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Sommario

* Delimitazioni inferiori e superiori (di algoritmi e
problemi)

* Quanto velocemente si possono ordinare n
elementi?

— una soglia (asintotica) di velocita sotto la quale non
si puo scendere: un lower bound

* (per una classe di algoritmi ragionevoli - quelli basati su
confronti)

— una tecinica elegante che usa gli alberi di decisione
 E se si esce da questa classe di algoritmi?

— integer sort e bucket sort (per interi "piccoli”)

— radix sort (per interi piu "grandi”)



Delimitazioni
inferiori e superiori
(di algoritmi e problemi)



Complessita di un algoritmo:
delimitazione superiore (upper bound) e
inferiore (lower bound)

Definizione

Un algoritmo A ha complessita (costo di esecuzione) O(f(n))
rispetto ad una certa risorsa di calcolo, se la quantita r(n) di
risorsa usata da A nel caso peggiore su istanze di dimensione
n verifica la relazione r(n)=0(f(n)).

Definizione
Un algoritmo A ha complessita (costo di esecuzione) Q(f(n))
rispetto ad una certa risorsa di calcolo, se la quantita r(n) di

risorsa usata da A nel caso peggiore su istanze di dimensione n
verifica la relazione r(n)= Q(f(n))



Complessita di un problema:
delimitazione superiore (upper bound) e
inferiore (lower bound)

Definizione

Un problema P ha una complessita O(f(n)) rispetto ad una
risorsa di calcolo se esiste un algoritmo che risolve P il cui
costo di esecuzione rispetto quella risorsa é O(f(n))

Definizione

Un problema P ha una complessita Q(f(n)) rispetto ad una
risorsa di calcolo se ogni algoritmo che risolve P ha

costo di esecuzione nel caso peggiore Q)(f(n)) rispetto
quella risorsa



Ottimalita di un algoritmo

Definizione

Dato un problema P con complessita Q(f(n)) rispetto ad
una risorsa di calcolo, un algoritmo che risolve P ¢
(asintoticamente) ottimo se ha costo di esecuzione O(f(n))
rispetto a quella risorsa



complessita temporale del problema
dell'ordinamento

 Upper bound: O(n?)
— Insertion Sort, Selection Sort, Quick Sort, Bubble Sort

 Un upper bound migliore: O(n log n)
— Merge Sort, Heap Sort

« Lower bound: Q(n)

— banale: ogni algoritmo che ordina n elementi li deve
almeno leggere tutti

Abbiamo un gap di log n tra upper bound e lower bound!

Possiamo fare meglio?



Sui limiti della velocita: una
delimitazione inferiore
(lower bound) alla
complessita

del problema




Ordinamento per confronti
Dati due elementi a; ed a;, per determinarne l'ordinamento relativo
effettuiamo una delle sequenti operazioni di confronto:

Non si possono esaminare i valori degli elementi o ottenere informazioni sul
loro ordine in altro modo.

Notare: Tutti gli algoritmi citati prima sono algoritmi di ordinamento
per confronto.




Teorema

Ogni algoritmo basato su confronti che ordina n elementi
deve fare nel caso peggiore Q(n log n) confronti.

Nota: il #di confronti che un algoritmo esegue & un lower
bound al #di passi elementari che esegue

Corollario

Il Merge Sort e I'Heap Sort sono algoritmi oftimi
(almeno dentro la classe di algoritmi basati su confronti).




Uno strumento utile: albero di decisione

Gli algoritmi di ordinamento per confronto possono essere descritti
in modo astratto in termini di alberi di decisione.

Un generico algoritmo di ordinamento per confronto lavora nel modo
seguente:

- confronta due elementi g; ed q; (ad esempio effettua il test ;< a)):
- a seconda del risultato - r'lor'dma e/o decide il confronto successnvo
da eseguire.

