
Liouville's theorem, identity principle, maximum modulus principle, harmonic functions

1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic doubly periodic function (it means that $f(z + \omega_1) = f(z + \omega_2) = f(z)$ for all $z \in \mathbb{C}$, where $\omega_1, \omega_2 \in \mathbb{C}$ are \mathbb{R} -linearly independent vectors). Then f is constant.

Sol.: A doubly periodic function is necessarily bounded, as it takes all its values on the compact set $P = \{z = a\omega_1 + b\omega_2 : a, b \in [0, 1]\}$. Hence it is constant by Liouville theorem.

2. Let $U \subset \mathbb{C}$ be an open neighbourhood of 0. Show that there are no (non-constant) holomorphic functions $f: U \rightarrow \mathbb{C}$, such that:
 - $f\left(\frac{1}{n}\right) = (-1)^n \frac{1}{n^2}$,
 - $f\left(\frac{1}{n}\right) = \frac{1}{2^n}$,
 - $|f^{(n)}(0)| > n! n^n$.

Sol.: (a) $f\left(\frac{1}{n}\right)$ coincides with $g(z) = z^2$, for n even, while it coincides with $h(z) = -z^2$, for n odd. Since the sets

$$\left\{\frac{1}{2k}\right\} \cup \{0\} \quad \text{and} \quad \left\{\frac{1}{2k+1}\right\} \cup \{0\}, \quad k \in \mathbb{N}$$

are uniqueness sets for f , there is no holomorphic function satisfying $f\left(\frac{1}{n}\right) = (-1)^n \frac{1}{n^2}$.

(b) We are going to show that f is identically zero, by showing that all the derivatives of f at $z = 0$ are zero. We have

$$f(0) = \lim_{n \rightarrow +\infty} \frac{1}{2^n} = 0 \quad \text{and} \quad f'(0) = \lim_{n \rightarrow +\infty} \frac{\frac{1}{2^n} - 0}{1/n} = 0.$$

Now we proceed by induction. We assume that $f^{(h)}(0) = 0$, for all $h \leq k$, and prove that $f^{(k+1)}(0)$. By our assumption

$$f(z) = a_{k+1}z^{k+1} + a_{k+2}z^{k+2} + \dots = z^{k+1}(a_{k+1} + a_{k+2}z + \dots).$$

Define $g(z) = \frac{f(z)}{z^{k+1}}$. Then $f^{(k+1)}(0)$ if and only if $g(0) = 0$. Indeed

$$g(0) = \lim_{n \rightarrow +\infty} \frac{f(1/n)}{\frac{1}{n^{k+1}}} = \lim_{n \rightarrow +\infty} \frac{n^{k+1}}{2^n} = 0.$$

(c) Let $\sum_{n \geq 0} a_n z^n$ be the series expansion of f around $z = 0$. Then $a_n = \frac{1}{n!} f^{(n)}(0)$ satisfies $|a_n| > n^n$. The radius of convergence R of such a series is given by

$$\frac{1}{R} = \limsup_{n \rightarrow +\infty} |a_n|^{1/n} = \limsup_{n \rightarrow +\infty} n = +\infty.$$

It follows that $R = 0$ and there is no holomorphic function as in (c).

3. Let D be a domain in \mathbb{C} and let $f: D \rightarrow \mathbb{C}$ be a holomorphic function, not identically zero. Prove that the set of zeros of f in D is at most countable (use: D is a countable union of compact sets).

Sol.: The zeros of a holomorphic, not identically vanishing function are discrete. Hence finite in a compact set. As D is a countable union of compact sets, the set of zeros of f in D is at most countable (a countable union of finite sets is countable).

4. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function on an open neighbourhood U of the closed unit disc $\overline{\Delta}$. Assume that f is not identically zero.

- Show that f has at most finitely many zeros in Δ .
- Determine the zeros of $f(z) = \sin(\frac{1}{1-z})$ on the disc Δ and compare the result with (a).

Sol.: (a) Since $\overline{\Delta}$ is compact, f has at most finitely many zeros in $\overline{\Delta}$ and therefore in Δ (we used that a discrete subset of a compact set is finite).

(b) $f(z) = \sin(\frac{1}{1-z}) = 0$ if and only if $z = 1 - \frac{1}{k\pi}$, with $k \in \mathbb{Z}$. The zeros in Δ are the ones with $k \in \mathbb{Z}_{>0}$. They are infinitely many and they accumulate in $z = 1$, which is a singularity of f .

Note: in this case f is not holomorphic on an open neighbourhood of the closed unit disc $\overline{\Delta}$. Hence the arguments in (a) do not apply.

5. Let $S = \{z \in \mathbb{C} : 0 < \operatorname{Re} z < \frac{\pi}{2}\}$. Determine whether there exists a holomorphic function $f: S \rightarrow \mathbb{C}$ such that

- $\operatorname{Re} f(z) = x^2y + y^2x + \sin x \sinh y$;
- $\operatorname{Re} f(z) = y^3 - 3x^2y + \cos x \cosh y + \sin x \sinh y$.

