Algoritmi e Strutture Dati

Luciano Guala
quala@mat.uniroma?.it
www.mat.uniroma?2.it/~quala

mailto:guala@mat.uniroma2.it

riassunto puntate precedenti

Abbiamo un problema a cui sono associate diverse (infinite) istanze
di diversa dimensione. Vogliamo risolvere (automaticamente) il
problema progettando un algoritmo. L'algoritmo sara esequito su un
modello di calcolo e deve descrivere in modo non ambiguo (utilizzando
appositi costrutti) la sequenza di operazioni sul modello che risolvono
una generica istanza. La velocita dell'algoritmo € misurata come
numero di operazioni esequite sul modello e dipende dalla dimensione
e dall'istanza stessa. Analizzare la complessita computazionale di un
algoritmo vuol dire stimare il tempo di esecuzione dell'algoritmo nel
caso peggiore in funzione della dimensione dell'istanza.

Sappiamo progettare un algoritmo veloce? Fin dove possiamo
spingerci con la velocita? A volte si puo dimostrare matematicamente
che oltre una certa soglia di velocita non si puo andare.

E sensato misurare la complessita
di un algoritmo contando il numero
di linee di codice esequite?

modelli di calcolo

=l & D

= L?'=

i

Un modello storico: la macchina di
Turing

meccanismo di
controllo

testina di lettura/

/ scrittura

nastro

—
&

TIIIIIIIITTIT

- troppo di basso livello: somiglia troppo poco ai
calcolatori reali su cui girano i programmi

- utile per parlare di calcolabilita ma meno utile
per parlare di efficienza

un modello pitl realistico

* Macchina a registri (RAM: random access machine)
— un programma finito
— un nastro di ingresso e uno di uscita

— una memoria strutturata come un array
* ogni cella puo contenere un qualunque valore intero/reale

— una CPU per esequire istruzioni

* |la RAM & un'astrazione dell'architettura di von
Neumann

Macchina a registri
RAM: random access machine

LLf LT TP T 1T | nastrodi Tnput

| |$| | | | | | | | hastro di Output

CPU

_—

¢

programma

finito

memoria
(come

un grosso
array)

Modello di calcolo: cosa posso
fare

* L'andlisi della complessita di un algoritmo e basata sul
concetto di passo elementare

* passi elementari suuna RAM
— istruzione ingresso/uscita (accesso nastri I/0)
— operazione aritmetico/logica
— accesso/modifica del contenuto della memoria

Criteri di costo: quanto mi costa

* Criterio di costo uniforme:
— tutte le operazioni hanno lo stesso costo

— complessita temporale misurata come numero di passi elementari
esequiti

 Criterio di costo logaritmico

— Il costo di una operazione dipende dalla dimensione degli operandi
dell'istruzione

— Un'operazione su un operando di valore x ha costo log x

— E un criterio di costo che modella meglio la complessita di
algoritmi "numerici”

criterio di costo generalmente
usato e quello uniforme

Caso peggiore e caso medio

* Misureremo il tempo di esecuzione di un
algoritmo in funzione della dimensione n delle
Istanze

 Istanze diverse, a parita di dimensione,
potrebbero pero richiedere tempo diverso

« Distinguiamo quindi ulteriormente tra analisi nel
caso peggiore e medio

Caso peggiore

Sia tempo(I) il tempo di esecuzione (numero di passi elementari sul
modello RAM) di un algoritmo sull'istanza T

Twors‘r(n) = max istanze I di dimensione n {Tempo(I)}

Intuitivamente, T, ..;(n) e il tempo di esecuzione sulle istanze di

w

ingresso che comportano pit lavoro per I'algoritmo
rappresenta una garanzia sul tempo di esecuzione di ogni istanza

Caso medio

Sia P(I) la probabilita di occorrenza dell'istanza T

avg(n) Z istanze I di dimensione n {P(I) Tempo(I) }

Intuitivamente, T, (n) ¢ il tempo di esecuzione nel caso medio,
ovvero sulle istanze di ingresso “tipiche" per il problema

Come faccio a conoscere la distribuzione di probabilita sulle istanze?
Semplice: (di solito) non posso conoscerla

-> faccio un'assunzione.

spesso ¢ difficile fare assunzioni realistiche

Esercizio

Analizzare la complessita nel caso medio del primo algoritmo di
pesatura (Algl) presentato nella prima lezione. Rispetto alla
distribuzione di probabilita sulle istanze, si assuma che la moneta
falsa possa trovarsi in modo equiprobabile in una qualsiasi delle n

posizioni.

