Note to other teachers and users of these slides: We would be delighted if you found this our
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: hitp://www.mmds.org

Analysis of Large Graphs:
Link Analysis, PageRank
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Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Graph Data: Information Nets
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[Borner et al., 2012]
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Graph Data: Communication Nets
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Graph Data: Technological Networks
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Seven Bridges of Konigsberg

[Euler, 1735]
Return to the starting point by traveling each
link of the graph once and only once.
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Web as a Graph

Web as a directed graph:

Nodes: Webpages
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Web as a Graph

Web as a directed graph:
Nodes: Webpages
Edges: Hyperlinks
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Web as a Directed Graph
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SHORT HISTORY of INFORMATION RETRIEVAL

Classic Document Collections: Hierarchical
Indexing, Libraries
1° Digital Revolution: Centralized Database
Systems and Search Systems (Programming Languages
for Queries, SQL)
2° Digital Revolution (1989): The World Wide
Web:
HTML Pages, Hyperlinks. Decentralized Information
System.

IR on the WEB: WEB Search Engines and the Link
Analysis



Information Retrieval on WWW

Main Differences and New Challengesin
WWW IR:

Huge Size

Evolving

Self-Organized & Distributed (no standard rules)
Hyperlinked
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Broad Question
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WWW Search Engines

MAIN TASK: Given a set S of words, find the
Web Pages for S

The term « » hides the most
challenging aspect of WWW IR: How to select
the first few pages which are more relevant
for S among millions of them?

ts, http://www.mmds.org



WWW Search Engines

WWW Search Engines are complex systems
formed by several SW modules (see for instance
[Langville_Meyer 06] )

i »  Query Engine
‘\“ > Interface I
Indexer
User /




Web Search: 2 Challenges

2 challenges of web search:
(1) Web contains many sources of information
Who to “trust”? How to recover them?

Trick: Trustworthy pages may point to each other!

(2) What is the “best” answer to query
“newspaper”?
No single right answer

Trick: Pages that actually know about newspapers
might all be pointing to many newspapers
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WWW Search Engines: The Query Module

Query Module (QM): it converts a user’s natural
language Query into a language the WWW-Search
Engine System can understand (usually numbers), and
consults the Index Module

QM consults the content index and its inverted file to
select a set P of pages that contain the Query terms T,

l.e.,
P := { Relevant Pages for T }

Then, QM passes P to the Ranking Module
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WWW Search Engines: The Ranking Module

Ranking Module:

(i) Compute and Assign an Overall Score to every page p in P,
(ii) Set P is then returned to the Userin order of the Overall Score.

Overall Score is based on two scores (computed by the
Module):

Content Score: it depends on several parameters: # query-

words’s occurrences in p; query-word’s presence in the title or in
boldin p.

Popularity Score (focus of our course): it is determined from a Link
Analysis of the Web’s hyperlink structure (i.e. a Directed Graph).

Note: The Ranking Module is perhaps the most important component of

the Search Process because the output of the query module often results in
too many (thousands of) Relevant Pages that the User must sort through.
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Popularity Score & Link Analysis: The WWW IR

Revolution

«Nobody wants to be picked last for teams in gym class. Likewise, nobody wants
their webpage to appear last in the list of relevant pages for a search query. As a
result, many grown-ups transfer their high school wishes to be the “Most Popular” to
their webpages»

By 1998, the traditional Content Score was buckling underthe Web’s
massive size and the death grip of spammers. In 1998, the Popularity
Score came to the rescue of the Content Score. The Popularity Score
became a crucial complement to the Content Score and provided Search
Engines with impressively accurate results for all types of queries. The
Popularity Score, also known as the importance score, harnesses the
information in the immense Graph created by the Web’s hyperlink
structure. Thus, models exploiting the Web’s hyperlink structure are
called Link-Analysis models.

Note: The impact that these link-analysis models have had is truly awesome. Since
1998, the use of Web Search Engines has increased dramatically. In fact, an April
2004 survey by Websense, Inc., reported that half of the respondents would rather
forfeit their habitual morning cup of coffee than their connectivity. That's because
today’s Search Tools allow Users to answer in seconds queries that were impossible
just a decade ago (from fun searches for pictures, quotes, and snooping amateur
detective v)vork to more serious searches for academic research papers and patented
inventions).
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The WWW IR Revolution: The Page-Rank
Algorithm

Before 1998, the Web Graph was largely an untapped
source of information. While Computer Science
Researchers like Kleinberg and Brin and Page
recognized this Graph’s Potential, most people
wondered just what the Web Graph had to do with

Search_Engine results ©©.

