6(6)], in neutral varieties (those
satisfying [«,a] =« identically); as well as all algebras with a com-
mutative semigroup operation satisfying " =2 (for some fixed
n = 2) [Lp2l. : |

The class of varieties all whose algebras have a weak difference
term can be proved to be a Mal'cev class, and the proof also shows
that, for every such variety, there is an % such that, in Definition
1.4, [«, 2] may be replaced by [a«,x|n].

Algebras satisfying Definition 1.4 are studied in [L.p2], where we
develop a general commutator theory for those algebras: applica-
tions include congruence identities (in the languge with o added)
and many permutability results (similar to, e.g, Corollary 2.6).

Also, if M, is a sublattice of the congruence lattice of an algebra
with a weak difference term, then this sublattice is abelian (in the
sense that [«,«] <3, where « and g are the largest and smallest ele-
ments of the sublattice); on the contrary, every sublattice isomor-
phic to N; is not abelian (even not solvable). This implies that there
are lattices (e.g. M3 «with an Nj inside») which cannot be sublattices
of congruence lattices of algebras having a weak difference
term. '

Moreover, if A is such an algebra, and a,3eCon(A4), then, for
every m, (a + 8)"™ < a iff 3™ <qf8: that is, projective quotients are
either both abelian (solvable) or both non abelian (non solvable).

2. — Congruence identities.

In this section we use Theorem=1.2 in order to obtain some
identities satisfied by congruences of algebras in n-permutable vari-
eties. In general, our identities involve the various commutators
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and the composition operation o, In addition to the lattice opera-
tions + and -. However, at the end of this section we shall show
how to obtain, in some particular cases, identities in the pure lan-

guage of lattices (as we did in [LplD.
Qome of our identities give permutability results: this is obtained

by refining techniques used by H. P. Gumm and others (see[Gu,
chapter 8]) in the simpler case of modular varieties.

We begin with a very important corollary of Theorem 1.2. If A 18
an algebra and OcA X A, let 8 denote the least reflexive compatible
relation on A containing 6; that is, the subalgebra of A X A generat-

ed by @U 4, where 4= {(a,a)|acA}.

COROLLARY 2.1. — Suppose that, for given n, s, t, and m, an alge-

bra A has ternary terms P1,P2s---»Prn-s—t+1 sayisfying the conclu-
sion of Theorem 1.2. (tn particular, this holds if A belongs to some

(n + 2)-permutable variety).
If0,,6,,...,0, 54 O7€ reflexive compatible relations on A, and

x, B, v, € Con(4), then:
a) if s+t<n—2:
a0 offoBs003 ... Op_s-1-1°7 08 p_5-1°6C
19 (70 U0, oB) 0BV ofUB 06, Ub;50

E UByo... ol p_5-t-2 U Q_'.n-—-s—t-—l Gén—s—t—i L-J 7: ©

},(mlt—-l) '3(7; Dgn—s—t) U- (Qn:—-; Gé) Gg(mlt)

(it will be useful to keep In mind that there are n —s —t + 4 factors
on the left side of ¢, and n —s—t+9o factors on the right: expres-
sions within a parenthesis or grouped below a bar are counted just

as one factor!);
b) if s+t=n—1:
a0 ofio¥ Drgcx(m‘s) DGC’@) U (& of3)

G‘B(mlsup{s—l,t—l}} '3'(‘8 CI]P:) U (]P'- ';'Y) Dy(mlﬂ :
c) if s+t=mn:

_—e Gﬁg{x(mlsup{s,t—l}) o m@) L) (8 -::11‘8) Gﬁ(mlsup{s—l,t}) '

PROOF. — We shall prove ¢) and a) leaving b) to the reader.
For c¢), suppose axbfcpd. |
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Then

a o™= ) (abb) (@ 00) U (B of) py(ced) gmIsmwis—11h g
For a), suppose
a4 ﬁﬂg@l agﬁa462a593

| Qp,—5—t+1 6*Jr'e,—.s'-—t—-l Bp—s5—t+2 Y0y —5—1+3 Qn—s—t Ay —5—t+4 ga'n—s—-t+5 .
Then

