Geo IV 2025/26, Analisi Complessa, esercizi 5.

Automorphisms of A

1. Let A be the unit disc.
(a) Show that every automorphism of A extends injectively to a neighbourhood of its closure A
and admits at least a fixed point in A.
(b) Show that if f has a fixed point in A, then it is necessarily unique.

Sol.: Let f(z) = €222 be an automorphism of the disc, where § € R and zy € A. Since the

] 1—2z22p
rotation z ~ €% is defined and injective on all C, it is sufficient to consider g(z) = 1+ The
map g is well defined provided that 1 — 22 # 0, in particular for all z with |2| < 1/|z0|. Note that
1/|z0| > 1, meaning that g is well defined on an open neighbourhood of A. To prove injectivity, we

solve

Z— 2 w + 2o

= .
1+’U)ZO

w = —
1— 2z

To see that there exists at least a fixed point in A, we consider the equation

i0
e —1 020
_619

0 2 — 20
W= 0 - s P4z =0.

1— 22 20 20
The equation shows that there are at most 2 fixed points. Since the modulus of their product is
\ew;—g] = 1, then either both fixed points are on OA or one is inside and the other is outside A.

2. Define D(0,r7) = {z € C : |z| <r}. Let f: D(0,1) - C be a holomorphic function such
that |f(z)| = 1 for all z € 0D(0,1). Show that if f is nonconstant, then there exists an
automorphism g of D(0,1) such that f o g(0) =0.

Sol.: By the maximum modulus principle, |f(z)| < 1, for all z € D(0,1). In other words, f maps the
unit disc into itself. Since |f| is constant on the boundary of the disc, then there exists zp € D(0, 1)
such that f(z9) = 0 (cf. Exercise 9). Since the automorphism group of the disc acts transitively on
it, then there exists an automorphism g such that g(0) = zo. It follows that f(g(0)) = f(z0) = 0.

3. Let f: A — A be a holomorphic function with a zero of order m at 0. Show that for all
z € A one has |f(2)] < |z|™.

Sol.: This exercise is a variation of the Schwarz Lemma. The power expansion of f around 0 is

f(2) = amz™ + amy12™t + ... Consider the holomorphic function
f(z) _
g(Z)':{Zm _am+am+1z+...’ 27&0
f(m) (0), z=0.

For 0 < r < 1, one has
lg(2)| <1/r, Vz : |z|=r,

and by the maximum principle the above inequality holds for all z with |z| < r. By letting r — 1,
we obtain |g(z)| < 1, for all z € A. Equivalently

[f ()] < =™,
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as claimed.

4. Verify that the Cayley transform
1+z2

1—2z

C(z):= 1

is a biholomorphism between the unit disc A and the upper half plane HT.

Sol.: The map C is holomorphic on A. Since

14z 1—1z2
1 = 0, VzeA
m<21_2> |1_22’> , zZ €A,

the map C takes the disc onto the upperhalfplane. Finally C' is injective, as it has inverse

w—1
w4

CrH—- A, w—

5. Show that the strip S, :={z¢€ C : 0 <Imz < r}, withr > 0, is biholomorphic to H (and
therefore to A). Determine an explicit biholomorphism f:S; — A.

Sol.: The exponential map e* determines a biholomorphism between the strip S, and the upper-
halplane H. It is holomorphicn and injective

z

ef=e" z,wes, & &V=1 & z—wel2mi & z=w.

It is surjective: horizontal lines in the strip S, are mapped into halflines from the origin in H.
Any strip S,., with r > 0, is biholomorphic to Sy via the map 2 — Tz.
An explicit biholomorphism f: 57 — A is given by

2z CHexp(mz)),

where C~':H — A is the inverse Cayley transform of Execise 13.

Note: The strip S, is a proper convex subset of C. In particular it is simply connected. We’ll see
later in the course that any such set is biholomorphic to the unit disc.

6. Determine whether there exists a nonconstant holomorphic function f:C — C whose image
f(C) has empty intersection with the border OA of the unit disc A.

Sol.: If f(C) has empty intersection with the border A of the unit disc A, then either f(C) C A
or f(C) c C\ A. In the first case f is bounded, and therefore constant. In the second case f(C)
is contained in a domain D biholomorphic to the unit disc, i.e. there exists a biholomorphism
g: D — A such that go f: C — A is a bounded holomorphic function. By Liouville’s theorem, g o f
is constant and therefore also f is constant.

7. Determine whether there exists a nonconstant holomorphic function f:C — C whose image
f(C) has empty intersection with the real line R.