Albero di decisione - Descrive i confronti che I'algoritmo esegue
quando opera su un input di una determinata dimensione. I movimenti
dei dati e tutti gli altri aspetti dell'algoritmo vengono ignorati



Alberi di decisione

« Descrive le diverse sequenze di confronti che A
potrebbe fare su istanze di dimensione n
« Nodo interno (non foglia): i:
— modella il confronto trag; e q
* Nodo foglia:
— modella una risposta (output) dell'algoritmo: permutazione degli
elementi

Input: a;,a0,,05

1,2,3




Osservazioni

L'albero di decisione non & associato ad un
problema

L'albero di decisione non e associato solo ad un
algoritmo

L'albero di decisione e associato ad un
algoritmo e a una dimensione dell'istanza

L'albero di decisione descrive le diverse
sequenze di confronti che un certo algoritmo
puo esequire su istanze di una data dimensione

L'albero di decisione e una descrizione
alternativa dell'algoritmo (customizzato per
istanze di una certa dimensione)



Esempio
Fornire l'albero di decisione del seguente algoritmo per istanze
di dimensione 3.

InsertionSort2 (A)
1. for k=1 ton-1do

2. x = A[k+1]

3. j=k

4, while j>0e A[j] > x do
5. A[j+1]=A[j]

6. =j-1

7. Alj+1]=x




..eccolo:

al:a2
<
a2:a3
< >
<al,a2,a3> al:a3
< >
<al,a3,a2> <a3,al,a2>

a2:a3

>
al:a3
<
<a2,al,a3>
<
<a2,a3,al>

<a3,a2,al>




Proprieta

Per una particolare istanza, i confronti
eseguiti dall'algoritmo su quella istanza
rappresentano un cammino radice - foglia

L'algoritmo segue un cammino diverso a
seconda delle caratteristiche dell'istanza

— Caso peggiore: cammino piu lungo
Il numero di confronti nel caso peggiore e
pari all'altezza dell'albero di decisione

Un albero di decisione di un algoritmo
(corretto) che risolve il problema
dell'ordinamento di n elementi deve avere
necessariamente almeno nl foglie



Lemma

Un albero binario T con k foglie, ha altezza almeno log, k

dim (per induzione su k)

caso base: k=1  altezza almeno log, 1=0
caso induttivo: k>1

considera il nodo interno v piu vicino alla radice che ha due figli
(v potrebbe essere la radice). nota che v deve esistere perché
k>1.

v ha almeno un figlio u che e radice
di un (sotto)albero che ha almeno T
k/2 foglie e < k foglie.

T ha altezza almeno <
1+log, k/2 = 1+log, k -log,2 = log, k




Il lower bound Q(n logn)

» Consideriamo l'albero di decisione di un qualsiasi
algoritmo che risolve il problema dell'ordinamento di n
elementi

 L'altezza h dell'albero di decisione & almeno log, (n!)
» Formula di Stirling: nl = (2rnn)/2 -(n/e)"

h > log,(n!), > log, (n/e)" =
= nlog, (n/e)=
nl> (n/e) _, log, n - nlog, e=

= Q(n log n)



Esercizio

Dimostrare usando la tecnica dell'albero di decisione che

l'algoritmo di pesatura che esegue (nel caso peggiore) | log; n |
pesate per trovare la moneta falsa fra n monete € ottimo.




puo un algoritmo basato su
confronti ordinare n interi
piccoli, diciamo compresi fra 1
e k=0O(n), in (asintoticamente)
meno di n logn?

..no, la dimostrazione
funziona anche sotto
questa ipotesil



IntegerSort: fase 1

Per ordinare n interi con valori in [1,k]

Mantiene un array Y di k contatori tale che
Y[x] = numero di volte che il valore x compare in X

X |S|1]6]|8]6 511 |6]8]6 51116816
Y [0 ]0 0111]0]0 110 0 0 110 0 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
X |5]|1]16]8]6 511 16]81]6
Y [1]0]0]O 1101 110 0|1 ]2 |0 |1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) Calcolo di Y




IntegerSort: fase 2

Scorre Y da sinistra verso destra e, se Y[x]=k, scrive in
X il valore x per k volte

1 1 I

1|0 011 0OJ0 |00 ]I |2 010 011 ]2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 S 8
1[(5]161]6 1|5 |6]6 I1|5[6]6]8
0({0JO0]0O]J0]2]0 010 01010 |0 010 0 0]0]1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(b) Ricostruzione di X




IntegerSort (X, k)

Sia Y un array di dimensione k } O(1) - tempo costante

l.

