

Liouville's theorem, identity principle, maximum modulus principle, harmonic functions

1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic doubly periodic function (it means that $f(z + \omega_1) = f(z + \omega_2) = f(z)$ for all $z \in \mathbb{C}$, where $\omega_1, \omega_2 \in \mathbb{C}$ are \mathbb{R} -linearly independent vectors). Then f is constant.
2. Let $U \subset \mathbb{C}$ be an open neighbourhood of 0. Show that there are no holomorphic functions $f: U \rightarrow \mathbb{C}$, such that:
 - (a) $f\left(\frac{1}{n}\right) = (-1)^n \frac{1}{n^2}$,
 - (b) $f\left(\frac{1}{n}\right) = \frac{1}{2^n}$,
 - (c) $|f^{(n)}(0)| > n! n^n$.
3. Let $D \subset \mathbb{C}$ be a domain and let $f: D \rightarrow \mathbb{C}$ be a holomorphic function, not identically zero. Prove that the set of zeros of f in D is at most countable (use: D is a countable union of compact sets).
4. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, where U is an open neighbourhood of the closed unit disc $\overline{\Delta}$. Assume that f is not identically zero.
 - (a) Show that f has at most finitely many zeros in Δ .
 - (b) Determine the zeros of $f(z) = \sin(\frac{1}{1-z})$ on the disc Δ and compare the result with (a).
5. Let $S = \{z \in \mathbb{C} : 0 < \operatorname{Re} z < \frac{\pi}{2}\}$. Determine whether there exists a holomorphic function $f: S \rightarrow \mathbb{C}$ such that
 - (a) $\operatorname{Re} f(z) = x^2 y + y^2 x + \sin x \sinh y$;
 - (b) $\operatorname{Re} f(z) = y^3 - yx^2 - 2x^2 y + \cos x \cosh y + \sin x \sinh y$.
 Justify your answer: either exhibit one such function or explain why it cannot exist.

6. Liouville for harmonic functions. Let $u: \mathbb{C} \rightarrow \mathbb{R}$ be harmonic and bounded either from above or from below.
 - (a) Show that u is constant.
 - (b) Verify that the real and the imaginary parts of the following holomorphic functions are not bounded:

$$e^z, \quad \sin z, \quad \cos z, \quad z^2.$$

7. Set $D = D(z_0, r)$. Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function. Show that

$$f(z_0) = \frac{1}{\operatorname{Area}(D)} \int_D f(z) dx dy.$$

8. Let D be a domain in \mathbb{C} and let $f: D \rightarrow \mathbb{C}$ be a nonconstant holomorphic function. Show that the local minima of $|f|$ coincide with the zeros of f .
9. Let $f: U \rightarrow \mathbb{C}$ be a nonconstant holomorphic function defined on a neighbourhood of the unit disc Δ . Show that if $|f|$ is constant on the boundary of Δ , then f admits at least one zero in Δ .