(m|s)

a1 p (a1 8, 05) (@ 007 U (0, oB) py (02, )

ﬁ(mls_l)?f’z(ﬂa as04)B U O po(aya,a;) = ps(agasas)6, U 63

p3(af5 275 aﬁ) =p4(035(15&6) —93 U-94 p4(a6a6a7)

ce pn—s—t—l(a’n—s—-tan-s—t-l—l t‘]’n—s-—t+1) Qn-—s—t-—z U anﬁs—t—l

pn-—s—t- 1 (a’n—s~t+1 an—-s—t+1 a’n—s—t+2) =

pn—s—t(a’n—s—t+lan—s—t+2an—s—-t+2) Qn—-s—t—l U Y

(mit—1)
pn—s—t(an—s—t+2a'n-s—t+2an—s-t+3)7’ |

pn-—s—t+1(an—s—t+2an-—s—t+3 an—s-——t+3)(y Den—s-t) U (Qn—s—-t Gé‘)
m (¢
pn—s—t+1(an—s-t+4 a’n—-s—t+4a'n—s—t+5)8( | )an—s—t+5 . =

REMARK 2.2. - In the case s = ¢ = 0, a), b), ¢) above give back the
conditions for (n + 2)-permutability, For example, putting @=¥=0
and « =y, b) becomes xofcacaUBoBUaCfoa oa off=f o of.

This, together with the symmetric form, is exactly 3-permutabil-
ity (n here is s+¢{—1=1).

From now on, let «* =« if 7 is an odd Integer, and a* =3 is » is

even. Similarly, let 8* =g if n is odd, and 8* =« if % is even. [ ] de-
notes nteger part.

COROLLARY 2.3. — Suppose that V is (n + 2)-permutable, AeV,
a,BeCon(A) and m = 1. Then:

(1) Gt+‘3=a(m'1) c:»ﬁ r:::.{x O... ma*=a*aﬁ*o... D‘B Gﬂ(mll) (’.*Z + 2
factors on each side);

(i) f =2 then aoffo... of*oa* (n factors) ca™V oBoao... o
a*ofB*ogq™) (n 4+ 2 factors);
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(iii) if3<r<n+2,ris odd and B permutes with o ™n=7+5/2)

then o and B (r+ 1)-permule.

PROOF. — (i) For simplicity suppose, say, 7 odd. a+pS=
aofo...ofoa=fBoaoc... oo (n + 2 factors on each side) is the defi-
nition of (n + 2)-permutability. Then, applying Corollary 2.1 with
s=1 and ¢t =0, we get:

aoffo...oxofl (n+1 factors)=

200 ofBoaxo...oxoBoacloff (n+3 factors)c

2™V o5 UB 000U oaUBo... ofUa o0 oaUB o0 (r+4 factors)c
2™ o (Boa)o(aoB)o... (Boa) (n+1 factors)c

a2V cBogo... ofoa (n+2 factors).

But now

a+B=aofo...oBca (n+2 factors) =
(xo0fo...08) aag(a{mll) offo...oa) o=

2™V 086 . oa(n+2 factors)Caofo... ca (n+ 2 factors) =a + 3.

This proves the first equality. The other equality follows by sym-
metry; and the case » even is entirely similar.
(ii) is similar and easier, taking s =¢ = 1.
(iii) let s=[(n —r+4)/2] and ¢t =[(n —r + 5) /2] (thus, in any
case, s+t=n—r+4, that is, r=n—s—1t+4). If r>5 then, by
Corollary 2.1 (a):

xofBoxo... oxofoa (r factors)ca'™!® o(aof) U (Boa)o

25D s UBo... ca UBoa™!™Vo(aof) U(Boa)o
2™ (41 factors)ca™? o(Boaof) ca™? o(Boa) o
(208)o... o(Boa) olaof) oa™? o(Boaof)o

o ™1 (*r% 1 factors) =a™® cBoacBoa™Vcfoacf... o
%o oa™D oBoaoBoa™? (r+6 factors) =8 oa™® o o

a(mﬁ) D‘B O‘B O .. C'ﬁ G‘BGix(mlt) 7 ga(mlt) DB,
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since 8 permutes with «™/?; but this last expression is equal to
Boaofio...caoff (r factors), and then the inequality implies (at least)
that « and B (r + 1)-permute.

