Algoritmi e Strutture Dati

Luciano Guala
quala@mat.uniroma?.it
www.mat.uniroma?2.it/~guala

mailto:guala@mat.uniroma2.it

Informazioni utili

* Orario lezioni
— martedi: 9,00 - 11,00
—giovedi: 16,00 - 18,00
* Orario ricevimento
— per appuntamento (online o presenza)

— Ufficio: dip. di matematica, piano O,
corridoio AQ, stanza 103

Struttura del corso

e Corso strutturato in due moduli

— Modulo I
« 6 CFU
« Ottobre - Gennaio

— Modulo IT Modulo IT (per Data Science)
« 6 CFU « 3CFU

* Marzo - Giugno * Marzo - Aprile (12 lezioni)

Prerequisiti del corso

Cosa € necessario sapere...
— programmazione di base
— strutture dati elementari
— concetto di ricorsione

— dimostrazione per induzione e calcolo
infinitesimale

Propedeuticita
— programmazione
— analisi matematica
— matematica discreta

Slide e materiale didattico
http://www.mat.uniroma?2.it/~guala/

Libri di testo

Algoritmi

e strutture dati

Seconda od

izione

McGraw-Hill

C. Demetrescu, I. Finocchi, 6. Italiano
Algoritmi e Strutture dati (sec. ed.)

(modulo I)

J. Kleinberg, E. Tardos
Algorithm Design

(modulo II)

testi alternativi:

Introduzione agli algoritmi
e strutture dati

McGrawHill

neg?

T.H. Cormen, C.E. Leiserson,
R.L. Rivest, C. Stein
Introduzione agli algortimi
e strutture dati

Pierluigi Crescenzi « Giorgio Gambosi
Roberto Grossi « Gianluca Rossi

D STRUTTURE DI DATI
E ALGORITMI
i analisie

Seconds edions

Papadimitriou,
U. Vazirani
Algorithms

P. Crescenzi, 6. Gambosi, R.

Grossi, 6. Rossi

Strutture di dati e algoritmi

S. Dasgupta, C.

ALGORITHMS
ILLUMINATED

OMNIBUS EDITION

TI¥ ROUGHEARDEN

T. Roughgarden
Algorithms Illuminated

Fal

KLBGMOSHI_BFR;HO, Tneson
E STRUTTURE
DI DATI

CitteStudi

A. Bertossi, A. Montresor
Algoritmi e strutture di dati

Modalita d'esame

L'esame consiste in una prova scritta e una prova
orale (per ogni modulo)

— problem set, 2 a modulo (opzionali)

6 appelli

— 2 giugno/luglio

— 2 settembre

— 2 gennaio/febbraio

Prova parziale a febbraio

Per sostenere I'esame e obbligatorio prenotarsi
online (una settimana prima) su
delphi.uniroma?2.it

Teoria degli algoritmi piena di idee bellissime

fim) = Org(n)) cg)
fn)

oig(n)

g

j—1 7 n

GOAL

R
‘i’/f»"‘.‘q

2\
.

Fi—]

Qualche consiglio

* Studiare giorno per giorno MARAT

* Lavorare sui problemi
assegnati in gruppo

« Scrivere/formalizzare la
soluzione individualmente

e Cercate di divertirvil

Algoritmo

Procedimento che descrive una sequenza di
passi ben definiti finalizzato a risolvere un
dato problema (computazionale).

etimologia

Il termine Algoritmo deriva
da Algorismus,
traslitterazione latina del
home di un matematico
persiano del IX secolo,
Muhammad al-Khwarizmi,
che descrisse delle
procedure per i calcoli
matematici

Algoritmi e programmi

 Un algoritmo puo essere visto come |'essenza
computazionale di un programma, nel senso che
fornisce il procedimento per giungere alla soluzione di
un dato problema di calcolo

* Algoritmo diverso da programma
— programma ¢ la codifica (in un linguaggio di programmazione) di un
algoritmo

— un algoritmo puo essere visto come un programma distillato da
dettagli riguardanti il linguaggio di programmazione, ambiente di
sviluppo, sistema operativo

— Algoritmo & un concetto autonomo da quello di programma

Cosa studieremo?

