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Abstract. Let D be a bounded homogeneous domain in Cn. In this note we
give a characterization of the Stein domains in D which are invariant under
a maximal unipotent subgroup N of AutpDq. We also exhibit an N -invariant
potential of the Bergman metric of D, expressed in a Lie theoretical fashion.
These results extend the ones previously obtained in the symmetric case.

1. Introduction

By the results of Gindikin, Pijatetcki-Shapiro and Vinberg (see [GPSV68],
[PS69]), every bounded domain D in Cn admits a realization as a Siegel domain.
Such a realization relies on the existence of a simply transitive real split solvable
group S of holomorphic automorphisms of D. In the symmetric case, the group
G “ AutpDq is semisimple and S “ AN , where A and N are the abelian and the
unipotent subgroups arising from an Iwasawa decomposition of G.

In [GeIa23], the N -invariant Stein domains in irreducible symmetric Siegel
domains were characterized. The goal of this note is to prove a similar charac-
terization for N -invariant Stein domains in arbitrary irreducible Siegel domains,
which form a much wider class of domains containing the symmetric ones as
special cases.

As in the symmetric case, to an N -invariant domain D in D we associate an
r-dimensional tube domain in Hr, the product of r copies of the upper half plane
H in C (here r is the rank of D). Then we prove that D is Stein if and only if
the base of the associated tube is convex and satisfies an additional geometric
condition (see Theorem 3.4). In the symmetric case, such condition only depends
on whether D is of tube type or of non-tube type, while in the general case it
depends on the specific root decomposition of the normal J-algebra s “ LiepSq
of D.

The univalence of holomorphically separable, N -equivariant, Riemann domains
over D continues to hold true in this more general context, yielding a precise
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description of the envelope of holomorphy of an arbitrary N -invariant domain
in D (see Corollary 3.5).

Finally, we exhibit an N -invariant potential of the Bergman metric of D, ex-
pressed in a Lie theoretical fashion and obtained via an explicit N -moment map
with respect to the Bergman Kähler structure of D (see Proposition 4.2).

2. Preliminaries

Every bounded domain D in Cn admits a real split solvable group S of holo-
morphic automorphisms acting simply transitively on D. The Lie algebra s of S
has the structure of a normal J-algebra, with the complex structure J inherited
from D and the linear form ´f0 P s

˚ inducing the Bergman metric (cf. [Kos55]).
This means in particular that ωpX, Y q :“ ´f0prX, Y sq is a non-degenerate skew-
symmetric J-invariant bilinear form on s and xX, Y y :“ ´f0prJX, Y sq is a J-
invariant positive definite inner product on s.

The normal J-algebra of a bounded domain. For the structure of normal
J-algebras, we mainly refer to [RoVe73], Sect. 5, A. Further details and comments
can be found in [GeIa23]. Denote by n :“ rs, ss the nilradical of s and let a be the
orthogonal complement of n in s, with respect to the inner product x¨, ¨y. Then a
is an abelian subalgebra, whose dimension r is by definition the rank of D. The
adjoint action of a on s is symmetric with respect to x¨, ¨y and decomposes s into
the orthogonal direct sum of root spaces sα “ tX P s | rH,Xs “ αpHqX, @H P

au. There exist e1, . . . , er P s
˚ such that the roots α are of the form

ej ´ el, ej ` el, 1 ď j ă l ď r, 2ej, ej, 1 ď j ď r.

In the non-symmetric case, not all possibilities need occur. Here the roots are
normalized so that, in the symmetric case, they coincide with the restricted roots.
The complex structure J permutes the root spaces as follows

Ja “
à

j

s2ej , Jsej´el “ sej`el , Jsej “ sej .

Let H1, . . . , Hr be the basis of a dual to e1, . . . , er P a˚. As dim s2ej “ 1, for
j “ 1, . . . , r, one can fix generators Ej P s2ej such that the pairs tHj, E

ju satisfy

rHj, E
ls “ δjl2E

l, JEj “ 1
2
Hj, for j, l “ 1, . . . , r.