Key Idea of the PR Algorithm: The connection is
understood by viewing a hyperlink as a recommendation.
A hyperlink from my homepage to your page is my
endorsement of your page. Thus, a page with more
recommendations (which are realized through in-links)
must be more important than a page with a few in-links.




The Page-Rank Algorithm

Key Issue:

Similar to other Recommendation Systems (biblio citations, letters of
references), the status of the recommender is also important: one personal
endorsement from B. Obhama probably does more to strengthen a job app
than 20 endorsements from 20 unknown teachers and colleagues. On the
other hand, if the job interviewer learns that B. Obhama is very generous
with his praises of employees, and he (or his secretary) has written over
40,000 recommendations in his life, then his recommendation suddenly
drops in weight. Thus, weights signifying the status of a recommender
must be lowered for recommenders with little discrimination. In fact,
the weight of each endorsement should be tempered by the total
number of recommendations made by the recommender.

Actually, this is exactly how Google’s PageRank popularity score works.
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The Page-Rank Algorithm

Main Idea of PageRank Algorithm:

«a Web-Page is important if it is pointed to by
other important Web-Pages»

Sounds circular, doesn’t it? ©©

We will see this can be efficiently implemented
thanks to a beautifully simple mathematical
algorithm.



Ranking Nodes on the Graph

All web pages are not equally “important”

WwWw.joe-schmoe.com vs. www.stanford.edu

There is large diversity
in the web-graph

node connectivity.
Let’s rank the pages by
the link structure!




Link Analysis Algorithms

We will cover the following Link Analysis
approaches for computing importances
of nodes in a graph:

Page Rank

Topic-Specific (Personalized) Page Rank

Web Spam Detection Algorithms
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PageRank:
The “Flow” Formulation



Links as Votes

Idea: Links as votes

Page is more important if it has more links
In-coming links? Out-going links?
Think of in-links as votes:

www.stanford.edu has 23,400 in-links

WWW.joe-schmoe.com has 1 in-link

Are all in-links are equal?
Links from important pages count more

Recursive question! How to solve it?
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Example: PageRank Scores




Simple Recursive Formulation

Each link’s vote is proportional to the
importance of its source page

If page j with importance r; has n out-links,
each link gets r;/ n votes

Page j's own importance is the sum of the

votes on its in-links
/3 f./4

r;=r/3+r,/4 \r/f
/3\
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PageRank: The “Flow"” Model

A “vote” from an important
page is worth more

A page is important if it is
pointed to by other important
pages

Define a “rank” r; for page j

The web in 1839

a/2 &
— E — “Flow"” equations:

ry =r,/2+r,/2
l_)] r, =ry/2+r,

r,=1r,/2
d; ... out-degree of node i
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Solving the Flow Equations

Flow equations:

3 equations, 3 unknowns, ry =r,/2+r,/2
no constants r, =r,/2+r,
r,=r,/2

No unique solution

All solutions equivalent modulo the scale factor
Additional constraint forces uniqueness:

r, +ro+r, =1

Solution: r, = o Ta =5, Tm =7
Gaussian elimination method works for
small examples, but we need a better
method for large web-size graphs

We need a new formulation!
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NOTA

LA PARTE DI ALGEBRA LINEAREE DI
MARKOV CHAINE' FATTA BENE
NELLE NOTE:
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disponibili su Teams (folder: materiale mining
massive data)



PageRank: Matrix Formulation

Stochastic adjacency matrix M 5
—+

Let page i has d; out-links

1
Ifi — j,then M = — else M, =20 t

. a4 . ¢
M is a column stochastic matrix + Y ¢ : = Hﬁ-'—' 1.
Columns sumto 1 )

Rank vector 1: vector with an entry per page
1, is the importance score of page i

Y.r; =1 — NORKALIFATION
The flow equations can be written | 7. = Z

r = M- r




V. ,
Remember the flow equation: 7, = Zd—’ L
Flow equation in the matrix form /i '/‘i Y3

M-r=r ® © ¢
Suppose page i links to 3 pages, includingj < < g
. i z
l
j /[] rj
[ - =
T g
1/3—— '

M . r = r
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Eigenvector Formulation

The flow equations can be written

r =M -1 (\=4)
So the rank vector r is an eigenvector of the
stochastic web matrix M

In fact, its first or principal eigenvector,
with corresponding eigenvalue 1.z HAX o7& xsan

