
Mining Massive Data

Luciano Gualà
www.mat.uniroma2.it/~guala/MMD_2024.html

What: 3 topics, 2 lectures per topic

Algorithms for Big Data:
- Monday - 14,00-18,00
- lecturer: prof. Luciano Gualà

The PageRank algorithm:
- Tuesday – 14,00-18,00
- lecturer: prof. Andrea Clementi

Bitcoin and the Lightning Network:
- Wednesday – 14,00-18,00
- lecturer: prof. Francesco Pasquale

How (to get credits)

- attend lectures
- final oral exam and/or class presentation (of uncovered material)

Algorithms for Big Data

- research field on algorithmic aspects addressing scenarios in
which the input is very large

- sometime classic ways of designing and analyzing algorithms are
somehow insufficient

- efficiency issues are stressed even more

Example: Given n items, find the most similar ones.
- classic O(n2)-time algorithm.
- goal: almost linear time solution (breaking the n2-time barrier)

Example: Store n items to check membership.
- classic O(n)-space data structures
- goal: use very few bits per item

(sometime less bits than the bits needed to represent the set of items
itself)

Example: Store n items in sublinear space.
- an item of size s should be represented with O(log s) space
- goal: still be able to retrieve some properties of the items from their

representations

Example: Streaming algorithms.
- input is given as a stream of items
- can read an element at a time
- entire stream does not even fit in the memory
- goal: be able to compute statistics/functions of the entire input

Example: Given n items, find the most similar ones.
- classic O(n2)-time algorithm.
- goal: almost linear time solution (breaking the n2-time barrier)

Example: Store n items to check membership.
- classic O(n)-space data structures
- goal: use very few bits per item

(sometime less bits than the bits needed to represent the set of items
itself)

Example: Store n items in sublinear space.
- an item of size s should be represented with O(log s) space
- goal: still be able to retrieve some properties of the items from their

representations

Example: Streaming algorithms.
- input is given as a stream of items
- can read an element at a time
- entire stream does not even fit in the memory
- goal: be able to compute statistics/functions of the entire input

1. Bloom Filters

2. DGIM algorithm

3. Locality Sensitive Hashing

3. MinHash signatures

Algorithms for Big Data

Episode I

reference:
Algorithms for Massive Data (Lecture Notes)
Nicola Prezza
https://arxiv.org/abs/2301.00754

Bloom Filters

A Bloom Filter is a probabilistic data structure that maintains a set S of
elements subject to the following operations:
- insert(x): add element x to S.
- membership(x): return YES if xS, returns NO if xS.

probabilistic:
- if xS returns YES with probability 1 (no false negative)
- if xS return NO with probability 1-

Bloom filter:
- uses (n log (1/)) bits to store at most n elements from a universe U

(really compact)
- n is the capacity of the filter
- not able to retrieve the (actual) element but just say whether it is in S

01: user-defined error parameter

typical use:
- as an interface to a larger and slower (but exact) DS to quickly filter

negative requests
- in a stream used to filter stream elements that do not meet some

criterion

Example

request x

S

Bloom
filter

Main
Memory Disk

exact DB

S

access DB on the disk only if the filter says that x is in S

Example: how Google Chrome detects malicious URLs

- insert the known malicious
URLs into a Bloom filter

- only the URLS that pass
the filter are checked on
Google’s remote servers

Let h1,...,hk be k hash functions, hi:U {0,1,...,m-1}
- m and k are parameters that will be chosen as function of n and 

assumption: h1,...,hk are independent and completely uniform

completely uniform: hi maps any xU to any given bucket with prob. 1/m

- simplifies the analysis
- almost met in practice if you use a good enough hash function

(e.g. SHA-256)

Bloom Filter: a bit-vector B[0,1,...,m-1] of size m, initially all set to 0.

insert(x): set to 1 all B[hi(x)], i=1,...,k

membership(x): Return YES iff all B[hi(x)]=1, i=1,...,k.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 1 m-1

S={ }

insert(“advanced”)

“advanced”

k=3

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0B

0 1 m-1

S={“advanced”}

insert(“advanced”)

“advanced”

k=3

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0B

0 1 m-1

S={“advanced”}

insert(“topics on”)

“topics on”

k=3

0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0B

0 1 m-1

S={“advanced”, “topics on”}

insert(“topics on”)

“topics on”

k=3

0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0B

0 1 m-1

S={“advanced”, “topics on”}

insert(“algorithms”)

“algorithms”

k=3

0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0B

0 1 m-1

S={“advanced”, “topics on”, “algorithms”}

insert(“algorithms”)

“algorithms”

k=3

0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0B

0 1 m-1

S={“advanced”, “topics on”, “algorithms”}

membership(“topics on”)

“topics on”

k=3

YES correct answer

0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0B

0 1 m-1

S={“advanced”, “topics on”, “algorithms”}

membership(“boring topics”)

“boring topics”

k=3

NO correct answer

0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0B

0 1 m-1

S={“advanced”, “topics on”, “algorithms”}

membership(“cool topics”)

“cool topics”

k=3

YES false positive!

