
Algoritmi e Strutture Dati

Luciano Gualà

guala@mat.uniroma2.it

www.mat.uniroma2.it/~guala

mailto:guala@mat.uniroma2.it

Sommario

• Delimitazioni inferiori e superiori (di algoritmi e
problemi)

• Quanto velocemente si possono ordinare n
elementi?
– una soglia (asintotica) di velocità sotto la quale non

si può scendere: un lower bound
• (per una classe di algoritmi ragionevoli – quelli basati su

confronti)

– una tecinica elegante che usa gli alberi di decisione
• E se si esce da questa classe di algoritmi?

– integer sort e bucket sort (per interi “piccoli”)
– radix sort (per interi più “grandi”)

Delimitazioni

inferiori e superiori

(di algoritmi e problemi)

Complessità di un algoritmo:
delimitazione superiore (upper bound) e

inferiore (lower bound)

Definizione
Un algoritmo A ha complessità (costo di esecuzione) O(f(n))
rispetto ad una certa risorsa di calcolo, se la quantità r(n) di
risorsa usata da A nel caso peggiore su istanze di dimensione
n verifica la relazione r(n)=O(f(n)).

Definizione
Un algoritmo A ha complessità (costo di esecuzione) (f(n))
rispetto ad una certa risorsa di calcolo, se la quantità r(n) di
risorsa usata da A nel caso peggiore su istanze di dimensione n
verifica la relazione r(n)= (f(n))

Definizione
Un problema P ha una complessità (f(n)) rispetto ad una
risorsa di calcolo se ogni algoritmo che risolve P ha
costo di esecuzione nel caso peggiore (f(n)) rispetto
quella risorsa

Complessità di un problema:
delimitazione superiore (upper bound) e

inferiore (lower bound)

Definizione
Un problema P ha una complessità O(f(n)) rispetto ad una
risorsa di calcolo se esiste un algoritmo che risolve P il cui
costo di esecuzione rispetto quella risorsa è O(f(n))

Ottimalità di un algoritmo

Definizione
Dato un problema P con complessità (f(n)) rispetto ad
una risorsa di calcolo, un algoritmo che risolve P è
(asintoticamente) ottimo se ha costo di esecuzione O(f(n))
rispetto a quella risorsa

complessità temporale del problema
dell’ordinamento

• Upper bound: O(n2)
– Insertion Sort, Selection Sort, Quick Sort, Bubble Sort

• Un upper bound migliore: O(n log n)
– Merge Sort, Heap Sort

• Lower bound: (n)
– banale: ogni algoritmo che ordina n elementi li deve

almeno leggere tutti

Abbiamo un gap di log n tra upper bound e lower bound!

Possiamo fare meglio?

Sui limiti della velocità: una
delimitazione inferiore

(lower bound) alla
complessità

del problema

Ordinamento per confronti
Dati due elementi ai ed aj, per determinarne l’ordinamento relativo
effettuiamo una delle seguenti operazioni di confronto:

 ai  aj ; ai  aj ; ai = aj ; ai  aj ; ai  aj

Non si possono esaminare i valori degli elementi o ottenere informazioni sul
loro ordine in altro modo.

Notare: Tutti gli algoritmi citati prima sono algoritmi di ordinamento
per confronto.

Il Merge Sort e l’Heap Sort sono algoritmi ottimi
(almeno dentro la classe di algoritmi basati su confronti).

Corollario

Ogni algoritmo basato su confronti che ordina n elementi
deve fare nel caso peggiore (n log n) confronti.

Teorema

Nota: il #di confronti che un algoritmo esegue è un lower
bound al #di passi elementari che esegue

Gli algoritmi di ordinamento per confronto possono essere descritti
in modo astratto in termini di alberi di decisione.

Un generico algoritmo di ordinamento per confronto lavora nel modo
seguente:
- confronta due elementi ai ed aj (ad esempio effettua il test ai  aj);
- a seconda del risultato – riordina e/o decide il confronto successivo
da eseguire.