Justify your answer: either exhibit one such function or explain why it cannot exist.

Sol.: On the convex set S a function is the real part of a holomorphic function if and only if it is harmonic.

The function in (a) is not harmonic: it is the sum of the harmonic function $\sin x \sinh y = \operatorname{Im}(\cos z)$ and the function $f(x, y) = x^2y + y^2x$, whose Laplacian is given by $\Delta f = 2(x + y) \not\equiv 0$.

The function in (b) is harmonic: it is the sum of the harmonic functions $\operatorname{Re}(\cos z) = \cos x \cosh y$, $\operatorname{Im}(\cos z) = \sin x \sinh y = -\operatorname{Re}(i \cos z)$ and the function $u(x, y) = y^3 - 3x^2y$ whose Laplacian is identically zero. Hence it is the real part of the holomorphic function

$$f(z) = u(x, y) + iv(x, y) + \cos z - i \cos z,$$

where $v(x, y)$ is a harmonic conjugate of $u(x, y)$. We determine v by the Cauchy-Riemann equations:

$$\begin{aligned} v_y &= u_x = -6xy \quad \Rightarrow \quad v(x, y) = -3xy^2 + \phi(x); \\ v_x &= -3y^2 + \phi'(x) = -u_y = -(3y^2 - 3x^2) \quad \Leftrightarrow \quad \phi'(x) = 3x^2 \quad \Leftrightarrow \quad \phi(x) = x^3 + c, \quad c \in \mathbb{R}. \end{aligned}$$

Conclusion: $v(x, y) = -3xy^2 + x^3 + c$ and

$$f = y^3 - 3x^2y + i(-3xy^2 + x^3) + \cos z - i \cos z + ic, \quad c \in \mathbb{R}.$$

6. (Liouville's theorem for harmonic functions). Let $u: \mathbb{C} \rightarrow \mathbb{R}$ be harmonic and bounded either from above or from below.

- Show that u is constant.
- Verify that the real and the imaginary parts of the following holomorphic functions are not bounded:

$$e^z, \quad \sin z, \quad \cos z, \quad z^2.$$

Sol.: (a) The harmonic function u is the real part of a holomorphic function

$$f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(z) = u(z) + iv(z),$$

where v is a harmonic conjugate of u . Suppose u is bounded by above. Then so is the absolute value of the holomorphic function $e^{f(z)} = e^{u(z)}e^{iv(z)}$. By Liouville's theorem, $e^{f(z)} \equiv c$ is constant. Then also $f(z) = \log(c)$ is constant.

Suppose now that u is bounded by below. Then we can apply the above argument to the harmonic function $-u$.

7. Set $D = D(z_0, r)$. Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function. Show that

$$f(z_0) = \frac{1}{\text{Area}(D)} \int_D f(z) dx dy.$$

Sol.: We compute the integral in polar coordinates. By the substitutions $x = \rho \cos t$, $y = \rho \sin t$, $dx dy = \rho d\rho dt$, the integral $\int_D f(z) dx dy$ becomes

$$\int_0^r \int_0^{2\pi} f(z_0 + \rho e^{it}) \rho d\rho dt = \int_0^r \rho \left(\int_0^{2\pi} f(z_0 + \rho e^{it}) dt \right) d\rho.$$

By the mean value property, the above integral equals

$$= \int_0^r \rho 2\pi f(z_0) d\rho = 2\pi f(z_0) (\rho^2/2|_0^r) = f(z_0) \pi r^2,$$

from which we deduce

$$f(z_0) = \frac{1}{\pi r^2} \int \int f(x, y) dx dy = \frac{1}{\text{area}(D)} \int \int f(x, y) dx dy,$$

as claimed.

8. Let D be a domain in \mathbb{C} and let $f: D \rightarrow \mathbb{C}$ be a nonconstant holomorphic function. Show that the local minima of $|f|$ coincide with the zeros of f .

Sol.: Let $z_0 \in D$ be a point of local minimum for $|f(z)|$: it means that there is an open neighbourhood U of z_0 in D with the property that $|f(z_0)| \leq |f(z)|$, for all $z \in U$. Suppose that $f(z_0) \neq 0$. Then $g(z) = 1/f(z)$ is a holomorphic function of U and z_0 is a local maximum for $|g(z)|$. Then g is constant on U and so is f . As D is connected, by the identity principle f is constant on D . Contradiction.

9. Let $f: U \rightarrow \mathbb{C}$ be a nonconstant holomorphic function defined on a neighbourhood of the unit disc Δ . Show that if $|f|$ is constant on the boundary of Δ , then f admits at least one zero in Δ .

Sol.: The closure of the disc $\overline{\Delta}$ is a compact set. Hence $|f|$ has maximum and minimum on $\overline{\Delta}$. They are distinct because f is non constant. Since the maximum of $|f|$ is attained on the boundary of Δ , then the minimum is necessarily attained in the interior. By the previous exercise, such minimum is 0. Conclusion: f admits at least one zero in Δ .