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Abstract. It follows from results by B. Jónsson that if a variety V is congruence

distributive, then, for every m, there is some k such that the congruence inclusion

α(β ◦ γ ◦ β . . . ) ⊆ αβ ◦ αγ ◦ αβ . . . (1)

holds in V, with m occurrences of ◦ on the left and k occurrences of ◦ on the right.

Let JV (m) denote the smallest value of k for which the above formula holds in V.
We study the problem of which functions can be represented as JV , for V a congruence

distributive variety. The set of such functions is closed under pointwise maximum.

Moreover, we show that the value of JV (m) puts some restrictive bounds on the values
of JV (m′), for m′ > m.

Recall that an algebra, short for algebraic structure or algebraic system, is

a set endowed with a certain number of operations1.

A variety V is a class of algebras of the same kind which is closed under

taking products, substructures and homomorphic images; equivalently, by the

celebrated Birkhoff Theorem, a class which can be defined by equations. While

the general study of algebras per se leads to a field so ample that significant

results are hard to find (exceptions exist!), on the other hand many unexpected

and deep results hold for varieties. For example, the assumption that every

congruence lattice2 of algebras in a variety V satisfies a certain property often

leads to tight characterizations of the structure of algebras in V.3 See, e. g.,

[FM, G, HM, KK, L1].

2010 Mathematics Subject Classification: 08B10.
Key words and phrases: Congruence distributive variety; (directed) Jónsson terms;

Jónsson distributivity spectrum; congruence identity; identities for reflexive and admissi-

ble relations.
Work performed under the auspices of G.N.S.A.G.A. Work partially supported by PRIN

2012 “Logica, Modelli e Insiemi”.
1In the present context, operations are assumed to be total and finitary, but no bound

on arities is imposed.
2Recall that a congruence on an algebra is a binary relation which is the kernel of some

homomorphism and that the set of congruences on some algebra has naturally a lattice

structure.
3Just to present an elementary example, if the five element modular lattice M3, drawn

as qqqq q q, is a sublattice (with minimum and maximum preserved) of the lattice of normal

subgroups of a group G, then G is abelian. This is related to congruences, since, for

groups, normal subgroups are in a one-to-one correspondence with congruences. For general

algebras a similar result might fail [W], but it holds in a quite broad context, see [L1]. For
example, the result holds in any variety (such as the variety of groups!) in which every

algebra has modular lattice of congruences. Of course, to be precise, one should have given
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More generally, many theorems in universal algebra have the form “if every

algebra in the variety V satisfies a property P , then every algebra in V satisfies

some other property Q”, where the theorem is nontrivial in the sense that there

are single algebras satisfying P but not satisfying Q. For example, if every

algebra in V has a modular lattice of congruences, then the congruence lattice

of every algebra in V is even arguesian, where the arguesian identity is a lattice

identity which can be given a clear geometrical meaning. Results of the above

kind have led to the so-called field of congruence identities. See [CV] for an

introduction and references. Recent results and further references can be found

in [CHL].

In a classical paper, Jónsson [J] provided a characterization of those vari-

eties in which every algebra has a distributive congruence lattice (from now

on, for short, congruence distributive varieties). Jónsson result can be given

an interpretation in the above sense of congruence identities. In this interpre-

tation, Jónsson theorem states that a variety V is congruence distributive if

and only if there is some n such that the congruence inclusion

α(β ◦ γ) ⊆ αβ ◦n αγ (2)

holds in every algebra in V. In the above inclusion, α, β, . . . are intended

to vary among congruences of some algebra A ∈ V , juxtaposition denotes

intersection, ◦ is relational composition and β ◦m γ denotes β ◦ γ ◦ β . . . with

m factors, that is, with m− 1 occurrences of ◦.
In general, it is trivial to show that an algebra A is congruence distributive

if and only if, for every natural number m ≥ 2, the congruence inclusion

α(β◦mγ) ⊆ αβ+αγ holds for all congruences of A, where + denotes join in the

congruence lattice. In other words, for varieties, for every m, the congruence

inclusion (2) implies the inclusion α(β ◦m γ) ⊆ αβ + αγ. Recall that α+ β =⋃
i∈N α ◦i β.