Sol.: If f(C) has empty intersection with the real line R, then it either contained in the upperhalf
plane or in the lower half plane in C. In both halfplanes are biholomorphic to the unit disc. Then
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the same argument as in the previous exercise shows that there are no nonconstant holomorphic
functions f:C — C whose image f(C) has empty intersection with the real line R.

Laurent series and isolated singularities, Riemann extension theorem,
Casorati-Weierstrass theorem, automorphisms of the plane, residue theorem

8. Let f, g:C — C be holomorphic functions with g(z) # 0, for every z € C. Assume that
|f(2)| < |g(z)|, for every z € C. Show that there exists a constant ¢ € C such that f(z) = cg(z)
(cf. Exercise 17 in sheet 0). Show that the assumption “g(z) # 0, for every z € C” can be
replaced with “g not identically zero”.

Sol.: Under the assumption that g never vanishes, f/g is a bounded holomorphic function. Hence
it is constant by Liouville’s theorem, i.e. f/g = c.

Without such assumption, zeros of g are isolated singularities of f/g. However f/g is bounded
near such singularities. By the Riemann extension theorem, they are removable singularities and
the statement follows from Liouville’s theorem.

9. (a) Let f be a bounded holomorphic function defined on C\ {0, i, 1 + i} or on C \ Z. Show
that f is constant.
(b) Is it true that f is constant when it is bounded on C\ ({1/n : n € N}U{0})?

Sol.: (a) The boundedness assumption implies that all singularities of f are removable. In other
words, f is holomorphic and bounded on all C. Therefore it is constant.

(b) By the boundedness assumption, all isolated singularities {1/n},en are removable. Hence f is
holomorphic and bounded at least on C\ {0}. On the other hand, if 0 were singular, then f could
not be bounded in any neighbourhood of 0. Conclusion: f is holomorphic and bounded on all C,
and therefore constant.

10. Show that the functions

sin z e”—1 cosh z—1
z z ) z

are entire, i.e. they extend holomorphically to C.

Sol.: The above functions are holomorphic on all C, except possibly for z = 0. By expanding the
numerators around z = 0 we find

‘ 3 5
sinz _ z—z /3 +2°/5 — ... 234 s

z z
z_1 1 2 /9] 33! oo—1
e _ +Z+Z/ +Z/ + :1+Z/2‘+z2/3'+
2z z
1 1
COShz_l:1+522+ﬂz4+”'_1:lz+i23—+—,..’
. . SRDY

which show that z = 0 is indeed a removable singularity, i.e. the three functions are entire.

11. Let f : C — C be an entire function.
(a) Show that if f has a zero of order n in zy, then 1/f has a pole of order n in zy.
(b) Let zy be a singularity (removable, polar, essential) of f. Determine the corresponding
type of singularity of 1/f.



Sol.: (a) Write f(z) = (z— z0)"u(z), where u(2) = a, +an4+1(2 —20) +. .. is a holomorphic function

with u(zp) # 0. Then
1 1

(z = 20)" u(z)
Since 1/u(z) is holomorphic around zg, then zj is a pole of 1/f of order n.

(b) Let 29 be a removable singularity for f and let f(z) = ag+a1(z — 2z0) + az(z — 20)%> + . .. be the
Taylor expansion of f around zo. If f(z9) # 0, then 1/f is holomorphic around zg; if 2o is a zero
of f of order n, then zj is a pole of order n of 1/f.

1/f(z) =

Let zg be a pole of f or order m and let

f(z) = G Ci_;z)m + € i‘;{:;ﬂi_l — G —120)’" (@—m +a—my1(z—20)+...)

be the Laurent expansion of f around zp, where g(z) = a_y, +a—m+1(2 —20) +. .. is a holomorphic

function with g(z¢) # 0. Now it is clear that zq is a zero of 1/f = % of order n.

(c) Let zp be an essential singularity for f. Then the image of any disc D(z,7)\ {20} is dense in C

and the same is true for % Hence z( is an essential singularity for 1/f as well.

12. Let zy be a pole of f. Recall that for every M >> 0 there exists € > 0 such that
f(D*(20,€)) C {|z[ > M}.
Show that, given € > 0, there exists M >> 0 such that {|z| > M} C f(D*(zo,€)).
(Justify your answer and mention all the results you used.)

Sol.: If zy is a pole, then lim,_, ., |f(2)| = +o00. Equivalently, for every M >> 0 there exists € > 0
such that f(D*(z0,€)) C {|z| > M}.

View the map f valued in §'(C), with f(z9) = oo. One easily cheks that f is a non constant
holomorphic map to 1{1(@), viewed as a Riemann surface. In particular f is open and its image
contains a neighbourhood of co. Therefore, given £ > 0, there exists M >> 0 such that {|z| >
M} C F(D* (20, 6)).

