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Abstract. In this paper we investigate invariant domains in ⌅+, a distin-
guished G-invariant, Stein domain in the complexification of an irreducible
Hermitian symmetric space G/K. The domain ⌅+, recently introduced by
Krötz and Opdam, contains the crown domain ⌅ and it is maximal with re-
spect to properness of the G-action. In the tube case, it also contains S+, an
invariant Stein domain arising from the compactly causal structure of a sym-
metric orbit in the boundary of ⌅. We prove that the envelope of holomorphy
of an invariant domain in ⌅+, which is contained neither in ⌅ nor in S+, is
univalent and coincides with ⌅+. This fact, together with known results con-
cerning ⌅ and S+, proves the univalence of the envelope of holomorphy of an
arbitrary invariant domain in ⌅+ and completes the classification of invariant
Stein domains therein.

1. Introduction

Let G/K be a non-compact, irreducible, Riemannian symmetric space. Its Lie
group complexification GC/KC is a Stein manifold and left translations by elements
of G are holomorphic transformations of GC/KC. In this situation, G-invariant
domains in GC/KC and their envelopes of holomorphy are natural objects to study.

A first example is given by the crown ⌅, introduced by D. N. Akhiezer and S.
G. Gindikin in [AkGi90]. This Stein invariant domain carries an invariant Kähler
structure intrinsically associated with the Riemannian structure of the symmetric
space G/K and, in many respects, can be regarded as its canonical complexification.
In recent years, it has been extensively studied in connection with harmonic analysis
on G/K (see, e.g [KrSt04], [KrSt05]).

If G/K is a Hermitian symmetric space of tube type, two additional distin-
guished invariant Stein domains S± arise from the compactly casual structure of
a pseudo-Riemannian symmetric space G/H lying on the boundary of ⌅. The
complex geometry of S± was studied by K. H. Neeb in [Nee99]. Inside the crown
⌅, as well as inside S± , an invariant domain can be described via a semisimple
abelian slice, its envelope of holomorphy is univalent and Steiness is characterized
by logarithmic convexity of such a slice.

One may ask how far the above results are from a complete description of
envelopes of holomorphy and a classification of invariant Stein domains in GC/KC .
In [GeIa08], a univalence result for G-equivariant Riemann domains over GC/KC ,
and in particular for envelopes of holomorphy, was proven in the rank-one case.
In addition, the complete classification of invariant Stein domains was obtained.
From the latter result one sees that, up to finitely many exceptions, all invariant
Stein domains are contained either in a copy of ⌅ or, in the Hermitian case of
tube type, in S±. The study the CR-structure of principal G-orbits in GC/KC

(i.e. closed orbits of maximal dimension) carried out in [Gea02], suggests that this
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fact holds true also in the higher rank case, the exceptions being finitely many
invariant domains whose boundary entirely consists of non-principal G-orbits.

In this paper we focus on G/K irreducible non-compact of Hermitian type. In
this case, B. Krötz and E. Opdam recently singled out two Stein invariant domains
⌅+ and ⌅� in GC/KC, which satisfy ⌅+ \⌅� = ⌅ and are maximal with respect
to properness of the G-action. The relevance of the crown ⌅ and of the domains
⌅+ and ⌅� for the representation theory of G was underlined in Theorem 1.1 in
[Kro08]. Since ⌅+ and ⌅� are G-equivariantly anti-biholomorphic, in the sequel
we simply refer to ⌅+. If G/K is Hermitian of tube type, then ⌅+ contains
both the crown ⌅ and the domain S+ ([GeIa13], Prop. 7.5). Moreover, for r :=
rank(G/K) > 1, the complement of ⌅ [ S+ in ⌅+ has non-empty interior. Our
main result is as follows.

Theorem. Let G/K be an irreducible non-compact Hermitian symmetric space.

Given a G-invariant domain D in ⌅+, denote by bD its envelope of holomorphy.

(i) Assume G/K is of tube type. If D is not contained in ⌅ nor in S+, then bD
is univalent and coincides with ⌅+ .
(ii) Assume G/K is not of tube type. If D is not contained in ⌅ , then bD is
univalent and coincides with ⌅+.

The envelopes of holomorphy of invariant domains in ⌅ or in S+ are known
to be univalent and their Steiness is characterized in terms of the aformentioned
semisimple abelian slices. Hence, the above theorem implies the univalence of the
envelope of holomorphy of an arbitrary invariant domain in ⌅+ and implies the
following classification.

Corollary. Let G/K be an irreducible non-compact Hermitian symmetric space
and let D be a Stein G-invariant proper subdomain of ⌅+.
(i) If G/K is of tube type, then either D ✓ ⌅ or D ✓ S+.
(ii) If G/K is not of tube type, then D ✓ ⌅.

The theorem is proved by showing that the natural G-equivariant holomorphic
embedding f : D ! bD admits a G-equivariant holomorphic extension f̂ : ⌅+ ! bD
to the whole ⌅+. For this purpose, we use the unipotent, abelian slice of ⌅+

introduced by B. Krötz and E. Opdam in [KrOp08]. Namely, one has

⌅+ = G · ⌃ ,

where ⌃ := exp i⇤x

r · x0 and ⇤x

r is a closed hyperoctant in an r-dimensional,
nilpotent, abelian subalgebra of g, the Lie algebra of G. This sets a one-to-one
correspondence

D ! ⌃D := D \ ⌃
between G-invariant domains in ⌅+ and domains in ⌃ which are invariant under
the action of an appropriate Weyl group (see Sect. 3).

Then a key ingredient is Lemma 4.7, which implies that a continuous extension
of f |⌃D to a domain e⌃ in ⌃ induces a G-equivariant, holomorphic extension of
f to G · e⌃ provided that certain compatibility conditions are satisfied. In order to
obtain f̂ , we therefore construct a continuous extension of f |⌃D to ⌃ satisfying
such compatibility conditions.

This is done in stages, where f |⌃D is extended to larger domains e⌃ ⇢ ⌃
properly containing ⌃D. Such extensions are obtained by equivariantly embedding
into GC/KC various lower dimensional complex homogenous manifolds LC/HC,
all of whose L-invariant domains have univalent and well understood envelope of
holomorphy. The embedding of each space LC/HC is carefully chosen, so that it
intersects D in some L-invariant domain T ⇢ LC/HC. By the universality property
of the envelope of holomorphy, the map f |T : T ! bD extends L-equivariantly to
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a holomorphic map bT ! bD producing in particular a real-analytic extension of
f |⌃D along the submanifold bT \ ⌃. Generally, the intersection bT \ ⌃ is not open
in ⌃. In that case, an extension of f |⌃D to an open set e⌃ ⇢ ⌃ is obtained by
embedding a continuous family of copies of T into D.

The real homogenous manifolds L/H which play a role in our situation are:
real r-dimensional vector spaces acted on by (Rr,+), the Euclidean plane acted on
by its isometry group, and irreducible rank-one Hermitian symmetric spaces, both
of tube-type and non-tube type. In the latter case, the univalence results on equi-
variant Riemann domains obtained in [GeIa08] are crucial. The above strategy was
inspired by the work of K. H. Neeb on bi-invariant domains in the complexification
of a Hermitian semisimple Lie group ([Nee98]).

The paper is organized as follows. In section 2, we set up the notation and recall
some preliminary facts which are needed in the paper. In section 3, we recall the
unipotent paramentrization of ⌅+ and of its G-invariant subdomains. In section
4, we recall some basic facts about envelopes of holomorphy and develope the tools
used in the proof of the main theorem. In section 5 we prove the main theorem.

2. Preliminaries

Let G/K be an irreducible Hermitian symmetric space of the non-compact
type. We may assume G to be a connected, non-compact, real simple Lie group
contained in its simple, simply connected universal complexification GC, and K to
be a maximal compact subgroup of G. Denote by g and k the Lie algebras of G
and K, respectively. Denote by ✓ both the Cartan involution of G with respect to
K and the associated involution of g. Let g = k � p be the corresponding Cartan
decomposition. Let a be a maximal abelian subspace in p. The rank of G/K is by
definition r = dim a. The adjoint action of a decomposes g as

g = a� Zk(a)�
M

↵2�(g,a)

g↵,

where Zk(a) is the centralizer of a in k, the joint eigenspace g↵ = {X 2 g | [H,X] =
↵(H)X, for every H 2 a} is the ↵-restricted root space and�(g, a) consists of those
↵ 2 a⇤ for which g↵ 6= {0}. A set of simple roots ⇧a in �(g, a) uniquely determines
a set of positive restricted roots �+(g, a) and an Iwasawa decomposition of g

g = k� a� n, where n =
M

↵2�+(g,a)

g↵ .

The restricted root system of a Lie algebra g of Hermitian type is either of type Cr

(if G/K is of tube type) or of type BCr (if G/K is not of tube type), i.e. there
exists a basis {e1, . . . , er} of a⇤ for which

�(g, a) = {±2ej , 1  j  r, ±ej ± ek, 1  j 6= k  r}, for type Cr,

�(g, a) = {±ej , ±2ej , 1  j  r, ±ej ± ek, 1  j 6= k  r}, for type BCr.

