
Geo IV 2025/26, Analisi Complessa, esercizi 5.

Automorphisms of ∆

1. Let ∆ be the unit disc.
(a) Show that every automorphism of ∆ extends injectively to a neighbourhood of its closure ∆

and admits at least a fixed point in ∆.
(b) Show that if f has a fixed point in ∆, then it is necessarily unique.

Sol.: Let f(z) = eiθ z−z01−zz̄0 be an automorphism of the disc, where θ ∈ R and z0 ∈ ∆. Since the

rotation z 7→ eiθz is defined and injective on all C, it is sufficient to consider g(z) = z−z0
1−zz̄0 . The

map g is well defined provided that 1− zz̄0 6= 0, in particular for all z with |z| < 1/|z0|. Note that
1/|z0| > 1, meaning that g is well defined on an open neighbourhood of ∆. To prove injectivity, we
solve

w =
z − z0

1− zz̄0
⇔ z =

w + z0

1 + wz̄0
.

To see that there exists at least a fixed point in ∆, we consider the equation

eiθ
z − z0

1− zz̄0
= z ⇔ z2 + z

eiθ − 1

z̄0
− eiθ z0

z̄0
= 0.

The equation shows that there are at most 2 fixed points. Since the modulus of their product is
|eiθ z0z̄0 | = 1, then either both fixed points are on ∂∆ or one is inside and the other is outside ∆.

2. Define D(0, r) = {z ∈ C : |z| < r}. Let f : D(0, 1) → C be a holomorphic function such
that |f(z)| = 1 for all z ∈ ∂D(0, 1). Show that if f is nonconstant, then there exists an
automorphism g of D(0, 1) such that f ◦ g(0) = 0.

Sol.: By the maximum modulus principle, |f(z)| < 1, for all z ∈ D(0, 1). In other words, f maps the
unit disc into itself. Since |f | is constant on the boundary of the disc, then there exists z0 ∈ D(0, 1)
such that f(z0) = 0 (cf. Exercise 9). Since the automorphism group of the disc acts transitively on
it, then there exists an automorphism g such that g(0) = z0. It follows that f(g(0)) = f(z0) = 0.

3. Let f : ∆ → ∆ be a holomorphic function with a zero of order m at 0. Show that for all
z ∈ ∆ one has |f(z)| ≤ |z|m.

Sol.: This exercise is a variation of the Schwarz Lemma. The power expansion of f around 0 is
f(z) = amz

m + am+1z
m+1 + . . . . Consider the holomorphic function

g(z) :=

{
f(z)
zm = am + am+1z + . . . , z 6= 0

f (m)(0), z = 0.

For 0 < r < 1, one has
|g(z)| ≤ 1/r, ∀z : |z| = r,

and by the maximum principle the above inequality holds for all z with |z| ≤ r. By letting r → 1,
we obtain |g(z)| ≤ 1, for all z ∈ ∆. Equivalently

|f(z)| ≤ |z|m,
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as claimed.

4. Verify that the Cayley transform

C(z) := i
1 + z

1− z
is a biholomorphism between the unit disc ∆ and the upper half plane H+.

Sol.: The map C is holomorphic on ∆. Since

Im

(
i

1 + z

1− z

)
=

1− |z|2

|1− z2|
> 0, ∀z ∈ ∆,

the map C takes the disc onto the upperhalfplane. Finally C is injective, as it has inverse

C−1:H→ ∆, w 7→ w − i
w + i

.

5. Show that the strip Sr := { z ∈ C : 0 < Im z < r }, with r > 0, is biholomorphic to H (and
therefore to ∆). Determine an explicit biholomorphism f :S1 → ∆.

Sol.: The exponential map ez determines a biholomorphism between the strip Sπ and the upper-
halplane H . It is holomorphicn and injective

ez = ew, z, w ∈ Sπ ⇔ ez−w = 1 ⇔ z − w ∈ Z2πi ⇔ z = w.

It is surjective: horizontal lines in the strip Sπ are mapped into halflines from the origin in H .

Any strip Sr, with r > 0, is biholomorphic to Sπ via the map z 7→ π
r z.

An explicit biholomorphism f :S1 → ∆ is given by

z 7→ C−1(exp(πz)),

where C−1:H→ ∆ is the inverse Cayley transform of Execise 13.