13. Determine and classify all the singularities of the following functions:

1

1 00 n,n 1/z,—1/2> sin = sin z 1
tanz, -5 . ,2"2", zellze=1/2" —, ", 3 —COSZ.

Sol.: (a) The function f(z) = tanz = sin z/ cos z is defined and holomorphic on C\ {w/2+ km, k €
Z}, where cosz # 0, and it is periodic of period m. So it is sufficient to determine the type
singularity at 7/2. For this note that sin z is non-zero close to /2 while cos z has a zero of order
one in /2. It follows that all points {w/2 + kmr, k € Z} are simple poles for tan z (cf. ex. 4).

(b) The function

1 — > 1
;Zann = Zz%”*" :22;+23—|—24z+...
n=2 =2

has a pole of order 1 at z = 0.
(c¢) The function

zel/7e=1/2" = yel/2=1/2" 2(1+ (1 - =)+
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has an essential singularity at z = 0.

(d) The function
sin(1/z) 1,1 11

A
has an essential singularity at z = 0.
(e) The function
sin z 1 14
A 274(2 BT o)

has a pole of order 3 at z = 0. Alternatively, one can observe that

. sin z . sinz
lim 23 = lim =1.
z—0 z z—0 Zz
(f) Since cos z is holomorphic on C, the function
1
— —cosz
>3

has a pole of order 3 at z = 0.
14. Let g(z) := e'/* — €?/%. Determine g(C \ {0}).
Sol.: The Laurent series expansion of g around z = 0 is given by

(2) 1+1+11+11+ (1+2+122+123+
z) = —t —— 4+ —— —— 4+ ——
g 2 212 T3y 2122 313

1 122—-1 123-1

Tz 2l 22 31 3
One sees that z = 0 is an essential singularity for g. Hence g(C \ {0}) is dense in C, by Casorati-
Weierstrass theorem. Also, the equation w = e'/#(1 —e!/ Z) can be solved for every w € C. In order
to see this, set 7 := e'/#. Then such equation reads as 2 —n+w = 0. For w # 0 fixed, one Obtalns
two different roots in the punctured complex plane C*, which is the image of the map z — ex.
For w = 0, one root is n = 1 and, indeed, for 2 = 2mik, with k # 0, one obtains el/z — 2/ = .
Therefore g(C \ {0}) =

15. Let f(z) = % Determine the Laurent serie of f around zy = i.

Sol.: The function f(z) = m is holomorphic on C, except for +i where it has simple poles.

The Laurent serie of f around zy = ¢ is given by

(z—4)"

1
f(Z)— (Z—

where ) o an(z—1)" is the Taylor series expansion of g(z) =
zo = 1. The coeflicients of such series are

(Z +Z), which is holomorphic around

ap = g(i) =1i/2, alzg/(i):3/47"'> Qn n'g(n)()



16. Let f be a holomorphic function on D*(0,r), for 0 < r < +o00. Assume that zp = 0 is a pole
of f of order m. Then the Laurent serie of f around zy is given by

F(2) = Eosmana™s  an = g™ t™(0),  where g(2) = 2™ f(2).

Sol.: The Laurent series expansion of f around z = 0 is given by

a_m A_(m—1) 1

f@) =+ = paem b acmenz+oL ),

and g(z) = 2™ f(z) = by + b1z + ... is a holomorphic function with g(z) # 0. The coefficients of
the series expansion of g are

1
b, = G—mir = gg(k) (0).

If n = —m + k, then

1 n-+m
7)!9( + )(0)_

ap =
(n+m

].7 Let f(Z) = m.
(i) Show that z; =1 is a pole of f of order 3.
1I etermine all the coefficients of the principal part of the Laurent series of f around zi.
ii) D i 1l th fici f th incipal f the L ies of d
(iii) Show that zo = —2 is a pole of f of order 2.
(iv) Determine all the coefficients of the principal part of the Laurent series of f around zs.

Sol.: (i) The limit lim,,;(z — )% - f(2) = (ZjT)Q is finite. Hence z; =i is a pole of f of order 3.

(ii) The Laurent series expansion of f around z; = i is given by

1
——= ) an(z—19)",
(z—1)3 ;

z

where ) ., an(z — )" is the Taylor series expansion of the holomorphic function g(z) = Giae
around z;. The principal part of the Laurent series of f around z; is

R SRS SRR S
R R ) R PR

The coefficients can be computed as in Exercise 9

a—3

e L e(1+1) .

a-3 = g(i) = it+2)72 a2 =g'(i) = (i +2)2

(iii) The limit lim, _;(z +2)2 - f(2) = ﬁ is finite. Hence zo = —2 is a pole of f of order 2.

