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Sommario

• Delimitazioni inferiori e superiori (di algoritmi e 
problemi)

• Quanto velocemente si possono ordinare n
elementi? 
– una soglia (asintotica) di velocità sotto la quale non 

si può scendere: un lower bound 
• (per una classe di algoritmi ragionevoli – quelli basati su

confronti)

– una tecinica elegante che usa gli alberi di decisione
• E se si esce da questa classe di algoritmi? 

– integer sort e bucket sort (per interi “piccoli”)
– radix sort (per interi più “grandi”)



Delimitazioni 

inferiori e superiori

(di algoritmi e problemi)



Complessità di un algoritmo: 
delimitazione superiore (upper bound) e 

inferiore (lower bound)

Definizione
Un algoritmo A ha complessità (costo di esecuzione) O(f(n)) 
rispetto ad una certa risorsa di calcolo, se la quantità r(n) di 
risorsa usata da A nel caso peggiore su istanze di dimensione 
n verifica la relazione r(n)=O(f(n)).

Definizione
Un algoritmo A ha complessità (costo di esecuzione) (f(n)) 
rispetto ad una certa risorsa di calcolo, se la quantità r(n) di 
risorsa usata da A nel caso peggiore su istanze di dimensione n 
verifica la relazione r(n)= (f(n))



Definizione
Un problema P ha una complessità (f(n)) rispetto ad una 
risorsa di calcolo se ogni algoritmo che risolve P ha
costo di esecuzione nel caso peggiore (f(n)) rispetto  
quella risorsa

Complessità di un problema: 
delimitazione superiore (upper bound) e 

inferiore (lower bound)

Definizione
Un problema P ha una complessità O(f(n)) rispetto ad una 
risorsa di calcolo se esiste un algoritmo che risolve P il cui 
costo di esecuzione rispetto  quella risorsa è O(f(n))



Ottimalità di un algoritmo

Definizione
Dato un problema P con complessità (f(n)) rispetto ad 
una risorsa di calcolo, un algoritmo che risolve P è 
(asintoticamente) ottimo se ha costo di esecuzione O(f(n)) 
rispetto a quella risorsa



complessità temporale del problema 
dell’ordinamento

• Upper bound: O(n2)
– Insertion Sort, Selection Sort, Quick Sort, Bubble Sort

• Un upper bound migliore: O(n log n)
– Merge Sort, Heap Sort

• Lower bound: (n)
– banale: ogni algoritmo che ordina n elementi li deve 

almeno leggere tutti

Abbiamo un gap di log n tra upper bound e lower bound!

Possiamo fare meglio?



Sui limiti della velocità: una
delimitazione inferiore

(lower bound) alla
complessità

del problema



Ordinamento per confronti
Dati due elementi ai ed aj, per determinarne l’ordinamento relativo 
effettuiamo una delle seguenti operazioni di confronto:

         ai  aj  ;  ai  aj  ;  ai = aj  ;  ai   aj  ;   ai  aj

Non si possono esaminare i valori degli elementi o ottenere informazioni sul 
loro ordine in altro modo.

Notare: Tutti gli algoritmi citati prima sono algoritmi di ordinamento 
per confronto.



Il Merge Sort e l’Heap Sort sono algoritmi ottimi
(almeno dentro la classe di algoritmi basati su confronti).

Corollario

Ogni algoritmo basato su confronti che ordina n elementi
deve fare nel caso peggiore (n log n) confronti.

Teorema

Nota: il #di confronti che un algoritmo esegue è un lower 
bound al #di passi elementari che esegue



Gli algoritmi di ordinamento per confronto possono essere descritti 
in modo astratto in termini di alberi di decisione.

Un generico algoritmo di ordinamento per confronto lavora nel modo 
seguente:
- confronta due elementi ai ed aj (ad esempio effettua il test ai  aj);
- a seconda del risultato – riordina e/o decide il confronto successivo 
da eseguire.