For j “ 1, . . . , r, the real split solvable subalgebras generated by tHj, E
ju pair-

wise commute and are isomorphic to the a‘ n-component of an Iwasawa decom-
position of slp2,Rq.

Set H0 :“ 1
2

ř

j Hj P a . The adjoint action of H0 decomposes s and n as

s “ s0 ‘ s1{2 ‘ s1, n “ n0 ‘ n1{2 ‘ n1 ,
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where nj “ nX sj and

s0 “ a‘
à

1ďjălďr

sej´el , s1{2 “ ‘
1ďjďr

sej , s1 “ ‘
1ďjďr

s2ej ‘
à

1ďjălďr

sej`el .

If s1{2 “ t0u, then the domain D is of tube type, otherwise it is of non-tube type.

Set E0 :“
ř

Ej. The complex structure on s0 is given by JX “ rE0, Xs, for
all X P s0. The orbit

V :“ Adexp s0E0

is a sharp convex cone in s1 and

F : s1{2 ˆ s1{2 Ñ sC1 , F pW,W 1q :“ 1
4
prJW 1,W s ´ irW 1,W sq,

is a V -valued Hermitian form, i.e. it is sesquilinear and F pW,W q P V (the closure
of V ), for all W P s1{2. The group S acts on sC1 ‘ s1{2 by affine transformations,
given by

s ¨ pZ,W q “ pAdexp γZ ` ξ ` 2iF pAdexp γW, ζq ` iF pζ, ζq, Adexp γW ` ζq, (1)

where s “ exp ζ exp ξ exp γ, with ζ P s1{2, ξ P s1, γ P s0. If we fix the base point
p0 :“ piE0, 0q P s

C
1 ‘ s1{2, then the map

L : S ÞÑ DpV, F q, s ÞÑ s ¨ p0 (2)

defines a biholomorphism between D – S and the Siegel domain

DpV, F q “ tpZ,W q P sC1 ‘ s1{2 | ImpZq ´ F pW,W q P V u

(cf. [RoVe73], Lem. 5.2, p. 330). Denote by

pE1
q
˚, . . . , pEr

q
˚

the elements in the dual n˚ of n, with the property that pEjq˚pElq “ δjl and
pEjq˚pXq “ 0, for all X P sα, with α R t2e1, . . . , 2eru.

Lemma 2.1. paq The form ´f0 : s Ñ R is given by ´f0 “
ř

k ckpE
kq˚, for

some ck P Rą0.

pbq Let X P sej´elzt0u . Then rJX,Xs “ sEj, for some s P Rą0. Let X, Y P

sej´elzt0u , satisfying xX, Y y “ 0. Then rJX, Y s “ 0.

pcq Let X P sejzt0u. Then rJX,Xs “ tEj, for some t P Rą0. Let X, Y P sejzt0u ,
satisfying xX, Y y “ 0. Then rJX, Y s “ 0.

Proof. The proof of statement (a) is contained in [RoVe73]. For the sake of
completeness we recall the main arguments. Let f0 also denote the C-linear
extension of f0 to sC. From the integrability of J one has that f0prX ` iJX, Y `
iJY sq “ 0, for all X, Y P s. This implies that f0prH,Xsq “ f0pJrH,Xsq “ 0,
for all H P a and X P q :“ s1{2 ‘

À

jăl s
ej´el . Since ra, qs “ q and Jq “

s1{2‘
À

jăl s
ej`el , the form f0 identically vanishes on q and ´f0 “

ř

j cjpE
jq˚, for
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some cj P R. The identity cj “ ´f0pE
jq “ ´1

2
f0prHj, E

jsq “ ´f0prJE
j, Ejsq “

xEj, Ejy ą 0 concludes the proof.