Since g admits a compact Cartan subalgebra t ⇢ k ⇢ g, there exists a set of
r positive long strongly orthogonal restricted roots {�1, . . . ,�r} (i.e. such that
�j ± �k 62 �(g, a), for j 6= k), which are restrictions of real roots with respect to a
maximally split ✓-stable Cartan subalgebra l of g extending a.

Taking as simple roots ⇧a = {e1 � e2, . . . , er�1 � er, 2er}, for type Cr, and
⇧a = {e1 � e2, . . . , er�1 � er, er}, for type BCr, one has

�1 = 2e1, . . . ,�r = 2er ,
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and dim g�j = 1, for j = 1, . . . , r. Let Z0 be the element in Z(k) defining the
complex structure J0 = adZ0 on G/K. For j = 1, . . . , r, choose Ej 2 g�j such that
the sl(2)-triple

{Ej , ✓Ej , Aj := [✓Ej , Ej ]} (1)

is normalized as follows

[Aj , Ej ] = 2Ej , [Z0, Ej � ✓Ej ] = Aj , [Z0, Aj ] = �(Ej � ✓Ej) . (2)

Then the vectors {A1, . . . , Ar} form an orthogonal basis of a (with respect to the
restriction of the Killing form) and

[Ej , Ek] = [Ej , ✓Ek] = 0, [Aj , Ek] = �k(Aj)Ek = 0, for j 6= k . (3)

That is, the above sl(2)-triples commute with each other. Moreover, under the
above choices, the element Z0 is given by

Z0 = S +
1

2

X

Tj , (4)

where Tj = Ej +✓Ej and S 2 Zk(a) (see Lemma 2.4 in [GeIa13]). If G/K is of tube
type one has S = 0.

In the sequel, we denote by gj the sl(2)-triple satisfying (1) and (2), and by Gj

the corresponding connected ✓-stable subgroup of G. In the non-tube case, to each
�j one can also associate a connected, simple, real rank-one Hermitian subgroup
G•

j of G. The group G•
j is by definition the connected, ✓-stable subgroup of G with

Lie algebra
g•j = RAj � g±�j/2 � g±�j (5)

isomorphic to su(m, 1), for some m > 1.

Lemma 2.1. Let G/K be an irreducible Hermitian symmetric space, which is not
of tube type. Let G•

j be the simple real rank-one Hermitian subgroup associated to
the root �j, for some j 2 {1, . . . , r}. Then G•

j commmutes with the subgroups Gk,
for every k 6= j.

Proof. By relations (3), one has [gj , gk] ⌘ 0, for k 6= j. Futhermore, since ±ej±2ek,
for k 6= j, are not roots in �(g, a) and ej(Ak) = �jk, one also has [g±�j/2, gk] ⌘ 0.
Summarizing, there is commutativity at Lie algebra level and likewise at group
level, by connectedness. ⇤

3. Invariant subdomains of ⌅+.

A description of the domain ⌅+ was given in [Kro08], p.286, and [KrOp08],
Sect.8, via its unipotent parametrization. Fix vectors Ej 2 g�j normalized as in
(2). Then

⌅+ = G exp i
r
M

j=1

(�1,1)Ej · x0.

Define the nilpotent abelian subalgebras

⇤r := spanR{E1, . . . , Er} and ⇤C
r := spanC{E1, . . . , Er}

of n and nC, respectively. The exponential map of GC defines a biholomorphism
between ⇤C

r and the unipotent abelian complex subgroup LC := exp⇤C
r . In partic-

ular, it restricts to a di↵eomorphism between ⇤r and the real unipotent subgroup
L := exp⇤r. Since the map

◆ : nC ! NC · x0, Z ! expZ · x0, (6)
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is a biholomorphism onto its image (cf. Prop. 1.3 in [KrSt04]), so is its restriction
◆ : ⇤C

r ! LC · x0.

Lemma 3.1. The intersection ⌅+ \ LC · x0 is a closed, r-dimensional, complex
submanifold of ⌅+, which is biholomorphic, via the map ◆, to the Stein tube domain
⇤r ⇥ i

Lr
j=1(�1,1)Ej of ⇤C

r .

Proof. By a result of Rosenlicht ([Ros61], Thm. 2), the orbits of the unipotent sub-
group LC in the a�ne space GC/KC are closed. In particular LC · x0 \⌅+ is closed
in ⌅+. Now the statement follows from the injectivity of map ◆ and the fact that
the set {X 2 ⇤r : exp iX ·x0 2 ⌅+ } coincides with

Lr
j=1(�1,1)Ej (see [Kro08],

p. 286). ⇤

By Lemma 3.1 in [GeIa13], the group WK(⇤r) := NK(⇤r)/ZK(⇤r) is a proper
subgroup of the Weyl group NK(a)/ZK(a) and acts on ⇤r by permutations of the
basis elements {E1, . . . , Er}.

As it was observed in [GeIa13], Remark 6.6, the intersection of a G-orbit in ⌅+

with the closed slice exp(i
Lr

j=1(�1,+1)Ej) · x0 is not just a WK(⇤r)-orbit. So,
we consider the smaller slice given by the nilpotent cone in g

N+ := AdK(⇤x

r),

where ⇤x

r is the WK(⇤r)-invariant, closed hyperoctant ⇤x

r := spanR�0{E1, . . . , Er}
in ⇤r. The following fact holds true.

Proposition 3.2. ([GeIa13], Prop. 4.7) The G-equivariant map

 : G⇥K N+ ! ⌅+, [g,X] ! g exp iX · x0

is a homeomorphism.

Given a G-invariant domain D ⇢ ⌅+, define an open subset of
Lr

j=1(�1,1)Ej

by D := {X 2 ⇤r : exp iX · x0 2 D }. By the definition of D and Proposition 3.2,
the domain D can be written as

D = G exp iD · x0 = G exp iDx · x0,

where Dx := D \ ⇤x

r is a WK(⇤r)-invariant open subset of ⇤x

r .

Lemma 3.3. ([GeIa13], Prop. 6.4) Let X be an element in ⇤x

r. Then the AdK-orbit
of X intersects ⇤r in the WK(⇤r)-orbit of X in ⇤x

r.

Note that the above result together with Proposition 3.2 implies that given X in ⇤x

r ,
one has

G exp iX · x0

\

exp i⇤x

r · x0 = exp i(WK(⇤r) ·X) · x0,

i.e. every G-orbit (not just K-orbit) in ⌅+ intersects the closed slice exp i⇤x

r · x0

exactly in a WK(⇤r)-orbit.
Consider the open Weyl chamber (⇤x

r)
+ :=

�

Pr
j=1 xjEj : x1 > · · · > xr > 0

 

.
Since WK(⇤r) acts on ⇤r by permutations of the basis elements {E1, . . . , Er}, its
topological closure

(⇤x

r)
+ =

n

r
X

j=1

xjEj , : x1 � · · · � xr � 0
o
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is a perfect slice for the WK(⇤r)-action on ⇤x

r , implying that exp i(⇤x

r)
+ · x0 is a

perfect slice for the G-action on ⌅+. It follows that for a G-invariant domain D of
⌅+ one also has

D = G exp i(Dx)+ · x0, where (Dx)+ := Dx \ (⇤x

r)
+ (7)

is an open subset of (⇤x

r)
+. In particular, (Dx)+ is connected if and only if D is

connected. In the sequel we also need the following fact.

Lemma 3.4. Let X be an element in ⇤x

r. Then every connected component of
ZK(X) meets ZK(⇤r).

Proof. Let X be an arbitrary element in ⇤x

r . By Lemma 3.1 (i) and Lemma 4.6 in
[GeIa13], one has

ZK(⇤r) ⇠= ZK(a) and ZK(X) ⇠= ZK( (X)),

where  (X) = [Z0, X � ✓X] 2 a. Thus in order to prove the lemma, it is su�cient
to show that for an arbitrary element H 2 a, every connected component of ZK(H)
meets ZK(a).

The centralizer ZG(H) is a ✓-stable reductive subgroup of G (see [Kna04],
Prop. 7.25, p. 452) of the same rank and real rank as G, with maximal compact
subgroup ZK(H). A maximal abelian subspace of Zp(H) is a and, as ZK(a) is
contained in ZK(H), one has that ZZK(H)(a) = ZK(a). Now Proposition 7.33 in
[Kna04], p. 457, applied to the reductive group ZG(H), states that ZK(a) meets
every connected component of ZK(H), as desired. ⇤

In [GeIa13] it was shown that if G/K is of tube type, then ⌅+ contains another
distinguished Stein invariant domain, besides the crown ⌅. Such domain S+ arises
from the compactly causal structure of a pseudo-Riemannian symmetric G-orbit in
the boundary of ⌅. The domain S+ and its invariant subdomains were investigated
in [Nee99]. In the unipotent parametrization of ⌅+, the domain ⌅ is given as follows
(see [KrOp08], Sect. 8, [GeIa13], Prop. 7.5):

⌅ = G exp i
r
M

j=1

[0, 1)Ej · x0 . (8)

If G/K is of tube type, then one has

S+ = G exp i
r
M

j=1

(1,1)Ej · x0. (9)

4. Envelopes of holomorphy of invariant domains in ⌅+.

In this section we prove some preliminary results supporting the three basic
ingredients of the proof of the main theorem. A key result is Lemma 4.7, used to
produce G-equivariant, holomorphic extensions of the embedding f : D ! bD to
invariant domains properly containing D.