Albero di decisione - Descrive i confronti che l’algoritmo esegue 
quando opera su un input di una determinata dimensione. I movimenti 
dei dati e tutti gli altri aspetti dell’algoritmo vengono ignorati 

Uno strumento utile: albero di decisione



Alberi di decisione

2:3

1,2,3 1:3 2,1,3 2:3

1:3

1:2

1,3,2 2,3,13,1,2 3,2,1

Š 

Š  Š 

Š Š 

• Descrive le diverse sequenze di confronti che A 
potrebbe fare su istanze di dimensione n

• Nodo interno (non foglia): i:j
– modella il confronto tra ai e aj

• Nodo foglia:
– modella una risposta (output) dell’algoritmo: permutazione degli 

elementi











Input: a1,a2,a3



Osservazioni

• L’albero di decisione non è associato ad un 
problema

• L’albero di decisione non è associato solo ad un 
algoritmo

• L’albero di decisione è associato ad un 
algoritmo e a una dimensione dell’istanza

• L’albero di decisione descrive le diverse 
sequenze di confronti che un certo algoritmo
può eseguire su istanze di una data dimensione

• L’albero di decisione è una descrizione
alternativa dell’algoritmo (customizzato per 
istanze di una certa dimensione)



Esempio 
Fornire l’albero di decisione del seguente algoritmo per istanze 
di dimensione 3.

InsertionSort2 (A)

1. for k=1 to n-1 do

2. x = A[k+1]

3. j = k

4. while j > 0 e A[j] > x do

5. A[j+1] = A[j]

6. j= j-1

7. A[j+1]=x



a1:a2

a2:a3 a1:a3

<a2,a1,a3> a2:a3

<a1,a3,a2> <a3,a1,a2> <a2,a3,a1> <a3,a2,a1>

<a1,a2,a3> a1:a3






 










…eccolo:



• Per una particolare istanza, i confronti 
eseguiti dall’algoritmo su quella istanza 
rappresentano un cammino radice – foglia

• L’algoritmo segue un cammino diverso a 
seconda delle caratteristiche dell’istanza
– Caso peggiore: cammino più lungo

• Il numero di confronti nel caso peggiore è 
pari all’altezza dell’albero di decisione

• Un albero di decisione di un algoritmo 
(corretto) che risolve il problema 
dell’ordinamento di n elementi deve avere 
necessariamente almeno n! foglie

Proprietà



Un albero binario T con k foglie, ha altezza almeno log2 k

Lemma

dim (per induzione su k)

considera il nodo interno v più vicino alla radice che ha due figli 
(v potrebbe essere la radice). nota che v deve esistere perché 
k>1.

caso base:  k=1 altezza almeno log2 1=0

caso induttivo:  k>1

v ha almeno un figlio u che è radice 
di un (sotto)albero che ha almeno 
k/2 foglie e < k foglie.  

T ha altezza almeno
1 + log2 k/2 = 1+log2 k –log22 = log2 k

log2 k/2

1v
u

T



• Consideriamo l’albero di decisione di un qualsiasi 
algoritmo che risolve il problema dell’ordinamento di n 
elementi

• L’altezza h dell’albero di decisione è almeno log2 (n!)

• Formula di Stirling:   n!  (2n)1/2 ·(n/e)n

Il lower bound (n log n)

h  log2(n!)

n! > (n/e)n

> log2 (n/e)n

= n log2 (n/e)

=

= n log2 n – n log2 e

=

= (n log n)

=



Esercizio 
Dimostrare usando la tecnica dell’albero di decisione che 
l’algoritmo di pesatura che esegue (nel caso peggiore) log3 n 
pesate per trovare la moneta falsa fra n monete è ottimo.



può un algoritmo basato su 
confronti ordinare n interi 

piccoli, diciamo compresi fra 1 
e k=O(n), in (asintoticamente) 

meno di n logn?

…no, la dimostrazione
funziona anche sotto 
questa ipotesi!



