Esercitazione
11 novembre 2025

Esercizio Un array A di n elementi e detto unimodale se consiste di una sequenza
crescente seguita da una sequenza decrescente o piu precisamente se esiste un indice m €

{1,2,...,n} tale che:
o Alil < Ali+ 1], perogni 1 <i < m,e
o Ali| > Ali + 1], per ogni m < i < n.

In particolare A[m] € il massimo elemento ed & I'unico che & circondato da due elementi
pit piccoli (A[m — 1] e A[m + 1]).

(a) Si progetti un algorimo con complessita temporale o(n) che, dato un array unimodale
A, restituisce 'indice dell’elemento massimo.

(b) Si progetti un algorimo con complessita temporale o(nlogn) che ordina (in ordine
crescente) un array unimodale A.

Esercizio Un array A di n elementi e detto unimodale se consiste di una sequenza
crescente seguita da una sequenza decrescente o piu precisamente se esiste un indice m €

{1,2,...,n} tale che:
o Alil < Ali+ 1], perogni 1 <i < m,e
o Ali| > Ali + 1], per ogni m < i < n.

In particolare A[m] € il massimo elemento ed & I'unico che & circondato da due elementi
pit piccoli (A[m — 1] e A[m + 1]).

(a) Si progetti un algorimo con complessita temporale o(n) che, dato un array unimodale
A, restituisce 'indice dell’elemento massimo.

(b) Si progetti un algorimo con complessita temporale o(nlogn) che ordina (in ordine
crescente) un array unimodale A.

Esercizio Un array A di n elementi e detto unimodale se consiste di una sequenza
crescente seguita da una sequenza decrescente o piu precisamente se esiste un indice m €

{1,2,...,n} tale che:
o Alil < Ali+ 1], perogni 1 <i < m,e
o Ali| > Ali + 1], per ogni m < i < n.

In particolare A[m] € il massimo elemento ed & I'unico che & circondato da due elementi
pit piccoli (A[m — 1] e A[m + 1]).

(a) Si progetti un algorimo con complessita temporale o(n) che, dato un array unimodale
A, restituisce 'indice dell’elemento massimo.

(b) Si progetti un algorimo con complessita temporale o(nlogn) che ordina (in ordine
crescente) un array unimodale A.

Esercizio Un array A di n elementi e detto unimodale se consiste di una sequenza
crescente seguita da una sequenza decrescente o piu precisamente se esiste un indice m €

{1,2,...,n} tale che:
o Alil < Ali+ 1], perogni 1 <i < m,e
o Ali| > Ali + 1], per ogni m < i < n.

In particolare A[m] € il massimo elemento ed & I'unico che & circondato da due elementi
pit piccoli (A[m — 1] e A[m + 1]).

(a) Si progetti un algorimo con complessita temporale o(n) che, dato un array unimodale
A, restituisce 'indice dell’elemento massimo.

(b) Si progetti un algorimo con complessita temporale o(nlogn) che ordina (in ordine
crescente) un array unimodale A.

idea: uso l'approccio delle ricerca binaria. punto (a)

osservazione cruciale: se guardo un elemento in posizione k e i due
elementi adiacenti in posizione k-1 e k+1, so capire in tempo
constante se A[k] ¢ il massimo o se devo cercare il massimo a
sinistra o a destra di k.

S
A trovato il
massimo
1 k-1 k k+l n
/
A cerco il
massimo a
1 k-1 k k+l n destra di k
———
cerco il
A massimo a
sinistra di k

1 k-1 k k+l n

punto (a)

Algorithm 2: MaxRic(A.i,7)

if ¢ > j then
| return —1

m= |3 5
if Alm|] > Alm —1] e A[m| > Alm + 1] then correttezza;
L return m Segue dalle
if Alm] < Alm + 1] then argomentazioni su
| return MaxRic(A,m +1,7) come restringere
else la ricerca del
massimo.

| return MaxRic(A,i,m —1)

complessita?

Algorithm 1: Max(A)

n = size ot A ; O(Iog n)
if A[l] > A[2] then
L return 1
if Aln] > Aln — 1] then
L return n
return MaxRic(A,2,n — 1)

idea: punto (b)
Sia m la posizione m del massimo. Le due "meta” A[l:im] e A[m+1:n]

sono gia ordinate. Allora uso il Merge per fonderle velocemente
(attenzione che A[m+1:n] e ordinata in ordine decrescente).

Algorithm 3: OrdinaUnimodale(A)

correttezza?
n = size of A ; Ovvia. (Segue dalla
m = Max(A); correttezza del
if m # —1 and m # n then Merge)
Inverti(A,m,n); complessita?
if m # 1 then
| Merge(A,1,m —1,n); O(n)
_ //
Mer'ge(A,ilk,f) Inver"ri(A,i,f)
fonde A[i:k] e A[k+1,f] (che si inverte l'ordine degli elementi
aspetta ordinate in modo di Ali:f]. Puo essere
crescente) e mette la lmplgmenTaTa In quo
sequenza ordinata in A[i:f] richiedere tempo lineare e

memoria costante
(esercizio per voi)

Progettare un algoritmo efficiente per il sequente problema.