The cases r =3 and r =5 use 2.1, parts ¢) and b, ®

THEOREM 2.4. — Suppose that V s (n + 2)-permutable, AcV,
a,feCon(4) and m=1, and let s=[(n+1)/2] and t=[n/2].

Then:
a+ 8= o {18 G‘B(‘TEIS) 0...00 0f3 o™ Gﬁ(mlt) SO
\-_.\’.—._....._.._J ‘t-_._.v._-l'
n factors n faetors

PROOF. — Notice that, in any case, s +{=mn.
One inclusion is trivial. For the other one, we shall prove by in-
duction on r that, for every «,8eCon(A4):

(*) cxmﬁﬂ... (?’+2 f&CtOl'S)=

o m18) | o (mis) Uﬁ(’mlﬂ) o...o0UBog™V Uﬁ(?ﬁlt) o... o ¥mlt)

\'—_"u"_" \__""""""""V-"—"'""""—_J
r factors r factors

where a*=a if r is odd, and «* =8 otherwise.
By Corollary 2.1 (¢) we have

” nﬁ=a: o) D‘Bga{'mls) O U‘B D,B(mlt);

that is, the basis of the induction.
Suppose now that ( *) holds for given r, say r even. Then:
doflo...ofca=u g(ﬁ@_.. c:-ﬁ) ot C

N — N —
r+ 3 factors »+ 1 factors

2™ o (@ ofo...oB)U(Boao...oa) oa™P,

"!-_.‘,._—d" \_\I—J
r+ 2 factors r+ 2 factors

by Corollary 2.1 (¢).
But the inductive hypothesis ( * ), together with its symmetric,
- implies that

(tx 0'8 0... Gﬁ)U(‘B OX O... oa:)g(ac(mls)U‘B(mm) aa(m”)U,B(mma... D-:IUﬁm

r———————r S e —
r+ 2 factors r+ 2 factors r factors

am Y gmid (™m0 Y gDy ;
=
r factors

and the desired inclusion follows by taking closure under . ®
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The same proof applies almost unchanged to show [Lp2]:

THEOREM 2.5. — If A has a weak difference term, m = 1 and a,3€
Con (A) then:

o+ 3= (a:(m) ‘|"3(m)) o of D(ﬂ(m} +ﬁ(m)) .

Of course, also the following corollary of Theorem 2.4 admits a
version for algebras possessing a weak difference term [Lp2]:

COROLLARY 2.6. — Suppose that V is an (n + 2)-permutable vari-
ety, «,B,yeCon(4), m=1 and s=[(n+1)/2] and t= [n /2].
Then:

(i) If 8 permutes with 2™%) then

a+pB=Poaof=pBoacf™".
(i) If «™!® and g™® permute then

x+ 8= cqop oo 19

(iii) In particular, if (i) or (ii) holds then « and 3 4-per-
mute.

(iv) If « permutes with 3™® and 8 permutes with 2! then «
and 3 permute.

W) vae+p)<aB+y+a™)+Bat+y+ gimisly

PrROOF. — (i) By Theorem 2.4,
o+ 3= (o™l +ﬁ(m|5)) oot of8 o (o ™D 4 glmlthy ¢

(a(m|3) _|_‘3) oa of3 G(a(mls) '|"B) ch c::.:;\:(m|8} et 0f3 D&(WIS) o=

ﬁaa Da(m|s) f:::nﬁ 9‘8:‘8 oo c:lB:B D(CZ aﬁ)g
8o(a™? ofoaof™¥) =goac ™ cat g,

where we used Corollary 2.1 (c).
(i) and (iv) are completely similar; (iii) is immediate.