Note: The strip Sr is a proper convex subset of C. In particular it is simply connected. We’ll see
later in the course that any such set is biholomorphic to the unit disc.

6. Determine whether there exists a nonconstant holomorphic function f :C → C whose image
f(C) has empty intersection with the border ∂∆ of the unit disc ∆ .

Sol.: If f(C) has empty intersection with the border ∂∆ of the unit disc ∆ , then either f(C) ⊂ ∆
or f(C) ⊂ C \∆. In the first case f is bounded, and therefore constant. In the second case f(C)
is contained in a domain D biholomorphic to the unit disc, i.e. there exists a biholomorphism
g:D → ∆ such that g ◦ f :C→ ∆ is a bounded holomorphic function. By Liouville’s theorem, g ◦ f
is constant and therefore also f is constant.

7. Determine whether there exists a nonconstant holomorphic function f :C → C whose image
f(C) has empty intersection with the real line R.

Sol.: If f(C) has empty intersection with the real line R, then it either contained in the upperhalf
plane or in the lower half plane in C. In both halfplanes are biholomorphic to the unit disc. Then
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the same argument as in the previous exercise shows that there are no nonconstant holomorphic
functions f :C→ C whose image f(C) has empty intersection with the real line R.

Laurent series and isolated singularities, Riemann extension theorem,
Casorati-Weierstrass theorem, automorphisms of the plane, residue theorem

8. Let f, g :C → C be holomorphic functions with g(z) 6= 0, for every z ∈ C. Assume that
|f(z)| ≤ |g(z)|, for every z ∈ C. Show that there exists a constant c ∈ C such that f(z) = cg(z)
(cf. Exercise 17 in sheet 0). Show that the assumption “g(z) 6= 0, for every z ∈ C” can be
replaced with “g not identically zero”.

Sol.: Under the assumption that g never vanishes, f/g is a bounded holomorphic function. Hence
it is constant by Liouville’s theorem, i.e. f/g = c.

Without such assumption, zeros of g are isolated singularities of f/g. However f/g is bounded
near such singularities. By the Riemann extension theorem, they are removable singularities and
the statement follows from Liouville’s theorem.

9. (a) Let f be a bounded holomorphic function defined on C \ {0, i, 1 + i} or on C \ Z. Show
that f is constant.
(b) Is it true that f is constant when it is bounded on C \ ({1/n : n ∈ N} ∪ {0})?

Sol.: (a) The boundedness assumption implies that all singularities of f are removable. In other
words, f is holomorphic and bounded on all C. Therefore it is constant.

(b) By the boundedness assumption, all isolated singularities {1/n}n∈N are removable. Hence f is
holomorphic and bounded at least on C \ {0}. On the other hand, if 0 were singular, then f could
not be bounded in any neighbourhood of 0. Conclusion: f is holomorphic and bounded on all C,
and therefore constant.

10. Show that the functions
sin z
z , ez−1

z , cosh z−1
z

are entire, i.e. they extend holomorphically to C.

Sol.: The above functions are holomorphic on all C, except possibly for z = 0. By expanding the
numerators around z = 0 we find

sin z

z
=
z − z3/3! + z5/5!− . . .

z
= 1− z2/3! + z4/5!− . . .

ez − 1

z
=

1 + z + z2/2! + z3/3! + . . .− 1

z
= 1 + z/2! + z2/3! + . . .

cosh z − 1

z
=

1 + 1
2z

2 + 1
24z

4 + . . .− 1

z
=

1

2
z +

1

24
z3 + . . . ,

which show that z = 0 is indeed a removable singularity, i.e. the three functions are entire.

11. Let f : C→ C be an entire function.
(a) Show that if f has a zero of order n in z0, then 1/f has a pole of order n in z0.
(b) Let z0 be a singularity (removable, polar, essential) of f . Determine the corresponding
type of singularity of 1/f .
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Sol.: (a) Write f(z) = (z−z0)nu(z), where u(z) = an+an+1(z−z0)+ . . . is a holomorphic function
with u(z0) 6= 0. Then

1/f(z) =
1

(z − z0)n
1

u(z)
.

Since 1/u(z) is holomorphic around z0, then z0 is a pole of 1/f of order n.

