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riassunto puntate precedenti

Abbiamo un problema a cui sono associate diverse (infinite) istanze
di diversa dimensione. Vogliamo risolvere (automaticamente) il
problema progettando un algoritmo. L'algoritmo sara esequito su un
modello di calcolo e deve descrivere in modo non ambiguo (utilizzando
appositi costrutti) la sequenza di operazioni sul modello che risolvono
una generica istanza. La velocita dell'algoritmo € misurata come
numero di operazioni esequite sul modello e dipende dalla dimensione
e dall'istanza stessa. Analizzare la complessita computazionale di un
algoritmo vuol dire stimare il tempo di esecuzione dell'algoritmo nel
caso peggiore in funzione della dimensione dell'istanza.

Sappiamo progettare un algoritmo veloce? Fin dove possiamo
spingerci con la velocita? A volte si puo dimostrare matematicamente
che oltre una certa soglia di velocita non si puo andare.




E sensato misurare la complessita
di un algoritmo contando il numero
di linee di codice esequite?



modelli di calcolo
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Un modello storico: la macchina di
Turing

meccanismo di
controllo
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- troppo di basso livello: somiglia troppo poco ai
calcolatori reali su cui girano i programmi

- utile per parlare di calcolabilita ma meno utile
per parlare di efficienza




un modello pitl realistico

* Macchina a registri (RAM: random access machine)
— un programma finito
— un nastro di ingresso e uno di uscita

— una memoria strutturata come un array
* ogni cella puo contenere un qualunque valore intero/reale

— una CPU per esequire istruzioni

* |la RAM & un'astrazione dell'architettura di von
Neumann



Macchina a registri
RAM: random access machine
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Modello di calcolo: cosa posso
fare

* L'andlisi della complessita di un algoritmo e basata sul
concetto di passo elementare

* passi elementari suuna RAM
— istruzione ingresso/uscita (accesso nastri I/0)
— operazione aritmetico/logica
— accesso/modifica del contenuto della memoria



Criteri di costo: quanto mi costa

* Criterio di costo uniforme:
— tutte le operazioni hanno lo stesso costo

— complessita temporale misurata come numero di passi elementari
esequiti

 Criterio di costo logaritmico

— Il costo di una operazione dipende dalla dimensione degli operandi
dell'istruzione

— Un'operazione su un operando di valore x ha costo log x

— E un criterio di costo che modella meglio la complessita di
algoritmi "numerici”

criterio di costo generalmente
usato e quello uniforme



Caso peggiore e caso medio

* Misureremo il tempo di esecuzione di un
algoritmo in funzione della dimensione n delle
Istanze

 Istanze diverse, a parita di dimensione,
potrebbero pero richiedere tempo diverso

« Distinguiamo quindi ulteriormente tra analisi nel
caso peggiore e medio



Caso peggiore

Sia tempo(I) il tempo di esecuzione (numero di passi elementari sul
modello RAM) di un algoritmo sull'istanza T

Twors‘r(n) = max istanze I di dimensione n {Tempo(I)}

Intuitivamente, T, ..;(n) e il tempo di esecuzione sulle istanze di

w

ingresso che comportano pit lavoro per I'algoritmo
rappresenta una garanzia sul tempo di esecuzione di ogni istanza



Caso medio

Sia P(I) la probabilita di occorrenza dell'istanza T

avg(n) Z istanze I di dimensione n {P(I) Tempo(I) }

Intuitivamente, T, (n) ¢ il tempo di esecuzione nel caso medio,
ovvero sulle istanze di ingresso “tipiche" per il problema

Come faccio a conoscere la distribuzione di probabilita sulle istanze?
Semplice: (di solito) non posso conoscerla

-> faccio un'assunzione.

spesso ¢ difficile fare assunzioni realistiche



Esercizio

Analizzare la complessita nel caso medio del primo algoritmo di
pesatura (Algl) presentato nella prima lezione. Rispetto alla
distribuzione di probabilita sulle istanze, si assuma che la moneta
falsa possa trovarsi in modo equiprobabile in una qualsiasi delle n

posizioni.




Una grande idea:
nhotazione asintotica



Notazione asintotica: intuizioni

complessita computazionale di un algoritmo espressa con una
funzioneT(n)

T(n): # passi elementari esequiti su una RAM nel caso peggiore
su un'istanza di dimensione n

Idea: descrivere T(n) in modo qualitativo. Ovvero: perdere un po' in
precisione (senza perdere I'essenziale) e guadagnare in semplicita



Notazione asintotica: intuizioni

T(n): # passi elementari eseguiti suuna RAM nel caso peggiore
su un'istanza di dimensione n

un esempio:
71n2+100[n/4]+7 se n & pari

T(n): —

70 n? +150[ (n+1)/41+5 se n & dispari

scriveremo: T(n)= ®(n?)

intuitivamente vuol dire: T(n) & proporzionale a n?

cioe ighoro: Nota:
- costanti moltiplicative I'assunzione implicita e che
- fermini di ordine inferiore guardo come si comporta

(che crescono piu lentamente) I'algoritmo su istanze grandi



..una vecchia tabella: numero asintotico di pesate

assunzione: ogni pesata richiede un minuto

TABELLA
' n |10 | 100 |1.000 [10.000 |100.000
Algl 9m ~1h,39m ~16h ~6gg ~69gg
O
Alg2 5m ~50m ~8 h ~3,5gg ~35gg (n) pesaTe
Alg3 3m 6m 9m 13m 16m

o(l esate
Algd 3 m 5m 7m 9m 11m ( °9 n) P sat



Un'altra tabella: dalla bilancia al computer

Tempi di esecuzione di differenti algorimi per istanze di
dimensione crescente su un processore che sa eseguire un
milione di istruzioni di alto livello al secondo.