Largest eigenvalue of M is 1 since M is the corresponding
eigenvalue A if:

column stochastic (with non-negative entries) Ax = Ax

We know r is unit length and each column of M
sumstoone,soMr <1 iw L, vow

We can now efficiently solve for r!
The method is called Power iteration
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Example: Flow Equations & M

w~ y a m
Vs
vy 2| 2| 0
Vs a 1
0

Ve " 21 0
m| 0 |
1 WATRLS REPR . M
‘ \ow Love L 0‘?\5?;
r,=r/2+r, 2 1~y| % B o]y
r, =r,/2+r, a =12 0 1/|a
ro=r, /2 m |0 % 0]|m
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Power Iteration Method

Given a web graph with n nodes, where the

nodes are pages and edges are hyperlinks
Power iteration: a simple iterative scheme

Suppose there are N web pages

(1
o WF - . .
nitialize: 1O = [1/N,...,1/N]T-> st~ 7 = Z’”z

/ d
- p(t+l) = . plt) i—»j Y
Iterate: v M-r d. = out-degree of node i

(t+1) _ p(t) »
Stop when [r= -1, <g L “ALtosT @ FIXED PoinT

[. IX|1 = 21<ien|Xi| IS the L1 norm (4
Can use any other vector norm, e.g., Euclidean ZlG‘EN VECTOR
P -
% M wi v

N=%
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PageRank: How to solve?

Power Iteration:
Setrj = 1/N al % | 0

r

y a

y| 2 vz

o|l—|o|B

m| O %5

° / — T
1-rj_2i—>jd_li VS:\-—nU
o r, =r,/2+r,/2
2:r =71 r, =r,/2+r,
Goto 1 =g r.=r,/2
Example: 7~
ry\ 1/3
r, | = 1/3
I, 1/3

lteration O, 1, 2, ...
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PageRank: How to solve?

Power Iteration: L
y| Y /2 0
Setr; = 1/N ™ al %o| 0 | 1
L r m| 0 | % | 0
1: Tj = Zl_)]d_l 1
o . r, =r,/2+r,/2
2:r =71 o ‘%‘2_"5&“’ r, =r,/2+r,
Goto 1 r. =r,/2
Exampleéso e=t 2?2 k=3 . — {Z‘m\
ia 13 1/3  5/12 9/24 6/15 .
r, | = 1/3 3/6 1/3 11/24 ... 6/15 Fam
(T 1/3 1/6 3/12  1/6 1_5/,1.5/— 6\9“ q
lteration 0, 1, 2, ... \(erepoV /
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Why Power Iteration works?

Power iteration:
A method for finding dominant eigenvector (the
vector corresponding to the largest eigenvalue)

D = . 7O

r@ =pm.r» = M(Mr(l)) — M2 . 0

r® = M@ = M(M2r©@) = M3 . (O
Claim:
Sequence M - 0 Mm% . (0 ppk . 0)
approaches the dominant eigenvector of M



Why Power Iteration works?

Claim: Sequence M - r® M2 . (0 pk .40
approaches the dommant elgenvector of M (wacn )
Proof:

Assume M has n linearly independent eigenvectors, Mn)
X1,X7, ..., Xy With corresponding eigenvalues b
At AL . Ay, where 4y > 4, > - > Ay

o Vectors x¢, X5, ..., X, form a basis and thus we can write:
Vouy /7@ = c; 2+ o205+ Co Xn | Jor som €Capon G
Mr©® = M(cqy x1+ ¢y x5 + -+ ¢, X;) Lo host :
= c1(Mx1) + c2(Mx2) + -+ + cn(Mxp) hE £4.
= c1(A41x1) + 2(A2x2) + - + cp(Anxp)
Repeated multiplication on both sides produces
M¥*r©) = cl(/l x1) +f2(,1 Kx5) + -+ ¢ (Akx,)
B, A
A

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 40




Why Power Iteration works?