IntegerSort: fase 1

(a) Calcolo di Y

X

Y 0 00 0 1 0 00

5 6861

1 2 3 4 5 6 7 8

1 00 0 1 0 11

5 6861

1 2 3 4 5 6 7 8

X

Y

1 00 0 1 0 00

5 6861

1 2 3 4 5 6 7 8

5 686

1 00 0 1 0 12

1

1 2 3 4 5 6 7 8

1 00 0 1 0 01

5 6861

1 2 3 4 5 6 7 8

Per ordinare n interi con valori in [1,k]

Mantiene un array Y di k contatori tale che 

Y[x] = numero di volte che il valore x compare in X



IntegerSort: fase 2

(b) Ricostruzione di X

X

Y 1 00 0 1 0 12

1

1 2 3 4 5 6 7 8

X

Y 0 00 0 0 0 12

51 6 6

1 2 3 4 5 6 7 8

0 00 0 1 0 12

1

1 2 3 4 5 6 7 8

0 00 0 0 0 10

51 6 6

1 2 3 4 5 6 7 8

0 00 0 1 0 12

1 5

1 2 3 4 5 6 7 8

0 00 0 0 0 10

1 5 8

1 2 3 4 5 6 7 8

6 6

Scorre Y da sinistra verso destra e, se Y[x]=k, scrive in 
X il valore x per k volte



IntegerSort (X, k)

1. Sia Y un array di dimensione k

2. for i=1 to k do Y[i]=0

3. for i=1 to n do incrementa Y[X[i]]

4. j=1

5. for i=1 to k do

6. while (Y[i] > 0) do

7. X[j]=i

8. incrementa j

9. decrementa Y[i]

per i fissato
#volte eseguite
è al più 1+Y[i]

O(1) – tempo costante

O(k)

O(n)

O(1)

O(k)


i=1

k

(1+Y[i])=
i=1

k

1 + 
i=1

k

Y[i] = k + n

O(k+n)



• Tempo O(1)+O(k)=O(k) per inizializzare Y a 0

• Tempo O(1)+O(n)=O(n) per calcolare i valori dei 
contatori

• Tempo O(n+k) per ricostruire X

IntegerSort: analisi

O(n+k)

Tempo lineare se k=O(n)

Contraddice il lower bound di (n log n)?

No, perché l’Integer Sort non è un algoritmo
basato su confronti!



Una domanda

Che complessità temporale ha l’IntegerSort quando k = (n), 
per esempio k=(nc), con c>1 costante?

…T(n) = (nc)…
…=(n log n) per c > 1…



Sommario

• Delimitazioni inferiori e superiori (di algoritmi e 
problemi)

• Quanto velocemente si possono ordinare n
elementi? 
– una soglia (asintotica) di velocità sotto la quale non 

si può scendere: un lower bound 
• (per una classe di algoritmi ragionevoli – quelli basati su

confronti)

– una tecinica elegante che usa gli alberi di decisione
• E se si esce da questa classe di algoritmi? 

– integer sort e bucket sort (per interi “piccoli”)
– radix sort (per interi più “grandi”)



BucketSort

Per ordinare n record con chiavi intere in [1,k]

• Esempio: ordinare n record con campi:

– nome, cognome, anno di nascita, matricola,…

• si potrebbe voler ordinare per matricola o per anno di nascita

Input del problema:

• n record mantenuti in un array

• ogni elemento dell’array è un record con

– campo chiave (rispetto al quale ordinare)

– altri campi associati alla chiave (informazione satellite)



BucketSort

• Basta mantenere un array di liste, anziché di 
contatori, ed operare come per IntegerSort

• La lista Y[i] conterrà gli elementi con chiave 
uguale a i

• Concatenare poi le liste

Tempo O(n+k) come per IntegerSort



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X /

/

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X /

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X /

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 

8 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 

8 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 

8 | 

6 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

5 | 

6 | 

1 | 

8 | 

Y

esempio

6 | 



5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

5 | 

6 | 

1 | 

8 | 

Y

1 

5 

6 

6 

8 

chiave info satellite

1

2

3

4

5

X (ordinato)

esempio

6 | 



BucketSort (X, k)

1. Sia Y un array di dimensione k

2. for i=1 to k do Y[i]=lista vuota

3. for i=1 to n do

4. appendi il record X[i] alla lista Y[chiave(X[i])]

5. for i=1 to k do

6. copia ordinatamente in X gli elemeti della lista Y[i]



• Un algoritmo è stabile se preserva l’ordine 
iniziale tra elementi con la stessa chiave

• domanda: il BucketSort è stabile?