We begin by recalling some general facts about envelopes of holomorphy. Let
X be a Stein manifold and let D be a domain in X. By Rossi’s results [Ros63],
D admits an envelope of holomorphy bD. This means that there exist an open
holomorphic embedding f : D ! bD into a Stein manifold bD to which all holomorphic
functions on D simultaneously extend. Moreover, there is a local biholomorphism
q : bD ! X such that q � f = IdD.
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Proposition 4.1. Let D1 and D2 be complex manifolds, with envelopes of holo-

morphy f1 : D1 ! bD1 and f2 : D2 ! bD2, respectively. Let F : D1 ! D2 be a

holomorphic map. Then there exists a unique holomorphic map bF : bD1 ! bD2 such

that bF � f1 = f2 � F .

Proposition 4.2. Let X be a Stein manifold and let D ⇢ X be a domain with

envelope of holomorphy q : bD ! X.

(i) Let ⌦ be the smallest Stein domain in X containing D. Then q( bD) is contained
in ⌦ and coincides with ⌦ provided that q is univalent.
(ii) Let ⌦ be a domain in X containing D. Assume there exists a holomorphic map

f̂ : ⌦! bD extending f . Then b⌦ = bD.

Proof. (i) By Proposition 4.1, an arbitrary Stein domain containing D necessarily
contains q( bD). Define

⌦ := Int (\C2FC ) ,

where F denotes the family of all Stein domains in X containing D. By definition,
⌦ contains D and it is open. It remains to show that it is Stein and connected.
When X = Cn, the Steinness of ⌦ follows from Corollary 2.5.7 in [Hor90]. When
X is an arbitrary Stein manifold, let B an open domain in X biholomorphic to
the unit ball of Cn. From the identity B \ ⌦ = Int (\C2F (B \ C)) and Corollary
2.5.7 in [Hor90], it follows that B \ ⌦ is Stein, implying that ⌦ is locally Stein in
X. Now a classical result of Docquier-Grauert ([DoGr60], Satz 11, p.113) applies,
showing that ⌦ is Stein. Finally, ⌦ is connected, since so is D. Statement (ii) is a
straightforward consequence of Proposition 4.1. ⇤

Coming back to our situation, let

D = G exp iD · x0 = G exp iDx · x0

be a G-invariant domain in ⌅+. Since ⌅+ is Stein, there is a commutative diagram

bD

q

✏✏
D

f

>>||||||||
Id // ⌅+.

(10)

Moreover the G-action lifts to an action on bD and all the maps in diagram (10) are
G-equivariant. We prove that under the assumption that D is not entirely contained
in ⌅ nor in S+ (in the tube case), the map f : D ! bD can be G-equivariantly
extended to the whole ⌅+. Then by Proposition 4.2(ii), one concludes bD = ⌅+.

The strategy is to gradually enlarge the domain of definition of f by iterating
the following arguments. By reduction 1, we show that f can be G-equivariantly
extended to a domain G exp i eDx ·x0 with all the connected components of eDx convex
(see Prop. 4.10). By reduction 2, we show that f can be G-equivariantly extended
to a domain with eDx connected (see Prop. 4.13). The third basic ingredient is the
rank-one reduction. It is based on the univalence and the precise description of the
envelope of holomorphy of an arbitrary G-invariant domain in the complexification
of a rank-one Hermitian symmetric space (cf. [GeIa08], Thm.6.1, Thm.7.6). The
approach is similar to the one used by Neeb in [Nee98].

The rank-one case. For the reader’s convenience we outline a proof of the relevant
facts in this case, in the formulation which is needed in this paper. For n � 1, let
G = SU(n, 1) be the subgroup of SL(n+1,C) leaving invariant the hermitian form
In,1 in Cn+1 and let � be the conjugation of GC = SL(n+1,C) relative to G, namely
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�(g) = In,1tḡ�1In,1. Denote by Pn
the complex projective space endowed with the

opposite complex structure. The group GC acts holomorphically on Pn ⇥ Pn
by

g · ([p], [q]) := ([g · p], [�(g) · q]), and GC/KC can be identified with the open orbit
GC · x0, where x0 = ([0 : . . . : 0 : 1], [0 : . . . : 0 : 1]). Fix the element

E =
1

2

✓

O O
O e

◆

, with e =

✓

i �i
i �i

◆

,

in g so that the triple {E, ✓E, A = [✓E,E]} is normalized as in (2). The nilpotent
slice ` : [0,+1) ! ⌅+ is given by

`(t) = exp itE · x0 =
⇣

[0 : . . . : 0 :
t

2
:
t+ 2

2
], [0 : . . . : 0 :

t

2
:
t� 2

2
]
⌘

.

As we are in the rank-one case, an invariant domain in ⌅+ can be written as
D = G exp iIE · x0, where I is an open interval in [0,1).

Lemma 4.3. Let G = SU(n, 1), for n � 1, and let D be a proper Stein G-invariant
subdomain of ⌅+.
(i) If n > 1, then D = G exp i[0, b)E · x0, for some b  1.
(ii) If n = 1, then either D = G exp i[0, b)E · x0, for some b  1, or D =
G exp i(a,1)E · x0, for some 1  a < 1.

Proof. We obtain the above classification by computing the Levi form of hyper-
surface G-orbits in ⌅+. We do this by exploiting a smooth G-invariant function
f : ⌅+ ! R, all of whose level sets, but {f = �1} = G · x0, are single hypersurface
orbits in ⌅+ (cf. [GeIa08], Ex.6.3). For every t > 0, the element `(t) is contained
in the holomorphic chart  : Cn ⇥ Cn \ Z ! GC/KC, defined by

((z1, . . . , zn), (w1, . . . , wn)) ! ([z1 : . . . : zn�1 : 1 : zn], [w̄1 : . . . : w̄n�1 : 1 : w̄n]) ,

where Z := {(z, w) 2 Cn ⇥ Cn : < z, w̄ >n�1,1 +1 = 0 }, and corresponds to the
element ((0, . . . , 0, t+2

t ), (0, . . . , 0, t�2
t )) therein. On the above chart the function f

reads as

f(z, w) = � (hz, zin�1,1 + 1)(hw,win�1,1 + 1)

|hz, w̄in�1,1 + 1|2 .

The complex tangent space TCR
`(t) (G · `(t)) := T`(t)(G · `(t)) \ J`(t)T`(t)(G · `(t)) to

the orbit G · `(t) at `(t), which is the kernel of the complex gradient of f at `(t), is
given by

TCR
`(t) (G · `(t)) =

� �

(⇣, (1 + t)⌘), (!, (1� t)⌘)
�

2 Cn ⇥ Cn
 

,

where ⇣ = (⇣1, . . . , ⇣n�1), ! = (!1, . . . ,!n�1) 2 Cn�1 and ⌘ 2 C. The quadratic
Levi form of f at `(t) is given by

L`(t)f
�

(⇣, (1+ t)⌘), (!, (1� t)⌘)
�

=
t2

4

⇣

(1+ t)k⇣k2 +(1� t)k!k2 + t2(1� t2)

2
|⌘|2

⌘

.

Set n > 1. The above formula shows that the hypersurfaces G · `(t) have indefinite
Levi form, for all t > 1. By [Gun90], Thm.4, p.194, only hypersurface orbits with
semidefinite Levi form can lie on the boundary of a Stein domain. It follows that
D is necessarily of the form G exp iIE · x0, for some open interval I in [0, 1). We
claim that I = [0, b), for some b  1.

Assume by contraddiction that I = (a, b), for some a > 0. Since f is strictly
increasing on the slice ` and L`(a)f is positive definite for 0 < t < 1, the domain
{x 2 ⌅+ : f(`(a)) < f(x)} is not Stein ([Gun90], Thm.4, p.194). Therefore a = 0.
Further, since the orbit G ·x0 is totally real in GC/KC, every holomorphic function
defined on G exp i(0, b)E ·x0 extends to G exp i[0, b)E ·x0. Consequently, I = [0, b),
for b  1. Since L`(b)f is positive semidefinite, and the signature of the Levi form
is a biholomorphic invariant, the intersection G exp i[0, b)E ·x0 \  (Cn⇥Cn \Z) is
Levi-pseudoconvex. Hence it is Stein, by [Gun90], Thm.4, p.194. By G-invariance,
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G exp i[0, b)E · x0 \ g · (Cn ⇥Cn \ Z) is Stein as well, for all g 2 G, implying that
the domain G exp i[0, b)E · x0 is locally Stein in ⌅+. Then it is Stein by [DoGr60],
Satz 11, p.113.

If n = 1, the Levi form of the orbits G · `(t) is positive definite for 0 < t <
1, negative definite for t > 1, and zero for t = 1. Consequently a proper Stein
subdomain is either contained in G exp i[0, 1)E · x0 or in G exp i(1,1)E · x0. To
exclude Stein domains other than those indicated in statement (ii), one argues as
in the previous case. ⇤

Proposition 4.4. Let G = SU(n, 1) and let D be a G-invariant domain in ⌅+.