(b) Let z0 be a removable singularity for f and let f(z) = a0 + a1(z− z0) + a2(z− z0)2 + . . . be the
Taylor expansion of f around z0. If f(z0) 6= 0, then 1/f is holomorphic around z0; if z0 is a zero
of f of order n, then z0 is a pole of order n of 1/f .

Let z0 be a pole of f or order m and let

f(z) =
a−m

(z − z0)m
+

a−m+1

(z − z0)m−1
. . . =

1

(z − z0)m
(a−m + a−m+1(z − z0) + . . .)

be the Laurent expansion of f around z0, where g(z) = a−m+a−m+1(z−z0)+ . . . is a holomorphic

function with g(z0) 6= 0. Now it is clear that z0 is a zero of 1/f = (z−z0)m

g(z) of order n.

(c) Let z0 be an essential singularity for f . Then the image of any disc D(z0, r) \ {z0} is dense in C
and the same is true for 1

f . Hence z0 is an essential singularity for 1/f as well.

12. Let z0 be a pole of f . Recall that for every M >> 0 there exists ε > 0 such that
f(D∗(z0, ε)) ⊂ {|z| > M}.
Show that, given ε > 0, there exists M >> 0 such that {|z| > M} ⊂ f(D∗(z0, ε)).
(Justify your answer and mention all the results you used.)

Sol.: If z0 is a pole, then limz→z0 |f(z)| = +∞. Equivalently, for every M >> 0 there exists ε > 0
such that f(D∗(z0, ε)) ⊂ {|z| > M}.

View the map f valued in ¶1(C), with f(z0) =∞. One easily cheks that f is a non constant
holomorphic map to ¶1(C), viewed as a Riemann surface. In particular f is open and its image
contains a neighbourhood of ∞. Therefore, given ε > 0, there exists M >> 0 such that {|z| >
M} ⊂ f(D∗(z0, ε)).

13. Determine and classify all the singularities of the following functions:

tan z, 1
z3

∑∞
n=2 2nzn, ze1/ze−1/z2 ,

sin 1
z

z4 , sin z
z4 ,

1
z3 − cos z.

Sol.: (a) The function f(z) = tan z = sin z/ cos z is defined and holomorphic on C \ {π/2 + kπ, k ∈
Z}, where cos z 6= 0, and it is periodic of period π. So it is sufficient to determine the type
singularity at π/2. For this note that sin z is non-zero close to π/2 while cos z has a zero of order
one in π/2. It follows that all points {π/2 + kπ, k ∈ Z} are simple poles for tan z (cf. ex. 4).

(b) The function

1

z3

∞∑
n=2

2nzn =
∞∑
n=2

2nzn−3 = 22 1

z
+ 23 + 24z + . . .

has a pole of order 1 at z = 0.

(c) The function

ze1/ze−1/z2 = ze1/z−1/z2 = z(1 + (
1

z
− 1

z2
) +

1

2
(
1

z
− 1

z2
)2 + . . .)
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has an essential singularity at z = 0.

(d) The function
sin(1/z)

z4
=

1

z4
(
1

z
− 1

3!

1

z3
+ . . .)

has an essential singularity at z = 0.

(e) The function
sin z

z4
=

1

z4
(z − 1

3!
z3 + . . .)

has a pole of order 3 at z = 0. Alternatively, one can observe that

lim
z→0

z3 sin z

z4
= lim
z→0

sin z

z
= 1.

(f) Since cos z is holomorphic on C, the function

1

z3
− cos z

has a pole of order 3 at z = 0.

14. Let g(z) := e1/z − e2/z. Determine g(C \ {0}).

Sol.: The Laurent series expansion of g around z = 0 is given by

g(z) = 1 +
1

z
+

1

2!

1

z2
+

1

3!

1

z3
+ . . .− (1 +

2

z
+

1

2!

22

z2
+

1

3!

23

z3
+ . . .

= −1

z
− 1

2!

22 − 1

z2
− 1

3!

23 − 1

z3
+ . . .

One sees that z = 0 is an essential singularity for g. Hence g(C \ {0}) is dense in C, by Casorati-
Weierstrass theorem. Also, the equation w = e1/z(1−e1/z) can be solved for every w ∈ C. In order
to see this, set η := e1/z. Then such equation reads as η2−η+w = 0. For w 6= 0 fixed, one obtains
two different roots in the punctured complex plane C∗, which is the image of the map z → e

1
z .

