GEOMETRY OF HERMITIAN SYMMETRIC SPACES UNDER
THE ACTION OF A MAXIMAL UNIPOTENT GROUP

LAURA GEATTI AND ANDREA TANNUZZI

ABSTRACT. Let G/K be a non-compact irreducible Hermitian symmetric
space of rank r and let NAK be an Iwasawa decomposition of G. By the
polydisc theorem, AK/K can be regarded as the base of an r-dimensional
tube domain holomorphically embedded in G/K. As every N-orbit in G/K
intersects AK/K in a single point, there is a one-to-one correspondence be-
tween N-invariant domains in G/K and tube domains in the product of r
copies of the upper half-plane in C. In this setting we prove a generalization of
Bochner’s tube theorem. Namely, an N-invariant domain D in G/K is Stein
if and only if the base £ of the associated tube domain is convex and “cone
invariant”. We also obtain a precise description of the envelope of holomorphy
of an arbitrary holomorphically separable N-invariant domain over G/K.

An important ingredient for the above results is the characterization of
several classes of N-invariant plurisubharmonic funtions on D in terms of the
corresponding classes of convex functions on 2. This also leads to an explicit
Lie group theoretical description of all N-invariant potentials of the Killing
metric on G/K.

1. INTRODUCTION

The classical Bochner’s tube theorem states that the envelope of holomorphy of
a tube domain R™+i€) in C" is univalent and coincides with the convex envelope
R™+ i conv(§2). Moreover, there is a one-to-one correspondence between the class
of R™-invariant plurisubharmonic functions on a Stein tube domain in C" and
the class of convex functions on its base in R" (cf. [Gun90])).

Here our goal is to obtain analogous results in the setting of an irreducible Her-
mitian symmetric space of the non-compact type, under the action of a maximal
unipotent group of holomorphic automorphisms.

Any such space can be realized as a quotient G/K, where G is a non-compact
real simple Lie group and K is a maximal compact subgroup of G. Let g =
n@adt be an Iwasawa decomposition of g, where n is a maximal nilpotent
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subalgebra, a is a maximally split abelian subalgebra and ¢ is the Lie algebra
of K. The integer r := dima is by definition the rank of G/K.

Let NAK be the corresponding Iwasawa decomposition of G, where A :=
expa and N := expn. The group N acts on G/K by biholomorphisms and
every N-orbit in G/K intersects the smooth, real r-dimensional submanifold
A - eK transversally in a single point.

As the space G/K is Hermitian symmetric, G contains r pairwise commuting
subgroups isomorphic to SL(2,R). The orbit of the base point eK € G/K under
the product of such subgroups is a closed complex submanifold of G/K which
contains A-eK and is biholomorphic to H", the product of r copies of the upper
half-plane in C. Moreover, every N-orbit in G/K intersects H" in an R"-orbit.

This fact is an analogue of the polydisk theorem and determines a one-to-one
correspondence between N-invariant domains in G/K and tube domains in H"
(cf. Prop.4.1 and Cor.4.3). If D is an N-invariant domain in G/K, then it is
in terms of the base ) of the associated tube domain in H" that the properties
of N-invariant objects on D can be best described.

Define the cone

O (R>%)", in the non-tube case,
" (R*9)1 x {0}, in the tube case.

A set Q < R" is C-invariant if y € Q0 implies y + v € Q, for all v € C. Our
generalizion of Bochner’s tube thorem is as follows

Theorem 4.9. Let G/K be a non-compact irreducible Hermitian symmetric
space of rank r. Let D be an N-invariant domain in G/K and let R" + i€ be
the associated r-dimensional tube domain. Then D is Stein if and only if §2 is
convex and C-invariant.

We also show that a holomorphically separable, N-equivariant, Riemann do-
main over G/K is necessarily univalent (cf. Prop.4.13). This implies the follow-
ing corollary.

Corollary 4.14. The envelope of holomorphy D of an N-invariant domain D
in G/K is the smallest Stein domain in G/K containing D. The base € of

the r-dimensional tube domain associated to D is the convex, C-invariant hull
of €.

One approach to the proof of the above theorem uses smooth N-invariant
functions. There is a one-to-one correspondence between N-invariant functions
on D and functions on €2, and such correspondence preserves regularity. An
important ingredient is the computation of the Levi form of a smooth N-invariant
function f: D — R in terms of the Hessian and the gradient of the corresponding
function f: ) — R. To this end, a simple pluripotential argument enables us to
exploit the restricted root decomposition of n (cf. Prop. 3.1 and Prop. 4.5).
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Then, in the smooth case, the proof of Theorem 4.9 is carried out by showing
that D is Levi pseudoconvex, and therefore Stein, if and only if the base 2 of
the associated tube domain is convex and C-invariant.

The general case follows from the smooth case by exhausting D with an in-
creasing sequence of Stein, N-invariant domains with smooth boundary. For
this we adapt a classical approximation method for convex functions on convex
domains to our C-invariant context.

In Section 6, an alternative proof of Theorem4.9 is carried out by realizing
G/K as a Siegel domain and by combining some results from the theory of
normal J-algebras with some convexity arguments.

The aformentioned computation of the Levi form leads to a characterization of
smooth N-invariant plurisubharmonic functions on N-invariant domains in G/K
in terms of the corresponding functions on ). By classical approximation meth-
ods, a similar characterization is obtained for arbitrary N-invariant (strictly)
plurisubharmonic functions on D. In order to formulate such results we need the
following definition.

Let f: Q — R be a function defined on a C-invariant domain in (R>%)" and
let C' be the closure of the cone C. Then f is C-decreasing if for every y €
and v e C the restriction of f to the half-line {y +tv : ¢t > 0} is decreasing.

Theorem. (see Thm.5.5) Let D be a Stein, N-invariant domain in a non-
compact, irreducible Hermitian symmetric space G/K of rank r and let €0 be
the base of the associated r-dimensional tube domain.

An N-invariant function f: D — R is (strictly) plurisubharmonic if and only
if the corresponding function f: Q — R is (stably) convex and C-decreasing.
It follows that every N-invariant plurisubharmonic function on D is continuous.

In fact, the above theorem holds true both in the smooth and non-smooth
context, and can be regarded as a generalization of the well known result for
R™-invariant plurisubharmonic functions on tube domains in C" (see Sect.5 for
precise definitions and statements).

In the appendix, as an application of our methods we explicitly determine
all the N-invariant potentials of the Killing metric on G/K in a Lie group
theoretical fashion.

2. PRELIMINARIES

Let G/K be an irreducible Hermitian symmetric space, where G is a real
non-compact semisimple Lie group and K is a maximal compact subgroup of
G. Let g and £ be the respective Lie lagebras. Let g = £ @ p be the Cartan
decomposition of g with respect to £, with Cartan involution 6. Denote by
B(-, ) both the Killing form of g and its C-linear extension to g® (which
coincides with the Killing form of g©).
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Let a be a maximal abelian subspace in p. The dimension of a is by definition
the rankr of G/K. Let g = m@®a® @, .5 g* be the restricted root decomposition
of g determined by the adjoint action of a, where m denotes the centralizer of
a in €. For a simple Lie algebra of Hermitian type g, the restricted root system
is either of type C,. (if G/K is of tube type) or of type BC, (if G/K is not of
tube type), i.e. there exists a basis {ej,...,e.} of a* for which a positive system
YT is given by

YT ={2¢, 1<j<r e te, 1<k<l<r} fortype Cp,

Y ={ej, 265, 1<j<r e te, 1<k<l<r}, fortype BC,.
The roots 2eq, ... ,2e, form a maximal set of long strongly orthogonal posi-
tive restricted roots. The root spaces g2, ..., g% are one-dimensional and one
can choose generators FE’ € g?% such that the sl(2)-triples {EY, 0E7, A; :=
[0E7, E’]} are normalized as follows

[A;, E'] = 6,2E", for jl=1,...,r (1)

Denote by Iy the G-invariant complex structure of G/K. We assume that Io(E7—
OE7) = A;. By the strong orthogonality of 2ey,...,2e,, the vectors Ai,..., A,
form a B-orthogonal basis of a, dual to ey,...,e. of a* and the associated
s[(2)-triples pairwise commute.