In fact, from the proofs in [J] it follows that, for every m, there is some k

(which depends only on m and on the n given by (2), but otherwise not on

the variety) such that

α(β ◦m γ) ⊆ αβ ◦k αγ (m, k)-dist

One of the main problems we address here consists in finding the best possible

value of k. More generally, for every positive natural number m and every

variety V, let JV(m) be the least k such that V satisfies the inclusion (m +

1, k + 1)-dist (notice the shift by 1. This will simplify statements). Then we

might ask the following problem.

The Jónsson distributivity spectrum problem. Which functions (with

domain the set of positive natural numbers) can be realized as JV , for some

congruence distributive variety V?

the definition of what an abelian algebra is in general. This is possible, we refer to the

references for definitions.
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Considering some examples, JV is the identity function when V is the variety

of lattices. In the variety of n-Boolean algebras (see, e. g., [CV, Example 2.8])

we have JV(m) = min{m,n}. In the variety of implication algebras [CV,

Example 2.6] JV(m) = 2 constantly. For every n, varieties can be constructed

such that JV(m) is constantly n.

The set of those functions which can be represented as JV , for some con-

gruence distributive variety V, is closed under pointwise maximum. Hence we

can combine the above examples in order to get more functions representable

as JV . See [L2] for more details.

The above examples suggest that JV(m) has little influence on the values

of JV(m′), for m′ < m, provided that the obvious monotonicity property is

respected. On the other hand, the following theorem shows that JV(m) puts

some quite restrictive bounds on JV(m′), for m′ > m.

Theorem. [L2] Suppose that V is a congruence distributive variety.

If JV(m) = k, then JV(m`) ≤ k`, for every natural number `.

If JV(1) = 2, that is, V is 3-distributive, then JV(m) ≤ m, for every m ≥ 3.

If V is m-modular, that is, congruence modularity of V is witnessed by m+1

Day terms, then JV(2) ≤ JV(1) + 2m2 − 2m− 1.

We do not know whether the above theorem gives the best possible evalu-

ations. In particular, the Jónsson distributivity spectrum problem is not yet

completely solved.

The above considerations, however, are only the tip of an iceberg. If one

tries to develop similar definitions and theorems about congruence modular

varieties, unexpected difficulties arise. Again expressing everything in terms

of congruence inclusions (this is not the original formulation), a fundamental

theorem by A. Day [D] implies that a variety V is congruence modular if and

only there is some k such that the congruence inclusion

α(β ◦ αγ ◦ β) ⊆ αβ ◦k αγ (Dk)

holds in V.

For a congruence modular variety V, we can define the Day modularity

function DV as follows. Form ≥ 3, DV(m) is the least k such that α(β◦mαγ) ⊆
αβ ◦k αγ holds in V. The arguments from [D] show that DV(m) is defined for

every m and every congruence modular variety V, but the methods from [D]

do not furnish the best value. See [L3].

However, the case of congruence modularity is substantially more involved

than the distributivity case treated at the beginning. Using results from [G],

Tschantz [T] showed that a variety V is congruence modular if and only if the

congruence inclusion α(β + γ) ⊆ α(γ ◦ β) ◦ (αγ + αβ) holds in V. Hence it is

also natural to introduce the Tschantz modularity function TV for a congruence

modular variety V in such a way that, for m ≥ 2, TV(m) is the least k such

that the following congruence inclusion holds in V

α(β ◦m γ) ⊆ α(γ ◦ β) ◦ (αγ ◦k αβ)
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The relationships between DV and TV appear rather involved. Already the

problem of the “minimal” case of the relationships between DV(3) and TV(2)

seems still open, in general. See [LTT].
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