Claim: Sequence M - (@ MZ . (0 ppk . (0
approaches the dominant eigenvector of M
Proof (continued): »

Repeated multiplication on both sides produces ¢
M r©® = c¢; (Afx;) + c,(A5x5) + -+ + ¢ (A5xy,)
(D—-\ A . A f
MFr(0) = 3k [clxl +c, (/1—2> X, + -+ ¢, (,1_2) xn]
N 1

A
. Ay A
Since A; > A, then fractions =% ,= ... < 1}
k 1 M
2.

and so (4) % Oask > (foralli =2 ...n).
" - sk
Thus: M*r®) ~ ¢;(2%x,) the Tt L
CowOPL . Note if ¢; = 0then the method won’t converge ~ VooV M5
nNORM [, T T fawe a 50 wwf
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Random Walk Interpretation

Imagine a random web surfer:
At any time t, surfer is on some page i

At time t + 1, the surfer follows an
out-link from i uniformly at random yo= z

. . ~=d_ ()
Ends up on some page j linked from i i=J ~out
Process repeats indefinitely

Let: A Kou
" p(t) ... vector whose it" coordinate is the \ CHAN
Vm\éﬁ [prob. that the surfer is at page i attime ¢

L So, p(t) is a probability distribution over pages
ééf’i(t)::i, .

.Leskovec, A.Rajaraman, J. Ullman: Miningof Massive Datasets, http://www.mmds.org




Markov Chain h= f(me, 5\0{3{7

o A Markov chain is a sequence X;, X5, X5, ... of random
variables (Zv all possible values of X P(X=V) = 1) with the property:

0o Markov property: the conditional probability distribution Oft
the next future state X, ., given the present and past states W
is a function of the present state X, alone Vxl xo),.,,(xw .

Pl( 72+l_l|\0_lU,JXl ---,J\n'—lylw_Pl(\72+1=l‘|4‘Yn'=l‘r£.).

o If the state space is finite then the transition probabilities
can be described with a matrix P;=P(X,,;= ] |X = |), i,j =1,

maN Qo] vy

/° . 3
Tss 15) ( P =11X,=1) P(X,,=21X, -]
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> o
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The Stationary Distribution

Where is the surfer at time 7r+1?

Follows a link uniformly at random */G

p(t+1)= M- p(t) p(t+1)=M- p(?)
Suppose the random walk reaches a state
p(t+1)= M -p(t) = p(t) Pwed peivk

/then p(t) is stationary distribution of a random walk
Our original rank vector r satisfies r = M - r
So, r is a stationary distribution for

the random walk , ' At
& = (= fel—es ]

b GCoWWNV \10/(’)\"0‘(
50(&?[':‘ V

ts, http://www.mmds.org



Existence and Uniqueness
YoTlowany Pay-Yaul V enshs? isit Ovt@Qus ?
A central result from the theory of random
walks (a.k.a. Markov processes):

4

For graphs that satisfy certain conditions,
the stationary distributionis unique and
eventually will be reached no matter what the
initial probability distributionattimet=0




V
Ergodic Markov chains 5 GRAP /\W“‘f :

ag O Ko
o A Markov chain is ergodic if: L ogppﬁ(r.
= Informally: there is a path from any state to any

4
y . V
other; and the states are not partitioned into sets \f W .
such that all state transitions occur cyclically from

one set to another.

r-”Formally: for any start state, after a finite transient]
time T,, the probability of being in any state at
any fixed time T>T, is nonzero.

P VielND veds
BleRfLTE Not_ (€) ‘ Vt'>T
QO Tde Pe)>0,7E 2l

odd).

Not ergodic: the probability to be in a state, at a fixed

time, e.qg., after 500 transitions, is always either 0 or 1
according to the initial state.
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Ergodic Markov chains

(e
o For any ergodic Markov chain, there is a unique TAGGET
long-term visit rate for each state 82,9\(
m Steady-state probability distribution (POPU LA

o Over a long time-period, we visit each state in wﬂ@q.
proportion to this rate

o It doesn’t matter where we start.

o Note: non ergodic Markov chains may still have a
steady state.
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PageRank:
The Google Formulation



PageRank: Three Questions

(z+1) V.
r] - Z ;1 equi\:)arlently I/' — Mr

i—»j Y
Does this converge?

Does it converge to what we want?

Are results reasonable?

ts, http://www.mmds.org



Does this converge?
HAIN “PBUE ; WED GRAPR 15 NoT ErGoviC ()

(4)

> (t+1) I/;
e( Q rj - Z d

=] 1
Example:
r, _ 1 0 1
I, 0 1 0 1



Does it converge to what we want?