Let g = n® a® € be the Iwasawa decomposition subordinated to X, where
N = @uex+0%, and let G = NAK be the corresponding Iwasawa decomposition
of G. Then S = NA is a real split solvable group acting freely and transitively
on G/K. In particular, the tangent space to G/K at the base point eK can be
identified with the Lie algebra s = n @ a.

The map ¢: s — p, given by ¢(X) := (X —0X), is an isomorphism of vector
spaces. As a consequence,

(X,Y):=B(6(X),6(Y)) = —3B(X,0Y), (2)
for X, Y € s, defines a positive definite symmetric bilinear form on s. Moreover,
the map J: s — s, given by

JX = ¢ o Iy o $(X), (3)

defines a complex structure on s, such that ¢(JX) = [yp(X). The complex
structure J permutes the restricted root spaces of s (cf. [RoVeT73]), namely

Jﬂ _ @926]" Jgej—el _ gej'-‘rel’ Jgej — gej . (4)
7=1

In order to obtain a precise description of J on s, we recall a few more facts. Let
g“=p @ue A 8" be the root decomposition of g& with respect to a maximally
split Cartan subalgebra h = b @ a of g, where b is an abelian subalgebra of m.
Let o be the conjugation of g with respect to g. Let 6 denote also the C-
linear extension of # to g€. One has o = of. Write Z := oZ, for Z e g“.
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As o and 6 stabilize b, they induce actions on A, defined by f(H) := u(H)
and Ou(H) := p(0@(H)), for H € b, respectively. Fix a positive root system
A" compatible with X%, meaning that u|, = Re(u) € X7 implies p € A™.
Then c AT = AT,

Given a restricted root a € ¥, the corresponding restricted root space g*
decomposes into the direct sum of ordinary root spaces with respect to the Cartan
subalgebra b as follows

g* = < P oD ®9A> N g,
HEA, p=*p
Re(p)=a

where A € A is possibly a root satisfying A = A = a. The next lemma is obtained
by combining Lemma 2.2 in [Gela21] with (3).

Lemma 2.1. (the complex structure J on ).

(a) Forj=1,...,r, let Aj € a and E7 € g* be elements normalized as in (1).
Then JEJ = 1A; and JA; = —2F7.

(b) Let X = ZF + Zr e g%~ where p € A" is a root satisfying Re(i) = e; — ¢
and Z* € gt (if i = p, we may assume Z* = ZF and set X = Z"). Then
JX = [E', X] e g,

Let X = ZFM 4+ Zr € g9*“, where p € A" is a root satisfying Re(p) = e; + €
and Z* € gt (if i = p, we may assume Z* = ZF and set X = Z"). Then
JX = [0F', X] e g%,

(c) Let X = ZW + Zr € g%, where p is a root in A™ satisfying Re(u) = e; and
ZM e g' (as dim g% is even, one necessarily has fi + p). Then JX = iZ' +iZF €
g

Remark 2.2. (a J-stable basis of s) In view of Lemma 2.1, one can choose a
J-stable basis of s, compatible with the restricted root decomposition.

(a) As a basis of a® Ja, take pairs of elements A;, JA; = —2E7, forj=1,...,r,
normalized as in (1).

(b) As a basis of g~ @ gt take 4-tuples of elements
X=2zr+2r, X =izt+izr, JX=[E X], JX' =[E X', (5
parametrized by the pairs of roots p + i € A" satisfying Re(p) = e; —e; (with no

repetition), with Z" a root vector in g". For p = fi, one may assume Z" = ZH
and take the pair X = Z*, JX = [E', X].

(c) As a basis of g% (non-tube case), take pairs of elements
X =2r4+7Z0  JX =iZl +iZm,

parametrized by the pairs of roots p + € A" satisfying Re(u) = e; (with no
repetition), with Z* € g~.
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The next lemma contains some identities which are needed in Section 3. Its
proof is essentially contained in [Gela21], Lemma2.4.

Lemma 2.3. Let p1€ A" be a root satisfying Re(p) = e; —e; and let Z* a root
vector in gt. Let X = ZV +7"eg% @ and JX = [E', X egvt@. If I+ p,
let X' =iZF+iZt and JX' = [E', X']. Then

(a) [JX,X]|=[JX",X'] = sE’, for some s€R, s +0;
(b) [JX', X] = 0.

Let p be a root in A*, with Re(u) = e; (non-tube case) and let Z* be a root
vector in g. Let X = ZF + 2" and JX = iZ" +iZ”. Then

(c) [JX,X] =tE?, for some te R, t =+ 0.

3. THE LEVI FORM OF AN N-INVARIANT FUNCTION ON G/K

Let G/K be a non-compact, irreducible Hermitian symmetric space of rank
r, and let G = Nexp(a) K be an Iwasawa decomposition of G. Let D be an
N-invariant domain in G/K . Then D is uniquely determined by a domain D
in a by

D := Nexp(D) - eK . (6)
Similarly, an N-invariant function f : D — R is uniquely determined by the
function ]? : D — R, defined by

f(H) := f(exp(H)K). (7)

The goal of this section is to express the Levi form, i.e.the real symmetric J-
invariant bilinear form
hf(‘v‘)::_ddcf<'7‘]’)7 (8)

of a smooth N-invariant function f on D, in terms of the first and second deriva-
tives of the corresponding function f on D. This will enable us to characterize
smooth N-invariant strictly plurisubharmonic functions on a Stein N-invariant
domain D in G/K by appropriate conditions on the corresponding functions on
D (Prop.3.1). As f is N-invariant, hy is N-invariant as well. Therefore it will be
sufficient to carry out the computation along the slice exp(D) - e, which meets
all N-orbits. N

For X € g, denote by X the vector field on G/K induced by the left G-action.
Its value at z € G/K is given by

~

X, =4 ,expsX - z. (9)

dsls=
Let X € g°, for « € ¥* U {0} (here X € a, when a = 0). If z = aK, with
a =exp H and H € a, then the vector field X can also be expressed as

~

X, =e Mg X (10)
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Set
b:= B(A;, A1) =... = B(4,, 4,), (11)

which is a real positive constant only depending on the Lie algebra g.

Proposition 3.1. Let D be an N-invariant domain in G/K andlet f: D — R
be a smooth N -invariant function. Fix a = exp H, with H = Zj a;A; € D. Then,
in the basis of s defined in Remark 2.2, the form hy at z = al € D is given as
follows.

(1) The spaces aza, azJa, a,gv ", a.g9"% and a.g% are pairwise hg-
orthogonal.

(ii) For A;, A; € a one has
hylandy, a ) = 285, 2L (H) + 2L (H).

dajoda,

On the blocks a,.g%~* and a,g* the restriction of hy is diagonal and the only
non-zero entries are given as follows.

(i) For X, X' € g%~ as in Remark 2.2(b), one has

hf(a*X, a*X) = —2@%([1), hf(a*lea*X’) — —QMa_f(H)

(iv) (non-tube case) For X € g% as in Remark 2.2(c), one has
hy(a.X, 0, X) = —255 2 (1),

On the remaining blocks hy is determined by (4), the J-invariance of hy, (i) and
(#i) above.

Proof. Let f: G/K — R be a smooth N-invariant function. The computation
of hy uses the fact that, for X € n, the function p*: G/K — R, given by

1X(2) := d°f(X.), satisfies the identity
T (12
where d°f := df o J (see [HeSc07], Lemma 7.1 and [Gela21], Sect.2). We begin

~

by determining d°f(X,), for X e n and z € G/K. By the N-invariance of f and
of J one has
d°f(Xy..) = d°f(Ad,— X,), (13)

for every z € G/K and n € N. Thus it is sufficient to take z = aK € exp(D)-eK.
Let H =) ajA; € D and a = exp H. Then

~ 1e=20, 2L (F) | for X = EV e g%
d‘zf(Xz):{26 Voo (1), for =

(14)
0, for X € g%, with a € ¥\{2ey,...,2¢,}.
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The first part of equation (14) follows from (10) and Lemma 2.1 (a):
dF((EY).) = e 250 df (a, TBY) = Je 2| F(H + s4;5) = Ye ZL(H).