• Il BucketSort è stabile se si appendendo gli 
elementi di X in coda alla opportuna lista 
Y[i]

Stabilità



• Ordina n interi con valori in [1,k]

• Rappresentiamo gli elementi in base b, ed eseguiamo una 
serie di BucketSort

• Partiamo dalla cifra meno significativa verso quella più 
significativa:
– Ordiniamo per l’i-esima cifra con una passata di buckerSort 

(stabile)
– i-esima cifra è la chiave, il numero info satellite
– i-esima cifra è un intero in [0,b-1]

RadixSort

2397
4368
5924

5924
2397
4368

5924
4368
2397

4368
2397
5924

2397
4368
5924

Per 
b=10



• Se x e y hanno una diversa t-esima cifra, la 
t-esima passata di BucketSort li ordina

• Se x e y hanno la stessa t-esima cifra, la 
proprietà di stabilità del BucketSort  li 
mantiene ordinati correttamente

Correttezza

Dopo la t-esima passata di BucketSort, i 
numeri sono correttamente ordinati 
rispetto alle t cifre meno significative



• O(logb k) passate di bucketsort
– # di cifre per rappresentare il valore massimo k in 

base b: O(logb k)

• Ciascuna passata richiede tempo O(n+b)
– in ogni passata la chiave è un intero in [0,b-1]

Tempo di esecuzione

O((n+b) logb k)

Se b = (n), si ha O(n logn k) = O  n
log k

log n

Tempo lineare se k=O(nc), c costante

log2 k = lognk log2 n



esempio

• Si supponga di voler ordinare 106 numeri da 32 
bit

• Come scelgo la base b?

• 106 è compreso fra 219 e 220

• Scegliendo b=216 si ha:
– sono sufficienti 2 passate di bucketSort

– ogni passata richiede tempo lineare



Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del 

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b. 

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a=5
b=15



Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del 

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b. 

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a=5
b=15

3



Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del 

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b. 

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a=2
b=30



Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del 

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b. 

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a=2
b=30

7



Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del 

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b. 

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a
b

#elem in X 
fra a e b

alg che 
costruisce 
l’oracolo

Qualità oracolo:

-tempo di costruzione
-tempo di query



Soluzione 1: rispondere ‘’al volo’’

oracolo

X

Qualità oracolo:

-tempo di costruzione:
-tempo di query:

O(1)
Θ(n)



Soluzione 2: precalcolare tutte le possibili domande

oracolo

Qualità oracolo:

-tempo di costruzione:
-tempo di query:

Ω(k2)
O(1)

1 k
1

k

b

a

risposta 
alla query 

q(a,b) 

possiamo fare 
meglio?



Idea: Costruire in tempo O(n+k) un array Y di dimensione k 
dove Y[i] è il numero di elementi di X che sono  i

CostruisciOracolo (X, k)

1. Sia Y un array di dimensione k

2. for i=1 to k do Y[i]=0

3. for i=1 to n do incrementa Y[X[i]]

4. for i=2 to k do Y[i]=Y[i]+Y[i-1]

5. return Y

InterrogaOracolo (Y, k, a, b)

1. if b > k then b=k

2. if a  1 then return Y[b]

else return (Y[b]-Y[a-1])



Dato un vettore A di n numeri, costruire in tempo O(n log n) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(log n) del 

tipo: “quanti elementi in X cadono nell’intervallo [a,b]?”, per ogni a e b. 

Esercizio
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