
Geo IV 2025/26, Analisi Complessa, esercizi 4: soluzioni.

Liouville’s theorem, identity principle, maximum modulus principle, harmonic func-
tions

1. Let f :C −→ C be a holomorphic doubly periodic function (it means that f(z + ω1) = f(z +
ω2) = f(z) for all z ∈ C, where ω1, ω2 ∈ C are R-linearly independent vectors). Then f is
constant.

Sol.: A doubly periodic function is necessarily bounded, as it takes all its values on the compact
set P = {z = aω1 + bω2 : a, b ∈ [0, 1]}. Hence it is constant by Liouville theorem.

2. Let U ⊂ C be an open neighbourhood of 0. Show that there are no (non-constant) holomorphic
functions f :U → C, such that:

(a) f( 1
n ) = (−1)n 1

n2 ,

(b) f( 1
n ) = 1

2n ,

(c) |f (n)(0)| > n!nn.

Sol.: (a) f( 1
n ) coincides with g(z) = z2, for n even, while it coincides with h(z) = −z2, for n odd.

Since the sets

{ 1

2k
} ∪ {0} and { 1

2k + 1
} ∪ {0}, k ∈ N

are uniqueness sets for f , there is no holomorphic function satisfying f( 1
n ) = (−1)n 1

n2 .

(b) We are going to show that f is identically zero, by showing that all the derivatives of f at z = 0
are zero. We have

f(0) = lim
n→+∞

1

2n
= 0 and f ′(0) = lim

n→+∞

1
2n − 0

1/n
= 0.

Now we proceed by induction. We assume that f (h)(0) = 0, for all h ≤ k, and prove that f (k+1)(0).

By our assumption

f(z) = ak+1z
k+1 + ak+2z

k+2 + . . . = zk+1(ak+1 + ak+2z + . . .).

Define g(z) = f(z)
zk+1 . Then f (k+1)(0) if and only if g(0) = 0. Indeed

g(0) = lim
n→+∞

f(1/n)
1

nk+1

= lim
n→+∞

nk+1

2n
= 0.

(c) Let
∑
n≥0 anz

n be the series expansion of f around z = 0. Then an = 1
n!f

(n)(0) satisfies
|an| > nn. The radius of convergence R of such a series is given by

1

R
= lim sup

n→+∞
|an|1/n = lim sup

n→+∞
n = +∞.

It follows that R = 0 and there is no holomorphic function as in (c).

3. Let D be a domain in C and let f :D → C be a holomorphic function, not identically zero.
Prove that the set of zeros of f in D is at most countable (use: D is a countable union of
compact sets).
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Sol.: The zeros of a holomorphic, not identically vanishing function are discrete. Hence finite in
a compact set. As D is a countable union of compact sets, the set of zeros of f in D is at most
countable (a countable union of finite sets is countable).

4. Let f :U → C be a holomorphic function on an open neighbourhood U of the closed unit disc
∆. Assume that f is not identically zero.
(a) Show that f has at most finitely many zeros in ∆.
(b) Determine the zeros of f(z) = sin( 1

1−z ) on the disc ∆ and compare the result with (a).

Sol.: (a) Since ∆ is compact, f has at most finitely many zeros in ∆ and therefore in ∆ (we used
that a discrete subset of a compact set is finite).

(b) f(z) = sin( 1
1−z ) = 0 if and only if z = 1 − 1

kπ , with k ∈ Z. The zeros in ∆ are the ones with
k ∈ Z>0. They are infinitely many and they accumulate in z = 1, which is a singularity of f .

Note: in this case f is not holomorphic on an open neighbourhood of the closed unit disc ∆. Hence
the arguments in (a) do not apply.

5. Let S = {z ∈ C : 0 < Rez < π
2 }. Determine whether there exists a holomorphic function

f :S → C such that

(a) Ref(z) = x2y + y2x+ sinx sinh y;

(b) Ref(z) = y3 − 3x2y + cosx cosh y + sinx sinh y.

Justify your answer: either exhibit one such function or explain why it cannot exist.