A S AT L o

for i=1 to k do Y[i]=0 } O(k)
for 1=1 to n do incrementa Y[X]i]] } O(n)
=1 } o
for i=1 to k do } o)
while (Y[i] > 0) do
X[j]=i per i fissato
. : ~ #volte esequite
Incrementa |

e al piu 1+Y[i]

decrementa Y[i]

k k k
D AYD=D. 1+ D V[i]=k+n
i=1 =1 i=1

= O(k+n)



IntegerSort: analisi
« Tempo O(1)+O(k)=0O(k) per inizializzare ¥ a O

« Tempo O(1)+O(n)=0(n) per calcolare i valori dei
contatori

« Tempo O(n+k) per ricostruire X

o
O(n+k)

Tempo lineare se k=0(n)
Contraddice il lower bound di Q(n log n)?

No, perché I'Integer Sort non € un algoritmo
basato su confrontil



Una domanda

Che complessita temporale ha I'IntegerSort quando k = w(n),
per esempio k=O(n¢), con c>1 costante?

..T(n) = ©(n°)...
..=o(n log n) per c>1..
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BucketSort

Per ordinare n record con chiavi intere in [1,k]

Esempio: ordinare n record con campi:
- home, cognome, anno di hascita, matricola,...

si potrebbe voler ordinare per matricola o per anno di nascita

Input del problema:
n record mantenuti in un array
ogni elemento dell'array e un record con
- campo chiave (rispetto al quale ordinare)
- altri campi associati alla chiave (informazione satellite)



BucketSort

+ Basta mantenere un array di liste, anziché di
contatori, ed operare come per IntegerSort

» La lista Y[i] conterra gli elementi con chiave
uguale a i

» Concatenare poi le liste

Tempo O(n+k) come per IntegerSort



esempio

Y

1|/
chiave info satellite 2] /
5 o 3|/
1 B 4|/
6 Y 51 /
8 N 61/
6 B 7|/

51/




esempio

Y

1|/

chiave info satellite 2| /

5 o 3|/

I p 41/
6 Y 5 S|a

8 N 61/

6 p 7\ /

51/




esempio

Y

1|/

chiave info satellite 2| /

5 o 3|/

I p 41/
6 Y 5 S|a

8 N 61/

6 p 7\ /

51/




esempio

Y
1 11B
chiave info satellite 2| /
5 o 3|/
I p 41/
6 Y 5 S|a
8 N 61/
6 p 7\ /
51/




esempio

Y
1 11B
chiave info satellite 2| /
5 o 3|/
I p 41/
6 Y 5 S|a
8 N 61/
6 p 7\ /
51/




esempio

Y
1 11B
chiave info satellite 2| /
5 o 3|/
I p 41/
6 Y 5 S|a
8 N 6 16|y
6 p 7\ /
51/




esempio

Y
1 11B
chiave info satellite 2| /
5 o 3|/
I p 41/
6 Y 5 S|a
8 N 6 16|y
6 p 7\ /
51/




esempio

Y
1 11B
chiave info satellite 2| /
5 o 3|/
I p 41/
6 Y 5 S|a
8 N 6 61y
6 p 7\ /
8 ST




»5

chiave info satellite

5 o
1 B
6 Y
8 N
6 B

o v o0 o b w

esempio



»5

chiave info satellite

5 o
1 B
6 Y
8 N
6 B

o v o0 o b w

esempio



esempio

Y
1 11B
chiave info satellite 2| /
5 o 3|/
I p 41/
6 Y 5 15 |
8 N 6 6ly 1610
6 p 7\ /
8 ST




esempio

Y
1 T8 X (ordinato)
chiave info satellite 2] / chiave info satellite

5 o 3|/ 11 p
1 B 4|/ 2[5 o
6 Y 5 S|a 31 6 Y
S n 6 6|y 1616 41 6 p
6 B 7\ / > | 8 M

8 31N




BucketSort (X, k)

1.  SiaY un array di dimensione k

2. for i=1 to k do Y[i]=lista vuota

3 for i=1 ton do

4. appendi il record X[1] alla lista Y[chiave(X[i])]
5. fori=1tokdo

6

copia ordinatamente in X gli elemeti della lista Y[i]




Stabilita

» Un algoritmo e stabile se preserva I'ordine
iniziale tra elementi con la stessa chiave

« domanda: il BucketSort & stabile?

