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Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Citation networks and Maps of science
[Börner et al., 2012]
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Seven Bridges of Königsberg
[Euler, 1735]

Return to the starting point by traveling each 
link of the graph once and only once.



 Web as a directed graph:
▪ Nodes: Webpages
▪ Edges: Hyperlinks
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 Classic Document Collections: Hierarchical
Indexing, Libraries

 1° Digital Revolution: Centralized Database 
Systems and Search Systems (Programming Languages
for Queries, SQL)

 2° Digital Revolution (1989): The World Wide 
Web:
▪ HTML Pages, Hyperlinks. Decentralized Information 

System.
▪ IR on the WEB: WEB Search Engines and the Link 

Analysis

11



Main Differences and New Challenges in 
WWW IR:

▪ Huge Size
▪ Evolving
▪ Self-Organized & Distributed (no standard rules)

▪ Hyperlinked
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 How to organize the Web?
 First try: Human curated

Web directories
▪ Yahoo, DMOZ, LookSmart

 Second try: Web Search
▪ Information Retrieval investigates:

Find relevant docs in a small 
and trusted set
▪ Newspaper articles, Patents, etc.

▪ But: Web is huge, dynamics, full of untrusted documents, 
random things, web spam, etc.
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 MAIN TASK: Given a set S of words, find the 
most relevant Web Pages for S

 The term «most relevant» hides the most
challenging aspect of WWW IR: How to select
the first few pages which are more relevant
for  S among millions of them?
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 WWW Search Engines are complex systems
formed by several SW modules (see for instance
[Langville_Meyer_06] )
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2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”? How to recover them?
▪ Trick: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?
▪ No single right answer
▪ Trick: Pages that actually know about newspapers 

might all be pointing to many newspapers
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 Query Module (QM): it converts a user’s natural
language Query into a language the WWW-Search
Engine System can understand (usually numbers), and 
consults the Index Module

 QM consults the content index and its inverted file to 
select a set P of pages that contain the Query terms T, 
i.e.,

P :=  { Relevant Pages for T }

 Then,   QM passes P to the Ranking Module
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 Ranking Module:
▪ (i) Compute and Assign an Overall Score to every page p in P,
▪ (ii) Set P is then returned to the User in order of the Overall Score.

 Overall Score is based on two scores (computed by the 
Module):

 Content Score: it depends on several parameters: # query-
words’s occurrences in p; query-word’s presence in the title or in 
bold in p. 

 Popularity Score (focus of our course):  it is determined from a Link 
Analysis of the Web’s hyperlink structure (i.e. a Directed Graph).

 Note: The Ranking Module is perhaps the most important component of 
the Search Process because the output of the query module often results in 
too many (thousands of) Relevant Pages that the User must sort through. 
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 «Nobody wants to be picked last for teams in gym class. Likewise, nobody wants
their webpage to appear last in the list of relevant pages for a search query. As a 
result, many grown-ups transfer their high school wishes to be the “Most Popular” to 
their webpages»

 By 1998, the traditional Content Score was buckling under the Web’s
massive size and the death grip of spammers. In 1998, the Popularity
Score came to the rescue of the Content Score. The Popularity Score 
became a crucial complement to the Content Score and provided Search
Engines with impressively accurate results for all types of queries. The 
Popularity Score, also known as the importance score, harnesses the 
information in the immense Graph created by the Web’s hyperlink 
structure. Thus, models exploiting the Web’s hyperlink structure are 
called Link-Analysis models. 

 Note: The impact that these link-analysis models have had is truly awesome. Since
1998, the use of Web Search Engines has increased dramatically. In fact, an April 
2004 survey by Websense, Inc., reported that half of the respondents would rather
forfeit their habitual morning cup of coffee than their connectivity. That’s because
today’s Search Tools allow Users to answer in seconds queries that were impossible
just a decade ago (from fun searches for pictures, quotes, and snooping amateur 
detective work to more serious searches for academic research papers and patented
inventions).
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Before 1998, the Web Graph was largely an untapped
source of information. While Computer Science 
Researchers like Kleinberg and Brin and Page 
recognized this Graph’s Potential, most people
wondered just what the Web Graph had to do with 
Search_Engine results ☺☺. 

