Geo IV 2025/26, Analisi Complessa, esercizi 4: soluzioni.

Liouville’s theorem, identity principle, maximum modulus principle, harmonic func-
tions

1. Let f:C — C be a holomorphic doubly periodic function (it means that f(z +w1) = f(z +
we) = f(z) for all z € C, where wy,ws € C are R-linearly independent vectors). Then f is
constant.

Sol.: A doubly periodic function is necessarily bounded, as it takes all its values on the compact
set P ={z =aw; +bwy : a,b € [0,1]}. Hence it is constant by Liouville theorem.

2. Let U C C be an open neighbourhood of 0. Show that there are no (non-constant) holomorphic
functions f:U — C, such that:

(a) f(3) = (1)L,
(b) f(3) = 3w
(c) |f™(0)] > nln™.

Sol.: (a) f(L) coincides with g(z) = 22, for n even, while it coincides with h(z) = —22, for n odd.
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(b) We are going to show that f is identically zero, by showing that all the derivatives of f at z = 0
are zero. We have
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Now we proceed by induction. We assume that f*)(0) = 0, for all A < k, and prove that f*+1)(0).

By our assumption
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f(2) = apg1 25 + apyoz L=z k41 + G2z +...).

Define g(z) = gk(f_)l Then f*+1(0) if and only if g(0) = 0. Indeed

1 k+1
g(0) = lim it 1/n) = lim = =0.
n——+oo T n—+oo 21
n i i - — 1 ¢(n) i
n . n !
(c) Let > ,50an2" be the series expansion of f around z = 0. Then a, = ;£ (0) satisfies

|an| > n™. The radius of convergence R of such a series is given by

1
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It follows that R = 0 and there is no holomorphic function as in (c).

3. Let D be a domain in C and let f: D — C be a holomorphic function, not identically zero.
Prove that the set of zeros of f in D is at most countable (use: D is a countable union of
compact sets).



Sol.: The zeros of a holomorphic, not identically vanishing function are discrete. Hence finite in
a compact set. As D is a countable union of compact sets, the set of zeros of f in D is at most
countable (a countable union of finite sets is countable).

4. Let f:U — C be a holomorphic function on an open neighbourhood U of the closed unit disc
A. Assume that f is not identically zero.
(a) Show that f has at most finitely many zeros in A.
(b) Determine the zeros of f(z) = sin(1X;) on the disc A and compare the result with (a).
Sol.: (a) Since A is compact, f has at most finitely many zeros in A and therefore in A (we used

that a discrete subset of a compact set is finite).
(b) f(z) =sin(7=5) = 0 if and only if z = 1 — 7=, with k € Z. The zeros in A are the ones with

k € Z~q. They are infinitely many and they accumulate in z = 1, which is a singularity of f.

Note: in this case f is not holomorphic on an open neighbourhood of the closed unit disc A. Hence
the arguments in (a) do not apply.

5. Let S = {z € C : 0 < Rez < §}. Determine whether there exists a holomorphic function
f:8 — C such that

(a) Ref(z) = 2%y + y?z + sinx sinhy;
(b) Ref(z) =y> — 32%y + cosx coshy + sinz sinhy.

Justify your answer: either exhibit one such function or explain why it cannot exist.

Sol.: On the convex set S a function is the real part of a holomorphic function if and only if it is
harmonic.

The function in (a) is not harmonic: it is the sum of the harmonic function sin z sinh y = I'm(cos z)
and the function f(z,y) = 2%y + y?x, whose Laplacian is given by Af = 2(x + y) Z 0.

The function in (b) is harmonic: it is the sum of the harmonic functions Re(cos z) = cos z cosh y,
Im(cos z) = sinxsinhy = —Re(icosz) and the function u(x,y) = y*> — 3%y whose Laplacian is
identically zero. Hence it is the real part of the holomorphic function

f(z) = u(z,y) + iv(x,y) + cos z — i cos z,
where v(z, y) is a harmonic conjugate of u(x, y). We determine v by the Cauchy-Riemann equations:
vy, = Uy = —6zy = v(x,y) = —3zy* + ¢(x);
vy =3y  +¢'(x) = —u, =—-(3y* - 32 & ¢@)=32" & o) =2"+c ceR.
Conclusion: v(z,y) = —3zy? + 23 + ¢ and

f=19>—-32%+i(-3zy* +2%) +cosz—icosz+ic, ceR.

6. (Liouville’s theorem for harmonic functions). Let u:C — R be harmonic and bounded either
from above or from below.
(a) Show that u is constant.
(b) Verify that the real and the imaginary parts of the following holomorphic functions are
not bounded:

e?, sin z, CoS 2, 22
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Sol.: (a) The harmonic function w is the real part of a holomorphic function
fC=C, f(z)=u(z)+iv(z),

where v is a harmonic conjugate of u. Suppose u is bounded by above. Then so is the absolute
value of the holomorphic function ef(*) = ¢“?)¢iv(2) By Liouville’s theorem, e/(*) = ¢ is constant.
Then also f(z) = log(c) is constant.

Suppose now that u is bounded by below. Then we can apply the above argument to the harmonic
function —u.

7. Set D = D(zg,7). Let f: D — C be a holomorphic function. Show that

f(z0) = Arei@ /D f(z)dzdy .

Sol.: We compute the integral in polar coordinates. By the substitutions x = pcost, y = psint,
dxzdy = pdpdt, the integral [, f(z)dzdy becomes
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/ / f(z0 + pe')pdpdt = / p ( flzo+ pe”)dt> dp.
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By the mean value property, the above integral equals

_ / " 02 f(z0)dp = 2 f(0) (0% /215) = f(z0)mr,

from which we deduce

1o = oz [ [ f@asdy = —m [ [ sy

as claimed.

8. Let D be a domain in C and let f: D — C be a nonconstant holomorphic function. Show that
the local minima of |f| coincide with the zeros of f.

Sol.: Let zp € D be a point of local minimum for |f(z)|: it means that there is an open neighbour-
hood U of zp in D with the property that |f(z0)| < |f(2)|, for all z € U. Suppose that f(z) # 0.
Then g(z) = 1/f(z) is a holomorphic function of U and zj is a local maximum for |g(z)|. Then
g is constant on U and so is f. As D is connected, by the identity principle f is constant on D.
Contradiction.

9. Let f:U — C be a nonconstant holomorphic function defined on a neighbourhood of the unit
disc A. Show that if |f| is constant on the boundary of A, then f admits at least one zero
in A.

Sol.: The closure of the disc A is a compact set. Hence |f| has maximum and minimum on A. They
are distinct because f is non constant. Since the maximum of |f| is attained on the boundary of A,
then the minimum is necessarily attained in the interior. By the previous exercise, such minimum
is 0. Conclusion: f admits at least one zero in A.