= 2€
For the second part, let X € g, with a € ¥*\{2e¢,...,2¢,}. Then JX € g°, with
e ¥*. By (10) and the N-invariance of f, one obtains the desired result

df(X,) = e-eID+BH)gf(TX ) = 0.

(i) Orthogonality of the blocks. Let X € g* and Y € g7, where o € X7
and v € {0} U (X*\{2ey,...,2¢,}) are distinct restricted roots (here Y € a, when
= 0). Then JY € g°, for some 3 e X*. By (10) and (12), one has

hi(ax X, a,Y) = —dd f(a, X, a, JY) = —e*E+ ) qqe p(X, JV.)
= 604(H)+B(H)d,uX<Jf§//Z) = ( ) ’8( )ds s— OILL (exp SJY . 2)
B L| e f(R o py.) = eI L] e f(Adp T X )

ds ls=0
= ol 4| qef(K, — s[TY, X], + o(s2)
X8 ge ([ 7Y, X1.). (15)

The brackets [JY, X] lie in g*™?. Since a # v, one sees that a+ 3 =+ 2ey, ..., 2e,.
Then, by (14), the expression (15) vanishes, proving the orthogonality of a,g®
and a,g?, for all o and v as above. The J-invariance of hy implies that a.a is
orthogonal to a,g?, for all 3 € ¥+, and concludes the proof of (i).

Next we determine the form Ay on the essential blocks.
(ii) The form hy on a,a.
Let Aj, A; € a. Since JA; = —2E', one has
hf(a*Aja G*Al> = _2ddcf<a*El a*A> = _26261(H)ddcf((ﬁ)za (%)z)
= 2626l(H)d,uEl((A ),) = 2e?alf) 4 }t 0,u (exptAj - 2)

o 2626[( dt‘t Odcf<<E )exptA]"Z>7
which, by (14), becomes

_ o,2¢(H) d 1, —2e(H+tA; «9f _ of a>f
= 2¢2e( )dtt 03¢ ((H+tA ) (H-l—tA) —Qaal( )5lj+aajaal(H)'

This concludes the proof of (ii).
(iii) The form h; on a,g% .

Let X, X' € g%~ be elements of the basis given in Remark 2.2(b). Then
JX, JX"e g¥*. From (15), (14) and Lemma 2.3(a) one has

hy(asX,a.X) = —dd° f(a. X, a.JX)
— —elerren () gles—en () ge f([ X, X].)
= e (st f((E).)) = 32 (), (16)
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for some s € R\{0}. By Remark 6.4, one has s > 0. By the comparison of
(16) with the formula obtained in Remark 7.2, one deduces the exact value of s,

4|.x]?
b

namely s = . Therefore, one has

hf(a*X’ CL*X) —2 H);\P gafj (H)> hf(a*Xla a*X/) = _2M6_f

as stated. From (15) and Lemma 2.3(b), one obtains hf(a.X,a,X’) = 0. From
(15), the skew symmetry of dd°f and the fact that 2(e; — ¢;) ¢ X%, one obtains
hi(aeX,a,JX) = h(a.X,a,JX') = 0, respectively. Finally, let X = Z+ + Z#,
and Y = Z¥ + Z¥ be elements of the basis of g%~* given in Remark 2.2 (b), for
w, v € AT distinct roots satisfying v #+ pu, . Then, by (15) and Lemma 2.1(b)
one has

hf(a*X7 a*Y> - 26] dcf([m]z) = O’

since no non-real roots in A have real part equal to 2e;. This completes the proof
of (iii).

(iv) The Hermitian form hy on a.g%.

Let X = Z* + Zr and JX = iZ" 4 iZ* be elements of the basis of g% given in
Remark 2.2 (¢). Then, from (15) and Lemma 2.3 (c), one obtains

hp(a, X, a,X) = —e2Mae f([JX, X],)

= et def((E).) = —5 2L (H), (17)

for some ¢t € R\{0}. By Remark 6.4, one has ¢ > 0. By the comparison of
(17) with the formula obtained in Remark 7.2, one deduces the exact value of t,

4HXH

namely t = and

h(a.X, 0.X) = hy(anJ X, a,JX) = —2155 jf (H).
Finally, let X = Z# + Z# and Y = Z" + Z" be elements of the basis of g& given
in Remark 2.2 (¢), for pu, v € A* distinct roots satisfying v £ p, g. Then, by (15)
and Lemma 2.1(c) one has hy(a,X,a,Y) = 0. This concludes the proof of (iv)
and of the proposition. O

Remark. The usual Levi form L§ of f is given by LG(Z, W) = 2(hs(X,Y) +
ihf(X,JY)), where Z = X —iJX and W =Y —iJY are elements of type (1,0).
One easily sees that L is (strictly) positive definite if and only if hy is (strictly)
positive definite.
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4. N-INVARIANT STEIN DOMAINS IN G/K

The main goal of this section is to characterize the Stein N-invariant do-
mains D in G/K in terms of an associated r-dimensional tube domain. We show
that D is Stein if and only if the base of the associated tube domain is convex
and satisfies an additional geometric condition, arising from the features of the
N-invariant plurisubharmonic functions on D.

At the end of the section we also prove a univalence result for N-equivariant
Riemann domains over G/K. As a by-product, a precise description of the enve-
lope of holomorphy of N-invariant domains in G/K follows.

Resume the notation introduced in Section 2. Denote by R := exp ( @® g2ej)
the unipotent abelian subgroup of G, isomorphic to R". The orbit of the base
point eK € G/K under the product of the r commuting SLs(R)’s contained in
G is the r-dimensional R-invariant closed complex submanifold of G/K

Rexp(a) - eK.

By the Iwasawa decomposition of G, such manifold intersects all N-orbits in
G/K. Equivalently,
N - (Rexp(a)-eK) = G/K.
The above facts together with the next proposition can be regarded as an
analogue, for the N-action, of the polydisk theorem (cf. [Wol72], p.280). Denote
by H the upper half-plane in C, with the usual R-action by translations.

Proposition 4.1. The map L:H" — Rexpa-eK, defined by
(.1'1 + 7;yla sy Ty + Zyr) - eXp(Zj ijj) eXp(% Zj 1n<yj)Aj)K7
18 an equivariant biholomorphism.

Proof. The map is clearly bijective and equivariant. To prove that is holomorphic,
it is sufficient to consider the rank-1 case. Computing separately

dL.J 4| = d/lzd% =g L+ily+1) = 5| _ exp(@E) exp(3 In(y + 1) A) K
- %‘t:(] exp(zE) exp((5Iny + ﬁ +0o(t?*))A)K = (exp(zFE) exp(%lnyA))*iA

and

JEZ% L= J%‘tzoﬁ(:x +t+iy) = J%‘t:o exp((z + t)E) exp(% InyA)K
= J%‘t:O exp(zE) exp(tE) exp(% InyA)K
= J%‘t:(} exp(zE) exp(% InyA)exp(t Adexp(_%lnyA)E)K

= Jexp(zFE). exp(% lnyA)*iE = (exp(zFE) exp(% In yA))*ﬁA

we obtain the desired identity dC,.J % ,=JdL d

Zdzx

_» for all z e H. 0
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Remark 4.2. The closed complex submanifold Rexp(a) - eK can also be re-
garded as the local orbit of eX under the universal complexification R® of R.
Up to a traslation, £ is the local R®-orbit map through eK.

As a consequence of the above biholomorphism we obtain a one-to-one corre-

spondence between R"-invariant tube domains in H" and N-invariant domains in
G/K. Denote by L:R>% x ... x R*® — a the diffeomorphism determined by £

L(yr, .. yr) == 5 25 In(y;) A;. (18)

Corollary 4.3. (N-invariant domains in G/K and tube domains in C").

(i) Let D = N exp(D)-eK be an N-invariant domain in G/K and let Rexp(D)-
eK be its intersection with the closed complex submanifold Rexp(a)-eK . Then
the r-dimensional tube domain associated to D is by definition the preimage of
Rexp(a) - eK under L, namely

R" +4Q,  where Q:= L (D).

(ii) Conversely, a tube domain R" +1iQ in H" determines a unique N -invariant
domain

D = Nexp(D) -eK, where D = L(2).

