Algoritmi e Strutture Dati

Capitolo 11
Visite di grafi



Strutture dati
per rappresentare grafi
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algoritmi di visita
di un grafo



Scopo e tipi di visita

una visita di un grafo G permette di esaminare 1 nodi €
gli archi di G 1n modo sistematico (se G ¢ connesso)

genera un albero di visita

problema d1 base 1n molte applicazioni

esistono vari tip1 di visite con diverse proprieta:
 visita in ampiezza (BFS=breadth first search)
* visita in profondita (DFS=depth first search)



Visita in ampiezza

dato un grafo G (hon pesato) e un nodo
s, trova tutte le distanze/cammini

minimi da s verso ogni altro nodo v




applicazioni

web crawling
- come google trova nuove pagine da indicizzare
social networking
- trovare gli amici che potresti conoscere
network broadcast
- un nodo manda un messaggio a tutti gli altri nodi della rete
garbage collection

- come scoprire memoria hon pit raggiungibile che si puo
liberare

model checking

- verificare una proprieta di un sistema

risolvere puzzle

- risolvere il Cubo di Rubik con un numero minimo di mosse






cubo di Rubik: 2x2x?2

» grafo delle configurazioni
- un vertice per ogni possibile stato del cubo

- un arco fra due configurazioni se I'una e
ottenibile dall'altra tramite una mossa

e—0

grafo non diretto

cubetto

#Hverciti <8l x 38

= 264.539.520




cubo di Rubik: 2x2x?2

eccentricita di s (God's humber) ,
- —+ God's humber

stato \ 2xex2: 11

3x3x3: 20

Axdx4. ?2??

nxnxn:@(n4/log n)
possibili

mosse
stati /

raggiungibili
in 2 mosse



Visita in ampiezza

algoritmo visitaBFS(vertice s) — albero
rendi tutti 1 vertici non marcati
T < albero formato da un solo nodo s
Coda F
marca il vertice s; dist(s)<0
F.enqueue(s)
while ( not F.isempty() ) do
u «— F.dequeue()
for each ( arco (u,v) in G ) do
if ( v non ¢ ancora marcato ) then
F.enqueue(v)
marca il vertice v; dist(v)<— dist(u)+1
rendi u padre div in I’
return /'
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Un esempio
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Un esempio

albero dei
cammini di G
radicato in s



Esempio: grafo orientato

vertice s

archi con estremi nello stesso livello: (F.G)

archi da un livello a quello immediatamente
successivo: (G,D)

archi da un livello a uno precedente: (A.B)
e (D.C)




Costo della visita in ampiezza
grafo rappresentato con matrice di adiacenza

algoritmo visitaBFS(vertice s) — albero
rendi tutti 1 vertici non marcati
T < albero formato da un solo nodo s
Coda F
marca il vertice s; dist(s)<-0
F.enqueue(s)
while ( not F.isempty() ) do
u «— F.dequeue()
for each ( arco (u,v) in G ) do
if ( v non ¢ ancora marcato ) then
F.enqueue(v)
marca il vertice v; dist(v)<— dist(u)+1
rendi u padre div in 1’
return /1’
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Costo della visita in ampiezza
grafo rappresentato con liste di adiacenza

algoritmo visitaBFS(vertice s) — albero
rendi tutti 1 vertici non marcati
T < albero formato da un solo nodo s
Coda F
marca il vertice s; dist(s)<-0
F.enqueue(s)
while ( not F.isempty() ) do
u «— F.dequeue()
for each ( arco (u,v) in G ) do
if ( v non ¢ ancora marcato ) then
F.enqueue(v)
marca il vertice v; dist(v)<— dist(u)+1
rendi u padre div in 1’
return /1’
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Costo della visita in ampiezza

Il tempo d1 esecuzione dipende dalla struttura dati usata
per rappresentare 1l grafo (e dalla connettivita o meno
del grafo rispetto ad s):

e Liste d1 adiacenza: O(m+n)

« Matrice di adiacenza: O(n?)

Osservaziont:

1. S1noti che se 1l grafo ¢ connesso allora m>n-1 e
quindi O(m+n)=0(m)
2. Ricordando che m<n(n-1)/2, si ha O(m+n)=0(n?)

— per m=o0(n?) la rappresentazione mediante liste di
adiacenza ¢ temporalmente piu efficiente!



Teorema
Per ogni nodo v, il livello di v nell'albero BFS & pari alla

distanza di v dalla sorgente s (sia per grafi orientati che
nhon orientati)

dimostrazione informale

- all'inizio inserisco s in F (che e a distanza O da se stesso) e gli
assegno livello O; chiaramente s e l'unico nodo a distanza O.

- estraggo s e guardo tutti suoi vicini (archi uscenti); questi sono tutti
i nodi a distanza 1 da s; li inserisco in F e assegnho loro livello 1. Ora in
F ho tutti i nodi a distanza 1.

- estraggo uno a uno tutti i nodi di livello/distanza 1 e per oghuno
guardo tutti suoi vicini (archi uscenti); i vicini non marcati sono a
distanza 2 da s; |i inserisco in F e assegno loro livello 2; quando ho
estratto e visitato tutti i nodi di livello 1, in F ho tuttii nodi a
distanza 2 da s.

- estraggo uno a uno tutti i nodi di livello/distanza 2 e per ognuno
guardo tutti suoi vicini (archi uscenti); i vicini non marcati sono a
distanza 3 das...



Visita in profondita
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Cosa mi serve?

gesso: per
segnare le

strade prese

corda: per
tornare

indietro se
necessario
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variabile booleana:
dice se un nodo & stato
gia visitato

pila: push vuol dire srotolare
pop vuol dire arrotolare

un'analogia: esplorare un labirinto



Visita in profondita

procedura visitaDFSRicorsiva(vertice v,alberoT)
marca e visita il vertice v
for each ( arco (v, w) ) do
if ( w non ¢ marcato ) then
aggiungi I’arco (v, w) all’albero T°
visitaDFSRicorsiva(w,T)

algoritmo visitaDFS(vertice s) — albero
T« albero vuoto
visitaDFSRicorsiva(s,T)
return 1’




Un esempio: visita DFS
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Un esempio: visita DFS
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Un esempio: visita DFS




Un esempio: visita DFS




Esemplo: grafo orientato

vertice s

archi in avanti: (C,.D) e (C.G)

archi all'indietro: (A,B)




..fornando al labirinto
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Costo della visita in profondita

Il tempo di esecuzione dipende dalla struttura
dati usata per rappresentare 1l grafo (e dalla
connettivita 0 meno del grafo rispetto ad s):

e Liste di1 adiacenza: O(m+n)

e Matrice di adiacenza: O(n?)



Proprieta dell’albero DFS radicato in s

e Se 1l grafo € non orientato, per ogni arco (u,v) s1 ha:

— (u,v) € un arco dell’albero DFS, oppure

— 1nodi u € v sono 1’uno discendente/antenato dell’altro
e Se 1l grafo ¢ orientato, per ogni arco (u,v) s1 ha:

— (u,v) ¢ un arco dell’albero DFS, oppure

— 1nodi u e v sono ’uno discendente/antenato dell’altro,
oppure

— (u,v) € un arco trasversale a sinistra, ovvero 1l vertice v
¢ 1n un sottoalbero visitato precedentemente ad u
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