Then the envelope of holomorphy bD of D is univalent and given as follows.

(i) If D = G exp i(a, b)E · x0 or D = G exp i[0, b)E · x0, with b  1, then

bD = G exp i[0, b)E · x0;

(ii) If D = G exp i(a, b)E · x0 or D = G exp i(a,1)E · x0 , with a � 1, then

bD = G exp i(a,1)E · x0 if n = 1

bD = ⌅+ if n > 1 .

(iii) If D contains the orbit G · `(1), then bD = ⌅+.

Proof. The projection q : bD ! ⌅+ is G-equivariant. Note that for all n � 1 the
center Z of SU(n, 1) acts trivially on D ⇢ GC/KC and, by the analytic continuation
principle, on bD. In particular, for n = 1 the projection q : bD ! ⌅+ is, in fact,
SU(1, 1)/Z ⇠= PSL(2,R)-equivariant and Theorem 7.6 in [GeIa08] applies for every
n � 1. Hence q is injective and consequently the envelope of holomorphy bD coincides
with the smallest Stein G-invariant domain in ⌅+ containing D (cf. Prop. 4.2).
The classification of all Stein G-invariant domains in ⌅+ contained in Lemma 4.3
completes the proof of the proposition. ⇤

The extension lemma. The goal of this subsection is to prove the “extension
lemma”, which provides su�cient conditions for a continuous lift f : exp iC ·x0 ! bD
to extend to a G-equivariant holomorphic map f̂ : G exp iC · x0 ! bD. One of the
conditions involves the isotropy subgroups of points z 2 D and f(z) 2 bD.

Since the projection q : bD ! ⌅+ is a G-equivariant local biholomorphism, the
isotropy subgroup Gz of z 2 bD consists of connected components of the isotropy
subgroup Gq(z) of q(z) 2 ⌅+. On the other hand, since f : D ! bD is a G-equivariant
biholomorphism onto its image and q|f(D) � f = IdD, one has Gz = Gq(z), for all
z 2 f(D). In the sequel it will be crucial to have such an identity of isotropy
subgroups for points lying in suitable submanifolds of q( bD), to which the map f
extends holomorphically.

Lemma 4.5. Let C be an open subset of ⇤x

r and let f : exp iC · x0 ! bD be a
continuous map such that q � f = Id. Assume that there exists an open subset F of
C such that
(i) Gf(exp iX0·x0) = Gexp iX0·x0 for all X 0 in F ,
(ii) for every X 2 C, there exist an element X 0 2 F , such that the segment {X 0 +
t(X �X 0) : t 2 [0, 1]} is contained in C, and a holomorphic extension of f to the
submanifold S = { exp(i(X 0 + �(X �X 0))) · x0 : Re� 2 [0, 1] }.
Then Gf(exp iX·x0) = Gexp iX·x0 , for every X in C.
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Proof. Since q is G-equivariant and q � f = Id on exp iC · x0, it is clear that
Gf(exp iX·x0) ⇢ Gexp iX·x0 for all X 2 C. In order to prove the opposite inclusion,
we consider first generic elements in C.

By definition, generic elements X 2 ⇤x

r are those for which ZK(X) = ZK(⇤r),
and by Lemma 6.3 in [GeIa13], they are dense in ⇤x

r . Let X be a generic element
in C and let g be an element in Gexp iX·x0 = ZK(⇤r). The fixed point set of g in bD

Fix(g, bD) := {z 2 bD | g · z = z}

is a complex analytic subset of bD. LetX 0 2 F be an element satisfying condition (ii)
of the lemma. Since both C and F are open, X 0 can be chosen generic as well.
Consider the strip S := {� 2 C : Re� 2 [0, 1]} and define the function

� : S ! bD, �(�) := f(exp i(X 0 + �(X �X 0) · x0)) .

We are going to show that the set

A := {� 2 S : g · �(�) = �(�)}

contains the element 1: this implies that f(exp iX · x0) 2 Fix(g, bD) and proves the
statement for X generic.

Since both X and X 0 are generic in ⇤x

r , one has that Gexp iX0·x0 = Gexp iX·x0 =
ZK(⇤r). Therefore g 2 Gexp iX0·x0 and, by condition (i), it follows that f(exp iX 0 ·
x0) 2 Fix(g, bD). Consequently 0 2 A. Since F is open, there exists " > 0 such
that [0, ") ⇢ A. Let [0, b) be the maximal open interval in A \ R containing 0 and
assume by contradiction that b 6= 1. Since A is closed, it follows that b 2 A and, by
the definition of A, that �(b) 2 Fix(g, bD). Locally, in a neighbourhood U of �(b)
in bD, the analytic set Fix(g, bD) is given as

Fix(g, bD) \ U = {z 2 U |  1(z) = . . . =  k(z) = 0},
for some  1, . . . , k 2 O(U). Thus, for each j = 1, . . . r, the holomorphic function

 j � � : ��1(U) ! C, � 7!  j(f(exp i(X
0 + �(X �X 0)) · x0))

vanishes identically on [0, b]. Since ��1(U) is open in S, there exists "0 > 0 such
that the restriction  j ��(b�"0,b+"0) is real analytic and identically zero on (b�"0, b].
Hence it is identically zero on the whole interval (b � "0, b + "0), contradicting the
maximality of b. Thus b = 1 and b 2 A, as claimed. This concludes the case of
generic elements in C.

Consider now a non-generic element X 2 C. Since generic elements form an
open dense subset of C, and all have isotropy subgroup ZK(⇤r), one obtains that
g · f(exp iX · x0) = f(exp iX · x0), for all g 2 ZK(⇤r). This fact together with
Lemma 3.4 implies that Gexp iX·x0 ⇢ Gf(exp iX·x0) for all X 2 C, and concludes the
proof of the lemma. ⇤

Lemma 4.6. Let D = G exp iDx · x0 be a G-invariant domain in ⌅+ and let X
be a G-space. A G-equivariant map f : D ! X is continuous if and only if its
restriction to exp iDx · x0 is continuous.

Proof. One implication is clear. For the converse, we first prove that f is contin-
uous on K exp iDx · x0 = exp iAdKDx · x0. Consider the identification AdKDx !
exp iAdKDx · x0 defined by X ! exp iX · x0 (see Prop. 3.2) and let Xn ! X0 be a
converging sequence in AdKDx. Choose elements kn in K such that AdknXn 2 Dx.
SinceK is compact, we can assume that the sequence {kn}n converges to an element
k0 2 K and that AdknXn ! Adk0X0.
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Now observe that Dx = ⇤x

r \ AdKDx (see Lemma 3.3). It follows that Dx

is closed in AdKDx, implying that Adk0X0 is contained in Dx (and not just in
AdKDx). Then one has

f(exp iXn · x0) = k�1
n · f(exp i(AdknXn) · x0) ! k�1

0 · f(exp i(Adk0X0) · x0) =

= f(exp iX0 · x0) ,

which says that f is continuous on exp iAdKDx · x0, as claimed.
Next, consider the following commutative diagram

G⇥AdKDx

⇡

✏✏

f̃

%%L
LL

LL
LL

LL
L

D
f // X ,

where ⇡ is the map given by (g,X) ! g exp iX·x0 and f̃ is the lift of f toG⇥AdKDx.
As a consequence of Proposition 3.2, the map f is continuous if and only if so is
f̃ . So let (gn, Xn) ! (g0, X0) be a converging sequence in G⇥ AdKDx. Since f is
continuous on exp iAdKDx · x0, one has

f̃(gn, Xn) = f(gn exp iXn · x0) =

gn · f(exp iXn · x0) ! g0 · f(exp iX0 · x0) = f(g0 exp iX0 · x0) = f̃(g0, X0) .

Thus f̃ is continuous, implying that f is continuos. ⇤

Lemma 4.7. (Extension lemma). Let C be an open subset of ⇤x

r and let f : exp iC·
x0 ! bD be a continuous map such that q � f = Id and Gexp iX·x0 = Gf(exp iX·x0),
for every X 2 C. Assume that for every pair X,X 0 2 C on the same WK(⇤r)-orbit
there exists n 2 NK(⇤r) such that

X 0 = AdnX and f(exp iX 0 · x0) = n · f(exp iX · x0).

Then there exists a unique G-equivariant holomorphic map f̂ : G exp iC · x0 ! bD
which extends f .

We point out that the domain G exp iC · x0 coincides with G exp i(WK(⇤r) · C) · x0.

Proof. If one such f̂ exists, it is uniquely determined by the relation

f̂(g exp iX · x0) := g · f(exp iX · x0), for X 2 C and g 2 G.