(b) Let X P sej´elzt0u. Then JX “ rEl, Xs P sej`el . Since s2ej is one-
dimensional, rJX,Xs “ sEj, for some s P R. By applying ´f0 to both terms,
one obtains ´f0prJX,Xsq “ xX,Xy “ cjs ą 0. Since cj ą 0, also s ą 0. For the
second part of the statement, write rJX, Y s “ sEj, for some s P R. Then from

0 “ xX, Y y “ ´f0prJX, Y sq “ ´
ÿ

k

ckpE
k
q
˚
psEj

q “ cjs,

one obtains s “ 0 and therefore rJX, Y s “ 0, as desired.

As sej is J-invariant, statement (c) follows in a similar way. �

Remark 2.2. The forms
ř

j cjpE
jq˚, where the cj’s vary in Rą0 for j “ 1, . . . , r,

determine all S-homogeneous Kähler metrics on DpV, F q (cf. [Do85], Thm. 1,
p. 304). By [DA79], Thm. 4, one such metric is Kähler-Einstein if and only if the
quantity 1

cj
p1` 1

4
dim sej ` 1

2

ř

jăl s
ej`elq is a constant independent of j “ 1, . . . , r.

N-invariant domains in DpV, F q and tube domains in Hr. In S “ NA,
consider the unipotent abelian subgroup R :“ exp Ja, isomorphic to Rr. The
R-invariant set

R exppaq ¨ p0
is an r-dimensional closed complex submanifold of DpV, F q, intersecting all N -
orbits in DpV, F q. Define the positive octant in Ja

Ja` :“ t
ř

ykE
k : yk ą 0, for k “ 1, . . . , ru.

Then the map L defined in (1) and (2) restricts to a biholomorphism

R exppaq Ñ Ja‘ iJa`,

given by

expp
ř

j ejE
jq expp

ř

k hkHkq ÞÑ
ř

j ejE
j ` iAdexpp

ř

k hkHkqE0. (3)

In particular L|exppaq defines a diffeomorphism L : aÑ Ja` given by
ÿ

k

hkHk ÞÑ Adexpp
ř

k hkHkqE0 “
ÿ

j

e2hjEj. (4)

Write an N -invariant domain in a rank-r homogeneous Siegel domain DpV, F q
as D “ N expD ¨ p0, for some domain D Ă a. Then, as in the symmetric case
(see [GeIa23], Sect. 3), one can associate to D an r-dimensional tube domain.

Definition 2.3. The r-dimensional tube domain associated to an N-invariant
domain D in DpV, F q is the image of the set R exppDq under L, namely

D X pJa‘ iJa`q “ Ja` iΩ, where Ω :“ LpDq .
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3. N-invariant Stein domains in a homogeneous Siegel domain

Let DpV, F q be a bounded domain. In this section we give a characterization
of the N -invariant Stein domains D in DpV, F q in terms of the associated tube
domain. If D is Stein then such tube domain is Stein and its base Ω is an open
convex set in Ja`. On the other hand, we will see that Ω must satisfy some
further geometric conditions which depend on the specific root decomposition of
the normal J-algebra of DpV, F q.

Let D be an N -invariant domain in DpV, F q. Then

D “ tpZ,W q P DpV, F q | ImpZq ´ F pW,W q P Ωu,

where Ω is the Adexp n0-invariant open subset in V determined by

iΩ :“ D X iV.

By (2), (3) and (4), the base of the associated tube is

Ω “ ΩX Ja`.

Note that, since AdAE0 “ Ja`, the set iΩ is a slice both for the Adexp n0-action
on iΩ and for the N -action on D.

For DpV, F q irreducible, define a cone in Ja` as follows

C :“

#

Ct, in the tube case

Cnt, in the non-tube case

where Ct :“ conetEjuj, with j P t1, . . . , r ´ 1u such that sej´el “ t0u for some
l ą j, and Cnt “ conetEjuj, with j P t1, . . . , ru such that either sej´el “ t0u
for some l ą j, or sej “ t0u. (Here, given non-zero vectors v1, . . . ,vk, we
set conetv1, . . . ,vku :“ t

ř

j tjvj, tj ą 0u).