(iv) The Laurent series expansion of f around zo = —2 is given by
5 el +2)”
s an(z )
(z+2) =
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where > . a,(z +2)" is the Taylor series expansion of the holomorphic function g(z) = ﬁ
around z. The principal part of the Laurent series of f around zs is

1 1
+a_ .
(z +2)2 "z+2)

a_2

The coefficients can be computed as in Exercise 9

a_o = g(—2), a_1=g(-2).

18. Let v2(0) = €, where 6 € [0,27], and v, () = 3¢, where 0 € [0,2x]. Compute

(a) 1 22 4+ 52 1 22+ 52d
a P - iy %
2mi J,, (2 —2) 2mi J., (2 —2)
1 22 1 22
b = - — [ T Zax
21 S 21 ve 2

Z.

© ]_/‘ z3—32—6 Z_]./‘ z3—32—6
2mi )., 2(z+2)(z +4) 2mi )., 2(z+2)(z +4)

Sol.: The curves «; and 7, are circles centered in the origin, oriented counterclockwise, of radius
3 and radius 1, respectively. (a) The function f(z) = ifgf is holomorphic on C\ {2} and has a
pole of order 1 in z = 2 with residue Resf(2) = lim._,2(z — 2) f(z) = 14. The pole is inside y; and
outside .

Hence the integral in (a) is equal to 2miResf(2) = 28mi.

(b) The function f(z) = % is holomorphic on C\ {0} and has a pole of order 1 in z = 0 with
residue Resf(0) = lim,,0(2)f(2) = —2. The pole is inside v; and inside 7.
Hence the integral in (b) is equal to 0.

(c) The function f(z) = % has simple poles in z = 0, inside both circles, z = —2 inside 7,
and outside I's, and z = —4, outside both circles.

Hence the integral in (c) is given by 2mi(Res¢(0) + Resy(—2) — Resf(0)) = 2miResy(—2) = 4.

19. Compute the residues of the following functions at the singular points:

o3/ 23 23 23 2° CoS 2 1
’ z—1’ (z —1)%’ 1— 2% (22 -1)%’ 1+ 24 2% sinz’
Sol.: s 13
_ 3/2% _ 2 —
f(z)=e% =1+ 5+5(5)"+.,  Resp(0)=0
23 .
)= =, Resp(l) = lim(z = )f(z) = 1
23 1 2
= = 1) =2;
B =~y et Re=2



3 3 1

f(z) = A e CE R ErT) Res¢(1) :li_>1r11(z—1)f(z) =7 etc. ..
25 25 1 1
&= e = o iy <_4+(”1)+'“) Resp (1) =1;

z

5 1 1
f(z)= o1 = EENE <4+(z—1)+...) Resy(1) =1,

The points o = —1/2 +iv/3/2 and 8 = —1/2 — i1/3/2 are simple poles for f

COS 2 COS z
& = 2 " a9
Then
Resg(a) = lim (2 — a) f(2) = ;‘fc; Resy(8) = lim (= = §)/(2) = ;O_Si
f(z) = ! Res¢(0) = Resy(km) =1, VkeZ.

sin z
20. Show that the function defined by Y | —= is holomorphic on C\ {0}. Compute its integral
on y(0) = €, for 0 € [0, 27].
Sol.: The function defined by S.°° . —L. is just e'/#, which is holomorphic on C\ {0}. It ha an

n=1 nlzn
essential singularity at z = 0 with residue 1. Hence the intehgral on f on ~ is equal to 2mi.

e? 61/z
—dz, T dz,
z z

Y Y

when (0) = €%, for 6 € [0,67] and when () = €%, for 0 € [0, 27].

21. Compute

Sol.: The curve v(0) = €', for 6 € [0,27], is the unit circle, oriented counterclockwise, covered 1

time. Then
z 1 1 1 1
flz) = S e bt . /f(z)dz = 2miResf(0) = 271'1'5 = i,
z
.

1/z
f(z)ze—zi—{—%—{—..., [yf(z)dz:%riReSf(O):O.

The curve () = €, for 6 € [0,67], is the unit circle, oriented counterclockwise, covered 3 times.

Then .
f(z) = %, /f(z)dz =3 2miResy(0) = 31,
2l

el/z

f(z) = —, /f(z)dz =3 - 2miRess(0) = 0.

23

22. Use the “sector method” to compute

+o0 1
/ dz .
o 14zt

Sol.: See Sarason, Example 3, p.126.