..ad analizzare e progettare "buoni” algoritmi

..Che intendiamo per "buoni"?

— Corretti: producono correttamente il
risultato desiderato

— Efficienti: usano poche risorse di
calcolo, come tempo e memoria.

algoritmi veloci!

Cosa ¢ (piu) importante oltre I'efficienza?

Allora perché tanta enfasi
sull'efficienza?

Correttezza

N\Gn'f.e.”'\b'l'm Veloce ¢ bello
Stabilita

M.odular'l’ra A volte: o veloce o hon
Sicurezza funzionale

User-friendliness

+ Legato alla User-friendliness

Efficienza puo essere usata
per "pagare” altre
caratteristiche

Altri motivi per studiare gli algoritmi

“L'algoritmica ¢ I'anima dell'informatica."

David Harel

Le idee algoritmiche non solo trovano soluzioni a problemi ben
posti, quanto costituiscono il linguaggio che porta ad
esprimere chiaramente il problema soggiacente

Altri motivi per studiare gli algoritmi
Importanza teorica

"Se e vero che un problema non si capisce a
fondo finché non lo si deve insegnare a
qualcuno altro, a maggior ragione nulla &
compreso in modo piu approfondito di cio
che si deve insegnare ad una macchina,
ovvero di cio che va espresso tramite un
algoritmo."

Donald Knuth

In ogni algoritmo € possibile individuare due componenti fondamentali:

« l'identificazione della appropriata tecnica di progetto algoritmico (basato
sulla struttura del problema);

* la chiara individuazione del nucleo matematico del problema stesso.

Altri motivi per studiare gli algoritmi
importanza pratica

"There is a saying: If you want to be a
good programmer, you just program every
day for two years, you will be an excellent
programmer. If you want fo be a world-
class programmer, you can program every
day for ten years. Or you can program
every day for two years and take an
algorithms class."

Charles E. Leiserson

Altri motivi per studiare gli algoritmi

cosa sapere per lavorare a Go gle ?

Preparing for Google Technical
Internship Interviews

This guide is intended to help you prepare for Software Engineering internship and Engineering Practicum interviews at Google. If you
have any additional questions, please don't hesitate to get in touch with your recruiter.

Altri motivi per studiare gli algoritmi

cosa sapere per lavorare a Go gle ?

| Preparing for your Interview

Technical Preparation

Coding: Google Engineers primarily code in C++, Java, or Python. We ask that you use one of these languages during your interview. For phone
interviews, you will be asked to write code real time in Google Docs. You may be asked to:
. Construct / traverse data structures
Implement system routines
Distill large data sets to single values
Transform one data set to another

Algorithms: You will be expected to know the complexity of an algorithm and how you can improve/change it. You can find examples that will
help you prepare on TopCoder. Some examples of algorithmic challenges you may be asked about include:

. Big-O analysis: understanding this is particularly important

. Sorting and hashing

. Handling obscenely large amounts of data

Sorting: We recommend that you know the details of at least one n*log(n) sorting algorithm, preferably two (say, quicksort and merge sort).
Merge sort can be highly useful in situations where quicksort is impractical, so take a look at it. What common sorting functions are there? On
what kind of input data are they efficient, when are they not? What does efficiency mean in these cases in terms of runtime and space used? E.g.
in exceptional cases insertion-sort or radix-sort are much better than the generic QuickSort / MergeSort / HeapSort answers.

Confidential + Proprietary

Altri motivi per studiare gli algoritmi

cosa sapere per lavorare a Go gle ?

| Preparing for your Interview

Technical Preparation

Data structures: Study up on as many other structures and algorithms as possible. We recommend you know about the most famous classes

of NP-complete problems, such as traveling salesman and the knapsack problem. Be able to recognize them when an interviewer asks you in
disguise. Find out what NP-complete means. You will also need to know about Trees, basic tree construction, traversal and manipulation

algorithms, hash tables, stacks, arrays, linked lists, priority queues.