BucketSort e stabile se si appendendo gl
ementi di X in coda alla opportuna lista

1]

~< 0O H



RadixSort

« Ordina n interi con valori in [1,k]

« Rappresentiamo gli elementi in base b, ed eseguiamo una
serie di BucketSort

» Partiamo dalla cifra meno significativa verso quella piu
significativa:
— Ordiniamo per l'i-esima cifra con una passata di buckerSort
(stabile)

— i-esima cifra € la chiave, il numero info satellite
— i-esima cifra é un intero in [0,b-1]

Por 2397 5924 5924 4368 2397
h=10 4368 W) 2397 W) 4368 W) 2397 W) 4368
5924 4368 2397 5924 5924



Correttezza

« Se x e y hanno una diversa t-esima cifra, la
t-esima passata di BucketSort |li ordina

* Se x e y hanno la stessa t-esima cifra, la
proprieta di stabilita del BucketSort i
mantiene ordinati correttamente

.

Dopo la t-esima passata di BucketSort, i
numeri sono correttamente ordinati
rispetto alle T cifre meno significative



Tempo di esecuzione

* O(logy, k) passate di bucketsort

— # di cifre per rappresentare il valore massimo k in
base b: O(log, k)

« Ciascuna passata richiede tempo O(n+b)
— in ogni passata la chiave e un intero in [0,b-1]

; log, k = log,k log, n

O((n+b) logy, k)

I
Se b = ©(n), si ha O(nlog,k)=0 [n log ]

logn

» Tempo lineare se k=0O(n¢), c costante



esemplo

Si supponga di voler ordinare 10 numeri da 32
bit

Come scelgo la base b?

106 e compreso fra 219 e 220

Scegliendo b=2%si ha:

— sono sufficienti 2 passate di bucketSort

— oghi passata richiede tempo lineare



Problema 4.10

Dato un vettore X di z inter1 in [1,k], costruire in tempo O(n+k) una struttura
dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del
tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a € b.

X1 1| 10l 415 |5 | 20] 3 | 3
1 2 3 4 5 6 7 8

oracolo
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Problema 4.10

Dato un vettore X di z inter1 in [1,k], costruire in tempo O(n+k) una struttura
dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del
tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a € b.

X1 1| 10l 415 |5 | 20] 3 | 3
1 2 3 4 5 6 7 8

#elem in X ‘ Qualita oracolo:
fraaeb -tempo di costruzione

— alg che !
-tempo di query

oracolo



Soluzione 1: rispondere "“al volo”

oracolo

Qualita oracolo:

-tempo di costruzione: O(1)
-tempo di query: O(n)

o 0
~



Soluzione 2: precalcolare tutte le possibili domande

1 b k
! risposta
alla query
q(a.b)
a
K
oracolo :
possiamo fare
Qualita oracolo: meglio?
-tempo di costruzione: ()(k?) o 0
-tempo di query: o(1) ~



Idea: Costruire in tempo O(n+k) un array Y di dimensione k
dove Y[i] ¢ il numero di elementi di X che sono < i

CostruisciOracolo (X, k)

1. SiaY un array di dimensione k
for i=1 to k do Y[1]=0
for i=1 to n do incrementa Y[ X[i]]

2
3
InterrogaOracolo (Y, k, a, b)
4. fori=2tokdo Y[i]|=Y[1]+Y[i-1]
5

1. if b>kthen b=k
2. if a<1 then return Y[b]
else return (Y[b]-Y[a-1])

return Y



Esercizio

Dato un vettore A di » numeri, costruire in tempo O(n log n) una struttura
dati (oracolo) che sappia rispondere a domande (query) in tempo O(log n) del
tipo: “quanti elementi in X cadono nell’intervallo [a,b]?”, per ogni a € b.
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