Remark 4.4. If D is Stein, then the associated tube domain R" + Q2 < C" is
Stein, being biholomorphic to the Stein closed complex submanifold Rexp(D) -
eK of D. In particular, the base  is an open convex set in (R>?)".

On the other hand, already in the case of the unit ball B" in C", with n > 1,
one can see that the base € of an N-invariant Stein subdomain D must be an
entire half-line, and cannot be just an arbitrary convex subset of R>Y.

The main goal of this section is to give a precise characterization of the convex
sets 2 < (R™Y)" arising from N-invariant Stein domains D in G/K. As we shall
see, their shape is determined by the particular features of the Levi form of the
N-invariant functions on D, which involve both the Hessian and the gradient of f
(cf. Prop. 3.1).

Let f: D — R be an N-invariant plurisubharmonic function. Then f is
uniquely determined by the function f(H):= f(expH -eK) on D (cf. (7)) and
also by the function

~ ~

f(y) = flexp(L(y))K) = f(L(y)) (19)
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defined for y € €2, as shown by the following commutative diagram

AN

D——R

w7

D

Since the N-action on D is proper and every N-orbit intersects transversally
the smooth slice exp(L(£2))-eK in a single point, it is easy to check that the map

f — f is a bijection from the class C°(D)" of continuous N-invariant functions
on D and the class C°(f2) of continuous functions on €. By Theorem 4.1 in
[F1e78], such a map is also a bijection between C®(D)N and C*(f2). Analogous

statements hold true for the map f — f.
Given a non-compact irreducible Hermitian symmetric space, define the cone

O {(R>O)T, in the non-tube case,

20
(R>%)=1 x {0}, in the tube case. (20)

The next lemma characterizes the plurisubharmonicity of a smooth N-invariant
function f in terms of the corresponding functions f and f.

Proposition 4.5. Let D be an N-invariant domain in G/K and let f: D —
R be a smooth, N-invariant, plurisubharmonic function. Then the following
conditions are equivalent:

(i) f is plurisubharmonic (resp. strictly plurisubharmonic) at z = akK, with
a=exp(H) and H € D;
(ii) the form

(= 2002 000) + 524 () )j (21)

in Proposition 3.1(ii) is positive semidefinite (resp. positive definite) and

~

gradf(H) -v <0 (resp. <0), for all ve C\{0};

(iii) the Hessian of ]? is positive semidefinite (resp. positive definite) at'y =
(yla s 7yr> = L_I(H) and

~

gradf(y)-v <0 (resp. <0), for all ve C\{O}. (22)

Proof. The equivalence (i) < (ii) follows directly from Proposition 3.1.
(1) < (iii) Since L(y1,...,y) = (3In(y1),...,31n(y.)) (see (18)), one has

~

flay,...,a,) = f(e*®,...,e*). Therefore

) - 2 )
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62f~ — 52J? 2a; ,2a 5f 2a;
Ba;00 (H) = 4(7yj(9yl (e201,... e20m)e*%I e + 40—:[/]_(62“1,“.,62“7“)6 J(Sjl . (24)

By combining formulas (23) and (24) one obtains

PF  2a; _ (_f of
(4ayjayl 62&] 6201)]"[ = (aajaal — 2 E(Sjl)],l (25)

Also, by (23), the same monotonicity conditions hold both for f and for f. O

Definition 4.6. A smooth function g: R" — R is convex (resp. stably conver)
if its Hessian is semidefinite (positive definite).

Remark 4.7. The above lemma shows that the function f corresponding to a
smooth N-invariant plurisubharmonic function is not just an arbitrary smooth
convex function, but it must satisfy the additional monotonicity conditions (22).
(cf. Rem.5.2).

Definition 4.8. A set Q@ < R" us C-invariant if y € Q implies y + C < Q
Equivalently, if y € Q implies y + C < Q, where C' denotes the closure of C.

Theorem 4.9. Let G/K be a non-compact irreducible Hermitian symmetric
space and let D be an N-invariant domain in G/K. Then D is Stein if and
only if the base ) of the associated tube domain is conver and C-invariant.

The proof of the above theorem is divided into two parts. If D has smooth
boundary, then the argument relies on the computation of the Levi form of
smooth, N-invariant functions on D (Prop.3.1) and some elementary convex-
geometric properties of 2.

In the general case, the proof of the theorem is obtained by realizing D as an
increasing union of Stein, N-invariant domains with smooth boundary.

Proof of Theorem 4.9: the smooth case. The rank-1 tube case is trivial,
since every R-invariant domain in the upper half-plane H is Stein. So we deal
with the remaining cases: the rank-one non-tube case and the higher rank cases.
We use the notation y = (yi,...,¥,), for elements in R". Let D < G/K
be a Stein, N-invariant domain with smooth boundary and let R" + i) < C"
be its associated tube domain. Then 2 is a convex set with smooth boundary
(cf. Rem.4.4). Assume by contradiction that €2 is not C-invariant, i.e. there exist
y e and z € (y + C) n ). By the convexity of 2, the open segment from y to
z is contained in €2. In addition, the vector v = z —y € C' is transversal to the
tangent hyperplane T,0€) and points outwards. Therefore, given a smooth local
defining function fof 0f) near z, one has
9 (z) = grad]?(z) v > 0.

v
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In the tube case, the above inequality and (23) imply that (%(H ) > 0, for some
je{l,...,r —1}. Then, by Proposition 3.1 (iii), the Levi form of the corre-
sponding N-invariant function f is negative definite on the J-invariant subspace
a8 @ a,g9 " of T,x(0D), the tangent space to ¢D in aK. In the non-
tube case, one has (%:(H) > 0, for some j € {1,...,r}. By Proposition 3.1 (iv),
the Levi form of the corresponding N-invariant function f is negative definite
on the J-invariant subspace a,g% of T,x(0D). This contradicts the fact that f
is a defining function of the Stein N-invariant domain D and proves that €2 is
C-invariant.

Conversely, assume that ) is convex and C-invariant. We prove that D is
Stein by showing that it is Levi-pseudoconvex, i.e. for all points a K € ¢D and
local defining functions f of D near aK, one has hf(X, X) > 0, for every tangent
vector X € T,x0D n JT,x0D, the complex tangent space to 0D at aK.

Let z € 02 and let aK = L(z). Denote by W := T,09 the tangent space to
0) in z. One can verify that the complex tangent space to 0D at aK is given by

(@ gD P g7) D (L4).W D J(Ly),W.

Let v = (vy,...,v,) be an outer normal vector to W in R". The C-invariance
and the convexity of €2 imply that v; <0, for j = 1,...,r in the non-tube case,
and v; <0, for j = 1,...,7 — 1 in the tube case. Otherwise the space W would

intersect y + C', for every y € ), yielding a contradiction.
Let f be a smooth local defining function of €2 near z. By the convexity of

~

(2, the Hessian Hess(f)(z) is positive definite on W. Moreover, as the gradient

gradf(z) is a positive multiple of v, one has %f(z) <0,forall j=1,...,r, in
. J
the non-tube case, and a%(z) <0, forall j=1,...,r —1, in the tube case.

Let f be the corresponding N-invariant local defining function of D near aK =
exp L(z) K. By Proposition 4.5, the Levi form of f is positive definite on (L), W&
J(L) W <€ aa® agJa.

In addition, by (23) and Proposition 3.1, the Levi form of f is positive definite
on a, (P g“T D@ g%). As aresult, D is Levi pseudoconvex in aK = exp L(z) K.
Since a K is an arbitrary point in 0 Dnexp a-eK and both D and f are N-invariant,
the domain D is Levi-pseudoconvex and therefore Stein, as desired.

In order to prove Theorem 4.9 in the non-smooth case, we need some prelimi-
nary Lemmas.

Lemma 4.10. Let D be a domain in a Stein manifold, let D' < D be a subdomain
with smooth boundary and let z € 0D ndD'. If D' is not Levi pseudoconvez in z,
then D s not Stein.

Proof. Under our assumption, there exists a one dimensional complex submani-
fold M through z in X with M\{z} < D’ ([Ran86], proof of Thm.2.11, p.56).
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This implies that D is not Hartogs pseudoconvex ([Ran86], Thm. 2.9, p.54) and
in particular it is not Stein. U

For a domain €2 in R", denote by dg: €2 — R the distance function from the
boundary (if z € , then dg(z) is by definition the radius of the largest ball
centered in z and contained in 2). The next lemma is a known characterization
of convex domains.