In the reducible case, the normal J-algebra s and all its related objects decom-
pose accordingly. In particular, the cone decomposes as C “ Cp1q ˆ . . . ˆ Cpmq,
where Cpiq is the cone associated to the ith irreducible component of DpV, F q

Example 3.1. (a) If DpV, F q is irreducible symmetric, then Ct “ conetE1, . . . , Er´1u

and Cnt “ conetE1, . . . , Eru (see (9) in [GeIa23]).

(b) Let DpV q be the tube domain over the 5-dimensional Vinberg cone

DpV q “

$

&

%

¨

˝

z11 0 z13
0 z22 z23
z13 z23 z33

˛

‚ | zij “ xij ` iyij P C,

#

y11y33 ´ y
2
13 ą 0

y22y33 ´ y
2
23 ą 0

and y33 ą 0

,

.

-

.

Then
s “ a‘ Ja‘ se1˘e3 ‘ se2˘e3 , dim a “ 3, dim sej˘el “ 1

and Ct “ conetE1, E2u.
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(b) Let DpV, F q be the 4-dimensional non-symmetric domain

DpV, F q “

#

ˆˆ

z11 z12
z12 z22

˙

, w

˙

| zij “ xij ` iyij, w P C,

#

py11 ´ |w|
2qy22 ´ y

2
12 ą 0

y22 ą 0

+

.

Then

s “ a‘ Ja‘ se1˘e2 ‘ se1 , dim a “ 2, dim se1˘e2 “ 1, dim se1 “ 2

and Cnt “ conetE1u.

Definition 3.2. A domain Ω Ă Ja` is C-invariant if E P Ω implies E`C Ă Ω
or, equivalently, if E P Ω implies E ` C Ă Ω.

Denote by
p : is1 Ñ iJa

the projection onto iJa, parallel to ip‘ sej`elq and by

rp : sC1 ‘ s1{2 Ñ iJa

the projection onto iJa parallel to s1 ‘ ip‘ sej`elq ‘ s1{2.

For simplicity, the next lemma is formulated in the irreducible case, and holds
on each irreducible component.

Lemma 3.3. The following statements hold true.

(i) Assume sej´el “ t0u, for some l ą j, and let X P sej´el be a non-zero
element. Then rrEl, Xs, Xs “ sEj, for some s P Rą0.

(ii) Let E “
ř

ykE
k P Ja`. Then ppiAdexp n0Eq “ ipE ` Ctq.

(iii) Let E P Ja`. Then rppN ¨ piE, 0qq “ ipE ` Cntq.

Proof. (i) Since rrEl, Xs, Xs “ rJX,Xs, then the statement follows from Lemma 2.1 (b).

(ii) Fix 1 ď j ď r´ 1 and define Lj :“ ‘ląjs
ej´el . In each root space sej´el “ t0u

in Lj, there exists an orthogonal basis tEp
jlup such that for X “

ř

ląj, p x
p
jlE

p
jl P Lj,

one has

pEjq˚pAdexpXEq “ yjp1`
ř

ląj, ppx
p
jlq

2q and pErq˚pAdexpXEq “ yr

(cf. Lemma 2.1, (b), (c)). Moreover, from a discussion similar to the one in
[RoVe73], p. 363, one obtains

pEj
q
˚
pAdexp n0Eq “ pE

j
q
˚AdexpLj

E

([RoVe73], Theorem 4.10, formula (4.13)). Hence ppiAdexp n0Eq “ ipE ` Ctq, as
claimed.

(iii) The N -orbit of the point piE, 0q P sC1 ‘ s1{2 is given by

tpξ ` ipAdexp n0E ` F pζ, ζqq, ζq : ξ P s1, ζ P s1{2u. (5)
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By (5) and Lemma 3.3 (ii), one has

rppN ¨ piE, 0qq “ ipE ` Ctq ` tp̃piF pζ, ζqq : ζ P s1{2u .