W @wwgﬂmv Bot----

Y~ (t+1) ’?(t)

e )Q 7’]. :Z d

1—>] 1

Example:
, _ 1L 0 0 0
r, 0o 1 0 0
lteration O, 1, 2, ...
JPF\XQA ?O{VJ" wo

W\Q::«MA\% v

ts, http://www.mmds.org



PageRank: Problems

Dead end

G1)

2 problems:
(1) Some pages are
dead ends (have no out-links)

Random walk has “nowhere” to go to
Such pages cause importance to “leak out”  Spiderrg,

Havre (S . (2)
(2) Spider traps: o 1GANG /

(all out-links are within the group)

Random walked gets “stuck” in a trap
And eventually spider traps absorb all importance
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Problem: Spider Traps

Power Iteration: Z i rg
Set T = 1 v, | 0 | 0
0 ) 1

'r'.
1= Yinjg
i m is a spider trap r =r.2+r./2
y y a

And iterate —
r,=r,/2+r,

Example:
1, ) 13 2/6  3/12 5/24 0
r, | = 13 16 212 324 .. |0 @
13 3/6 712 16/24 1

\rmd
lteration O, 1, 2, ... J

All the PageRank score gets “trapped” in node m.
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Solution: Teleports!

The Google solution for spider traps: At each
time step, the random surfer has two options

With prob. B, follow a link at random P';:’,}ﬁfg&iw

With prob. 1-8, jump to some random page Y

Common values for £ are in the range 0.8 to 0.9
Surfer will teleport out of spider trap
within a few time steps

¥ e wolker doon
fo¥ Gollow W&‘:S'
g 1 AP S =
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Problem: Dead Ends

Power lteration: > = 7
y| Y vz 0

Set T = 1 al B | 0o | 0
m| O ) 0

_ ri
7‘]- o Zi—’f d;
: r, =r,/2+r,/2

And iterate o

r, =r,/2
r,=r,/2
Example:
1, ) 13 2/6  3/12 5/24 0
r, | = 173 1/6 212 324 ... 0
I 173 1/6 1/12 224 0

lteration O, 1, 2, ...

Here the PageRank “leaks” out since the matrix is not stochastic.
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Solution: Always Teleport!

Teleports: Follow random teleport links with
probability 1.0 from dead-ends

Adjust matrix accordingly

J .=

y a m y a m
yl w | % | o vl | %
al | 0| o0 ol o0 | %
m|l 0| % | 0 0| % | %

.Leskovec, A.Rajaraman, J. Ullman: Miningof Massive Datasets, http://www.mmds.org




Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem

and why do teleports solve the problem?
Spider-traps are not a problem, but with traps
PageRank scores are not what we want

Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps

Dead-ends are a problem

The matrix is not column stochastic so our initial
assumptions are not met

Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go
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Solution: Random Teleports

Google’s solution that does it all:
At each step, random surfer has two options:

With probability B, follow a link at random
With probability 7-8, jump to some random

PageRank equation [Brin-Page, 98]

L
o\
%G- .5

d;... out-degree
of nodei

This formulation assumes that M has no dead ends. We can either
preprocess matrix M_to remove, all dead ends or explicitly follow random
teleport links with probability 1.0 from dead-ends.
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The Google Matrix

PageRank equation [Brin-Page, ‘98]
B z i 11 1

[—]
The Google Matrix A: [1/N]n...N by N matrix

1 where all entries are 1/N
A=pM+(-p|]
N NXN

We have a recursive problem: r =A4 - r ©
And the Power method still works! \/“l A - v(a
Whatis £?

In practice £ =0.8,0.9 (make 5 steps on avg., jump)

ts, http://www.mmds.org



Random Teleports (B = 0.8)

M [1/N]nxn
1212 0 1/3 1/3 1/3
1/2 0 0] *+0211/31/31/3
0 1/2 1 1/3 1/3 1/3

y [ 7/15 7/15 1/15

=+
a [7/15 1/15 1/15 TM

m|1/15 7/15 13/15

WAX
A » <
C oo
y 1/3 033 024 026 133 ) & A
a = 1/3 020 020 0.18 ... [} 5733 o
m 1/3 0.46 052 0.56 21/33 4 POPY

SO
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How do we actually compute
the PageRank?



Computing Page Rank

Key step is matrix-vector multiplication
rhew = A . rold

Easy if we have enough main memory to

hold A, rold pnew

Say N = 1 billion pages

We need 4 bytes for A = B-M + (2-B) [2/N]

each entry (say) Yo 0 1/31/31/3

2 billion entries for A =08 0/2 9 (1) +0-2 }ﬁ ig }ﬁ

vectors, approx 8GB

Matrix A has N2 entries 715 7/15 1/15
10*8 is a large number! = |7/15 1/15 1/15

1/15 7/15 13/15
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Matrix Formulation