(v) Suppose  ay(z+A8)b. Then aa™® + 39 cadfea ™ +
gmi0p  for some c,d,ecA, by Theorem 2.4. But now co ™S +
B9 gyba ™I + g™V egd, so that ¢ and d are congruent modulo

a(f+y+ «"19): similarly, d and e are congruent modulo S(x + y +
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319y 5o that @ and b are congruent modulo a ™! + g9 4 (8 + y +
o ™19y 4 Blo + v + ﬁ(mls)) =a(f+ v+ a ™18 + Bla+ y + ﬂ(mlg)).

Notice that we proved more, that is, y(ax+p8)c(a™®+
ﬁ(m|3)) (B + y + {x(mls}) o B+ v +‘3(m|3)) D(a(mlt) +ﬁ(m|t))_ n

Given «, 8, ¥ congruences, define recursively: 8o =v¢=0; 8,41 =
‘3 + XYy Yu+1 =7 + a;Bﬂ.-

We are now ready to give a congruence identity involving only +
and -

COROLLARY 2.7. — Suppose that V is (n + 2)-permutable. Then
the following identity holds in every congruence lattice of every al-
gebra m V:

B+ y)+a' (B +yN<a(B+y)e+a' (B +y) +aB,y,)+
(B +yYe+aB+y)+a'Brysr),

where r=(n + 2)[(n + 1) /2].

ProorF. — By[Lpl, Lemma 1], if two congruences m-permute,
then [8+ y,a|8] < B, 7ms- The corollary is now immediate from

Corollary 2.6 (v), since [a(8+ y),a(B+ y)|s]<[B+ y,«|s]. =

It is questionable whether the subscript » in Corollary 2.7 is the
best possible. Indeed, [Lpl, Lemma 1] holds for every algebra, but
it is conceivable that better results hold for (n + 2)-permutable vari-
eties. Indeed, in 3-permutable varieties [+ y,z|s]=[8+ y,a]l <
[8,a] + [y, ] <Ba+ ya, by the commutator theory for modular vari-
eties, and since 3-permutability implies modularity.

As promised, we shall study now some particular cases when 7 is
small, improving, in these cases, the identities we have ob-
tained.

The cases » = 0 and » = 1 correspond to permutability and 3-per-
mutability, which both imply modularity. In those cases Theorem
2.4 is the best possible, and, for n» = 1 gives an expression of « + 3
found by H. P. Gumm for modular varieties.

If n = 0, the identity in Corollary 2.7 becomes equivalent to mod-
ularity, since all congruences with subseript » become 0; so we have
an almost optimal result. If » = 1, however, this identity is weaker
than modularity, suggesting, again, that Corollary 2.7 can still be

improved.
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The following proposition holds for 4-permutable and 5-per-
mutable varieties:

PROPOSITION 2.8. — The following identity holds in every 5-per-
mutable variety:

vie+B) <o+ 7+ 2™D) + 8o + y + gD)

REMARK. — This improves on Corollary 2.6 (v), since there s =2,
as # = 3. Hence, in Corollary 2.7 we can take r =25 instead of

r = 10.

Proor. — By Corollary 2.1 (b):

2o oa=a0008000aCa™D ofoa o™ onofoa™l;
hence
a+B=Boxofoxof=Boa™VoBoaofoa™o8;
and, as in the proof of Corollary 2.6 (v):
v(a +B)cB+aB+y+a™b).

Using this identity twice, we get:

via+B) <Sy(B+a(f+y+a™)<
a(B+ v +a™V) + pa(B+y+ ™) +y+ 7)<

a8+ }'+cx{m’m) + B(a + y—l—ﬁ(mll)). H

PROBLEM. — Is it always possible to have s=[n/2] in Corol-
lary 2.6 (v)? We can do this, but adding some commutators of y:

THEOREM 2.9. — Suppose that V is n + 2 permutable, A€V,
x,8,yeCon(A) and m = 1, and let s=[(n+1)/2] and t=[n/2].
Then:

y(a + B) g},(mls) o (g ™MV _}_ﬁ(mit)) oot of3 o (o ™18 +ﬁ(mlt)) _

PROOF. — Let ¢=a™? 4+ 3mlY We shall prove by induction on
r = 2 that:
yN(Zoaofo...oa” oé‘)gy(m‘s) odoaxoffoc.