Una grande idea:
nhotazione asintotica

Notazione asintotica: intuizioni

complessita computazionale di un algoritmo espressa con una
funzioneT(n)

T(n): # passi elementari esequiti su una RAM nel caso peggiore
su un'istanza di dimensione n

Idea: descrivere T(n) in modo qualitativo. Ovvero: perdere un po' in
precisione (senza perdere I'essenziale) e guadagnare in semplicita

Notazione asintotica: intuizioni

T(n): # passi elementari eseguiti suuna RAM nel caso peggiore
su un'istanza di dimensione n

un esempio:
71n2+100[n/4]+7 se n & pari

T(n): —

70 n? +150[(n+1)/41+5 se n & dispari

scriveremo: T(n)= ®(n?)

intuitivamente vuol dire: T(n) & proporzionale a n?

cioe ighoro: Nota:
- costanti moltiplicative I'assunzione implicita e che
- fermini di ordine inferiore guardo come si comporta

(che crescono piu lentamente) I'algoritmo su istanze grandi

..una vecchia tabella: numero asintotico di pesate

assunzione: ogni pesata richiede un minuto

TABELLA
' n |10 | 100 |1.000 [10.000 |100.000
Algl 9m ~1h,39m ~16h ~6gg ~69gg
O
Alg2 5m ~50m ~8 h ~3,5gg ~35gg (n) pesaTe
Alg3 3m 6m 9m 13m 16m

o(l esate
Algd 3 m 5m 7m 9m 11m (°9 n) P sat

Un'altra tabella: dalla bilancia al computer

Tempi di esecuzione di differenti algorimi per istanze di
dimensione crescente su un processore che sa eseguire un
milione di istruzioni di alto livello al secondo.

L'indicazione very long indica che il tempo di calcolo
supera 102 anni.

3

n nlog, n n n 1.5" 2" n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=230 < 1 sec < 1sec < 1sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 107 years very long

n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Notazione asintotica O

f(n) = O(g(n)) se 3 due costanti c>0 e ny0 tali che
0<f(n) < c g(n) per ogni n > n,

A

Jm) = O(gn))

cgn)

J)

Esempi:

Sia f(n) = 2n?2 + 3n, allora

« f(n)=0(n3) (c=1, ny=3)
« f(n)=0(n?) (c=3, np=3)
* f(n) = O(n)

Notazione asintotica O

O(g(n))={f(n) | 3 >0 e nx20 tali che
0 < f(n) < c g(n) per ogni h > ny}

* La scrittura:
2n%+4=0(n3)

* e un abuso di notazine per:
2né+4 < O(n3)

Notare:

lir,, 'F(h)

a) —) =0(@@r)
£(n) — O(g(n)) 74 i, £ o
f(n)=oO@h)) — lirm, . f(n)

S) (se esiste) < oo

Notazione asintotica Q
f(n) = Q(g(n)) se 3 due costanti ¢>0 e ny20 tali che

f(n) > c g(n) > O per ogni n 2 n,

f(n) = £X(g(n))

f(n)
cg(n)

Esempi:

Sia f(n) = 2n? - 3n, allora

* f(n)= Q(n) (c=1, ny=2)
« f(n)=Q(n?) (c=1, ny=3)
* f(n) = Q(n3)

Notazione asintotica Q

Q(g(n))={f(n) | 3 >0 e nx20 tali che
0 < c g(n) < f(n) per ogni n > ny}

» La scrittura:
2n2+4= Q(n)

* e un abuso di notazine per:
2n’+4 < Q(n)

Notare:

i -F(n) — Nn)— n
iy, S0 = £(n) — 2(g(n))

£(n) = 2(g()) 74 tim, . £

f(n) = 2 (gn)) — lirm,, f(n) (se esiste) =0

g(n)

Notazione asintotica ®

f(n) = ©(g(n)) se 3 tre costanti ¢;,c,>0 e ny0 tali
che c; g(n) < f(n) < ¢, g(n) per ogni n > n,

I f(n) = ©(g(n)) c,g(n)
f(n)
c,g(n)

Esempi:

Sia f(n) = 2n? - 3n, allora

* f(n)= ®(n?) (c=1, c,=2, ny=3)
« f(n)= O(n)

* f(n) # ©(n3)

Notazione asintotica ®

®(g(n))={f(n) | 3 ¢4,c,>0 e nx20 tali che
¢, g(n) < f(n) < ¢, f(n) per ogni nzny}

* La scrittura:
2n%+4= ©(n?)