Sol.: On the convex set S a function is the real part of a holomorphic function if and only if it is
harmonic.
The function in (a) is not harmonic: it is the sum of the harmonic function sinx sinh y = Im(cos z)
and the function f(x, y) = x2y + y2x, whose Laplacian is given by ∆f = 2(x+ y) 6≡ 0.

The function in (b) is harmonic: it is the sum of the harmonic functions Re(cos z) = cosx cosh y,
Im(cos z) = sinx sinh y = −Re(i cos z) and the function u(x, y) = y3 − 3x2y whose Laplacian is
identically zero. Hence it is the real part of the holomorphic function

f(z) = u(x, y) + iv(x, y) + cos z − i cos z,

where v(x, y) is a harmonic conjugate of u(x, y). We determine v by the Cauchy-Riemann equations:

vy = ux = −6xy ⇒ v(x, y) = −3xy2 + φ(x);

vx = −3y2 + φ′(x) = −uy = −(3y2 − 3x2) ⇔ φ′(x) = 3x2 ⇔ φ(x) = x3 + c, c ∈ R.

Conclusion: v(x, y) = −3xy2 + x3 + c and

f = y3 − 3x2y + i(−3xy2 + x3) + cos z − i cos z + ic, c ∈ R.

6. (Liouville’s theorem for harmonic functions). Let u:C→ R be harmonic and bounded either
from above or from below.
(a) Show that u is constant.
(b) Verify that the real and the imaginary parts of the following holomorphic functions are

not bounded:
ez, sin z, cos z, z2.
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Sol.: (a) The harmonic function u is the real part of a holomorphic function

f :C→ C, f(z) = u(z) + iv(z),

where v is a harmonic conjugate of u. Suppose u is bounded by above. Then so is the absolute
value of the holomorphic function ef(z) = eu(z)eiv(z). By Liouville’s theorem, ef(z) ≡ c is constant.
Then also f(z) = log(c) is constant.

Suppose now that u is bounded by below. Then we can apply the above argument to the harmonic
function −u.

7. Set D = D(z0, r). Let f :D → C be a holomorphic function. Show that

f(z0) =
1

Area(D)

∫
D

f(z)dxdy .

Sol.: We compute the integral in polar coordinates. By the substitutions x = ρ cos t, y = ρ sin t,
dxdy = ρdρdt, the integral

∫
D
f(z)dxdy becomes∫ r

0

∫ 2π

0

f(z0 + ρeit)ρdρdt =

∫ r

0

ρ

(∫ 2π

0

f(z0 + ρeit)dt

)
dρ.

By the mean value property, the above integral equals

=

∫ r

0

ρ2πf(z0)dρ = 2πf(z0)(ρ2/2|r0) = f(z0)πr2,

from which we deduce

f(z0) =
1

πr2

∫ ∫
f(x, y)dxdy =

1

area(D)

∫ ∫
f(x, y)dxdy,

as claimed.

8. Let D be a domain in C and let f :D → C be a nonconstant holomorphic function. Show that
the local minima of |f | coincide with the zeros of f .

Sol.: Let z0 ∈ D be a point of local minimum for |f(z)|: it means that there is an open neighbour-
hood U of z0 in D with the property that |f(z0)| ≤ |f(z)|, for all z ∈ U . Suppose that f(z0) 6= 0.
Then g(z) = 1/f(z) is a holomorphic function of U and z0 is a local maximum for |g(z)|. Then
g is constant on U and so is f . As D is connected, by the identity principle f is constant on D.
Contradiction.

9. Let f :U → C be a nonconstant holomorphic function defined on a neighbourhood of the unit
disc ∆. Show that if |f | is constant on the boundary of ∆, then f admits at least one zero
in ∆.

Sol.: The closure of the disc ∆ is a compact set. Hence |f | has maximum and minimum on ∆. They
are distinct because f is non constant. Since the maximum of |f | is attained on the boundary of ∆,
then the minimum is necessarily attained in the interior. By the previous exercise, such minimum
is 0. Conclusion: f admits at least one zero in ∆.
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