Key Idea of the PR Algorithm: The connection is
understood by viewing a hyperlink as a recommendation. 
A hyperlink from my homepage to your page is my
endorsement of your page. Thus, a page with more 
recommendations (which are realized through in-links) 
must be more important than a page with a few in-links.
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Key Issue:
 Similar to other Recommendation Systems (biblio citations, letters of 

references), the status of the recommender is also important: one personal 
endorsement from B. Obhama probably does more to strengthen a job app
than 20 endorsements from 20 unknown teachers and colleagues. On the 
other hand, if the job interviewer learns that B. Obhama is very generous
with his praises of employees, and he (or his secretary) has written over 
40,000 recommendations in his life, then his recommendation suddenly
drops in weight.  Thus, weights signifying the status of a recommender
must be lowered for recommenders with little discrimination. In fact, 
the weight of each endorsement should be tempered by the total
number of recommendations made by the recommender.

Actually, this is exactly how Google’s PageRank popularity score works.
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Main Idea of PageRank Algorithm: 

«a Web-Page is important if it is pointed to by 
other important Web-Pages»

Sounds circular, doesn’t it? ☺☺

We will see this can be efficiently implemented
thanks to a beautifully simple mathematical
algorithm.
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 All web pages are not equally “important”
www.joe-schmoe.com vs. www.stanford.edu

 There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!
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 We will cover the following Link Analysis 
approaches for computing importances
of nodes in a graph:
▪ Page Rank
▪ Topic-Specific (Personalized) Page Rank
▪ Web Spam Detection Algorithms
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 Idea: Links as votes
▪ Page is more important if it has more links
▪ In-coming links? Out-going links?

 Think of in-links as votes:
▪ www.stanford.edu has 23,400 in-links
▪ www.joe-schmoe.com has 1 in-link

 Are all in-links are equal?
▪ Links from important pages count more
▪ Recursive question! How to solve it?
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 Each link’s vote is proportional to the 
importance of its source page

 If page j with importance rj has n out-links, 
each link gets rj / n votes

 Page j’s own importance is the sum of the 
votes on its in-links
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 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for page j
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“Flow” equations:

ry  = ry /2 + ra /2
ra  = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊



 3 equations, 3 unknowns, 
no constants
▪ No unique solution
▪ All solutions equivalent modulo the scale factor

 Additional constraint forces uniqueness:
▪ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

▪ Solution: 𝒓𝒚 = 𝟐
𝟓
, 𝒓𝒂 = 𝟐

𝟓
, 𝒓𝒎 = 𝟏

𝟓
 Gaussian elimination method works for 

small examples, but we need a better 
method for large web-size graphs

 We need a new formulation!
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ry  = ry /2 + ra /2
ra  = ry /2 + rm
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Flow equations:



 LA PARTE DI ALGEBRA LINEARE E DI 
MARKOV CHAIN E’ FATTA BENE 
NELLE NOTE:

 1B-Google_slides.pdf 

 disponibili su Teams (folder: materiale mining
massive data)
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 Stochastic adjacency matrix 𝑴
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1
𝑑𝑖

else   𝑀𝑗𝑖 = 0
▪ 𝑴 is a column stochastic matrix
▪ Columns sum to 1

 Rank vector 𝒓: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖
▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written 
𝒓 = 𝑴 ⋅ 𝒓
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 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j
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 The flow equations can be written
𝒓 = 𝑴 ∙ 𝒓

 So the rank vector r is an eigenvector of the 
stochastic web matrix M
▪ In fact, its first or principal eigenvector, 

with corresponding eigenvalue 1
▪ Largest eigenvalue of M is 1 since M is

column stochastic (with non-negative entries)
▪ We know r is unit length and each column of M

sums to one, so 𝑴𝒓 ≤ 𝟏

 We can now efficiently solve for r!
The method is called Power iteration
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NOTE: x is an 
eigenvector with 
the corresponding 
eigenvalue λ if:

𝑨𝒙 = 𝝀𝒙



r = M∙r

y       ½    ½    0     y
 a   =  ½     0    1     a
 m       0    ½    0    m
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 Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks

 Power iteration: a simple iterative scheme
▪ Suppose there are N web pages
▪ Initialize: r(0) = [1/N,….,1/N]T

▪ Iterate: r(t+1) = M ∙ r(t)

▪ Stop when |r(t+1) – r(t)|1 < 
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 Power Iteration:
▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖
𝑑𝑖

▪ 2: 𝑟 = 𝑟′
▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15
ra = 1/3 3/6 1/3 11/24 … 6/15
rm 1/3 1/6 3/12 1/6 3/15
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 Power iteration: 
A method for finding dominant eigenvector (the 
vector corresponding to the largest eigenvalue)
▪ 𝒓(𝟏) = 𝑴 ⋅ 𝒓(𝟎)