If sej “ t0u and ζ “ 0 in sej , then by Lemma 2.1(c) the element F pζ, ζq “
1
4
rJζ, ζs is a positive multiple of Ej. Therefore p̃pN ¨ piE, 0qq “ ipE ` Cntq, as

claimed. �

Theorem 3.4. Let DpV, F q be a homogeneous Siegel domain of rank r. Let D
be an N-invariant domain in DpV, F q and let Ω be the base of the associated
tube domain. Then D is Stein if and only if Ω is convex and C-invariant.

Proof of Theorem 3.4. We first prove that D Stein implies Ω convex and C-
invariant. Then we show that Ω convex and C-invariant implies D convex and
therefore Stein (cf. [Gun90], Vol.1, Thm.10, p. 67). In particular, if D is Stein,
then it is necessarily convex. An essential fact is that the N -action on D is affine
and every affine map commutes with taking convex hulls.

The tube case. An N -invariant domain D in a tube domain DpV q is itself a
tube domain with base the Adexp n0-invariant set Ω. Since D is Stein if and only
if its base is convex, all we have to show is that Ω convex and C-invariant is
equivalent to Ω being convex.

If Ω is convex, then Ω is clearly convex. In order to prove that Ω is Ct-invariant,
let E “

ř

k ykE
k P Ω, with yk ą 0, for k “ 1, . . . , r. If the root space sej´el “ t0u,

let X be a non-zero element therein. Since adX is 2-step nilpotent, for every t P R

Adexp tXE “ E ` tylrX,E
ls ` 1

2
t2ylrX, rX,E

lss

is an element of Ω. As Ω is convex, by replacing t with ´t, one finds that also
the midpoint E ` 1

2
t2ylrX, rX,E

lss lies in Ω. This says that E ` λEj lies in Ω,
for all λ ě 0. The same argument applied to all j P t1, . . . , r ´ 1u for which
sej´el “ t0u, for some l ą j, and the convexity of Ω imply that Ω ` Ct Ă Ω, as
desired.

Conversely, assume that Ω is convex and C-invariant. We are going to prove
that convpΩq Ă Ω. Since Ω “ Adexp n0Ω, from Lemma 3.3 (ii) and the C-
invariance of Ω, one has

ppiΩq “ ppiAdexp n0Ωq “ ipΩ` Ctq Ă iΩ.

From the above inclusion and the convexity of Ω, one has

convpiΩq X iJa Ă ppconvpiΩqq “ convpppiΩqq Ă iΩ.

Finally, from the Adexp n0-invariance of convpiΩq it follows that

convpiΩq “ Adexp n0pconvpiΩq X iJaq Ă Adexp n0iΩ “ iΩ.

This completes the proof of the theorem in the tube case.
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The non-tube case. Let D be an N -invariant domain in a Siegel domain
DpV, F q. Denote by convpDq the convex hull of D in sC1 ‘ s1{2, which is N -
invariant as well.

If D is Stein, then D X psC1 ˆ t0uq “ tpZ, 0q P sC1 ‘ s1{2 |ImpZq P Ωu is
biholomorphic to a Stein tube domain in sC1 , invariant under exppn0‘n1q. Hence,
by Theorem 3.4 in the tube case, the set Ω is convex and Ω ` Ct Ă Ω. The fact
that Ω`Cnt Ă Ω follows from (5) and the fact that F pζ, ζq is an arbitrary positive
multiple of Ej, when ζ varies in sejzt0u.

Conversely, assume that Ω is convex and C-invariant. By Lemma 3.3 (iii), one
has

rppDq “ rppN ¨ iΩq “ ipΩ` Cntq Ă iΩ.

Moreover,

convpDq X iJa Ă rppconvpDqq “ convprppDqq Ă iΩ.

By the N -invariance of convpDq, one obtains

convpDq “ N ¨ pconvpDq X iJaq Ă N ¨ iΩ “ D.