Albero di decisione - Descrive i confronti che l’algoritmo esegue
quando opera su un input di una determinata dimensione. I movimenti
dei dati e tutti gli altri aspetti dell’algoritmo vengono ignorati

Uno strumento utile: albero di decisione

Alberi di decisione

2:3

1,2,3 1:3 2,1,3 2:3

1:3

1:2

1,3,2 2,3,13,1,2 3,2,1

Š 

Š  Š 

Š Š 

• Descrive le diverse sequenze di confronti che A
potrebbe fare su istanze di dimensione n

• Nodo interno (non foglia): i:j
– modella il confronto tra ai e aj

• Nodo foglia:
– modella una risposta (output) dell’algoritmo: permutazione degli

elementi











Input: a1,a2,a3

Osservazioni

• L’albero di decisione non è associato ad un
problema

• L’albero di decisione non è associato solo ad un
algoritmo

• L’albero di decisione è associato ad un
algoritmo e a una dimensione dell’istanza

• L’albero di decisione descrive le diverse
sequenze di confronti che un certo algoritmo
può eseguire su istanze di una data dimensione

• L’albero di decisione è una descrizione
alternativa dell’algoritmo (customizzato per
istanze di una certa dimensione)

Esempio
Fornire l’albero di decisione del seguente algoritmo per istanze
di dimensione 3.

InsertionSort2 (A)

1. for k=1 to n-1 do

2. x = A[k+1]

3. j = k

4. while j > 0 e A[j] > x do

5. A[j+1] = A[j]

6. j= j-1

7. A[j+1]=x

a1:a2

a2:a3 a1:a3

<a2,a1,a3> a2:a3

<a1,a3,a2> <a3,a1,a2> <a2,a3,a1> <a3,a2,a1>

<a1,a2,a3> a1:a3






 










…eccolo:

• Per una particolare istanza, i confronti
eseguiti dall’algoritmo su quella istanza
rappresentano un cammino radice – foglia

• L’algoritmo segue un cammino diverso a
seconda delle caratteristiche dell’istanza
– Caso peggiore: cammino più lungo

• Il numero di confronti nel caso peggiore è
pari all’altezza dell’albero di decisione

• Un albero di decisione di un algoritmo
(corretto) che risolve il problema
dell’ordinamento di n elementi deve avere
necessariamente almeno n! foglie

Proprietà

Un albero binario T con k foglie, ha altezza almeno log2 k

Lemma

dim (per induzione su k)

considera il nodo interno v più vicino alla radice che ha due figli
(v potrebbe essere la radice). nota che v deve esistere perché
k>1.

caso base: k=1 altezza almeno log2 1=0

caso induttivo: k>1

v ha almeno un figlio u che è radice
di un (sotto)albero che ha almeno
k/2 foglie e < k foglie.

T ha altezza almeno
1 + log2 k/2 = 1+log2 k –log22 = log2 k

log2 k/2

1v
u

T

• Consideriamo l’albero di decisione di un qualsiasi
algoritmo che risolve il problema dell’ordinamento di n
elementi

• L’altezza h dell’albero di decisione è almeno log2 (n!)

• Formula di Stirling: n!  (2n)1/2 ·(n/e)n

Il lower bound (n log n)

h  log2(n!)

n! > (n/e)n

> log2 (n/e)n

= n log2 (n/e)

=

= n log2 n – n log2 e

=

= (n log n)

=

Esercizio
Dimostrare usando la tecnica dell’albero di decisione che
l’algoritmo di pesatura che esegue (nel caso peggiore) log3 n
pesate per trovare la moneta falsa fra n monete è ottimo.

può un algoritmo basato su
confronti ordinare n interi

piccoli, diciamo compresi fra 1
e k=O(n), in (asintoticamente)

meno di n logn?

…no, la dimostrazione
funziona anche sotto
questa ipotesi!

IntegerSort: fase 1

(a) Calcolo di Y

X

Y 0 00 0 1 0 00

5 6861

1 2 3 4 5 6 7 8

1 00 0 1 0 11

5 6861

1 2 3 4 5 6 7 8

X

Y

1 00 0 1 0 00

5 6861

1 2 3 4 5 6 7 8

5 686

1 00 0 1 0 12

1

1 2 3 4 5 6 7 8

1 00 0 1 0 01

5 6861

1 2 3 4 5 6 7 8

Per ordinare n interi con valori in [1,k]