Input: vettore A[1:n] di n numeri

Output: due indici i* e j*, con i*<j*, che massimizzano A[j*]-A[i*],
ovvero due indici tale che A[j*]-A[i*]2 A[j]-A[i], per oghi i,
con i<j.

Motivazione

%23 j*z6

se Ali] & la quotazione di un titolo azionario a tempo i,
risolvere il problema vuol dire trovare il miglior modo di
acquistare e vendere il titolo per massimizzare il guadagno.

osservazioni preliminari

-algoritmo semplice con complessita O(n?)
-provo tutte le coppie i,j con i<j

-prendere l'indice i* come indice del minimo e j* come indice

del massimo non va bene
(per la condizione richiesta i*<j*)

goal: tempo O(n)

idea:
-dato i, il miglior j (che massimizza A[j]-A[i]) ¢ l'indice del massimo
in A[i+1,n]
-se dato i, sapessi trovare in tempo costante tale j, avrei un
algoritmo con tempo O(h)
-posso precalcolare questi indici j?

-vettore Max[1:n]

-Max[k]: indice del massimo in A[k,n]

calcolo del vettore Max([]

sia Max[1:n] vettore di dimensione n comples sita?
Max[n]=n o) (n)
for k=n-1 down to 2 do
if (A[k]>A[Max[k+1]]) then Max[k]=k
else Max[k]=Max[k+1]

Max | 7| 2 | 6 | 6 | 6 | 6 | 7 | 8

L'algoritmo

MaxDiff(A)
sia Max[1:n] vettore di dimensione n correttezza?
Max[n]=n Si. Provo tutte le
for k=n-1 down to 2 do coppi e

if A[k]>A[Max[k+1]] then Max[k]=k (i,migliore j per i)

else Max[k]=Max[k+1]

i*=1; j*=Max[2]; M=A[j*]-A[i*]; complessita?
for i=2 ton-1 do O(n)

if (A[Max[i+1]]-A[i])>M then i*=i;
j*=Max[i+1];
M=A[j*]-A[i*];

return (i*,j*)

Qualche altro problema

Progettare un algoritmo efficiente per il sequente problema.

Input: vettore A[1:n] di n numeri

Output: due indici i* e j*, con i*<j*, che massimizzano A[j*]-A[i*],
ovvero due indici tale che A[j*]-A[i*]2 A[j]-A[i], per oghi i,

con i<j.
A 20 11 2 5 4 10 9 2
1 2 3 4 5 6 7 8

=3 j=6

goal: tempo O(n) e memoria ausiliaria costante?

Problema

Sia V[l : n] un vettore di n caratteri, dove ogni posizione puo contenere un carattere
nell'insieme {Y, £, S}. 1l vettore ¢ organizzato in modo che, se letto da sinistra a destra,
sl ottlene prima una sequenza non vuota di Y, pol una sequenza non vuota di E, e pol
una sequenza non vuota di S. Si progetti un algoritmo con complessita o(n) che calcoli il
numero di Y, di E e di S contenute nel vettore. Si fornisca lo pseudocodice dell’algoritmo.

A Y Y E E E E S S
5 6 7 8
#Yy=2

Problema

Nella Striscia Di Mezzo si combatte una guerra sanguinaria fra le Forze
Del Bene e le Forze Del Male. La Striscia si estende da ovest a est ed e
composta da n territori, numerati (da ovest a est) da 1 a n. Il territorio i-
esimo confina con il territorio (i - 1)-esimo e (i + 1)- esimo. Ogni
territorio e controllato da uno dei due schieramenti e, per ogni territorio
controllato dalle Forze Del Bene, sono noti il numero di armate che
difendono tale territorio.

Se |le Forze Del Male di un territorio i vogliono conquistare un territorio
j controllato dalle Forze Del Bene, devono farsi strada sconfiggendo
tutte le armate delle Forze del Bene che si trovano nei territori traie j
(j compreso). Per ogni territorio j controllato dalle Forze Del Bene,
definiamo il fattore di difesa 5; come il numero minimo di armate che le
Forze Del Male devono sconflgger'e per conquistare il ferritorio j.
Progettate un algoritmo che calcoli in tempo O(n) tutti i fattori di difesa
dei territori delle forze del bene.

Striscia di Mezzo

Ovest | | | 4 & { g;\& OGl3]1 5|2 ‘E& EsT

armate forze

del bene forze

del male

8 (fattore di difesa territorio j)
numer'o minimo di armate che le Forze Del Male devono
sconfiggere per conquistare il territorio j

61:5
88:9

goal: calcolare in tempo O(n) tutti i 5,
89 =7

	Slide 1: Esercitazione 11 novembre 2025
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Qualche altro problema
	Slide 17
	Slide 18
	Slide 19
	Slide 20