By Proposition 3.2 and Lemma 3.3, the above map f̂ is well defined.
Since G exp iC ·x0 = G exp i(WK(⇤r) · C) ·x0, in order to show that f̂ is contin-

uous, by Lemma 4.6, it is su�cient to show that f̂ is continuous on exp(iWK(⇤r) ·
C) ·x0, i.e. on each set exp(i� · C) ·x0, for � in WK(⇤r). By assumption, f̂ is contin-
uous on exp iC · x0. This settles the case when � is the neutral element in WK(⇤r).
Otherwise, write � = nZK(⇤r), for some n 2 NK(⇤r). Then by the G-equivariance
of f̂ one has

f̂(exp(i� ·X) · x0) = f̂(exp iAdnX · x0) = n · f̂(exp iX · x0) ,

for every X 2 C, proving that f̂ is continuous on exp(i� · C) · x0, as wished.
Finally we show that f̂ is holomorphic. Note that q � f̂ = Id, since by assump-

tion such equality holds true on exp iC · x0 and f̂ is G-equivariant. Let x be an
element of G exp iC · x0 and choose a connected open neighborhood U of f̂(x) such
that the restriction q|U : U ! f̂(U) is a biholomorphism. Then, given a neighbor-
hood V of x such that f̂(V ) ⇢ U , one has f̂ |V = (q|U )�1 � Id, implying that f̂ is
holomorphic. ⇤
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Reduction 1. Let

D = G exp iD · x0 = G exp iDx · x0

be a G-invariant domain in ⌅+. The first reduction consists of showing that the
map f in diagram (10) has a G-equivariant holomorphic extension to a domain
G exp i eDx · x0, with eDx a set containing Dx, all of whose connected components
are convex. Recall that ( eDx)+ = eDx \ (⇤x

r)
+ is a perfect slice for D and that it is

connected (cf. (7)).

Definition 4.8. Denote by D� (resp. by Dx

�) the connected component of D (resp.
of Dx) containing (Dx)+.

Note that the set D� is open in ⇤r; the set Dx

� is open in ⇤x

r , while need not
be open in ⇤r. Both D� and Dx

� need not be WK(⇤r)-invariant.
For k 2 {1, . . . , r � 1}, denote by �kk+1 the reflection flipping the kth and the

(k+1)th coordinates in ⇤x

r . By Lemma 3.1(iii) in [GeIa13], such reflections generate
the Weyl groupWK(⇤r). Denote by �0 the set of those �kk+1 for which there exists a
non-zero element in Fix(�kk+1)\(Dx)+, i.e. whose fixed point hyperplane intersects
(Dx)+ non-trivially. Consider the subgroup of WK(⇤r)

W 0 := h{ �kk+1 2 �0}i ,

generated by the elements of �0.

Lemma 4.9. W 0 · (Dx)+ = Dx

�.

Proof. Set C := W 0 · (Dx)+. We first show that C is contained in Dx

�. For this note
that (Dx)+ \ �kk+1 · (Dx)+ 6= ;, for all �kk+1 2 �0. Thus �kk+1 · (Dx)+ ⇢ Dx

� and
�kk+1 stabilizes Dx

�. Then the whole group W 0 stabilizes Dx

�, implying that C ⇢ Dx

�.
Next, we claim that for � 2 WK(⇤r), one has that � · (Dx)+\C 6= ; if and only

if � 2 W 0. One implication is clear, since � · (Dx)+ ⇢ C if � 2 W 0. Conversely, if
� · (Dx)+ \ C 6= ;, then there exists �1 in W 0 such that

�1� · (Dx)+ \ (Dx)+ 6= ; .

Since (Dx)+ is a fundamental region for the action of WK(⇤r) on Dx, it follows that
there exists X in the boundary of (Dx)+ such that �1� · X = X. In other words,
�1� lies in the stabilizer subgroup WK(⇤r)X of X in WK(⇤r). Since WK(⇤r)X is
generated by the elements �kk+1 in �0\WK(⇤r)X (see [BrTD85], Thm.4.1, p. 202),
one has that �1� 2 W 0. Then � 2 W 0, as claimed.

It follows that Dx is the union of the two disjoint subsets

C and
[

�2WK(⇤r)\W 0

� · (Dx)+ .

As (Dx)+ is closed in Dx, both subsets are closed in Dx. Thus C must be the union
of connected components of Dx. Since we already showed that C ⇢ Dx

�, it follows
that C = Dx

�, as stated. ⇤

Proposition 4.10. (Reduction 1) The inclusion f : D ,! bD extends holomor-
phically and G-equivariantly to the G-invariant domain

G exp iConv(Dx

�) · x0 = G exp i eDx · x0 ,

where eDx = WK(⇤x

r) · Conv(Dx

�).
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Proof. Let D� be as in Definition 4.8. By Lemma 3.1, the intersection D\LC ·x0 is
a closed r-dimensional L-invariant complex submanifold of D, biholomorphic, via
the map ◆, to the tube domain ⇤r ⇥ iD.

By Bochner’s tube theorem, its envelope of holomorphy is univalent and given
by L exp iConv(D�) · x0 ⇢ ⌅+. Then, by Proposition 4.1, the map f admits a
holomorphic extension to an L-equivariant map

L exp iConv(D�) · x0 ! bD.

Note that the convexification Conv(D�) contains Conv(Dx

�), which is an open subset
of ⇤x

r and coincides with Conv(D�) \ ⇤x

r . Moreover, given X 2 Conv(Dx

�) and
X 0 2 Dx

�, the one-dimensional complex manifold

S = { exp(i(X 0 + �(X �X 0))) · x0 : Re� 2 [0, 1] } =

= { exp s(X �X 0) exp(i(X 0 + t(X �X 0))) · x0 : s 2 R, t 2 [0, 1] }
is contained in L exp iConv(D�)·x0. Then by applying Lemma 4.5, with F = Dx

� and
C = Conv(Dx

�), we obtain that Gf(exp iX·x0) = Gexp iX·x0 , for every X in Conv(Dx

�).
Next, we check that the extension of f to exp iConv(Dx

�) · x0 satisfies the com-
patibility condition of Lemma 4.7. As a consequence of Lemma 4.9, the con-
vexification Conv(Dx

�) is W 0-invariant. Denote by N0 the preimage of W 0 in
NK(⇤r) under the canonical projection ⇡ : NK(⇤r) ! WK(⇤r). Since both ⇤r and
Conv(Dx

�) are AdN0 -invariant, the domain L exp iConv(Dx

�) · x0 is N0-invariant.
Moreover, the map f : L exp iDx

� · x0 ! bD is N0-equivariant and so is its extension
to L exp iConv(Dx

�) · x0. Hence the extension of f to exp iConv(Dx

�) · x0 satisfies all
the assumptions of Lemma 4.7 and f extends to a holomorphic, G-equivariant map
G exp iConv(Dx

�) · x0 ! bD, as claimed. ⇤

Reduction 2. Given a domain D = G exp iDx · x0, the second reduction consists
of showing that the map f : D ! bD has a G-equivariant holomorphic extension to
the domain eD = G exp i eDx · x0, where the set eDx is the convex envelope of Dx.

We first recall some properties of the universal covering of the isometry group
of the Euclidean plane, namely the semidirect product Lie group eS := RnR2 with
the multiplication defined by

✓

t,

✓

a
b

◆◆

·
✓

t0,

✓

a0

b0

◆◆

:=

✓

t+ t0,

✓

cos t � sin t
sin t cos t

◆✓

a0

b0

◆

+

✓

a
b

◆◆

.

Its Lie algebra s is isomorphic to R3 with the Lie algebra structure defined by

[eL, fM ] = eN , [eL, eN ] = �fM , [fM, eN ] = 0 ,

where {eL, fM, eN} denotes the canonical basis of R3. In particular, eS is a solvable
Lie group. The universal complexification of eS is given by eSC := Cn C2, endowed
with the extended multiplication law. Consider the quotient of eSC by the connected
subgroup eHC with Lie algebra CeL. The following facts can be easily verified.

Lemma 4.11.

(i) The map C2 ! eSC/ eHC, defined by (z, w) !
✓

0,

✓

z
w

◆◆

eHC, is a biholomorphism.

(ii) The orbit of the base point e eHC under the one-parameter subgroup exp iRfM is

a slice for the left eS-action on eSC/ eHC. There is a homeomorphism

eS \ eHC/eSC ⇠= RfM/Z2,

where the Z2-action on RfM is generated by the restriction of Adexp⇡eL to RfM ,

namely the reflection fM ! �fM .
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(iii) The eS-invariant domains in eSC/ eHC correspond to tube domains R2+ i⌦ in C2,
whose bases are annuli.
(iv) The envelope of holomorphy of any such tube domain is univalent and coincides
with the tube domain over Conv(⌦), the smallest disc containing ⌦.

The crucial step of reduction 2 deals with the case of two convex connected
components of Dx symmetrically placed with respect to the fixed point set of a
reflection � 2 WK(⇤r) \W 0. The action of � decomposes ⇤r into the direct sum

⇤r = Fix(�)� Fix(�)?.

Denote by ZG(Fix(�)) the centralizer of Fix(�) in G, and by Zg(Fix(�)) its Lie
algebra.

Lemma 4.12.
(i) The Lie algebra Zg(Fix(�)) contains a 3-dimensional solvable subalgebra iso-

morphic to the Lie algebra s of eS.
(ii) There exists a Lie group morphism  : eSC ! GC mapping eHC to KC, which
induces a closed embedding eSC/ eHC ! GC/KC .

Proof. (i) Recall that the restricted root system of g is either of type Cr or of type
BCr (see Sect. 2). For simplicity of exposition we assume � := �12, the reflection
flipping the first and the second coordinates (the remaining cases can be dealt in the
same way). Then Fix(�)? = R(E1 �E2) and Fix(�) = span{E1 +E2, E3, . . . Er}.
Take an arbitrary element Q 2 ge1�e2 and set

L := Q+ ✓Q, M := E1 � E2, N := [L,M ].