* e un abuso di notazine per:
2n?+4 ¢ O(n?)

Notare che:

fn)=0(gn) = fin)=Olgn)
£(n) = O(g(n) 74 f(n)= O(g(n)

f)=0(gn) = fin)=0lgln)
£(n) = 2g(n)) 74 £(n)= ©(g(n)

flh)=0(g(n) <« flh)=2(gh) e f(h)=0(gh)

Notazione asintotica o

Data una funzione g(n): N 2> R, si denota con o(g(n)) I' insieme delle
funzioni f(n): N> R:

o(g(n)) = {f(n): v c> 0,3 ny tale che

vn>n, 0<f(n)<cg(n)}

Notare:

o(g(n)) <— O(@ghn))

definizione alternativa:

F) = o(g(n)) < lim, . % —o

Notazione asintotica ®

Data una funzione g(n): N 2> R, si denota con w(g(n)) I' insieme delle
funzioni f(n):

o(g(n)) = {f(n) : Vv c>0, I ny tale che

Vn>n, 0<cg(n)< f(n)}

Notare:

w(gn)) <= <2(gn))

definizione alternativa:

f(n) = o(gn)) = lim, m = o°

f(n)=o(g(n)) <=

f(n)=w(@n)) <

Analogie

IN

vV

Graficamente

Proprieta della notazione asintotica

Transitivita
f(n) = ®(gn))
f(n)=0O(g(n))
f(n) =<(gn))
f(n)=o(gn))
f(n) = w(g(n))

T VI VI I

Riflessivita
f(n) =(f(™n))
f(n) =0 "))
f(n)=(f(n))

Simmetria
fh)=e(@h)) =

Simmetria trasposta
fn)=0(gh) <=
f(n)=o(gn)) <=

g(n) = &(h(n))
g(n) =ohn))
gn) = 2(h(n))
gn) = o(h())
g(n) = o(h(n))

g(n) = &(f(n))

a(n) = (f(n))
g(n) = o(f(n))

RN

f(n)=e(h(n))
f(n) =O(hn))
f(n) = 2(h(n))
f(n) = o(h(n))
f(n) = w(h(n))

Ancora una convenzione

Un insieme in una formula rappresenta un‘anonima
funzione dell'insieme.

Esempio 1:
f(n)=n3 + O(n®)
sta per: c'e una funzione h(n) €0O(n?) tale che
f(n)=n3 + h(n)
Esempio 2:
nZ + O(n) = O(n?)

sta per: per ogni funzione f(n)eO(n),
c'e una funzione h(n) €O(n3) tale che

n +f(n)= h(n)

..una semplice ma utile proprieta per
capire la velocita di una funzione

Se Iimoof(n)/g(n)z c >0
allora f(n)=0(g(n))

Infatti:
c/2 < f(n)/g(n) < 2c

per n suff. grande

Esempio:

Se T(n)=aynd+ay, ndt+ _+a, &unpolinomiodigrado d (con
a,>0), allora T(n) = ©(n9)

Infatti:

T(n)/nd=qay+ay; nt+ . +aynd

che tende a a4 quando n —x:

Polinomi

P(n) =ay4nd+ay; ndt+ . +aq,

—— P(n): ®(nd)

a,>0 P(n) = O(n%)
Esponenziali P(n) = Q(nc)
f(n) =a ——— ah = oo(nd)

. a >1 an an - Q(nd)
|II’\'\m_)OO nd — OO

Logaritmi
f(n) = |°9b(n) b>1 E——— [Iogb(n)]c = o(nd)

c [logp(n)]c = O(n9)

liem, ['09:;(:,(")] — O.Ve.d = O
Fattoriali

f(n) = nl = n*(n-1*....*2*1 === nlz o(n")

nl= o(a")

velocita asintotica di
funzioni composte

Velocita delle funzioni composte

date f(n) e g(n),
la velocita ad andare a infinto della funzione f(n)+g(n)
e la velocita della pit veloce fra f(n) e g(n)