L'indicazione very long indica che il tempo di calcolo
supera 102 anni.

3

n nlog, n n n 1.5" 2" n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=230 < 1 sec < 1sec < 1sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 107 years very long

n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long




Notazione asintotica O

f(n) = O(g(n)) se 3 due costanti c>0 e ny0 tali che
0<f(n) < c g(n) per ogni n > n,

A

Jm) = O(gn))

cgn)

J)




Esempi:

Sia f(n) = 2n?2 + 3n, allora

« f(n)=0(n3) (c=1, ny=3)
« f(n)=0(n?) (c=3, np=3)
* f(n) = O(n)



Notazione asintotica O

O( g(n) )={f(n) | 3 >0 e nx20 tali che
0 < f(n) < c g(n) per ogni h > ny}

* La scrittura:
2n%+4=0(n3)

* e un abuso di notazine per:
2né+4 < O(n3)




Notare:

lir,, 'F(h)

a) — ) =0(@@r)
£(n) — O(g(n)) 74 i, £ o
f(n)=oO@h)) — lirm, . f(n)

S) (se esiste) < oo




Notazione asintotica Q
f(n) = Q(g(n)) se 3 due costanti ¢>0 e ny20 tali che

f(n) > c g(n) > O per ogni n 2 n,

f(n) = £X(g(n))

f(n)
cg(n)



Esempi:

Sia f(n) = 2n? - 3n, allora

* f(n)= Q(n) (c=1, ny=2)
« f(n)=Q(n?) (c=1, ny=3)
* f(n) = Q(n3)



Notazione asintotica Q

Q(g(n))={f(n) | 3 >0 e nx20 tali che
0 < c g(n) < f(n) per ogni n > ny}

» La scrittura:
2n2+4= Q(n)

* e un abuso di notazine per:
2n’+4 < Q(n)




Notare:

i -F(n) — Nn)— n
iy, S0 = £(n) — 2(g(n))

£(n) = 2(g()) 74 tim, . £

f(n) = 2 (gn)) — lirm,, f(n) (se esiste) =0

g(n)




Notazione asintotica ®

f(n) = ©( g(n) ) se 3 tre costanti ¢;,c,>0 e ny0 tali
che c; g(n) < f(n) < ¢, g(n) per ogni n > n,

I f(n) = ©(g(n)) c,g(n)
f(n)
c,g(n)




Esempi:

Sia f(n) = 2n? - 3n, allora

* f(n)= ®(n?) (c=1, c,=2, ny=3)
« f(n)= O(n)

* f(n) # ©(n3)



Notazione asintotica ®

®(g(n))={f(n) | 3 ¢4,c,>0 e nx20 tali che
¢, g(n) < f(n) < ¢, f(n) per ogni nzny}

* La scrittura:
2n%+4= ©(n?)

* e un abuso di notazine per:
2n?+4 ¢ O(n?)




Notare che:

fn)=0(gn) = fin)=Olgn)
£(n) = O(g(n) 74 f(n)= O(g(n)

f)=0(gn) = fin)=0lgln)
£(n) = 2g(n)) 74 £(n)= ©(g(n)

flh)=0(g(n) <« flh)=2(gh) e f(h)=0(gh)




Notazione asintotica o

Data una funzione g(n): N 2> R, si denota con o(g(n)) I' insieme delle
funzioni f(n): N> R:

o(g(n)) = {f(n): v c> 0,3 ny tale che

vn>n, 0<f(n)<cg(n)}

Notare:

o(g(n)) <— O(@ghn))

definizione alternativa:

F) = o(g(n)) < lim, . % —o




Notazione asintotica ®

Data una funzione g(n): N 2> R, si denota con w(g(n)) I' insieme delle
funzioni f(n):

o(g(n)) = {f(n) : Vv c>0, I ny tale che

Vn>n, 0<cg(n)< f(n)}

Notare:

w(gn)) <= <2(gn))

definizione alternativa:

f(n) = o(gn)) = lim, m = o°




f(n)=o(g(n)) <=

f(n)=w(@n)) <



Analogie

IN

vV




Graficamente




Proprieta della notazione asintotica

Transitivita
f(n) = ®(gn))
f(n)=0O(g(n))
f(n) =<(gn))
f(n)=o(gn))
f(n) = w(g(n))

T VI VI I

Riflessivita
f(n) =(f(™n))
f(n) =0 "))
f(n)=(f(n))

Simmetria
fh)=e(@h)) =

Simmetria trasposta
fn)=0(gh) <=
f(n)=o(gn)) <=

g(n) = &(h(n))
g(n) =ohn))
gn) = 2(h(n))
gn) = o(h())
g(n) = o(h(n))

g(n) = &(f(n))

a(n) = (f(n))
g(n) = o(f(n))

RN

f(n)=e(h(n))
f(n) =O(hn))
f(n) = 2(h(n))
f(n) = o(h(n))
f(n) = w(h(n))



Ancora una convenzione

Un insieme in una formula rappresenta un‘anonima
funzione dell'insieme.