We first show that L,M,N lie in the centralizer Zg(Fix(�)). By construction, one
has that

L 2 k, M 2 g2e1 � g2e2 , N 2 ge1+e2 .

In order to see that [L,E1 + E2] = 0, let Z0 = 1
2

P

j Tj + S, with Tj = Ej + ✓Ej

and S 2 Zk(a), be the central element in k given in (4). Since [L, Tj ] = 0 for
j = 3, . . . , r, and the terms [L, T1 + T2] and [L, S] are linearly independent, the
relation [L,Z0] = 0 implies [L, T1 + T2] = [L, S] = 0. From [L, T1 + T2] = 0 and the
identity ✓L = L, it follows that [L,E1 +E2] + ✓[L,E1 +E2] = 0. This is equivalent
to [L,E1+E2] 2 ge1+e2 \p and implies [L,E1+E2] = 0, as desired. The remaining
bracket relations

[L,Ej ] = [M,Ej ] = [N,Ej ] = 0, for j � 3, [M,E1 + E2] = [N,E1 + E2] = 0,

are straightforward.
Next we prove that the vectors {L,M,N} generate a 3-dimensional solvable

subalgebra of g isomorphic to the algebra s of eS, discussed above. Since [M,N ] = 0,
it remains to show that, by normalizing Q if necessary, one has [L,N ] = �M .
Endow the 3-dimensional subspace of g

V := g2e1 � g2e2 � RN,

with the restriction of the AdK-invariant inner product of g, defined by B✓(X,Y ) :=
�B(X, ✓Y ), for X,Y 2 g. One can easily verify that the vectors {E1 + E2,M =
E1 � E2, N = [L,M ]} form an orthogonal basis of V with respect to B✓. Since
adL is a skew-symmetric operator and [L,E1+E2] = 0, the 2-dimensional subspace
Span{M,N} is adL-stable in V . Thus one can normalize Q so that adL(N) = �M ,
as desired.
(ii) Under the identification of C2 with eSC/ eHC given in Lemma 4.11, the induced
map is given by (z, w) ! exp(zM +wN) · x0. Its image can be viewed as the orbit
through the base point x0 of the abelian subgroup with Lie algebra spanC{M, N}.
Now the result follows from the injectivity of the map ◆ defined in (6) and Theorem
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2 in [Ros61], stating that the orbits of a unipotent subgroup in the a�ne space
GC/KC are closed. ⇤

Example. As an example consider G = Sp(r,R). Fix

Q =

0

B

B

@

Q̌ O O O
O O O O
O O �Q̌t O
O O O O

1

C

C

A

2 ge1�e2 , with Q̌ =

✓

0 �1/2
0 0

◆

.

The Lie subalgebra of g is generated by the matrices

L =

0

B

B

@

Ľ O O O
O O O O
O O Ľ O
O O O O

1

C

C

A

, M =

0

B

B

@

O O M̌ O
O O O O
O O O O
O O O O

1

C

C

A

, N =

0

B

B

@

O O Ň O
O O O O
O O O O
O O O O

1

C

C

A

,

where

Ľ =

✓

0 �1/2
1/2 0

◆

, M̌ =

✓

1 0
0 �1

◆

, Ň =

✓

0 1
1 0

◆

,

and is isomorphic to s. The corresponding group is closed in Sp(r,R) and given by
0

B

B

@

U O B O
O Ir�2 O O
O O U O
O O O Ir�2

1

C

C

A

, U 2 SO(2), B = tB, tr(B) = 0.

Proposition 4.13. (Reduction 2) Let Dx

� be a convex set in Dx and let � be a
reflection in WK(⇤r) \W 0. The map

f : G exp i(Dx

� [ � · Dx

�) · x0 ! bD

has a G-equivariant, holomorphic extension to the domain

eD = G exp i Conv(Dx

� [ � · Dx

�) · x0.

Proof. For simplicity of exposition we assume � = �12. Then Fix(�) = span{E1 +
E2, E3, . . . , Er} and Fix(�)? = R(E1 � E2). Set M := E1 � E2 and let N and L
be as in the proof of Lemma 4.12. Denote by s the Lie subalgebra of Zg(Fix(�))
generated by {L, M, N} and by S the corresponding subgroup in ZG(Fix(�)).
Denote by m the abelian subalgebra of s generated by {M, N}, and by H the
(possibly non-closed) subgroup of ZG(Fix(�)) \K with Lie algebra RL.

An arbitrary element X 2 Dx

� decomposes in a unique way as X = Y + Z,
where Y 2 Fix(�) and Z 2 Fix(�)? = RM depend continuously on X. For a fixed
X 2 Dx

�, define

⌃Y := RM
\

((Dx

� [ � · Dx

�)� Y ) , and AY := AdH⌃Y .

Since the Adjoint action of H on m is by rotations, the set AY is an annulus in m.
Denote by

TY := exp(iAY +m) · x0 = S exp i⌃Y · x0 (11)

the image of the tube domain iAY +m in mC ⇠= C2 under the embedding

◆ : mC ! GC/KC, W ! expW · x0 (12)

(see Lemma 4.11(i) and Lemma 4.12(ii)). Note that Y + ⌃Y is contained in Dx

� [
� · Dx

�. Since Y 2 Fix(�) and S centralizes Fix(�), the map

TY ! D, expW · x0 7! exp iY expW · x0, W 2 iAY +m
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is S-equivariant, and so is the holomorphic map

fY : TY ! bD, expW · x0 ! f(exp iY expW · x0) .

By Bochner’s tube theorem, the envelope of holomorphy of TY is univalent and
given by

bTY = exp(iConv(AY ) +m) · x0 = S exp iConv(⌃Y ) · x0

(note that Conv(⌃Y ) = Conv(AY ) \ RM). In particular, it is contained in ⌅+.
By Proposition 4.1, the map fY extends holomorphically and S-equivariantly to
f̂Y : bTY ! bD and, as X varies in Dx

�, one obtains a family of S-equivariant
holomorphic maps f̂Y , parametrized by Y . Set

eD :=
[

X2Dx

�

Y +Conv(⌃Y ) = Conv(Dx

� [ � · Dx

�) ,

where the second equality follows from an argument similar to the one of Lemma 7.7
(iv) in [Nee98]. We define a candidate for the desired extension f̂ : exp i eD ·x0 ! bD
as follows

f̂(exp iX · x0) := f̂Y (exp iZ · x0) . (13)

The map f̂ coincides with f on exp i(Dx

� [ � · Dx

�) · x0, since for X 2 Dx

� [ � · Dx

�
one has that Z 2 ⌃Y and

f̂(exp iX · x0) = f̂Y (exp iZ · x0) = fY (exp iZ · x0) =

= f(exp iY exp iZ · x0) = f(exp i(Y + Z) · x0) = f(exp iX · x0) .

To complete the proof of the proposition, it remains to check that f̂ satisfies all the
assumptions of Lemma 4.7 and therefore extends to a G-equivariant holomorphic
map f̂ : G exp i eD · x0 ! bD.

• The map f̂ is a lift of the natural inclusion exp i eD · x0 ,! ⌅+.
Since f̂ extends f , one has q � f̂(exp iX · x0) = exp iX · x0 , for all X 2 Dx

� [ � · Dx

� .
In particular, from (11), the S-equivariance of q �fY and the fact that S centralizes
Y , one has q � fY (exp iZ · x0) = exp iY exp iZ · x0, for all Z 2 ⌃Y . By applying the
analytic continuation principle to each q � f̂Y : bTY ! GC/KC, one obtains

q � f̂(exp iX · x0) = q � f̂Y (exp iZ · x0) = exp iY exp iZ · x0 = exp iX · x0

for all X 2 eD.

• The map f̂ is continuous.
The Stein Riemann domain bD admits a holomorphic embedding into some CN .
Then, in order to prove the continuity of f̂ , it is su�cient to show that the com-
position F � f̂ : exp i eD · x0 ! C is continuous, for every holomorphic function
F : bD ! C. Since the map ◆ in (12) is an embedding, this is equivalent to checking
that the map

F � f̂ � ◆|i eD : i eD ! C, iX ! F � f̂(exp iX · x0)

is continuous.
Choose an open set U in Fix(�) and an open �-invariant subset ⌃ in RM =

Fix(�)?, such that U+⌃ ⇢ Dx

�[� ·Dx

�. By the definition of ⌃, when Y varies in U ,
the functions fY are all defined on the tube domain T⌃ = S exp i⌃ · x0. Moreover,
the map

U ! O(T⌃,C) , Y ! F � fY |T⌃

is continuous with respect to the compact-open topology on the Fréchet algebra
O(T⌃,C) of holomorphic functions on T⌃. Indeed, for W 2 iAY + m and Y 2 U ,
one has

F � fY (expW · x0) = F � f(exp iY expW · x0) = F � f(exp(iY +W ) · x0) .
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Thus, if Yn ! Y0, then F � fYn ! F � fY0 uniformly on compact subsets of T⌃.
Since the extension map O(T⌃,C) ! O( bT⌃,C) is continuous (see cap. I in [Gun90]),
it follows that also the map

U ! O( bT⌃,C) , Y ! F � f̂Y |bT⌃

is continuous with respect to the compact-open topology on O( bT⌃,C). As we al-
ready remarked, bT⌃ = S exp iConv(⌃) · x0. As a consequence, the map

F � f̂ � ◆|i(U+Conv(⌃)) : i(U +Conv(⌃)) ! C ,

defined by

iX ! F � f̂(exp iX · x0) = F � f̂Y (exp iZ · x0)

is continuous. Since the domains of the form i(U + Conv(⌃)) cover i eD, the map f̂
is continuous.