Hence D is convex and therefore Stein (cf. [Gun90], Vol.1, Thm.10, p. 67). This
concludes the proof of the theorem. �

We conclude this section by observing that holomorphically separable, N -
equivariant, Riemann domains over a bounded domain D are univalent: the
same proof as in the symmetric case works in the more general case (see [GeIa23],
Prop. 3.7).

Corollary 3.5. The envelope of holomorphy pD of an N-invariant domain D

in D is the smallest Stein domain in D containing D. Namely, pD is the N-

invariant domain such that the base pΩ of the associated tube is the convex C-
invariant hull of Ω.

4. An N-invariant potential of the Bergman metric

Let DpV, F q be a Siegel domain and let ps, J,´f0q be the associated normal J-
algebra, where´f0 P s

˚ is the form inducing the Bergman metric g onDpV, F q. In
this section we exhibit an N -invariant potential of g, expressed in a Lie theoretical
fashion. In order to do this we determine an explicit formula for the N -moment
map associated to g.

For X P s denote by rX the vector field on DpV, F q induced by the left S-acion.

Its value at z “ s ¨ p0 is given by rXz “
d
dt

ˇ

ˇ

t“0
exp tX ¨ z. If z “ a ¨ p0, with

a “ expH and H P a, and X P sα, then rXz “ e´αpHqa˚X.
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Lemma 4.1. (a) The map µS : DpV, F q Ñ s˚, defined by

µSpzqpXq :“ ´f0pAds´1Xq, z “ s ¨ p0, X P s,

is an S-moment map with respect to g.

(b) The map µN : DpV, F q Ñ n˚, defined by

µNpzqpXq :“ ´pAd˚af0qpAdn´1Xq, z “ na ¨ p0, X P n

is an N-moment map with respect to g.

Proof. (a) By definition, the map µS is S-equivariant and satisfies µSpp0q “ ´f0.
We identify DpV, F q with the group S by the map (1), and prove that

dµXS psqpZq “ ωsp rXs, Zq, Z P TsS, X P s. (6)

Let W P TeS – s. Then

dµXS pW q “
d
dt

ˇ

ˇ

t“0
µXS pexp tW q “ d

dt

ˇ

ˇ

t“0
´ f0pAdexpp´tW qXq “ ´f0p

d
dt

ˇ

ˇ

t“0
ead´tWXq

“ ´f0p´rW,Xsq “ ´f0prX,W sq “ ωpX,W q.

Now take s P S and let s˚W P TsS – s˚s. On the left hand side of (6), we find

pdµXS qps˚W q “
d
dt

ˇ

ˇ

t“0
µXS ps exp tW q “ d

dt

ˇ

ˇ

t“0
´ f0pAdexp´tWAds´1Xq

“ ´f0p´rW,Ads´1Xsq “ ´f0prAds´1X,W sq.

Since also the right hand side of (6) is given by

ωsp
d

dt

ˇ

ˇ

t“0
exp tX¨s, s˚W q “ ωsps˚Ads´1X, s˚W q “ ωpAds´1X,W q “ ´f0prAds´1X,W sq,

the proof of (a) is complete.

(b) The restriction of µS to n defines an N -moment map µN on DpV, F q. Since
µN is N -equivariant, it is uniquely determined by µNpa ¨ p0qpXq “ ´Ad

˚
af0pXq,

for X P n. It follows that µNpzqpXq “ ´pAd
˚
af0qpAdn´1Xq, as claimed. �

The moment map µS defined in Lemma 4.1 is an embedding of DpV, F q in
s˚ as the coadjoint orbit of ´f0 , with trivial isotropy subgroup. The image
µSpDpV, F qq is the convex domain s˚0 ` s˚1{2 ` V ˚ in s˚, where V ˚ :“ tφ P

s˚1 | φpXq ą 0, @X P V zt0uu is the dual cone of V in s1 (cf. [RoVe73], Lem. 3.5,
p. 350). Similarly, the image µNpDpV, F qq is the convex domain n˚0 ` s˚1{2 ` V

˚

in n˚.
Convexity properties of the moment map have been studied in several settings

(see [HiNePl94], and references therein). Here we show that the image under µN
of a Stein N -invariant domain in DpV, F q is not necessarily convex.