For w = 0, one root is η = 1 and, indeed, for 1
z = 2πik, with k 6= 0, one obtains e1/z − e2/z = 0.

Therefore g(C \ {0}) = C.

15. Let f(z) = z2

z2+1 . Determine the Laurent serie of f around z0 = i.

Sol.: The function f(z) = z2

(z+i)(z−i) is holomorphic on C, except for ±i where it has simple poles.

The Laurent serie of f around z0 = i is given by

f(z) =
1

(z − i)
∑
n≥0

an(z − i)n,

where
∑
n≥0 an(z− i)n is the Taylor series expansion of g(z) = z2

(z+i) , which is holomorphic around

z0 = i. The coefficients of such series are

a0 = g(i) = i/2, a1 = g′(i) = 3/4, . . . , an =
1

n!
g(n)(i).
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16. Let f be a holomorphic function on D∗(0, r), for 0 < r ≤ +∞. Assume that z0 = 0 is a pole
of f of order m. Then the Laurent serie of f around z0 is given by

f(z) =
∑
n≥−m anz

n, an = 1
(n+m)!g

(n+m)(0), where g(z) = zmf(z).

Sol.: The Laurent series expansion of f around z = 0 is given by

f(z) =
a−m
zm

+
a−(m−1)

zm−1
+ . . . =

1

zm
(a−m + a−(m−1)z + . . .),

and g(z) = zmf(z) = b0 + b1z + . . . is a holomorphic function with g(z) 6= 0. The coefficients of
the series expansion of g are

bk = a−m+k =
1

k!
g(k)(0).

If n = −m+ k, then

an =
1

(n+m)!
g(n+m)(0).

17. Let f(z) = ez

(z−i)3(z+2)2 .

(i) Show that z1 = i is a pole of f of order 3.
(ii) Determine all the coefficients of the principal part of the Laurent series of f around z1.
(iii) Show that z2 = −2 is a pole of f of order 2.
(iv) Determine all the coefficients of the principal part of the Laurent series of f around z2.

Sol.: (i) The limit limz→i(z − i)3 · f(z) = ei

(i+2)2 is finite. Hence z1 = i is a pole of f of order 3.

(ii) The Laurent series expansion of f around z1 = i is given by

1

(z − i)3

∑
n≥0

an(z − i)n,

where
∑
n≥0 an(z − i)n is the Taylor series expansion of the holomorphic function g(z) = ez

(z+2)2

around z1. The principal part of the Laurent series of f around z1 is

a−3
1

(z − i)3
+ a−2

1

(z − i)2
+ a−1

1

(z − i)
.

The coefficients can be computed as in Exercise 9

a−3 = g(i) =
ei

(i+ 2)2
, a−2 = g′(i) =

ei(1 + i)

(i+ 2)2
a−1 =

1

2!
g′′(i) = . . . .

(iii) The limit limz→i(z + 2)2 · f(z) = e−2

(−2−i)3 is finite. Hence z2 = −2 is a pole of f of order 2.

(iv) The Laurent series expansion of f around z2 = −2 is given by

1

(z + 2)2

∑
n≥0

an(z + 2)n,
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where
∑
n≥0 an(z + 2)n is the Taylor series expansion of the holomorphic function g(z) = ez

(z+2)3

around z2. The principal part of the Laurent series of f around z2 is

a−2
1

(z + 2)2
+ a−1

1

(z + 2)
.

The coefficients can be computed as in Exercise 9

a−2 = g(−2), a−1 = g′(−2).

18. Let γ2(θ) = eiθ, where θ ∈ [0, 2π], and γ1(θ) = 3eiθ, where θ ∈ [0, 2π]. Compute

(a)
1

2πi

∫
γ1

z2 + 5z

(z − 2)
dz − 1

2πi

∫
γ2

z2 + 5z

(z − 2)
dz;

(b)
1

2πi

∫
γ1

z2 − 2

z
dz − 1

2πi

∫
γ2

z2 − 2

z
dz;

(c)
1

2πi

∫
γ1

z3 − 3z − 6

z(z + 2)(z + 4)
dz − 1

2πi

∫
γ2

z3 − 3z − 6

z(z + 2)(z + 4)
dz.