• For all X 2 eD, one has Gf̂(exp iX·x0)
= Gexp iX·x0 .

We apply Lemma 4.5, with C = eD and F = Dx

� [� ·Dx

�. In order to check condition
(ii) of the lemma, let X = Y +Z 2 Y +Conv(⌃Y ) be an arbitrary element of C \F .
Then there exists Z 0 2 ⌃Y such that X 0 = Y + Z 0 2 Y + ⌃Y ⇢ F and the one
dimensional complex submanifold in (ii) of Lemma 4.5 is given by

S := { exp i(X 0 + �(X �X 0)) · x0 : Re� 2 [0, 1] } =

= { exp i(Y + Z 0 + �(Z � Z 0)) · x0 : Re� 2 [0, 1] } .

Note that Z � Z 0 belongs to RM and that the strip

{i(Z 0 + �(Z � Z 0))) · x0 : Re� 2 [0, 1] }

is contained in iConv(⌃Y ) +m. Thus exp i(Z 0 + �(Z � Z 0)) · x0 2 TY and one has
a natural holomorphic extension of f to the one dimensional complex submanifold
S, namely

f̂(exp i(Y + Z 0 + �(Z � Z 0)) · x0) = f̂Y (exp i(Z
0 + �(Z � Z 0)) · x0) .

This shows that we can apply Lemma 4.5, as claimed.

• The map f̂ satisfies the compatibility condition.
Let k� 2 H be the element inducing the reflection with respect to the origin in RM .
Since H centralizes Fix(�), the element k� belongs to NK(⇤x

r) and induces the

reflection � given in the statement. Hence, for every X 2 eD one has � ·X = Adk�X.

Moreover, by the H-equivariance of the maps f̂Y , one obtains the identity

f̂(exp(i � ·X) · x0) = f̂(exp i(Y + � · Z) · x0) = f̂Y (exp iAdk�Z · x0) =

= f̂Y (k� exp iZ · x0) = k� · f̂Y (exp iZ · x0) = k� · f̂(exp iX · x0) ,

which is the desired compatibility condition. ⇤

Corollary 4.14. By iterating reductions 1 and 2 finitely many times, one obtains

a G-equivariant holomorphic extension of f : D = G exp iDx · x0 ! bD to

f̂ : G exp iConv(Dx) · x0 ! bD.
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5. The main theorem

In this section we show that the envelope of holomorphy of a G-invariant do-
main in ⌅+ is univalent (Cor.5.4). Such a result is a consequence of Theorem 5.1.
As a by-product we also obtain that every Stein G-invariant subdomain of ⌅+ is ei-
ther contained in ⌅ or, in the tube case, in S+ (Cor. 5.2). Togheter with the results
in [GiKr02] and [Nee99], this completes the classification of all Stein G-invariant
domains in ⌅+.

Theorem 5.1. Let G/K be an irreducible non-compact Hermitian symmetric

space. Given a G-invariant domain D in ⌅+, denote by bD its envelope of holo-
morphy.

(i) Assume G/K is of tube type. If D is not contained in ⌅ nor in S+, then bD
is univalent and coincides with ⌅+ .
(ii) Assume G/K is not of tube type. If D is not contained in ⌅ , then bD is
univalent and coincides with ⌅+.

Proof. The proof of the theorem consists of a sequence of rank-one reductions and
convexifications (reductions 1 and 2), until an extension f̂ of the lift f| exp iDx·x0

: exp iDx·
x0 ! bD in diagram (10) to the whole exp i⇤x

r · x0 is obtained. The map f̂ is con-
structed so that it satisfies the assumptions of Lemma 4.7 and yields a G-equivariant
holomorphic extension of the map f : D ! bD to the whole ⌅+. Then the theorem
follows from (ii) of Proposition 4.2. We need to distinguish several cases.

Case 1. Let D = G exp iDx · x0 in ⌅+ be a domain satisfying the condition

Dx

\

⇤x

r \

0

@

r
M

j=1

[0, 1)Ej

[

r
M

j=1

(1,1)Ej

1

A 6= ;.

In the tube case, the above condition is equivalent to the assumptions in (i) (see
(8) and (9)). By reductions 1 and 2, the set Dx may be assumed to be a WK(⇤r)-
invariant, open convex subset of ⇤x

r . A simple argument shows that it contains a
point X with exactly one coordinate equal to 1, and the other ones either all < 1
(Case 1.a) or all > 1 (Case 1.b).

For j = 1, . . . , r, denote by Gj the rank-one subgroup of G with Lie algebra
defined in (1). Then Kj := Gj \ K is a maximal compact subgroup of Gj and
the quotient Gj/Kj is a rank-one Hermitian symmetric space of tube-type. The
envelope of holomorphy of an invariant domain in GC

j /K
C
j is univalent and described

by Theorem 4.4 (for n = 1).

Case 1.a. In this case, in view of (7), the set (Dx)+ contains a point

X = (1, x2, . . . , xr), with 1 > x2 > . . . xr > 0. (14)

Our first goal is to obtain an extension of f to exp i eD · x0, where eD is an open
WK(⇤r)-invariant convex set in ⇤x

r containing Dx and the point (1, 0, . . . , 0). This
is done in stages, by gradually extending f to WK(⇤r)-invariant larger sets of the
form exp iC · x0, where C contains Dx and, in order, the points

(1, x2, . . . , xr�2, xr�1, 0), (1, x2, . . . , xr�2, 0, 0), . . . , (1, 0, . . . , 0).

Denote by

int((⇤x

r)
+) and int((Dx)+) = (Dx)+ \ int((⇤x

r)
+)

the interior of (⇤x

r)
+ and of (Dx)+ in ⇤x

r , respectively. Note that the former coin-
cides with (⇤x

r)
+ \ H, where H := [�2WK(⇤r){Fix(�)} denotes the set of reflection
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hyperplanes in ⇤x

r . Under assumption (14), the interior of (Dx)+ contains an open
set of the form

U + V, with (1, x2, . . . xr�1, 0) 2 U ⇢ E?
r , and V = (ar, br)Er (br < 1).

Decompose an element W 2 U + V as W = Y + Z, where Y 2 U and Z 2 V
depend continuously on W , and define Dr := Gr exp iV · x0. By (3), the group Gr

commutes with Gj for j 6= r. Hence, for every Y 2 U , the holomorphic map

fY : Dr ! bD, g exp iZ · x0 ! f(exp iY g exp iZ · x0),

is Gr-equivariant and, by Prop.4.4(i), extends to a Gr-equivariant holomorphic map

f̂Y : bDr �! bD,

where bDr = Gr exp ibV · x0 and bV = [0, br). Define now a map

f̂ : exp i(U + bV ) · x0 ! bD, by exp iW · x0 ! f̂Y (exp iZ · x0). (15)

The arguments used for the map (13) in the proof of Proposition 4.13, show that f̂
defined above coincides with f on exp i(U + V ) · x0 and that it is a continuous lift
of the natural inclusion of exp i(U + bV ) · x0 into ⌅+. In order to be able to apply
Lemma 4.7, define

C = (U + bV )
\

int((⇤x

r)
+) (16)

and restrict the map (15) to the set exp iC · x0. We stress this point even if in
this particular case U + bV is already entirely contained in the interior of (⇤x

r)
+.

However, this will not be the case in the next steps. Now f̂ |exp iC·x0 satisfies all
the assumptions of the extension Lemma 4.7 : the set C is open in ⇤x

r and entirely
contained in the perfect slice (⇤x

r)
+. Hence f̂ |exp iC·x0 satisfies the compatibility

conditions. Finally, the identity Gexp iX·x0 = Gf̂(exp iX·x0)
, for all X 2 C, follows

from Lemma 4.5. For this set F = U + V and let Y +Z be an arbitrary element in
C\F . Choose an element in F of the form Y +Z 0 . Then condition (ii) of the lemma
is satisfied, since f̂ is holomorphic on the one dimensional complex submanifold

{ exp i(Y + Z 0 + �(Z � Z 0)) · x0 : Re� 2 [0, 1] } .
As a consequence of Lemma 4.7, the map (15) extends to a G-equivariant holomor-
phic map

f̂ : G exp iC · x0 ! bD. (17)

Note that the open subset G exp iC ·x0 of ⌅+ coincides with G exp i (WK(⇤r) · C) ·x0

and has open intersection with D. By the analytic continuation principle, the
map (17) coincides with f on the points of D, and determines a G-equivariant
holomorphic extension f̂ : G exp i eD · x0 ! bD where

eD = Dx

[

WK(⇤r) · C.