‘l...__v——-—-’
r factors
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The case r = 2 is trivial. So, suppose the inclusion true for ». If

ayﬂ(d‘aa mﬁﬂ...ﬂﬁ* Dg)b, then aéoc mﬁm...na*Cﬁ*dé‘b, for some

r+ 1 factors r factors

¢c,deA. By Theorem 1.2:

ay(’””)p(a,b,b)é‘m Gﬁ O... Da*p(C,C,d)ﬁ*(m't}dé‘b "
| r factors

so that p(a,b,b)éca ofo...ca® odb.
—_———

r faetors
Since p(a,b,b)yb, the inductive hypothesis implies that
p(a,b,b)y(m"g) odoax off odb; so that also ay(m’g} odoxofBogh. M

PROBLEMS. - If #» is even, do n-permutable and »n + 1-permutable
varieties satisfy the same identities (in the language of lat-
tices)?

Gumm showed that, in some sense, modularity is permutability
«composed» with distributivity. What is «n-permutability composed
with distributivity»?

REMARK. - Of course, in principle, from the Hagemann Mitschke
terms for »-permutability it must be possible to construct terms giv-
ing the Mal'cev conditions for the various identities we have found
(the situation is entirely similar to [LTTI).

However, in the present ease the situation seems much more
complicated, and even just writing down the Mal'cev conditions
could be very difficult.

3. — Further results. (Added January 1994).

Meanwhile, we have found a very simple and short proof of the
result that n-permutable varieties satisfy non trivial lattice identi-
ties. This new proof does not use commutator theory and gives iden-
tities whose strength is not comparable with previously obtained
identities. Actually, the proof shows:

THEOREM 3.1. - Suppose that V is (n 2)-permutable, AeV
@3, yeConA. Then {deConA|a(B(a + Y) t(a+p)<é<a(B+y)}
satisfies all the comgruence identities (even when composition s
atlowed) holding in every m-permutable variety.
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A full proof will be presented elsewhere. However, we shall ex-

emplify our methods in the particular case of 5-permutable vari-
eties.

, THEOREM 3.2. - Suppose that V 1s 5-permutable, AeV,
,8,v,8,e€ConA, and let a' =a(B + ya). Then:

(i) if t is a ternary term satlisfying x=1(x,y,y), for every
x,yeA, and aa'd, then aya ocaB oyat(a,a,b).
(i) &' odoa’ Cyaoafloya odoa ofoyaoaffoya,
(iii) e(a(B+ ya) +8)<é+ ale + ¢+ ya + af),

(iv) e(a(B + ya) + a*(B*+ y*a*))
Saleta*+ya+af) +a*(ctat+yFa*+a*8¥),

V) e(a(B+y) +8)<é+ale + 8+ alBla+ 1) + y(a+ B)).
PROOF. — (i) Since A is 5-permutable, a' =a N(ya oB oya off oye) =
ya o(a N (B oya ofB)) oy, Whence ayacBdyaeffyab, and caf, for some
c,d,e,feA. It follows that ayac=1t(c,e,e)yat(c,d,e)pl(c,c,f)-

| ya:t(a,a,b), and t(c,d,e)at(c,e,e) =c=t(c,c,c)at(c,c, f), from which
(1) follows.

(i) If aa'béca’d, then, using the Hagemann-Mitschke terms,
by (i) and its symmetric version:

ayx oaf oyapi(a,a,b) =ps(a,b,b)dps(a,b,c)a'ps(b,b,d) =
pg(b,d,d) a’'ps(b,c,d)dps(c,c,d) =ps(c,d,d) ya caff oyad .
(iii) By 5-permutability, and using (i1):
2’ +8=38o(a’ odoa’)odC(8+ ya+ af) o’ o(8+ ya + aB),
from which (iii) is immediate.

The proof that (iii) implies (iv) is similar to the last step in the
proof of Proposition 2.8.