Lemma 4.11. A proper subdomain ) of R" is convez if and only if the function
—Indg : Q — R is convex.

In what follows, for a fixed domain €2 in R", we denote
u:=—In dQ

Denote by B,(y) the open ball of center y = (y1,...,¥y,) € R" and radius p.
Fix a smooth, positive, radial function o : R™ — R (only depending on R? =
|w|?), with support in B;(0), such that ¢’/(R?) < 0 and {,, o(w)dw = 1. For
e >0, define Q. :={y e Q : dqo(y) > ¢} and u. : Q. —> R by

u(y) := & S w(z)o (¥ )dz = (5, u(y + ew)o(w)dw.

The functions u. are clearly smooth. Let v : (R™Y)" — R>? be the stably convex

positive function given by v(y) := 3, i Define v, : Q. — R by

v(y) = uc(y) +ev(y).

Lemma 4.12. Let Q be a conver, C-invariant domain in (R>°)". Then the
following facts hold true:

(i) The domain Q). is convex and C-invariant for every £ > 0.

(ii) The smooth functions v. are stably convex and, for e \, 0, they decrease
to u uniformly on the compact subsets of ).

(iii) Let 6. := —In3e. The sublevel set . := {y € Q. : v.(y) < 6.} is convex
and C-invariant.

(iv) The boundary of Q. in (R*°)" coincides with {y € Q. : v.(y) = 6.}
and 1t 18 smooth.

(v) As n e N increases, the sequence of convez, C-invariant subdomains with
smooth boundary Ql/n ezhausts ().

Proof. (i) Let y and y + v be elements of Q.. Then B.(y) and B.(y + v) are
contained in  and, by the convexity of 2, the same is true for B.(y + tv), for
every t € [0,1]. This shows that €2, is convex. Moreover, as 2 is C-invariant, if
B.(y) is contained in €2 and v is an element of the cone C, then also the open
ball B.(y + v) is contained in €. This shows that Q. is C-invariant.
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(ii) As u is convex, for y, y + ve Q and ¢ € [0, 1], one has

u(y +tv) := J u(y + tv + ew)o(w)dw

r

< Jr (1= t)uly +ew) + tu(y + ew + v))o(w)dw = (1 — t)u.(y) + tu.(y + v),

showing that the smooth function w. is convex. Since v is smooth and stably
convex, it follows that v. := wu. + er is smooth and stably convex. Moreover,
as convexity implies subharmonicity, then the last part of statement (ii) follows
from [H6r94], Thm 3.2.3(ii), p.143.

(iii) Since the function v, is convex, then the domain Q). is convex. In order to
show that Qa is C-invariant, we prove that

ey +v) < v:(y), (26)

for every y € (). and v € . Since () is C-invariant, if for some y € €2 the ball
B, (y) is contained in €2, then also the ball B, (y+v) is contained in €, for all v e C.
It follows that do(y) < do(y + v) and consequently u(y + v + ew) < u(y +ew),
for all ve C. and w € B;(0). One deduces that

u(y +v) =J

for every y € ., v e C. Since v(y + v) < v(y), one concludes that v.(y + v) <
ve(y), and Q). is C-invariant, as desired.

(iv) For y close to 0. = {z € Q : dqo(z) = €}, a rough extimate shows
that do(y + ew) < 3g, for every w € B1(0). Therefore v.(y) > u.(y) > —In 3¢,
implying that the boundary of Qa is contained in (). and it is given by é’ﬁa =
{y € Q. : v.(y) = 0.}. Concerning the smoothness of 0€)., the rank one case is
trivial. So assume 7 > 1.

Let ¥ € d€2.. Set v := (1,...,1), in the non-tube case, and v := (1,...,1,0),
in the tube case. Since v lies in the cone C, the inequality (26) implies that for
~ small enough the real function g : (—7v,v) — R, defined by ¢(t) := v.(¥ + tv),
is strictly decreasing. By the stable convexity of v., it is also stricltly convex and
¢'(0) < 0. As ¢’(0) is a directional derivative of v, in ¥y, the differential dv.|y does

u(y + v+ ew)o(w)dw < J u(y + ew)o(w)dw = u.(y),

T T

not vanish and the boundary of Q). is smooth.
(v) For m > n, the inclusion €/, < /m and the inequality vy, > vy,
imply that €/, < €y/,. This concludes the proof of the lemma. 0

Proof of Theorem 4.9: the general case. Let D be an arbitrary Stein, N-
invariant domain in G/K. By Remark 4.4, the base Q of the associated tube
domain is necessarily convex. Assume by contradiction that €2 is not C-invariant
(cf. Def.4.8 and (20)), i.e.there exist y € Q and z € (y + C) n 0Q2. By the
convexity of €, the open segment from y to z is contained in 2. Moreover, the
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vector v = z —y lies in the cone C and points to the exterior of Q. Let B.(y) be
a relatively compact ball in 2 and define

tmax :=max{t >0 : B.(y +tv) cQ}.
Then there exists w € IB.(y + tmaxV) N 0€2, and by construction
W —(y + tmazV),v) > 0.

This implies that the outer normal n := w— (y +tv) to 0B.(y + tmaxVv) satisfies
n; > 0, for some j € {1,...,r} in the non-tube case (resp. n; > 0, for some
je{l,...,r—1}, in the tube case). From the result of the theorem in the smooth
case, it follows that the N-invariant subdomain N exp(L(B.(y + tmaxV))) - €K,
with smooth boundary, is not Levi pseudoconvex in exp(L(w))K. Then Lemma
4.10 implies that D is not Stein, contradicting the assumption.

Conversely, assume that () is convex and C-invariant. By Lemma 4.12, the
domain D can be realised as the increasing union of N-invariant domains D, :=

Nexp(L(Ql/n)) -eK, where the open sets €/, < R" are convex, C-invariant and
have smooth boundary. By the result of the theorem in the smooth case, the
domains D, are Stein and so is their increasing union D. This completes the
proof of the theorem. O

We conclude this section with a univalence result for Stein, N-equivariant,
Riemann domains over G/K.

Proposition 4.13. Any holomorphically separable, N -equivariant, Riemann do-
main over G/K is univalent.

Proof. Let Z be a holomorphically separable, N-equivariant, Riemann domain
over G/K . By [Ros63], Z admits an holomorphic, N-equivariant open embed-
ding into its envelope of holomorphy, which is a Stein N-equivariant, Riemann
domain over G/K . Hence, without loss of generality, we may assume that 7 is
Stein.

Denote by m : Z — G/K the N-equivariant projection and let 7(Z) =
Nexp(L(Q)) - eK be the image of Z under w. Define ¥ := exp(L(Q)) - eK

and ¥ := 7 }(¥). Note that 5 is a closed submanifold of Z.
Claim. The map é: N x X — Z, given by (n,z) — n-x, is a diffeomorphism.

Proof of the claim. Since ¥ = 7(Z) nexp(a) - eK is a closed real submanifold

of m(Z) and 7 is a local biholomorphism, the restriction | : > — ¥ is a local
diffeomorphism. Moreover one has the commutative diagram

N x % 7

IdX(Wli)l \LW

N xS —NexpL(Q) - eK
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where the maps Id x (7|g), ¢ and 7 are local diffeomorphisms. Hence so is the
map ¢.

To prove that (E is surjective, let z € Z and note that 7(z) = nexp(L(y))K,
for some n € N and y € 2. Then the element w:=n"'-z ¢ S satisfies n - w = Z,
implying the surjectivity of (E

To prove that 5 is injective, assume that n-w = n’-w’, for some n, n’ € N and
w, w' € 3. From the equivariance of 7 it follows that n-7(w) = n/-7(w'). As ¢
is bijective, it follows that n = n/ and m(w) = w(w’). Thus w = (n='n') - w' = W',
implying the injectivity of 5 and concluding the proof of the claim.