Esempio 1:
f(n)=n3 + O(n®)
sta per: c'e una funzione h(n) €0O(n?) tale che
f(n)=n3 + h(n)
Esempio 2:
nZ + O(n) = O(n?)

sta per: per ogni funzione f(n)eO(n),
c'e una funzione h(n) €O(n3) tale che

n +f(n)= h(n)




..una semplice ma utile proprieta per
capire la velocita di una funzione

Se Iimoof(n)/g(n)z c >0
allora f(n)=0(g(n))

Infatti:
c/2 < f(n)/g(n) < 2c

per n suff. grande




Esempio:

Se T(n)=aynd+ay, ndt+ _+a, &unpolinomiodigrado d (con
a,>0), allora T(n) = ©(n9)

Infatti:

T(n)/nd=qay+ay; nt+ . +aynd

che tende a a4 quando n —x:




Polinomi ......

P(n) =ay4nd+ay; ndt+ . +aq,

—— P(n): ®(nd)

a,>0 P(n) = O(n%)
Esponenziali ...... P(n) = Q(nc)
f(n) =a ——— ah = oo(nd)

. a >1 an an - Q(nd)
|II’\'\m_)OO nd — OO

Logaritmi ......
f(n) = |°9b(n) b>1 E——— [Iogb(n)]c = o(nd)

c [logp(n)]c = O(n9)

liem, ['09:;(:,(")] — O.Ve.d = O
Fattoriali ......

f(n) = nl = n*(n-1*....*2*1 === nlz o(n")

nl= o(a")



velocita asintotica di
funzioni composte



Velocita delle funzioni composte

date f(n) e g(n),
la velocita ad andare a infinto della funzione f(n)+g(n)
e la velocita della pit veloce fra f(n) e g(n)

Esempi:
n3+n =0(n3)
n+log!® n=B(n)



Velocita delle funzioni composte
date f(n) e g(n),
la velocita ad andare a infinito della funzione f(n) g(n)
e la velocita di f(n) "pit” la velocita di g(n)
la velocita ad andare a infinito della funzione f(n)/g(n)
e la velocita di f(n) "meno” la velocita di g(n)
Esempio:

n3log n + Vn log® n
né + 1

= O(n log n)



Usare la notazione asintotica
nelle analisi



Analisi complessita fibonacci3: un Upper Bound

algoritmo fibonacci3(intero n) — intero
1 sia Fib un array di n interi

2 Fib[l] « Fib[2] « 1

3 fori=3tondo

4 Fib[i] « Fib[i-1] + Fib[i-2]

5 return Fib/n]

T(n): complessita computazionale nel caso peggiore con input n

c;- #passi elementari eseguiti su una RAM quando e esguita la
linea di codice |

- linea 1, 2 e 5 esequite una vota

-linee 3 e 4: eseguite al piu n volte

T(n) < cy+co+cs +(c3+cy)n=0(n)

mmm) T(n)=0O(n)



Analisi complessita fibonacci3: un Lower Bound

algoritmo fibonacci3(intero n) — intero N:m‘ .poicl:jef °|9Jr”i
1 sia Fib un array di n interi st er‘llljglggeeguleauno
2 Fib[l] « Fib[2] « 1 #costante di passi
3 fori=3tondo elementari posso
4 Fib[i] « Fib[i-1] + Fib[i-2] contare # di

5 return Fib/n] Istruzion

T(n): complessita computazionale nel caso peggiore con input n

c;* #passi elementari eseguiti su una RAM quando e esguita la

linea di codice |

la linea 4 e esequita almeno n-3 volte

T(n) > c4(n-3)= c4n -3¢4 =0(n) ‘ _
m)  T(n)=Q(n) ‘ T(n)=6(n) ‘




Notazione asintotica:
perché ¢ una grande idea

misura indipendente dall'implementazione
dell'algoritmo e dalla macchina reale su cui e
eseqguito

il "dettagli” nascosti (costanti moltiplicative e
termini di ordine inferiore) sono poco rilevanti
quando n e grande per funzioni asintoticamente
diverse (guarda tabella)

analisi dettagliata del numero di passi realmente
esequiti sarebbe difficile, noiosa e non direbbe
molto di piu (gcome Si possono conoscere per esempio
| costi reali di un'istruzione di alto livello?)

si e visto che descrive bene in pratica la velocita
degli algoritmi
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