Suppose there are N pages

Consider page i, with d; out-links

We have M; = 1/]d;[ wheni - j

and M;; = 0 otherwise

The random teleport is equivalent to:
Adding a teleport link from i to every other page
and setting transition probability to (1-8)/N
Reducing the probability of following each
out-link from 1//d;[ to /|d;]

Equivalent: Tax each page a fraction (1-f) of its
score and redistribute evenly



Rearranging the Equation

_ VN 1-F vN
= 2i=1 B My -1y +—= 21 7
1—
=Yis1 B Mj; - 7; NB since 2.1y = 1

Soweget:r =B M -1 A ll;ﬁ]N

Note: Here we assumed M

has no dead-ends [X]y -.-a vector of length N with all entries x
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Sparse Matrix Formulation

We just rearranged the PageRank equation
1- g

i N N

where [(1-B)/N]y is a vector with all N entries (1-8)/N

r=FM-r-

M is a sparse matrix! (with no dead-ends)

10 links per node, approx 10N entries
So in each iteration, we need to:
Compute reW = S M - rold
Add a constant value (1-B)/N to each entry in r"ew

Note if M contains dead-ends then }; /" <1 and
we also have to renormalize r"¢% so that itsumsto 1
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PageRank: The Complete Algorithm

Input: Graph G and parameter 8
Directed graph G (can have spider traps and dead ends)

Parameter
Output: PageRank vector r

Set:r -Old =
N

repeat until convergence: ); ]‘r

new

new __ old S €

old
V] rmew —_ Zl—vﬂ
r’]'-‘e“’ =0 ifin- degree of jis0
Now re-insert the Ieaked PageRank:
Vj: r}'ew = 'new +— where: § = ¥ ./ 7W
rold — phew

If the graph has no dead-ends then the amount of leaked PageRank is 1-8. But since we have dead-ends

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 63



Sparse Matrix Encoding

Encode sparse matrix using only nonzero
entries

Space proportional roughly to number of links
Say 10N, or 4*10*1 billion = 40GB
Still won’t fit in memory, but will fit on disk

source

node degree destinationnodes
0 3 1,5, 7
1 5 17,64, 113, 117, 245

2 2 13, 23
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Basic Algorithm: Update Step

Assume enough RAM to fit r'** into memory

Store r°’d and matrix M on disk

1 step of power-iteration is:
Initialize all entries of r"e¥ = (1-$)/ N
For each page i (of out-degree d,):

Read into memory: i, d;, dest,, ..

Forj=1...d
rev(dest;) += B rold(i) / d;

SOuvi W N RO

rnew

source degree destination

0 3 1,5,6

1 4 17,64, 113, 117
2 2 13, 23

J. Les

kovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

., dest, reld(i)

r0|d

SOuvi W N B O
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Assume enough RAM to fit r'* into memory

Store r°'d and matrix M on disk
In each iteration, we have to:

Read r°'d and M
Write r'¢" back to disk

Cost per iteration of Power method:
=2|r| + [M]

Question:
What if we could not even fit r’'*¥ in memory?
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Block-based Update Algorithm

e src degree destination ro'd
0 0 4 0,1,3,5 °
1 1
1 2 0,5 2
2 2 3,4 2
M 5
4
5

Break r"®V into k blocks that fit in memory
Scan M and r°!d once for each block
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Analysis of Block Update

Similar to nested-loop join in databases
Break r"¢" into k blocks that fit in memory
Scan M and r°'d once for each block

Total cost:

k scans of M and r°'d

Cost per iteration of Power method:
k(IM| + [r]) + [r| = kIM] + (k+1)]|r|
Can we do better?

Hint: M is much bigger than r (approx 10-20x), so
we must avoid reading it k times per iteration
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Block-Stripe Update Algorithm

src  degree destination

" 0 4 0, 1
O old
1 1 3 0 r
0
2 2 1 1
2
0 4 3 3
A
RE :
0 4 5
4
c 1 3 5
2 2 4

Break M into stripes! Each stripe contains only
destination nodes in the corresponding block of rew
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Block-Stripe Analysis

Break M into stripes
Each stripe contains only destination nodes
in the corresponding block of r"ew

Some additional overhead per stripe

But it is usually worth it
Cost per iteration of Power method:
=|M|(1+€) + (k+1)|r]
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Some Problems with Page Rank

Measures generic popularity of a page
Biased against topic-specific authorities

Solution: Topic-Specific PageRank (next)
Uses a single measure of importance

Other models of importance

Solution: Hubs-and-Authorities
Susceptible to Link spam

Artificial link topographies created in order to
boost page rank

Solution: TrustRank
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