Now, in order to prove the univalence of m, it is sufficient to show that the
restriction |y : S % of T to X is injective. For this, consider the closed
complex submanifold R-% = 7 }(R-X) of Z. As Z is Stein, so is R-3. Hence
the restriction 7|5 @ R - > — R-Y defines an R-equivariant, Stein, Riemann
domain over the Stein tube R -¥. As R is isomorphic to R", from [CoLo86]

it follows that 7|, is injective. Hence the same is true for 7|g and m, as
wished. O

Corollary 4.14. The envelope of holomorphy D of an N-invariant domain D

in G/K 1is the smallest Stein domain in G/K containing D. More precisely, D
is the tube domain with base 2, the convex C'-invariant hull of Q.

5. N-INVARIANT PSH FUNCTIONS VS. CVXDEC FUNCTIONS

Let D be a Stein, N-invariant domain in a non-compact, irreducible Hermit-
ian symmetric space G/K of rank r and let 2 be the base of the associated
r-dimensional tube domain. Then € is a convex, C-invariant domain in (R>%)"
(Thm.4.9). From Proposition 4.5 it follows that there is a one-to-one corre-
spondence between the class of smooth N-invariant plurisubharmonic functions
on D and the class of smooth convex functions on 2 satisfying an additional
monotonicity condition (cf. Rem. 4.7 and Rem. 5.2). In this section we obtain an
analogous result in the non-smooth context.

Let C be the closure of the cone defined in (20).

Definition 5.1. A function f: Q — R s (strictly) C-decreasing if for every
y € Q and v e C\{0} the restriction of f to the half-line {y +tv : t >0} is
(strictly) decreasing.

Remark 5.2. (i) A smooth function f: Q—>Ris C-decreasing if and only if
gradf(y)-v <0 for every y € Q and v e C\{0}.
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(i) A smooth, stably convez (cf. Def. 4.6) function f:Q — R is C-decreasing
if and only if gradf(y) v < 0, for every y €  and v € C'\{0}. This follows
from the fact that the directional derivatives gradf(y ) v of a stably convex,

C-decreasing function f never vanish. In particular f is automatically strictly
C-decreasing.

In view of the above observations, we define the following classes of functions:

- ConvDec™™*(€): smooth, stably convex, C-decreasing functions on €,

- ConvDec®(9): smooth, convex, C-decreasing functions on €,

- Psh®*(D)N: smooth, N-invariant, strictly plurisubharmonic functions on D,

- Psh®(D)N: smooth, N-invariant, plurisubharmonic functions on D.
Proposition 4.5 established a one-to-one correspondence between C'onvDec®* ()
and Psh™ (D), as well as between ConvDec®(2) and Psh®(D)N. The next
goal is to extend such correspondences beyond the smooth context.

Let h:§Q — R be the smooth, stably convex, strictly C-decreasing function

hy) =%, fory=(u,....u)eQ, (27)
andAlet h be the N-invariant strictly plurisubharmonic function on D associated
to h.

Definition 5.3. A function f Q — R is stably convex and C-decreasing if
every point in € admits a conver C-invariant neighborhood W and & > 0 such
that f —chisa conver, C-decreasing function on W.

Definition 5.4. An N-invariant function f: D — R is strictly plurisubhar-
monic if every point in D admits an N -invariant neighborhood U and € > 0

such that f — eh is an N-invariant plurisubharmonic function on U (see also
[Gun90], Vol. 1, Def. 1, p. 118).

In the smooth context the above notions coincide with the ones introduced
earlier. Denote by

- ConvDec* (€2): stably convex and C-decreasing functions on ;
- ConvDec(Q): convex, C-decreasing functions on ;
- Psh™(D)N: strictly plurisubharmonic, N-invariant functions on D;

- Psh(D)": plurisubharmonic, N-invariant functions on D.

The next theorem summarizes our results.

Theorem 5.5. Let D be a Stein N-invariant domain in a nmon-compact, irre-

ducible Hermitian symmetric space G/K of rankr. The map f — f is a bijection
between the following classes of functions
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(i) Psh®*(D)Y and ConvDec™"(Q),
(ii) Psh®(D)N and ConvDec®(),
(iii) Psh(D)Y  and ConvDec(f),
(iv) Psh*(D)N and ConvDect(Q).
In particular, N-invariant plurisubharmonic functions on D are necessarily con-
tinuous.

Proof. (i) and (ii) follow from Proposition4.5 and Remark 5.2.
(iii) Let f be a function in Psh (D)". Since the restriction of f to the embedded
r-dimensional Stein tube domain Rexp(L(Q)) eK =~ R" x iQ (cf. Cor.4.3) is
plurisubharmonic and R-invariant, then f is necessarily convex. Assume by
contradiction that f is not C-decreasing. Then there exists s € R such that the
sublevel set { f < s} is not C-invariant. By Theorem 4.9, the corresponding N-
invariant domain {f < s} is not Stein. Since G/K is biholomorphic to a Stein
domain in C™ and f is plurisubharmonic, this contradicts [Car73], Thm. B,
p.419. Hence f belongs to ConvDec(f), as claimed.

In order to prove the converse, as in the previous section, for € > 0 consider
the convex C-invariant set . :={y € Q : dq(y) > ¢}. For fin ConvDec(S),
let fe : 2. — R be the function

SRT (y + ew)5(wW)dw + eh,

where % is the function given in (27) and ¢ : R” — R is a smooth, positive,
radial function (only depending on R? = |wl|?), with support in B;(0), such
that 6'(R®) < 0 and §, 0(w)dw = 1. Arguments analogous to those used in
Lemma 4.12 show that the functions f. are in ConvDec™ *(.). Then (i) implies
that the corresponding functions f. belong to Psh®*(D)Y and consequently
f belongs to Psh (D)Y

(iv) follows directly from the definition of Psh™ (D) and of ConvDec* ().

Finally, from the inclusions
ConvDec™ () < ConvDec() < C°Q)

v v
ConvDec™*(Q) < ConvDec®(Q)

it follows that all the above functions on €2 are continuous, and so are the corre-
sponding N-invariant plurisubharmonic functions on D. O

6. THE SIEGEL DOMAIN POINT OF VIEW

The goal of this section is to present an alternative characterization of Stein
N-invariant domains in an irreducible Hermitian symmetric space G/K, realized
as a Siegel domain.
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Denote by S = NA the real split solvable group arising from the Iwasawa
decomposition of G subordinated to 3. With the complex structure J described
in (3) and the linear form fj € s* defined by fo(X) := B(X, Zy), where Z, € Z(¥)
is the element inducing the complex structure on p, the Lie algebra s = n®a of S
has the structure of a normal J-algebra (see [GPSV68] and [RoVe73], Sect. 5, A).

This means in particular that w(X,Y) := —fy([X,Y]) is a non-degenerate
skew-symmetric bilinear form on s and that the symmetric bilinear form (X,Y") :=
—fo([JX,Y]) is the J-invariant positive definite inner product on s defined in (2).

The adjoint action of a on s decomposes s into the orthogonal direct sum of
the restricted root spaces. Moreover, the adjoint action of the element Ag =
%Zj Aj € a decomposes s and n as

5 = 50D 512 DS, n, =nns,

where

S0 = ad C—B g7 %", 51,=0 g7, 51=@ hRele (‘B gt (28)

A 1<j<r 1<j<r >
1<j<i<r 1<j<i<r

Let Ey := Y. E’. The orbit
V i= Adexp sy Eo (29)

is a sharp convex homogeneous selfadjoint cone in s; and

1

4

is a V-valued Hermitian form, i.e. it is sesquilinear and F(W, W) € V, for all
W € s1/5. The Hermitian symmetric space G/K is realized as a Siegel domain in
5T @ 512 as follows
DWV,F)={(Z,W)es @is1 ®si2 | Im(Z) — F(W,W) eV}
If 51, = {0} then G/K is of tube type, otherwise it is of non-tube type. The group
S acts on D(V, F) by the affine transformations
(Z, W) — (AdsZ + a + 2iF (Ad,W, b) + iF(b,b), Ad,W + D), (30)

where s € expsg, a € s1, and b € s15. Recall that Ja = @;9*7, (cf. (4)) and
denote by Jat the positive octant in Ja. One easily verifies that if £ € Ja¥,
then AdepoF = Ja*. This and the fact that S acts freely and transitively on
D(V, F) imply that every N-orbit meets the set Ja™ is a unique point.