The analysis

prob that a given bit is still 0 after the first insertion: (1-1/m)k

after all the n insertions: (1-1/m)nk = (1-1/m)m
nk/m

 e-1

 e
-nk/m

p

prob that a given bit is 1 after all insertions: 1-p

prob of a false positive: (1-p)k = 1- e-nk/m k

minimized for k=(m/n) ln 2

prob of a false positive: (1/2)
(m/n) ln 2

= 

m=n log2e log2(1/)  1.44 n log2(1/)

k=(m/n) ln 2 = log2(1/)

Theorem
Let 0  1 be a user-defined parameter, and let n be a maximum capacity.
Using k= log2(1/) hash functions and m= n log2e log2(1/) bits of space,
the Bloom Filter guarantees false positive probability at most , provided
that no more than n elements are inserted into the set.

Example

we want to store n=107 malicious URLs with false positive probability =0.1

The average URL length is around 77 bytes

just storing all URLs would require 734 MiB

choosing k=3 and m=38.100.000

the Bloom filter space: 5.73 MiB (about 5 bits per URL)

128 times less space than the plain URLs!

speeds up negative queries by one order of magnitude

(assuming the filter resides locally in RAM and the URLs are on a
separate server or on a local disk)

Counting 1s in a window

Datar-Gionis-Indyk-Motwani’s (DGIM)

algorithm

The problem

0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1

now

goal: process a stream of bits in order to answer queries of the type:
- how many 1s in the last n bits?

n

motivation: (approximately) count the events that meet a certain criterion.

Example:
Bank transactions are marked with a flag=1 when exceed a given threshold.
Queries can be used to detect if the credit card’s owner has changed
behavior (hence detect potential frauds)

Example:
Posts/tweets are marked with a flag=1 when they are about a given topic.
Queries can be used to detect if the interest on the topic changes.

main challenge: the stream is too large to be entirely stored.

beginning of
the stream

The problem

0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1

now
beginning of
the stream

goal: design a data structure maintaining a sequence of N bits subject to:
- query(n): return the number of 1s in the last n bits;
- update(b): add the next bit b{0,1} to the sequence

n

notice: if you want exact answers you need (N) bits.

N

DGIM data structure:

- quality: 1+ approximated answers (for any 0)

- size: O(-1 log2 N) bits

- update time: O(log N)

- query time: O(-1 log n)

DGIM data structure:

Let B= 1/ .

Group the bits of the sequence in groups G1,...,Gt satisfying:

1. each Gi begins and ends with a 1-bit;
2. between adjacent groups Gi Gi+1 there are only 0-bits;
3. each Gi contains 2k 1-bits, for some k0;
4. for any 1 i  t, if Gi contains 2k 1-bits, then Gi+1 contains either 2k or

2k-1 1-bits;
5. for each k except the largest one, the number Zk of groups containing

2k 1-bits satisfies B Zk B+1. For the largest k, we only require
ZkB+1.

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

G1 (8) G2 (4) G3 (4) G4 (2) G6 (1)G5 (2)

DGIM data structure:
group Gj is a pair of integers (left,right)

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

G1 (8) G2 (4) G3 (4) G4 (2) G6 (1)G5 (2)

all adjacent groups having 2i 1-bits are maintained by a doubly-linked list i

i stores: head, tail, and size

L: a global doubly-linked list storing all lists i

left right

3 2 1 0L:

- storing Gj requires O(log N) bits

- |L|= O(log N)

- |i | B+1=O(-1)

overall size of the DS:

O(-1 log2 N) bits

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1 1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1 1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1 1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1 1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1 1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1 1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1 1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

B=1

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

3 2 1 0L:

1 1

update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming

a new group of 2 1-bits and add it to 1 as a new rightmost group
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

update time:

overall update time: O(log N)

- creating/merging/moving a group takes O(1) time
- number of iterations O(|L|)

query operation

query(n): return the number of 1s in the last n bits

- find all groups intersecting the last n bits
- return the number of 1-bits they contain

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

n

query time:
- navigating all groups from the streaming’s

head
- O(-1 log n) time

query operation: approximation

Let k be the integer s.t. the leftmost intersecting group has 2k 1-bits

Y: right answer
X: returned answer

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

n

2k 1-bits

notice: if k=0 then X=Y (so assume k>0)

X  Y +2k -1

Y  B 2k-1 + B 2k-2 +...+B 21 + B 20 =B(2k-1)

X/Y  (Y +2k -1)/ Y = 1+ (2k -1)/ Y

 1+ 1/B  1+

	Slide 1: Mining Massive Data
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

