Algoritmi e Strutture Dati

Capitolo 11
Visite di grafi

Strutture dati
per rappresentare grafi

Grafi non diretti

Quanto spazio?

b ¢ d
alo |1 | 1]1 a b E{
bl1lo]|1]o0 bl +f{c{a
cl1|1]0]1 C Sal—-[dH{b
dl1]0] 1|0 d e g |

Matrice di adiacenza liste di adiacenza

O(n?) O(m + n)

Quanto spazio?

@

@)

d

a b ¢ d
0] 1 01 1
010 110
110 0] 1
Ol 0O Of O

Matrice di adiacenza

O(n?)

o o o

oL

Grafi diretti

0T

\4
@)

\
Q.

S

liste di adiacenza

O(m + n)

S o

@

d

a b ¢ d
011 1|1
110 110
1|1 0 1
1O 110

Matrice di adiacenza

Operazione:

elenco archi
incidenti inv

c'e arco (u,v)?

Grafi non diretti

a
b
C
d
matrice di a.
O(n)

—lc

b

{6} 4T
(g
> a t—1d
| ¢ P
liste di adiacenza
liste di a.
O(5(v))

O(1) O(min{d(u), 3(v)})

o o

@)

d

a b ¢ d
011 011
010 110
1O 0 1
Ol 0O Of O

Matrice di adiacenza

Operazione:

elenco archi
uscenti da v

c'e arco (u,v)?

matrice di a.

O(n)

O(1)

Grafi diretti

a 1 b E
b > C

o[=
d

liste di adiacenza

liste di a.

O(3(v))

O(3(u))

algoritmi di visita
di un grafo

Scopo e tipi di visita

una visita di un grafo G permette di esaminare 1 nodi €
gli archi di G 1n modo sistematico (se G ¢ connesso)

genera un albero di visita

problema d1 base 1n molte applicazioni

esistono vari tip1 di visite con diverse proprieta:
 visita in ampiezza (BFS=breadth first search)
* visita in profondita (DFS=depth first search)

Visita in ampiezza

dato un grafo G (hon pesato) e un nodo
s, trova tutte le distanze/cammini

minimi da s verso ogni altro nodo v

applicazioni

web crawling
- come google trova nuove pagine da indicizzare
social networking
- trovare gli amici che potresti conoscere
network broadcast
- un nodo manda un messaggio a tutti gli altri nodi della rete
garbage collection

- come scoprire memoria hon pit raggiungibile che si puo
liberare

model checking

- verificare una proprieta di un sistema

risolvere puzzle

- risolvere il Cubo di Rubik con un numero minimo di mosse

cubo di Rubik: 2x2x?2

» grafo delle configurazioni
- un vertice per ogni possibile stato del cubo

- un arco fra due configurazioni se I'una e
ottenibile dall'altra tramite una mossa

e—0

grafo non diretto

cubetto

#Hverciti <8l x 38

= 264.539.520

cubo di Rubik: 2x2x?2

eccentricita di s (God's humber) ,
- —+ God's humber

stato \ 2xex2: 11

3x3x3: 20

Axdx4. ?2??

nxnxn:@(n4/log n)
possibili

mosse
stati /

raggiungibili
in 2 mosse

Visita in ampiezza

algoritmo visitaBFS(vertice s) — albero
rendi tutti 1 vertici non marcati
T < albero formato da un solo nodo s
Coda F
marca il vertice s; dist(s)<0
F.enqueue(s)
while (not F.isempty()) do
u «— F.dequeue()
for each (arco (u,v) in G) do
if (v non ¢ ancora marcato) then
F.enqueue(v)
marca il vertice v; dist(v)<— dist(u)+1
rendi u padre div in I’
return /'

1.
2.
3.
4.
5.
6.
7.
8.
9

—
S I S T e B

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

Un esempio

albero dei
cammini di G
radicato in s

Esempio: grafo orientato

vertice s

archi con estremi nello stesso livello: (F.G)

archi da un livello a quello immediatamente
successivo: (G,D)

archi da un livello a uno precedente: (A.B)
e (D.C)

Costo della visita in ampiezza
grafo rappresentato con matrice di adiacenza

algoritmo visitaBFS(vertice s) — albero
rendi tutti 1 vertici non marcati
T < albero formato da un solo nodo s
Coda F
marca il vertice s; dist(s)<-0
F.enqueue(s)
while (not F.isempty()) do
u «— F.dequeue()
for each (arco (u,v) in G) do
if (v non ¢ ancora marcato) then
F.enqueue(v)
marca il vertice v; dist(v)<— dist(u)+1
rendi u padre div in 1’
return /1’

1.
2.
3.
4.
5.
6.
7.
8.