Sol.: The curves γ1 and γ2 are circles centered in the origin, oriented counterclockwise, of radius

3 and radius 1, respectively. (a) The function f(z) = z2+5z
(z−2) is holomorphic on C \ {2} and has a

pole of order 1 in z = 2 with residue Resf (2) = limz→2(z − 2)f(z) = 14. The pole is inside γ1 and
outside γ2.
Hence the integral in (a) is equal to 2πiResf (2) = 28πi.

(b) The function f(z) = z2−2
z is holomorphic on C \ {0} and has a pole of order 1 in z = 0 with

residue Resf (0) = limz→0(z)f(z) = −2. The pole is inside γ1 and inside γ2.
Hence the integral in (b) is equal to 0.

(c) The function f(z) = z3−3z−6
z(z+2)(z+4) has simple poles in z = 0, inside both circles, z = −2 inside γ1

and outside Γ2, and z = −4, outside both circles.
Hence the integral in (c) is given by 2πi(Resf (0) +Resf (−2)−Resf (0)) = 2πiResf (−2) = 4πi.

19. Compute the residues of the following functions at the singular points:

e3/z2 ,
z3

z − 1
,

z3

(z − 1)2
,

z3

1− z4
,

z5

(z2 − 1)2
,

cos z

1 + z + z2
,

1

sin z
.

Sol.:

f(z) = e3/z2 = 1 +
3

z2
+

1

2
(

3

z2
)2 + . . . , Resf (0) = 0

f(z) =
z3

z − 1
, Resf (1) = lim

z→1
(z − 1)f(z) = 1;

f(z) =
z3

(z − 1)2
=

1

(z − 1)2
+

2

(z − 1)
+ . . . , Resf (1) = 2;
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f(z) =
z3

1− z4
=

z3

(z − 1)(z + 1)(z − i)(z + i)
Resf (1) = lim

z→1
(z − 1)f(z) =

1

4
, etc . . .

f(z) =
z5

(z2 − 1)2
=

z5

(z + 1)2(z − 1)2
=

1

(z + 1)2

(
−1

4
+ (z + 1) + . . .

)
Resf (−1) = 1;

f(z) =
z5

(z2 − 1)2
=

1

(z − 1)2

(
1

4
+ (z − 1) + . . .

)
Resf (1) = 1;

The points α = −1/2 + i
√

3/2 and β = −1/2− i
√

3/2 are simple poles for f

f(z) =
cos z

1 + z + z2
=

cos z

(z − α)(z − β)
.

Then

Resf (α) = lim
z→α

(z − α)f(z) =
cosα

α− β
, Resf (β) = lim

z→β
(z − β)f(z) =

cosβ

β − α
.

f(z) =
1

sin z
Resf (0) = Resf (kπ) = 1, ∀k ∈ Z.

20. Show that the function defined by
∑∞
n=1

1
n!zn is holomorphic on C\{0}. Compute its integral

on γ(θ) = eiθ, for θ ∈ [0, 2π].

Sol.: The function defined by
∑∞
n=1

1
n!zn is just e1/z, which is holomorphic on C \ {0}. It ha an

essential singularity at z = 0 with residue 1. Hence the intehgral on f on γ is equal to 2πi.

21. Compute ∫
γ

ez

z3
dz,

∫
γ

e1/z

z3
dz,

when γ(θ) = eiθ, for θ ∈ [0, 6π] and when γ(θ) = eiθ, for θ ∈ [0, 2π].

Sol.: The curve γ(θ) = eiθ, for θ ∈ [0, 2π], is the unit circle, oriented counterclockwise, covered 1
time. Then

f(z) =
ez

z3
=

1

z3
+

1

z2
+

1

2z
+ . . . ,

∫
γ

f(z)dz = 2πiResf (0) = 2πi
1

2
= πi,

f(z) =
e1/z

z3
=

1

z3
+

1

z4
+ . . . ,

∫
γ

f(z)dz = 2πiResf (0) = 0.

The curve γ(θ) = eiθ, for θ ∈ [0, 6π], is the unit circle, oriented counterclockwise, covered 3 times.
Then

f(z) =
ez

z3
,

∫
γ

f(z)dz = 3 · 2πiResf (0) = 3πi,

f(z) =
e1/z

z3
,

∫
γ

f(z)dz = 3 · 2πiResf (0) = 0.

22. Use the “sector method” to compute ∫ +∞

0

1

1 + x4
dx .

Sol.: See Sarason, Example 3, p.126.
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