Mantiene un array Y di k contatori tale che

Y[x] = numero di volte che il valore x compare in X

IntegerSort: fase 2

(b) Ricostruzione di X

X

Y 1 00 0 1 0 12

1

1 2 3 4 5 6 7 8

X

Y 0 00 0 0 0 12

51 6 6

1 2 3 4 5 6 7 8

0 00 0 1 0 12

1

1 2 3 4 5 6 7 8

0 00 0 0 0 10

51 6 6

1 2 3 4 5 6 7 8

0 00 0 1 0 12

1 5

1 2 3 4 5 6 7 8

0 00 0 0 0 10

1 5 8

1 2 3 4 5 6 7 8

6 6

Scorre Y da sinistra verso destra e, se Y[x]=k, scrive in
X il valore x per k volte

IntegerSort (X, k)

1. Sia Y un array di dimensione k

2. for i=1 to k do Y[i]=0

3. for i=1 to n do incrementa Y[X[i]]

4. j=1

5. for i=1 to k do

6. while (Y[i] > 0) do

7. X[j]=i

8. incrementa j

9. decrementa Y[i]

per i fissato
#volte eseguite
è al più 1+Y[i]

O(1) – tempo costante

O(k)

O(n)

O(1)

O(k)


i=1

k

(1+Y[i])=
i=1

k

1 + 
i=1

k

Y[i] = k + n

O(k+n)

• Tempo O(1)+O(k)=O(k) per inizializzare Y a 0

• Tempo O(1)+O(n)=O(n) per calcolare i valori dei
contatori

• Tempo O(n+k) per ricostruire X

IntegerSort: analisi

O(n+k)

Tempo lineare se k=O(n)

Contraddice il lower bound di (n log n)?

No, perché l’Integer Sort non è un algoritmo
basato su confronti!

Una domanda

Che complessità temporale ha l’IntegerSort quando k = (n),
per esempio k=(nc), con c>1 costante?

…T(n) = (nc)…
…=(n log n) per c > 1…

Sommario

• Delimitazioni inferiori e superiori (di algoritmi e
problemi)

• Quanto velocemente si possono ordinare n
elementi?
– una soglia (asintotica) di velocità sotto la quale non

si può scendere: un lower bound
• (per una classe di algoritmi ragionevoli – quelli basati su

confronti)

– una tecinica elegante che usa gli alberi di decisione
• E se si esce da questa classe di algoritmi?

– integer sort e bucket sort (per interi “piccoli”)
– radix sort (per interi più “grandi”)

BucketSort

Per ordinare n record con chiavi intere in [1,k]

• Esempio: ordinare n record con campi:

– nome, cognome, anno di nascita, matricola,…

• si potrebbe voler ordinare per matricola o per anno di nascita

Input del problema:

• n record mantenuti in un array

• ogni elemento dell’array è un record con

– campo chiave (rispetto al quale ordinare)

– altri campi associati alla chiave (informazione satellite)

BucketSort

• Basta mantenere un array di liste, anziché di
contatori, ed operare come per IntegerSort

• La lista Y[i] conterrà gli elementi con chiave
uguale a i

• Concatenare poi le liste

Tempo O(n+k) come per IntegerSort

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X /

/

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X /

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X /

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 

8 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 

8 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

Y

esempio

5 | 

1 | 

6 | 

8 | 

6 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

5 | 

6 | 

1 | 

8 | 

Y

esempio

6 | 

5 

1 

6 

8 

6 

chiave info satellite

1

2

3

4

5

X

/

/

/

/

1

2

3

4

5

6

7

8

5 | 

6 | 

1 | 

8 | 

Y

1 

5 

6 

6 

8 

chiave info satellite

1

2

3

4

5

X (ordinato)

esempio

6 | 

BucketSort (X, k)

1. Sia Y un array di dimensione k

2. for i=1 to k do Y[i]=lista vuota

3. for i=1 to n do

4. appendi il record X[i] alla lista Y[chiave(X[i])]

5. for i=1 to k do

6. copia ordinatamente in X gli elemeti della lista Y[i]

• Un algoritmo è stabile se preserva l’ordine
iniziale tra elementi con la stessa chiave

• domanda: il BucketSort è stabile?