—_— O
c::|-

[—
b =
L] L]

—

[
ad

Costo della visita in ampiezza
grafo rappresentato con liste di adiacenza

algoritmo visitaBFS(vertice s) — albero
rendi tutti 1 vertici non marcati
T < albero formato da un solo nodo s
Coda F
marca il vertice s; dist(s)<-0
F.enqueue(s)
while (not F.isempty()) do
u «— F.dequeue()
for each (arco (u,v) in G) do
if (v non ¢ ancora marcato) then
F.enqueue(v)
marca il vertice v; dist(v)<— dist(u)+1
rendi u padre div in 1’
return /1’

1.
2.
3.
4.
5.
6.
7.
8.

—_— O
c::|-

—_
W 9 =

Costo della visita in ampiezza

Il tempo d1 esecuzione dipende dalla struttura dati usata
per rappresentare 1l grafo (e dalla connettivita o meno
del grafo rispetto ad s):

e Liste d1 adiacenza: O(m+n)

« Matrice di adiacenza: O(n?)

Osservaziont:

1. S1noti che se 1l grafo ¢ connesso allora m>n-1 e
quindi O(m+n)=0(m)
2. Ricordando che m<n(n-1)/2, si ha O(m+n)=0(n?)

— per m=o0(n?) la rappresentazione mediante liste di
adiacenza ¢ temporalmente piu efficiente!

Teorema
Per ogni nodo v, il livello di v nell'albero BFS & pari alla

distanza di v dalla sorgente s (sia per grafi orientati che
nhon orientati)

dimostrazione informale

- all'inizio inserisco s in F (che e a distanza O da se stesso) e gli
assegno livello O; chiaramente s e l'unico nodo a distanza O.

- estraggo s e guardo tutti suoi vicini (archi uscenti); questi sono tutti
i nodi a distanza 1 da s; li inserisco in F e assegnho loro livello 1. Ora in
F ho tutti i nodi a distanza 1.

- estraggo uno a uno tutti i nodi di livello/distanza 1 e per oghuno
guardo tutti suoi vicini (archi uscenti); i vicini non marcati sono a
distanza 2 da s; |i inserisco in F e assegno loro livello 2; quando ho
estratto e visitato tutti i nodi di livello 1, in F ho tuttii nodi a
distanza 2 da s.

- estraggo uno a uno tutti i nodi di livello/distanza 2 e per ognuno
guardo tutti suoi vicini (archi uscenti); i vicini non marcati sono a
distanza 3 das...

Visita in profondita

E

‘r'—. = [

I

Cosa mi serve?

gesso: per
segnare le

strade prese

corda: per
tornare

indietro se
necessario

D By R
A Bk
S
@J K >/

N 1)
Y &,

variabile booleana:
dice se un nodo & stato
gia visitato

pila: push vuol dire srotolare
pop vuol dire arrotolare

un'analogia: esplorare un labirinto

Visita in profondita

procedura visitaDFSRicorsiva(vertice v,alberoT)
marca e visita il vertice v
for each (arco (v, w)) do
if (w non ¢ marcato) then
aggiungi I’arco (v, w) all’albero T°
visitaDFSRicorsiva(w,T)

algoritmo visitaDFS(vertice s) — albero
T« albero vuoto
visitaDFSRicorsiva(s,T)
return 1’

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Un esempio: visita DFS

Esemplo: grafo orientato

vertice s

archi in avanti: (C,.D) e (C.G)

archi all'indietro: (A,B)

..fornando al labirinto

L
K

’ n 2 -
J — T A B \E\

T ¢ 2 N A :

J— E @/ <F/ @/ \10
- - N e
— H N Y, L)

albero DFS

Costo della visita in profondita

Il tempo di esecuzione dipende dalla struttura
dati usata per rappresentare 1l grafo (e dalla
connettivita 0 meno del grafo rispetto ad s):

e Liste di1 adiacenza: O(m+n)

e Matrice di adiacenza: O(n?)

Proprieta dell’albero DFS radicato in s

e Se 1l grafo € non orientato, per ogni arco (u,v) s1 ha:

— (u,v) € un arco dell’albero DFS, oppure

— 1nodi u € v sono 1’uno discendente/antenato dell’altro
e Se 1l grafo ¢ orientato, per ogni arco (u,v) s1 ha:

— (u,v) ¢ un arco dell’albero DFS, oppure

— 1nodi u e v sono ’uno discendente/antenato dell’altro,
oppure

— (u,v) € un arco trasversale a sinistra, ovvero 1l vertice v
¢ 1n un sottoalbero visitato precedentemente ad u

	Slide 1: Algoritmi e Strutture Dati
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: applicazioni
	Slide 11
	Slide 12: cubo di Rubik: 2x2x2
	Slide 13: cubo di Rubik: 2x2x2
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: un’analogia: esplorare un labirinto
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: …tornando al labirinto
	Slide 62
	Slide 63

