Esercitazione
27 novembre 2025

problema 1

Progettare un algoritmo efficiente per il sequente problema.

Input: vettore ordinato A[1l:n] di n bit, ovvero A[i]€{0,1}
Output: l'indice k dell'ultimo O (numero di zeri)

—
=

goal 1: O(log n)

idea: uso I'approccio delle ricerca binaria.

Algorithm 2: UltimoZeroRic(A,17,7j)

if 2 > j then
| return —1
m= "] ;
if Alm|=0e Al/m+ 1| =1 then
[return m
if Alm| =1 then
| return UltimoZeroRic(A,i,m — 1)
else
| return UltimoZeroRic(A,m + 1,7)

Algorithm 1: UltimoZero(A)

n = lunghezza di A ;

if A[n| =0 then

L return n
else
| return UltimoZeroRic(A,1,n —1)

complessita?

O(log n)

Progettare un algoritmo efficiente per il sequente problema.

Input: vettore ordinato A[1:n] di n bit, ovvero A[i]e{0,1}
Output: l'indice k dell'ultimo O (numero di zeri)

—
=

goal 1: O(log n)
90Cl| 2. O(Iog k) <—— mali peggiore

idea

VNN N N
0]0 0] 0 0] oj11] - 1

A

1 2 4 8 (*=2i k J*: 2i+1

idea: trovare in O(log k) due indici i* e j* tale che:
_ Ali*]:0 e A[j*]=1
- |j*-i*[=O(k) su cui fare ricerca binaria in tempo O(log k)

analisi:

Ho guardato i+2=0(i) elementi
- 2i<k m) i<log, k

_ j*'i*: 2i+1 2i=2i< k
== A[i*;j*] ha j*-i*+1 elementi == O(k) elementi

problema 2

Progettare un algoritmo efficiente per il sequente problema.

Input: vettore A[1:n] di n bit, ovvero A[i]{0,1}
Output: un indice k tale che #di zeri in A[1:k]= #di uni in A[k+1:n]

A 0 0 1 0 1 1 1 0
1 2 3 4 5 6 7 8
k=4

goal: O(n)

idea: calcolare in tempo O(n) due vettori di dimensione n:
-Z[1:n], con Z[j]=#di zeri in A[1:]]
-U[1:n], con U[j]=#di uni in A[j+1:n]

Calcolo Z[] e U[]

if A[1]=0 then Z[1]=1 else Z[1]=0 U[n]=0
forj=2ton do for j=n-1 down to 1 do
if Alj]=0 then Z[j]=Z]j-1]+1 U[j]=U[j+1]+A[j+1]

else Z[j|=Z[j-1]

A 0 0 1 0 1 1 1 0
1 2 3 4 5 6 7 8
L 1 2 2 3 3 3 3 4
1 2 3 4 5 6 7 8
U 4 4 3 3 2 1 0 0

Taglia(A)
if A[1]=0 then Z[1]=1 else Z[1]=0
forj=2ton do

if A[j]=0 then Z[j]=Z[j-1]+1

else Z[j|=Z[j-1]
U[n]=0

for j=n-1 downto1 do
UfjI=Ul+1]+Alj+1]
forj=1ton do
if Z[j]=U]Jj] then return j

return 0

I'algoritmo

complessita?

O(n)

un altro algoritmo

Taglia(A)
cont=0 complessita?
fori=1tondo O(n)

cont=cont+A][i]

return cont correttezza?

correttezza

N: #di uni in A
Ayl (#di uni in A[j+1:n])-(#di zeri in A[1:j]) [=U[j] -Z[j]]

goal: voglio un indice k tale che A =0

Claim: Ay=0
dim
AO:l\] AJ:AJ_I"].
A 0 0 1 0 1 1 1 0
A1 2 3 4 5 6 7 8
J=0

correttezza

N: #di uni in A
Ayl (#di uni in A[j+1:n])-(#di zeri in A[1:j]) [=U[j] -Z[j]]

goal: voglio un indice k tale che A =0

Claim: Ay=0
dim
AO:l\] AJ:AJ_I"].
A 0 0 1 0 1 1 1 0
1 A 2 3 4 5 6 7 8
J=1

correttezza

N: #di uni in A
Ayl (#di uni in A[j+1:n])-(#di zeri in A[1:j]) [=U[j] -Z[j]]

goal: voglio un indice k tale che A =0

Claim: Ay=0
dim
AO:l\] AJ:AJ_I"].
A 0 0 1 0 1 1 1 0
1 2 A 3 4 5 6 7 8
J=2

correttezza

N: #di uni in A
Ayl (#di uni in A[j+1:n])-(#di zeri in A[1:j]) [=U[j] -Z[j]]

goal: voglio un indice k tale che A =0

Claim: Ay=0
dim
AO:l\] AJ:AJ_I"].
A 0 0 1 0 1 1 1 0
1 2 3 A 4 5 6 7 8
J=3

correttezza

N: #di uni in A
Ayl (#di uni in A[j+1:n])-(#di zeri in A[1:j]) [=U[j] -Z[j]]

goal: voglio un indice k tale che A =0

Claim: Ay=0
dim
Ao= N Aj= A -1
k=4
A 0 0 1 0 1 1 1 0
1 2 3 4 A 5 6 7 8

	Slide 1: Esercitazione 27 novembre 2025
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

