Università di Roma Tor Vergata Ingegneria Gestionale, Meccanica ed Energetica - Geometria TUTORATO 11 - 13 Giugno 2024

1. Sia U il sottospazio di \mathbb{R}^3 (con il prodotto scalare canonico) generato dai vettori

$$v_1 = (1, 2, 1), \ v_2 = (1, 1, -1)$$

- (a) Determinare una base e la dimensione di U.
- (b) Trovare una base e la dimensione di U^{\perp} , ovvero del complemento ortogonale di U.
- (c) Calcolare $w = v_1 \wedge v_2$, ovvero il prodotto vettoriale tra v_1 e v_2 .
- (d) Verificare che $w \in U^{\perp}$.
- 2. Sia W il sottospazio di \mathbb{R}^4 generato dai vettori

$$v_1 = (1, 1, 0, 1), v_2 = (1, -2, 0, 0), v_3 = (1, 0, -1, 2).$$

- (a) Determinare una base e la dimensione di W.
- (b) Trovare una base e la dimensione di W^{\perp} .
- (c) Dire se $W \oplus W^{\perp} = \mathbb{R}^4$.
- 3. Sia U il sottospazio vettoriale di \mathbb{R}^4 di equazioni cartesiane

$$U: \begin{cases} x - 2y + w = 0\\ 2x - 5y + 4z + 4w = 0\\ 3x - 5y - 6z + 4w = 0 \end{cases}$$

- (a) Determinare una base e la dimensione di U.
- (b) Trovare una base e la dimensione di U^{\perp} .
- 4. (Prodotto scalare) Siano x=(1,0,2) e y=(0,-2,1) due vettori in \mathbb{R}^3 e sia $\Phi:\mathbb{R}^3\times\mathbb{R}^3\longrightarrow\mathbb{R}$ l'applicazione definita da

$$\Phi(v, w) = v_1 w_1 + v_2 w_2 + 3v_3 w_3.$$

- (a) Verificare che Φ è un prodotto scalare in \mathbb{R}^3 .
- (b) Calcolare la lunghezza di x e y secondo la norma indotta da Φ .
- (c) Calcolare l'angolo tra i vettori x e y secondo Φ .
- (d) Fissata una base \mathcal{B} di \mathbb{R}^3 , trovare la matrice associata a Φ rispetto a \mathcal{B} . E' possibile trovare una base per cui tale matrice è l'identità?
- 5. Sia $u=(1,0,2)\in\mathbb{R}^3$ (con il prodotto scalare canonico) e sia f l'endomorfismo di \mathbb{R}^3 definito da

$$f(v) = \langle v, u \rangle u$$

- (a) Determinare una base e il nucleo di Ker(f) e Im(f)
- (b) Determinare il polinomio caratteristico e gli autovalori di f.
- (c) Sia $M = M_{\mathcal{E}\mathcal{E}}(f)$ la matrice associata ad f rispetto alla base canonica, trovare una matrice invertibile P tale che $P^{-1}MP$ è diagonale.
- 6. Nello spazio $M_{2,2}(R)$ delle matrici quadrate reali 2×2 si consideri l'endomorfismo

$$f(A) = A + A^T.$$

- (a) Calcolare il polinomio caratteristico di f e i suoi autovalori.
- (b) Dire se f è diagonalizzabile.
- 7. (Gram-Schmidt) Si consideri la base $\mathcal{B} = \{v_1 = (-1,0,1), v_2 = (0,1,0), v_3 = (1,0,1)\}$ di \mathbb{R}^3 . Si determini una base ortonormale di \mathbb{R}^3 utilizzando il procedimento di Gram-Schmidt.