▪ 𝒓(𝟐) = 𝑴 ⋅ 𝒓 𝟏 = 𝑴 𝑴𝒓 𝟏 = 𝑴𝟐 ⋅ 𝒓 𝟎

▪ 𝒓(𝟑) = 𝑴 ⋅ 𝒓 𝟐 = 𝑴 𝑴𝟐𝒓 𝟎 = 𝑴𝟑 ⋅ 𝒓 𝟎

 Claim:
Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 ,…𝑴𝒌 ⋅ 𝒓 𝟎 ,…
approaches the dominant eigenvector of 𝑴
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 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 ,…
approaches the dominant eigenvector of 𝑴

 Proof:
▪ Assume M has n linearly independent eigenvectors, 
𝑥1, 𝑥2,… , 𝑥𝑛 with corresponding eigenvalues 
𝜆1, 𝜆2, … , 𝜆𝑛, where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛

▪ Vectors 𝑥1, 𝑥2, … , 𝑥𝑛 form a basis and thus we can write: 
𝑟(0) = 𝑐1 𝑥1 + 𝑐2 𝑥2 +⋯+ 𝑐𝑛 𝑥𝑛

▪ 𝑴𝒓(𝟎) = 𝑴 𝒄𝟏 𝒙𝟏 + 𝒄𝟐 𝒙𝟐 +⋯+ 𝒄𝒏 𝒙𝒏
= 𝑐1(𝑀𝑥1) + 𝑐2(𝑀𝑥2) + ⋯+ 𝑐𝑛(𝑀𝑥𝑛)
= 𝑐1(𝜆1𝑥1) + 𝑐2(𝜆2𝑥2) +⋯+ 𝑐𝑛(𝜆𝑛𝑥𝑛)

▪ Repeated multiplication on both sides produces
𝑀𝑘𝑟(0) = 𝑐1(𝜆1𝑘𝑥1) + 𝑐2(𝜆2𝑘𝑥2) + ⋯+ 𝑐𝑛(𝜆𝑛𝑘𝑥𝑛)

J. Leskovec, A. Ra jaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 40

Details!



 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 ,…𝑴𝒌 ⋅ 𝒓 𝟎 ,…
approaches the dominant eigenvector of 𝑴

 Proof (continued):
▪ Repeated multiplication on both sides produces
𝑀𝑘𝑟(0) = 𝑐1(𝜆1𝑘𝑥1) + 𝑐2(𝜆2𝑘𝑥2) + ⋯+ 𝑐𝑛(𝜆𝑛𝑘𝑥𝑛)

𝑀𝑘𝑟(0) = 𝜆1𝑘 𝑐1𝑥1 + 𝑐2
𝜆2
𝜆1

𝑘
𝑥2 + ⋯+ 𝑐𝑛

𝜆2
𝜆1

𝑘
𝑥𝑛

▪ Since 𝜆1 > 𝜆2 then fractions 𝜆2
𝜆1
, 𝜆3
𝜆1
… < 1

and so 𝜆𝑖
𝜆1

𝑘
= 0 as 𝑘 → ∞ (for all 𝑖 = 2…𝑛).

▪ Thus: 𝑴𝒌𝒓(𝟎) ≈ 𝒄𝟏 𝝀𝟏𝒌𝒙𝟏
▪ Note if 𝑐1 = 0 then the method won’t converge
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 Imagine a random web surfer:
▪ At any time 𝒕, surfer is on some page 𝒊
▪ At time 𝒕 + 𝟏, the surfer follows an 

out-link from 𝒊 uniformly at random
▪ Ends up on some page 𝒋 linked from 𝒊
▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕
▪ So, 𝒑(𝒕) is a probability distribution over pages
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Markov Chain 

!  A Markov chain is a sequence X1, X2, X3, ... of random 
variables (Σv all possible values of X P(X=v) = 1) with the property: 

!  Markov property: the conditional probability distribution of 
the next future state Xn+1 given the present and past states 
is a function of the present state Xn alone  

!  If the state space is finite then the transition probabilities 
can be described with a matrix Pij=P(Xn+1= j | Xn = i ), i,j =1, 
…m 
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 Where is the surfer at time t+1?
▪ Follows a link uniformly at random
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)
then 𝒑(𝒕) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓
▪ So, 𝒓 is a stationary distribution for 

the random walk

)(M)1( tptp =+
j

i1 i2 i3
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 A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what the 
initial probability distribution at time t = 0
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Ergodic Markov chains 
!  A Markov chain is ergodic if: 

"  Informally: there is a path from any state to any 
other; and the states are not partitioned into sets 
such that all state transitions occur cyclically from 
one set to another.  