• Il BucketSort è stabile se si appendendo gli
elementi di X in coda alla opportuna lista
Y[i]

Stabilità

• Ordina n interi con valori in [1,k]

• Rappresentiamo gli elementi in base b, ed eseguiamo una
serie di BucketSort

• Partiamo dalla cifra meno significativa verso quella più
significativa:
– Ordiniamo per l’i-esima cifra con una passata di buckerSort

(stabile)
– i-esima cifra è la chiave, il numero info satellite
– i-esima cifra è un intero in [0,b-1]

RadixSort

2397
4368
5924

5924
2397
4368

5924
4368
2397

4368
2397
5924

2397
4368
5924

Per
b=10

• Se x e y hanno una diversa t-esima cifra, la
t-esima passata di BucketSort li ordina

• Se x e y hanno la stessa t-esima cifra, la
proprietà di stabilità del BucketSort li
mantiene ordinati correttamente

Correttezza

Dopo la t-esima passata di BucketSort, i
numeri sono correttamente ordinati
rispetto alle t cifre meno significative

• O(logb k) passate di bucketsort
– # di cifre per rappresentare il valore massimo k in

base b: O(logb k)

• Ciascuna passata richiede tempo O(n+b)
– in ogni passata la chiave è un intero in [0,b-1]

Tempo di esecuzione

O((n+b) logb k)

Se b = (n), si ha O(n logn k) = O n
log k

log n

Tempo lineare se k=O(nc), c costante

log2 k = lognk log2 n

esempio

• Si supponga di voler ordinare 106 numeri da 32
bit

• Come scelgo la base b?

• 106 è compreso fra 219 e 220

• Scegliendo b=216 si ha:
– sono sufficienti 2 passate di bucketSort

– ogni passata richiede tempo lineare

Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b.

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a=5
b=15

Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b.

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a=5
b=15

3

Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b.

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a=2
b=30

Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b.

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a=2
b=30

7

Dato un vettore X di n interi in [1,k], costruire in tempo O(n+k) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(1) del

tipo: “quanti interi in X cadono nell’intervallo [a,b]?”, per ogni a e b.

Problema 4.10

1 2 3 4 5 6 7 8

1 10 4 5 5 20 3 3X

oracolo

a
b

#elem in X
fra a e b

alg che
costruisce
l’oracolo

Qualità oracolo:

-tempo di costruzione
-tempo di query

Soluzione 1: rispondere ‘’al volo’’

oracolo

X

Qualità oracolo:

-tempo di costruzione:
-tempo di query:

O(1)
Θ(n)

Soluzione 2: precalcolare tutte le possibili domande

oracolo

Qualità oracolo:

-tempo di costruzione:
-tempo di query:

Ω(k2)
O(1)

1 k
1

k

b

a

risposta
alla query

q(a,b)

possiamo fare
meglio?

Idea: Costruire in tempo O(n+k) un array Y di dimensione k
dove Y[i] è il numero di elementi di X che sono  i

CostruisciOracolo (X, k)

1. Sia Y un array di dimensione k

2. for i=1 to k do Y[i]=0

3. for i=1 to n do incrementa Y[X[i]]

4. for i=2 to k do Y[i]=Y[i]+Y[i-1]

5. return Y

InterrogaOracolo (Y, k, a, b)

1. if b > k then b=k

2. if a  1 then return Y[b]

else return (Y[b]-Y[a-1])

Dato un vettore A di n numeri, costruire in tempo O(n log n) una struttura

dati (oracolo) che sappia rispondere a domande (query) in tempo O(log n) del

tipo: “quanti elementi in X cadono nell’intervallo [a,b]?”, per ogni a e b.

Esercizio

	Slide 1: Algoritmi e Strutture Dati
	Slide 2: Sommario
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: complessità temporale del problema dell’ordinamento
	Slide 8: Sui limiti della velocità: una delimitazione inferiore (lower bound) alla complessità del problema
	Slide 9
	Slide 10
	Slide 11: Uno strumento utile: albero di decisione
	Slide 12
	Slide 13
	Slide 14: Esempio Fornire l’albero di decisione del seguente algoritmo per istanze di dimensione 3.
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Esercizio Dimostrare usando la tecnica dell’albero di decisione che l’algoritmo di pesatura che esegue (nel caso peggiore) log3 n pesate per trovare la moneta falsa fra n monete è ottimo.
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Una domanda
	Slide 26: Sommario
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: esempio
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