Let D be an N-invariant domain in a symmetric Siegel domain. Then

D={ZW)eDWV,F)|Im(Z)—FW,W)e Vp},
where Vp is an Adeypn,-invariant open subset in V/, determined by
WVp =D niV.

F: 819 X 610 — 81 + 181, FW,W') = —([JW', W] —i[W',W]),

The r-dimensional set
Vp = VD M Ja+7
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intersects every N-orbit of D in a unique point, and it is the base of an r-
dimensional tube domain in Ja@®iJa. The map Rexpa-eK — Rexpa- (iFy,0)

eXp(Zj ijj) eXp(% Zk ln(yk)Ak)K = (i‘Adexp(%Z,C ln(yk)Ak)EO + Zj $jEj7 O)

is the inverse of the map £ of Proposition 4.1 (cf. Cor.4.3).
Let C be the cone defined in (20). Then the characterization of N-invariant
Stein domains in a symmetric Siegel domain can be formulated as follows.

Proposition 6.1. Let D be an N-invariant domain in an irreducible symmetric
Siegel domain. Then D is Stein if and only if v is convex and C-invariant.

In order to prove the above proposition, we need some preliminary results. For
this we separate the tube and the non-tube case.

The tube case. Denote by conv(Vp) the convex hull of Vp in s1. Since Vp is
Adexpn,-invariant and the action is linear, then also conv(Vp) is Adexpn,-invariant.
Denote by p: s; — Ja the projection onto Ja, parallel to @g®*¢. Denote by

(BY,....(E") (31)

the elements in the dual n* of n, with the property that (E7)*(E') = 4; and
(E7)*(X*) =0, for all X* e g% with a € XT\{2¢4,...,2¢,}.

Lemma 6.2. One has
(i) Let E = Y xxE* € Ja*, where x;, € R, Then
P(Adexpn ) = E + Cy_1.
In particular, (E")*(Adexpix E) = x,, for all X e ng and t € R.
(i) Let X e g%~°. Then [[E', X], X| = sE’, for some s € R>°,
(iii) One has p(conv(Vp)) = conv(p(Vp)).

Proof. (i) Let E € Ja* and let hy € expng, where ng = @ g“ %. By

1<i<j<r

Theorem 4.10 in [RoVe73], for every 1 < i < j < r there exists a basis {E};} of
g“~%, with coordinates {z7;},, such that

(E")"(Adp E) = zi(1+ % (2)*)

p,j>1

(formula (4.13) in [RoVeT73]). Since i < r, one has p(Adexpy xE) = E + C,_y, as
claimed. In particular the r** coordinate of E does not vary under the Adexpng-
action.

(i) Let X € g%~ . Then exptX € expng and the curve
Adepix Eo = expadix (Ey) = Eo + t[X, E'| + £[X,[X, EY]], t e R,
is contained in V. By Lemma 2.3 (a), its projection onto Ja is given by

P(Adexpex Bo) = (B7)*(Adexpex Bo) BV = (1 + £8)EY,
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for some s € R, s + 0. Now (i) implies that 1 + %s > 0, for all t € R. Therefore
s > 0, as claimed.

(iii) We prove the two inclusions. By the linearity of p, the set p(conv(Vp)) is
convex and contains p(Vp). Hence, p(conv(Vp)) o conv(p(Vp)). Conversely, let
z € conv(Vp). Then there exist to € (0,1) and z,y € Vp such that z = tgz + (1 —

to)y. Since p(z) = top(x) + (1 —to)p(y), one has p(conv(Vp)) < conv(p(Vp)). O

The non-tube case. Denote by p: 5(1C @ 512 — tJa the projection onto iJa
parallel to 51 @ i(Dg+) @ 515.
Lemma 6.3. Let E € Ja*. Then p(N - (iE,0)) = i(E + C,).
Proof. The N-orbit of the point (iE,0) € sT @ sy is given by
N - (iE,0) = S1/251Adexpne (1E,0) = (a + i(Adexpno £ + F(b,0)), ), (32)

where a € 51 and b € 5155. By (32) and Lemma 6.2 (i), one has p(N - (i£,0))
i(E+Cy—1+p(F(812,51/2))). Since in the symmetric case {[.Jb,b], b € 512} = JaT,
it follows that (N - (iE,0)) = i(E + C,), as claimed.

I:l

Remark 6.4. (a) Statement (i) in Lemma 6.2 explains why in Prop.3.1 (iii) no
conditions appear on a‘%.

(b) Statement (ii) in Lemma 6.2 and the fact that F(b,b) = [Jb,b], for b € sy,
takes values in Jat, explain why the real constants s and t in Lemma 2.3(a)(b)

and later in Proposition 3.1(iii)(iv) are strictly positive.

Proof of Proposition 6.1. The tube case. An N-invariant domain D in a
symmetric tube domain D(V) is itself a tube domain with base the Adexpn,-
invariant set Vp. Hence all we have to prove is that Vp is convex if and only if
vp is convex and v, + C,_1 < vp.

Assume that Vp is convex. Then v}, is convex, being the intersection of V, with
the positive octant Ja*. To prove that v, is C-invariant, let F = Zj x;F7 € vp,
where z; > 0, and let X € g%~ be a non-zero element. For every ¢ € R,

Adexpth =F+ tIl[X, El] + %tzdil[X, [X, El]]

lies in Vp and, by the convexity assumption, so does E + 1t%z[X, [X, E']] =
E + t*szE? where s > 0 (cf. Lemma 6.2 (ii)). This argument applied to all
j=1,...,7—1 and the convexity of v, show that v, + C._1 < vp, as desired.

Conversely, assume that v convex and C-invariant. We prove the convexity of
Vp by showing that conv(Vp) < Vp. From Lemma 6.2 (ii) and the C-invariance
of v, one has

p(VD> = p(AdexpnOVD) =Vp + Cr—l C Vp.
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Moreover, from Lemma 6.2 (iii), the above inclusion and the convexity of v, one
has

conv(Vp) n Ja < p(conv(Vp)) = conv(p(Vp)) < vp.
Finally, from the Adeypn,-invariance of conv(Vp) it follows that

conv(Vp) = Adexpn, (conv(Vp) n Ja) © Adexpn, Vo = V-
This completes the proof of the proposition in the tube case.

The non-tube case. Let D be an N-invariant domain in a Siegel domain
D(V, F). Denote by conv(D) the convex hull of D in sT @s;/5. As N acts on D
by affine transformations, also conv(D) is N-invariant.
If D is Stein, then D n {W = 0} is a Stein tube domain in s with base V.
By the result for the tube case and Lemma 6.3, vp is convex and v, + C, C vp.
Conversely, assume that v, is convex and C-invariant, i.e. vp + C, < vp (see
Def. 4.8). We are going to prove that D is convex. By Lemma 6.3, one has

P(D) =p(N -vp) =i(vp + C,) < ivp.
Moreover,
conv(D) niJa < p(conv(D)) = conv(p(D)) < ivp.
By the N-invariance of conv(D), one obtains
conv(D) = N - (conv(D) niJa) € N -ivp = D.

Hence D is convex and therefore Stein (cf. [Gun90], Vol.1, Thm.10, p. 67). This
concludes the proof of the proposition. 0

Remark. The assumption v, + C, < v implies v, + C,_1 < vp and in particular
Vp is convex. This means that if D < D(V, F) is Stein, then the tube domain
D n {W = 0} is Stein. The converse may not hold true, as Vp = Adexpn,Vp
convex does not imply vp + C,. < vp.

7. APPENDIX: N-INVARIANT POTENTIALS FOR THE KILLING METRIC.

Let G/K be a non-compact, irreducible Hermitian symmetric space. The
Killing form B of g, restricted to p, induces a G-invariant Kéhler metric on
G/K, which we refered to as the Killing metric. In this section we exhibit an
N-invariant potential of the Killing metric and the associated moment map in a
Lie theoretical fashion. All the N-invariant potentials of the Killing metric are
detemined in Remark 7.5.

Let f: G/K — R be a smooth N-invariant function. The map p: G/K — n*,
defined by

pp(2)(X) = d°f(X2), (33)
for X € n, is N-equivariant (cf. (13)). If f is strictly plurisubharmonic, then it
is referred to as the moment map associated with f.
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Proposition 7.1. Let z = naK € G/K, where n € N, a = expH € A and
H =73 a;A;€a. Letb be the constant defined in (11).