The set eD contains the point (1, x2, . . . xr�1, 0), projection of the initial point X
onto the hyperplane xr = 0. By reductions 1 and 2, it may be assumed to be
convex.

Iterating the above procedure for the coordinates xr�1, xr�2, . . . , x2 produces
G-equivariant holomorphic extensions of f to open WK(⇤r)-invariant convex sets
containing Dx and, in order, the points

(1, x2, . . . , xr�2, 0, 0), . . . , (1, 0, . . . , 0).

For the final step, set Dx = eD and take an open subset of int((Dx)+) of the form
U+V , with U ⇢ E?

1 and V = (a1, b1)E1, for a1 < 1 < b1. This timeD1 = G1 exp iV ·
x0 is a G1-invariant complex submanifold of GC/KC with envelope of holomorphy
given by bD1 = G1 exp ibV · x0, with bV := [0,1)E1 (see Prop. 4.4(iii)). The usual
procedure produces then a holomorphic G-equivariant extension f̂ : ⌅+\G/K ! bD.
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The fact that the orbit G/K is a priori excluded from the domain of f̂ is due to an
intersection like in (16). On the other hand, since the orbit G/K is a totally real
submanifold of ⌅+, the map f̂ extends to the whole ⌅+, as desired.

Case 1.b. In this case in view of (7), the set (Dx)+ contains a point

X = (x1, x2, . . . , 1), with x1 > x2 > . . . xr�1 > 1. (18)

Our goal is to reduce to the previous case (1.a) by contructing an extension of f to
a set exp i eD ·x0, where eD is an open WK(⇤r)-invariant convex set in ⇤x

r containing
Dx and the point (1, 0, . . . , 0). By proceeding as in the the first step of case (1.a),
we obtain a G-equivariant holomorphic extension f̂ : G exp i eD · x0 ! bD, where eD is
an open WK(⇤r)-invariant convex set in ⇤x

r , containing Dx and (x1, x2, . . . xr�1, 0),
the projection of X onto the hyperplane xr = 0. Then eD also contains the point
(x1, x2, . . . , 0, xr�1) and the segment

(x1, x2, . . . , txr�1, (1� t)xr�1), for t 2 [0, 1].

In particular, it contains the point (x1, x2, . . . , 2/3xr�1, 1/3xr�1), which lies in
(Dx)+ and has a smaller (r� 1)th coordinate than (x1, x2, . . . xr�1, 0). By iterating
this argument, we infer that eD contains (x1, x2, . . . , x0

r�1, 0), for some x0
r�1 < 1.

Then by the convexity of eD and the inequality xr�1 > 1, it also contains the point
(x1, . . . , xr�2, 1, 0).

By applying the above procedure to the coordinates xr�1, xr�2, . . . , x2, we
obtain G-equivariant holomorphic extensions f̂ : G exp i eD · x0 ! bD, where eD is an
open WK(⇤r)-invariant convex set in ⇤x

r , containing Dx and, in order, the points

(x1, . . . , xr�3, 1, 0, 0), . . . , (1, 0, . . . , 0).

Case 2. We finally consider the case where G/K is not of tube-type, the set Dx is
contained in

Lr
j=1(1,1)Ej and, in view of (7), contains a point

X = (x1, x2, . . . xr), with x1 > x2 > . . . > xr > 1.

Our goal is to reduce to the case (1.a) by showing that the map f extends to a
set exp i eD · x0, where eD is an open WK(⇤r)-invariant convex set in ⇤x

r containing
Dx and the point (1, 0, . . . , 0). As in case (1.a), this is done in stages, by gradually
extending f to WK(⇤r)-invariant larger sets of the form exp iC ·x0, where C contains
Dx and, in order, the points

(1, x2, . . . , xr�2, xr�1, 0), (1, x2, . . . , xr�2, 0, 0), . . . , (1, 0, . . . , 0).

The procedure almost literally follows the one used in case (1.a). The di↵erence is
that when dealing with the jth-coordinate, the rank-one reduction is done by using
the real rank-one subgroup G•

j with Lie algebra (5). An important fact is that, by
Lemma 2.1, the group G•

j commutes with the rank-one subgroups Gk, for all k 6= j.
One has that K•

j := K \G•
j is a maximal compact subgroup of G•

j and G•
j/K

•
j is a

rank-one Hermitian symmetric space, not of tube type. In particular, the envelopes
of holomorphy of the G•

j -invariant domains in the complexification (G•
j )

C/(K•
j )

C

are described by Proposition 4.4, for n > 1. ⇤

Inside the crown ⌅ and inside S+, an invariant domain can be described via
a semisimple abelian slice. Its Steiness is characterized by logarithmic convexity
of such slice (cf. [GiKr02] and [Nee99]). These results together with the above
theorem conclude the classification of Stein G-invariant domains in ⌅+.

Corollary 5.2. Let G/K be an irreducible non-compact Hermitian symmetric space
and let D be a Stein G-invariant proper subdomain of ⌅+.
(i) If G/K is of tube type, then either D ✓ ⌅ or D ✓ S+.
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(ii) If G/K is not of tube type, then D ✓ ⌅.

Remark 5.3. Let G/K be an arbitrary irreducible, non-compact, Riemannian
symmetric space and let ⌅ = G exp i⌦AG · x0 be the crown domain in GC/KC,
where ⌦AG := {H 2 a : |↵(H)| < ⇡

2 , for all ↵ 2 �(g, a)}. An invariant domain
in ⌅ is given by D = G exp i⌦ · x0, for some WK(a)-invariant open set ⌦ ⇢ ⌦AG,
and it is Stein if and only if ⌦ is convex (cf. [GiKr02]). However we are not aware
of a proof the fact that bD = G exp iConv(⌦) · x0. For the sake of completeness,
we outline it here. Let a+ be the closure of a fixed Weyl chamber in a. Define
⌦+ := ⌦\ a+ and ⌦� the connected component of ⌦ containing ⌦+. Denote by �0

the set of simple reflections in a whose fixed point hyperplanes contain a non-zero
element of ⌦+ and by W 0 the subgroup of WK(a) generated by �0. Arguing as in
Lemma 4.9, one obtains W 0 ·⌦+ = ⌦�. Set A := exp a. The r-dimensional complex
submanifold A exp i⌦� · x0 of D is biholomorphic to a tube domain in Cr with base
⌦�. Then, by the argument of Proposition 4.10, the inclusion f : D ! bD admits a
G-equivariant holomorphic extension to the domain G exp iConv(⌦�) · x0. In other
words, all connected components of ⌦ may be assumed to be convex.

The second part of the proof consists of showing that the map f in diagram (10)
admits a G-equivariant holomorphic extension to the domain G exp iConv(⌦) · x0.
The relevant case is that of ⌦ consisting of two connected components ⌦� and s↵ ·
⌦�, simmetrically placed with respect to the fixed point hyperplane Fix(s↵) of a
reflection s↵ 2 WK(a) \ W 0. Fix a generator H↵ of Fix(s↵)? and X↵ 2 g↵ so
that the vectors {X↵, ✓X↵, H↵} generate an sl(2)-subalgebra. Denote by G↵ the
corresponding rank-one subgroup of G. From now on the proof follows the one of
Proposition 4.13, whereas the solvable group S is replaced by the rank-one subgroup
G↵, and Lemma 4.11 by Proposition 4.4(i). Decompose an element X 2 ⌦� as
X = Y +Z, where Y 2 Fix(s↵) and Z 2 RH↵ depend continuosly on X, and define

⌃Y := RH↵ \ ((⌦� [ s↵ · ⌦�)� Y ) and DY = G↵ exp i⌃Y · x0.

ThenDY is biholomorphic to a G↵-invariant domain inside the crown ⌅↵ ⇢ GC
↵/K

C
↵ .

The group G↵ centralizes Fix(s↵) and, as X varies in ⌦�, the family of G↵-
equivariant holomorphic maps

fY : DY ! bD, g exp iZ · x0 7! f(exp iY g exp iZ · x0),

determines a G-equivariant holomorphic extension of f : D ! bD to

f̂ : G exp iConv(⌦) · x0 ! bD.

Since the domain G exp iConv(⌦) · x0 is Stein (see [GiKr02]), this shows that
the envelope of holomorphy of D = G exp i⌦ · x0 is univalent and coincides with
G exp iConv(⌦) · x0. ⇤

By [Nee99], the envelope of holomorphy of a G-invariant domain in S+ is
univalent. Thus one has the following corollary.

Corollary 5.4. Let G/K be an irreducible non-compact Hermitian symmetric space.
The envelope of holomorphy of a G-invariant domain in ⌅+ is univalent.

Remark 5.5. In general a similar univalence result does not hold true for equi-
variant Riemann domains p : X ! ⌅+ other than envelopes of holomorphy. If
G/K is a Hermitian symmetric space of tube type, one can construct a non-trivial
G-equivariant Stein covering of the domain S+ ⇢ ⌅+.
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[KrOp08] Krötz B., Opdam E. Analysis on the crown domain. GAFA, Geom. Funct. Anal. 18
(2008) 1326–1421.

[KrSt04] Krötz B., Stanton R. Holomorphic extensions of representations I: automorphic
forms. Ann. of Math., 159 (2004) 641–724.
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