10 LAURA GEATTI AND ANDREA IANNUZZI

Let DpV, F q be a Siegel domain, and let D “ N ¨ iΩ be an N -invariant Stein
domain therein. One has

pJaq˚ X µNpDpV, F qq “ pJaq
˚
X V ˚ “ pJa`q˚

and one can easily verify that µN maps A ¨ p0 “ iJa` bijectively ontopJa`q˚.
Therefore µNpiΩq “ pJa

`q˚ X µNpDq. Consequently, if µNpiΩq is not convex,
then µNpDq is not convex either.

Example 4.2. Let P “ tZ “ X ` iY | Zt “ Z, Y " 0u be the Siegel upper half-
plane of rank 2. Then

A ¨ p0 “

"

i

ˆ

y1 0
0 y2

˙

| y1, y2 ą 0

*

and

µS

´

i

ˆ

y1 0
0 y2

˙

¯

“ ´3p 1
y1
pE1q˚ ` 1

y2
pE2q˚q.

Let D :“ N ¨ iΩ be the Stein N -invariant domain in P associated to the convex,
Ct-invariant domain

Ω :“

"

i

ˆ

y1 0
0 y2

˙

| y1y2 ą 1

*

.

The image

µNpiΩq “ tη1pE
1
q
˚
` η2pE

2
q
˚
| η1, η2 ă 0, η1η2 ă 9u

is clearly not convex. Therefore µNpDq is not convex either.
As the domain Ω Ă Ja` is convex and also Cnt-invariant, a similar construc-

tion actually provides examples of N -invariant Stein domains with non-convex
moment image in all rank-2 symmetric Siegel domains, both of tube type and of
non tube type.

Proposition 4.3. The N-invariant function ρ : DpV, F q Ñ R, given by

ρpna ¨ p0q :“ 2
ř

k ckhk,

where a “ expH, for H “
ř

k hkHk P a , and ´f0 “
ř

k ckpE
kq˚, is a potential

for the Kähler metric induced by ´f0.

Proof. As in the previous Lemma, we identify DpV, F q with S. In order to check

that ´ddcρ “ ω, we need to show that dcρp rXsq “ µXNpsq, for all s P S. By the
N -invariance of ρ and of J one has

dcρp rXnaq “ dcρp ČAdn´1Xaq ,

for every na P S. Then, as µN is N -equivariant, it is enough to show that

dcρp rXaq “ µXNpaq, (7)
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for all a P A and X P n. If X “ Ej, then

dcρppĂEjqaq “ e´2ejpHqdρpa˚JE
jq “ 1

2
e´2hj d

ds

ˇ

ˇ

s“0
ρpexppH ` sHjqq

“ e´2hjcj “ ´f0pAda´1Ej
q “ µE

j

N paq.

If X P sα, with 0 “ α R t2e1, . . . , 2eru, then JX P sβ, with 0 “ β R t2e1, . . . , 2eru.
By the N -invariance of ρ, one obtains

dcρp rXaq “ e´αpHqdρpa˚JXq “ e´αpHq`βpHq d
ds

ˇ

ˇ

s“0
ρpexppsJXqaq “ 0.

Since
µXNpaq “ ´f0pAda´1Xq “ ´e´αpHqf0pXq “ 0,

equation (7) holds true and the proposition follows. �

Remark. The above computation produces an N-invariant potential and an as-
sociated N-moment map, for any S-invariant Kähler metric on D induced by an
element

ř

j djpE
jq˚ P s˚, with dj P Rą0, for j “ 1, . . . , r (cf. Rem. 2.2).
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