Esempi:
n3+n =0(n3)
n+log!® n=B(n)

Velocita delle funzioni composte
date f(n) e g(n),
la velocita ad andare a infinito della funzione f(n) g(n)
e la velocita di f(n) "pit” la velocita di g(n)
la velocita ad andare a infinito della funzione f(n)/g(n)
e la velocita di f(n) "meno” la velocita di g(n)
Esempio:

n3log n + Vn log® n
né + 1

= O(n log n)

Usare la notazione asintotica
nelle analisi

Analisi complessita fibonacci3: un Upper Bound

algoritmo fibonacci3(intero n) — intero
1 sia Fib un array di n interi

2 Fib[l] « Fib[2] « 1

3 fori=3tondo

4 Fib[i] « Fib[i-1] + Fib[i-2]

5 return Fib/n]

T(n): complessita computazionale nel caso peggiore con input n

c;- #passi elementari eseguiti su una RAM quando e esguita la
linea di codice |

- linea 1, 2 e 5 esequite una vota

-linee 3 e 4: eseguite al piu n volte

T(n) < cy+co+cs +(c3+cy)n=0(n)

mmm) T(n)=0O(n)

Analisi complessita fibonacci3: un Lower Bound

algoritmo fibonacci3(intero n) — intero N:m‘ .poicl:jef °|9Jr”i
1 sia Fib un array di n interi st er‘llljglggeeguleauno
2 Fib[l] « Fib[2] « 1 #costante di passi
3 fori=3tondo elementari posso
4 Fib[i] « Fib[i-1] + Fib[i-2] contare # di

5 return Fib/n] Istruzion

T(n): complessita computazionale nel caso peggiore con input n

c;* #passi elementari eseguiti su una RAM quando e esguita la

linea di codice |

la linea 4 e esequita almeno n-3 volte

T(n) > c4(n-3)= c4n -3¢4 =0(n) ‘ _
m) T(n)=Q(n) ‘ T(n)=6(n) ‘

Notazione asintotica:
perché ¢ una grande idea

misura indipendente dall'implementazione
dell'algoritmo e dalla macchina reale su cui e
eseqguito

il "dettagli” nascosti (costanti moltiplicative e
termini di ordine inferiore) sono poco rilevanti
quando n e grande per funzioni asintoticamente
diverse (guarda tabella)

analisi dettagliata del numero di passi realmente
esequiti sarebbe difficile, noiosa e non direbbe
molto di piu (gcome Si possono conoscere per esempio
| costi reali di un'istruzione di alto livello?)

si e visto che descrive bene in pratica la velocita
degli algoritmi

	Slide 1: Algoritmi e Strutture Dati
	Slide 2: riassunto puntate precedenti
	Slide 3
	Slide 4: modelli di calcolo
	Slide 5: Un modello storico: la macchina di Turing
	Slide 6: un modello più realistico
	Slide 7: Macchina a registri RAM: random access machine
	Slide 8: Modello di calcolo: cosa posso fare
	Slide 9: Criteri di costo: quanto mi costa
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Notazione asintotica: intuizioni
	Slide 16: Notazione asintotica: intuizioni
	Slide 17
	Slide 18: Un’altra tabella: dalla bilancia al computer
	Slide 19
	Slide 20: Esempi:
	Slide 21: Notazione asintotica O
	Slide 22
	Slide 23
	Slide 24: Esempi:
	Slide 25: Notazione asintotica 
	Slide 26
	Slide 27
	Slide 28: Esempi:
	Slide 29: Notazione asintotica 
	Slide 30: Notare che:
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Analogie
	Slide 35: Graficamente
	Slide 36
	Slide 37: Ancora una convenzione
	Slide 38: …una semplice ma utile proprietà per capire la velocità di una funzione
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Velocità delle funzioni composte
	Slide 43: Velocità delle funzioni composte
	Slide 44
	Slide 45: Analisi complessità fibonacci3: un Upper Bound
	Slide 46: Analisi complessità fibonacci3: un Lower Bound
	Slide 47: Notazione asintotica: perché è una grande idea