A proof of (v) seems considerably more complex, and shall be
given elsewhere. =

The following theorem furnishes some more results on # + 2-per-
mutable varieties:

THEOREM 3.3. — Suppose that V is (n + 2)-permutable, t = [n /2],
u=[n-1)/2], and A€V, a,BcConA. Then:
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) If « <8 then [a,8]1 <[B,alt +1] + ™D,
(ii) In particular, [a,a] < la,ax|t+11].
(iii) « + 8= (a +ﬁ(mlt)) o(B + a(mlt—l)) o (& +ﬁ(mlu))_
(iv) y(a+B8)<a+(8+a™!" V) a+a™0+y); or, more generally.

V) (a+B) <@+ @B+ ac(m't_n)(mlt_l))(y + B+ o (11
@)@+ g0 + ),

DEFINITION 3.4. — If A is any algebra, and «, 8, y are reflexive
compatible relations on A4, let M(«, ), [, ﬁ\n] [«, 2] be defined as in

Definition 1.1. Moreover, let

Y

" e M(«,8), for some :cyy}.

K, 85 7) = {(z,w)\

Thus, [«,8|n+1] is the congruence generated by
K(a,B8; [a,8|7]), and [«,3] is the least congruence y such that
K(x,8; v) < y. Sometimes, the relation K(«,8; y) <y is denoted by

C(a,; v); in words, « centralizes 8 modulo v.

REMARK 3.5. — Most of our results depend on the fact that we can

sometimes replace [«,3] with [«,8|n], for some %. Similarly, we can
refine some results using smaller relations defined in terms of K (in

what follows « is always supposed to be a congruence).
For example, in Theorem 1.2, in the case s =1, we can get

aK(a,a; 0)p.(a,b,b).
In the case s =2, we can get

aK(a,a; 0) o K((a,a; K(a,; 0)) pi(a,b,b).

These improvements do not seem to be of much use, due to the

fact that generally K(«,8; v) 18 not a congruence.
The following examples dash any hope to improve Theorem 1.2 in

more substantial ways:
a) In a 4-permutable variety there do not necessarily exist

ternary terms p; and p. satisfying
a’zpl(a! b:r b):

1 (CL, a, b)[ar a] Pz(ﬂu b: b) ’
p2(a'} a, b) — b

whenever aab.
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Indeed, this would imply « o8 ocaCfB oa o[8,8] cax o8, Which fails,
for example, in the algebra constructed in[Lp2, Example 4.6].

b) In a 4-permutable variety there does not necessarily exist a
ternary term p satisfying

ala,a] p(a,b,b),
pla,a,b)=0b,

whenever aab.
Again, this would imply a o8cCf ca o[3,5], which fails as well in
the mentioned example.

- ¢) There are a 4-permutable variety V, an algebra AeV and
a,Be ConA such that [«,8(1] < |a,3]|2].
For example, add to the algebra constructed in[Lp2, Example
46] a unary operation f defined by: f(0,0) =f(1,0) =7(1,1) =
(0,0), f(0,1)) =(0,1). Then, y and 2 still remain congruences, and

B=[1,7|1]1=[1,y|2] =7.

REMARK. - 3.6. — In general, «commutator identities» do not give
rise to Mal'cev classes: for example, the class of varieties satisfying
lx,2] =0 is not a weak Mal'cev class, since every variety with only
unary operations satisfies [«,a] =0.

However, we have the following generalization of [Jo, Theorem
2.16], whose proof is essentially the same:

THEOREM 3.7. — Theorem 2.16 wn [Jo] holds even if we let r con-
tain the ternary operation K(a,B; v) and the binary operations [a, 3],

. [ﬂ!ﬁ‘n]

In some cases we can even get strong Mal'cev conditions. Let
K, (a,8;y) be defined as K(a,S;y) (Definition 3.4), with thg (_iiffer-

- ——

ence that we allow only matrices in which a, a' are r-tuples, b, b' are
s-tuples and, of course, ¢ is r + s-ary. Then classical arguments

give:

THEOREM 3.8. — If p, q are terms constructed using - and o, and q
18 allowed to contain K. («,B;v), then the class of varieties V for
which VEq,p<q 18 a strong Mal cev class.
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