(1) The N-invariant function p: G/K — R defined by

p(naK) := _%Z;:1B(H7 A)=-2(a1+ - +a),
1s a potential of the Killing metric.
(it) The moment map p, : G/K — n* associated with p is given by
pp(naK)(X) = =837 e (E)*(Ady1 X) = B(Ad, X, AduZy) (34)
where X € n, and the (E?)* are defined in (31).

Proof. (i) Let naK € G/K, where a = exp H and H = };a;A;. The function
p:a— R associated to p is given by p(H) = —%Z;zlajB(Aj, A;) (cf (7). In
order to obtain (i), we first prove the identities (34). By (33) and (14), one has
Hp(al)(X) = dop(Xac) = =5 27, 72 (B)*(X). (35)
By (2), one has
(E')*(X) = B(X,0E7)/B(E?,0E7) = 2B(X, 5(E7 + E7))/B(E?, 0E7).
Since
b= B(A;, A;) = B(IyA;, IA;) = B(E) — 0B/, B/ — 0E9) = —2B(EY, 0EY)
and Zy = Sp + %ZJ E7 + 0F7, for some Sy € m (cf.[Gela21], Sect.2), one obtains
BT e (X) =~ X e BOX, (B 4 05)/B(E65)
=37, B(X, Ad, (B + 6E%)) = B(X, Ad, Zy),
and (34) follows from the N-equivariance of j,.
Next we are going to show that on p x p one has
ho(awe, aw) = B(-, ). (36)
Every X € s decomposes as X = (X — ¢(X)) + ¢(X) € tDp (see Sect. 2). Since
the projection ¢ :s — p is a linear isomorphism, (36) is equivalent to
By X, 0,Y) = hy(as6(X), as6(V)) = B(6(X), 6(V)) = —5B(X, 0V),  (37)

for all X, Y in s. By Proposition 3.1(i), it is sufficient to consider X, Y both
in the same block a.a, a,g% %, and a.g>®.
Let A;, A; € a, be as in (1). Then, by (ii) of Proposition 3.1, one has

hp(a*Aj,a*Al) = ﬂB(Al, Al) = B(Aj,Al) .
Let X, Y € g%, with a = ¢; —¢; or @ = ¢;. Then JY € ¢°, for B =e; + ¢ or
3 = ej, respectively. From (15) and (i) one obtains

hp(a, X, 0,Y) = —exD+8E qep([ 7Y, X 1)
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= —etID+BH B([JY, X], AdyZy). (38)

From the invariance properties of the Killing form B, the decomposition of X
and JY in €@ p and the identity ¢(J-) = Iyp() (cf. (3)), one has

B([JY, X, AduZy) = B(Ady-1[JY, X], Zo) = e~ «U+8(D) B([]Y, X1, Z,)
= e~ I (B(LJY — ¢(JY), X = ¢(X)], Zo) + B([¢(JY), $(X)], Zy))
— =+ B([Zy $(V)], 6(X)], Zo) = e~ @UD+BE) B($(X), [Zo, [Zo, $(Y)]])

= —e~@H+BHE) B($(X), $(Y)) = Le~(UD+AH) B(X, 6Y).
It follows that

1
2

hp(a. X, a,.Y) = —1B(X, 6Y), (39)
as desired. This concludes the proof of (i).

(ii) The identity (39) implies that the N-invariant function p is strictly plurisub-
harmonic. Hence p, is the moment map associated to p. U

Remark 7.2. Combining (16) and (17) in Proposition 3.1 with (37), we obtain
the exact value of the positive quantities s and t

4)(*2 A 4)(2
s=—HbH, for X eg™c  and t= ”bH, for X e g%

Remark 7.3. The map pe : G/K — g* given by pa(9K)(-) :== B(Ady-1 -, Zp)
is a moment map for the G-action on G/K. The moment map p, in (i) of

Proposition 7.1 can be obtained by restricting ug(nakK) to n. Namely, for X e n
and naK € G/K one has

pp(naK)(X) = pa(nak)(X) = B(Adpeg -1 X, Zo).

In the next remark, all possible N-invariant potentials of the Killing metric are
determined.

Remark 7.4. Let p: G/K — R be the potential of the Killing metric given in
Proposition 7.1 and let o be another N-invariant potential. Let p and o be the
corresponding functions on (R>°)" defined in (19).

(a) In the non-tube case, one has ¢ = p + d, and therefore o = p + d, for
some d € R;

(b) In the tube case, one has 6(y) = p(y) + cy, + d, for c¢,d € R. In particular

o(nexp(L(y))K) = p(nexp(L(y))K) + cy, + d,
where ne N, y = (y1,...,y.) € (R™Y)", and ¢,d € R.
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Proof. Let f := 0 — p be the difference of the two potentials. Then f is a smooth

N-invariant function on G/K such that dd°f(-,J-) = 0. Let f: Q@ — R be the

associated function. R

(a) In the non-tube case, by Proposition 3.1 (iv) and (23), the function f satis-

fies % =0, forall j =1,...7. Hence f is constant on (R>%)" and f is constant
Yj

on G/K.

(b) In the tube case, from Proposition 3.1, (25) and (23), it follows that g—f =0,
Y

J

forallj=1,...r—1, and %Jj = (. Hence f is an affine function of the variable
y, . Equivalently, o(y) = p(y) + cy, + d, for ¢,d € R, as claimed. O

Remark 7.5. Let D(V, F) be a symmetric Siegel domain. Then the Bergman ker-
nel function K(z,z) is N-invariant and In K(z, z) is a potential of the Bergman
metric. As both the Killing and the Bergman metric are G-invariant, they differ
by a multiplicative constant. It follows that In K(z, z) is a multiple of one of the
N -invariant potentials of the Killing metric described in the above remark.

Example 7.6. As an application of Remark 7.5, we compute all N-invariant
potentials of the Killing metric for the upper half-plane in C and for the Siegel
upper half-plane of rank 2.

(a) Let G = SL(2,R) and let G/K be the corresponding Hermitian symmetric
space. Fiz an Iwasawa decomposition NAK of G. Since b =8 and r = 1, then
the potential of the Killing metric given in Proposition 7.1 is

p(nak) = —4a; and  p(y1) = plexp L(y1)K) = lné.

Realize G/K as the upper half-plane H = {z € C | Im(z) > 0}, i.e. the orbit
of i € C under the SL(2,R)-action by linear fractional transformations. Fiz

Nz{([l) T) :meR} and A:{(egl e‘o‘“) :aleR},

and let {x1 + iy € C : y; > 0} be tube associated to G/K. Since
x1 + iy; — exp(z EY) eXp(%ln%Al) 1 =T+ 1Y
(cf. Prop. 4.1), then the potential p on H reads as p(z) = In m
If o: H — R is an arbitrary N -invariant potential of the Killing metric, then

by Remark 7.5

o(z) = In 2 + clmz + d, c,deR.

(Imz)?
(b) The Siegel upper half-plane of rank 2
P={W=S+iTeM(2,2C)|'W=W, T>0},
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of 2 x 2 complexr symmetric matrices with positive definite imaginary part, is
the orbit of ily under the action by linear fractional transformations of the real
symplectic group Sp(2,R). Fix the Twasawa decomposition such that

ol ) - )

e

0

0 e®

dinates in a with respect to the basis defined in Lemma 2.2.

Asb = 12, the potential of the Killing metric defined in Proposition 7.1 is given
by

p(naK) = —6(a; +az) and pyr1,y2) = plexp L(y1,y2)K) = In m

where n is unipotent, n'm is symmetric and a = , with ay, a; coor-

A matriz S+ 1T € P can be expressed in a unique way as
. e 0
na-ily =n- 0 e )

If T = (2 ii) , a simple computation shows that €*™ = t,—t3/t; and €** = t,.

Hence y; = t; — t3/ty, yo =ty and p(S +iT) = In m
If o is an arbitrary N-invariant potential of the Killing form, then by Re-
mark 7.5

o(S+iT) =In m + cty + d, for some ¢, d € R.

)
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