"  Formally: for any start state, after a finite transient 
time T0, the probability of being in any state at 
any fixed time T>T0 is nonzero. 

Not 
ergodic 
(even/ 
odd). 

Not ergodic: the probability to be in a state, at a fixed 
time, e.g., after 500 transitions, is always either 0 or 1 
according to the initial state.  57 



Ergodic Markov chains 

!  For any ergodic Markov chain, there is a unique 
long-term visit rate for each state 
"  Steady-state probability distribution 

!  Over a long time-period, we visit each state in 
proportion to this rate 

!  It doesn’t matter where we start. 
!  Note: non ergodic Markov chains may still have a 

steady state. 
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 Does this converge?

 Does it converge to what we want?

 Are results reasonable?


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 Example:
ra 1 0 1 0
rb 0 1 0 1
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 Example:
ra 1 0 0 0
rb 0 1 0 0
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2 problems:
 (1) Some pages are 

dead ends (have no out-links)
▪ Random walk has “nowhere” to go to
▪ Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)
▪ Random walked gets “stuck” in a trap
▪ And eventually spider traps absorb all importance
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 Power Iteration:
▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖
𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0
ra = 1/3 1/6 2/12 3/24 … 0
rm 1/3 3/6 7/12 16/24 1
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Iteration 0, 1, 2, …

y

a m

y a m
y ½ ½ 0
a ½ 0 0

m 0 ½ 1

ry  = ry /2 + ra /2
ra  = ry /2
rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.



 The Google solution for spider traps: At each 
time step, the random surfer has two options
▪ With prob. , follow a link at random
▪ With prob. 1-, jump to some random page
▪ Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps
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 Power Iteration:
▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖
𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0
ra = 1/3 1/6 2/12 3/24 … 0
rm 1/3 1/6 1/12 2/24 0
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Iteration 0, 1, 2, …

y

a m

y a m
y ½ ½ 0
a ½ 0 0

m 0 ½ 0

ry  = ry /2 + ra /2
ra  = ry /2
rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.



 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends
▪ Adjust matrix accordingly
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y

a m
y a m

y ½ ½ ⅓
a ½ 0 ⅓

m 0 ½ ⅓

y a m
y ½ ½ 0
a ½ 0 0

m 0 ½ 0

y

a m



Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?
 Spider-traps are not a problem, but with traps 

PageRank scores are not what we want
▪ Solution: Never get stuck in a spider trap by 

teleporting out of it in a finite number of steps
 Dead-ends are a problem

▪ The matrix is not column stochastic so our initial 
assumptions are not met

▪ Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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 Google’s solution that does it all:
At each step, random surfer has two options:
▪ With probability ,  follow a link at random
▪ With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =෍
𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1
𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 
preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.



 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =෍
𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1
𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1
𝑁 𝑁×𝑁

 We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓
And the Power method still works!

 What is  ?
▪ In practice  =0.8,0.9 (make 5 steps on avg., jump)
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[1/N]NxN…N by N matrix
where all entries are 1/N



y
a    =
m

1/3
1/3
1/3

0.33
0.20
0.46

0.24
0.20
0.52

0.26
0.18
0.56

7/33
  5/33
21/33

. . .
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y

a m

13/15

7/15

1/2 1/2   0
     1/2   0    0
      0   1/2   1

1/3 1/3 1/3
   1/3 1/3 1/3
   1/3 1/3 1/3

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A





 Key step is matrix-vector multiplication
▪ rnew = A ∙ rold

 Easy if we have enough main memory to 
hold A, rold, rnew

 Say N = 1 billion pages
▪ We need 4 bytes for 

each entry (say)
▪ 2 billion entries for 

vectors, approx 8GB
▪ Matrix A has N2 entries

▪ 1018 is a large number!
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½   ½   0
 ½   0   0
0    ½   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

7/15  7/15   1/15
     7/15  1/15   1/15
     1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =



 Suppose there are N pages
 Consider page i, with di out-links
 We have Mji = 1/|di| when i→ j

and Mji = 0 otherwise
 The random teleport is equivalent to:

▪ Adding a teleport link from i to every other page 
and setting transition probability to (1-)/N

▪ Reducing the probability of following each 
out-link from 1/|di| to /|di|

▪ Equivalent: Tax each page a fraction (1-) of its 
score and redistribute evenly 
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𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏−𝜷
𝑵

 𝑟𝑗 = σi=1𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖
𝑟𝑗 = σ𝑖=1𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽
𝑁

⋅ 𝑟𝑖
= σi=1𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽
𝑁
σi=1𝑁 𝑟𝑖

= σi=1𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +
1−𝛽
𝑁

since σ𝑟𝑖 = 1

 So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 + 𝟏−𝜷
𝑵 𝑵
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[x]N … a vector  of length N with all entries xNote: Here we assumed M 
has no dead-ends



 We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏− 𝜷
𝑵 𝑵

▪ where [(1-)/N]N is a vector with all N entries (1-)/N

 M is a sparse matrix! (with no dead-ends)

▪ 10 links per node, approx 10N entries
 So in each iteration, we need to:

▪ Compute rnew =  M ∙ rold

▪ Add a constant value (1-)/N to each entry in rnew

▪ Note if M contains dead-ends then σ𝒋 𝒓𝒋𝒏𝒆𝒘 < 𝟏 and 
we also have to renormalize rnew so that it sums to 1
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 Input: Graph 𝑮 and parameter 𝜷
▪ Directed graph 𝑮 (can have spider traps and dead ends)
▪ Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

▪ Set: 𝑟𝑗𝑜𝑙𝑑 = 1
𝑁

▪ repeat until convergence: σ𝑗 𝑟𝑗𝑛𝑒𝑤 − 𝑟𝑗𝑜𝑙𝑑 > 𝜀
▪ ∀𝑗: 𝒓′𝒋

𝒏𝒆𝒘 = σ𝒊→𝒋 𝜷
𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

▪ Now re-insert the leaked PageRank:
∀𝒋: 𝒓𝒋

𝒏𝒆𝒘 = 𝒓′𝒋
𝒏𝒆𝒘 + 𝟏−𝑺

𝑵
▪ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

63

where: 𝑆 = σ𝑗 𝑟′𝑗𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 
the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.

J. Leskovec, A. Ra jaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Encode sparse matrix using only nonzero 
entries
▪ Space proportional roughly to number of links
▪ Say 10N, or 4*10*1 billion = 40GB
▪ Still won’t fit in memory, but will fit on disk
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0 3 1, 5, 7
1 5 17, 64, 113, 117, 245
2 2 13, 23

source
node degree destination nodes



 Assume enough RAM to fit rnew into memory
▪ Store rold and matrix M on disk

 1 step of power-iteration is:
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0 3 1, 5, 6
1 4 17, 64, 113, 117
2 2 13, 23

source degree destination0
1
2
3
4
5
6

0
1
2
3
4
5
6

rnew rold

Initialize all entries of rnew = (1-) / N
For each page i (of out-degree di):
  Read into memory: i, di, dest1, …, destdi, rold(i)
  For j = 1…di
      rnew(destj) +=  rold(i) / di



 Assume enough RAM to fit rnew into memory
▪ Store rold and matrix M on disk

 In each iteration, we have to:
▪ Read rold and M
▪ Write rnew back to disk
▪ Cost per iteration of Power method:

= 2|r| + |M|

 Question:
▪ What if we could not even fit rnew in memory?
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▪ Break rnew into k blocks that fit in memory
▪ Scan M and rold once for each block

J. Leskovec, A. Ra jaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 67

0 4 0, 1, 3, 5
1 2 0, 5
2 2 3, 4

src degree destination
0
1

2
3

4
5

0
1
2
3
4
5

rnew rold

M



 Similar to nested-loop join in databases
▪ Break rnew into k blocks that fit in memory
▪ Scan M and rold once for each block

 Total cost:
▪ k scans of M and rold

▪ Cost per iteration of Power method:
k(|M| + |r|) + |r| = k|M| + (k+1)|r|

 Can we do better?
▪ Hint: M is much bigger than r (approx 10-20x), so 

we must avoid reading it k times per iteration
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0 4 0, 1
1 3 0
2 2 1

src degree destination

0
1

2
3

4
5

0
1
2
3
4
5

rnew

rold

0 4 5
1 3 5
2 2 4

0 4 3
2 2 3

Break M into stripes! Each stripe contains only 
destination nodes in the corresponding block of rnew



 Break M into stripes
▪ Each stripe contains only destination nodes 

in the corresponding block of rnew

 Some additional overhead per stripe
▪ But it is usually worth it

 Cost per iteration of Power method:
=|M|(1+) + (k+1)|r|
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 Measures generic popularity of a page
▪ Biased against topic-specific authorities
▪ Solution: Topic-Specific PageRank (next)

 Uses a single measure of importance
▪ Other models of importance
▪ Solution: Hubs-and-Authorities

 Susceptible to Link spam
▪ Artificial link topographies created in order to 

boost page rank
▪ Solution: TrustRank
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