Hashtables and Maps: Hashtables are arguably the single most important data structure known to mankind. You should be able to
implement one using only arrays in your favorite language, in about the space of one interview. You'll want to know the O() characteristics of the
standard library implementation for Hashtables and Maps in the language you choose to write in.

Trees: We recommend you know about basic tree construction, traversal and manipulation algorithms. You should be familiar with binary
trees, n-ary trees, and trie-trees at the very least. You should be familiar with at least one flavor of balanced binary tree, whether it's a red/black
tree, a splay tree or an AVL tree. You'll want to know how it's implemented. You should know about tree traversal algorithms: BFS and DFS, and
know the difference between inorder, postorder and preorder.

Min/Max Heaps: Heaps are incredibly useful. Understand their application and O() characteristics. We probably won't ask you to implement
one during an interview, but you should know when it makes sense to use one.

Confidential + Proprietary

Altri motivi per studiare gli algoritmi

cosa sapere per lavorare a Go gle ?

| Preparing for your Interview

Technical Preparation

Graphs: To consider a problem as a graph is often a very good abstraction to apply, since well known graph
algorithms for distance, search, connectivity, cycle-detection etc. will then yield a solution to the original
problem. There are 3 basic ways to represent a graph in memory (objects and pointers, matrix, and adjacency
list); familiarize yourself with each representation and its pros/cans. You should know the basic graph traversal
algorithms, breadth-first search and depth-first search. Know their computational complexity, their tradeoffs
and how to implement them in real code.

Recursion: Many coding problems involve thinking recursively and potentially coding a recursive solution.
Prepare for recursion, which can sometimes be tricky if not approached properly. Practice some problems that
can be solved iteratively, but a more elegant solution is recursion.

Operating systems: You should understand processes, threads, concurrency issues, locks, mutexes,
semaphores, monitors and how they all work. Understand deadlock, livelock and how to avoid them. Know
what resources a process needs and a thread needs. Understand how context switching works, how it's
initiated by the operating system and underlying hardware. Know a little about scheduling. The world is rapidly Distributed systems &
moving towards multi-core, so know the fundamentals of "modern” concurrency constructs. parallel programming

Still want more info?
Tech interviews @ Google

Mathematics: Some interviewers ask basic discrete math questions. This is more prevalent at Google than at Scalable Web Architecture
other companies because counting problems, probability problems and other Discrete Math 101 situations & Distributed systems
surrounds us. Spend some time before the interview refreshing your memory on (or teaching yourself) the
essentials of elementary probability theory and combinatorics. You should be familiar with n-choose-k
problems and their ilk - the more the better.

How search works

GOOQIE Confidential + Proprietary

Altri motivi per studiare gli algoritmi

Potenzia le capacita di:
* Critical Thinking:
— un modo di decidere se un certo

enunciato € sempre vero, vero a
volte, parzialmente vero, o falso

 Problem Solving:

— insieme dei processi atti ad
analizzare, affrontare e risolvere
positivamente problemi

complessita
temporale

alcuni concetti di cui non e
sempre facile parlare

algoritmo istanza efficienza
problema modello di
calcolo

dimensione caso
dell'istanza peggiore correttezza

un puzzle puo aiutare; eccone uno famoso

n monete tutte identiche d'aspetto
una delle monete € falsa e pesa
leggermente piu delle altre

ho a disposizione solo una
bilancia a due piatti

i

Ammm— L=

obiettivo: individuare la moneta falsa
(facendo poche pesate)

tornando ai concetti fondamentali

problema: individuare una moneta falsa fra n monete

istanza: n specifiche monete; quella falsa & una di queste; puo
essere la "prima”“, la "seconda”, ecc.

dimensione dell'istanza: il valore n

modello di calcolo: bilancia a due piatti; specifica quello che si puo

fare
algoritmo: strategia di pesatura. La descrizione deve essere

“comprensibile” e "compatta”’. Deve descrivere la sequenza di
operazioni sul modello di calcolo eseguite per una generica

Istanza

corretfezza |a strategia di pesatura deve funzionare (individuare la
dell'algoritmo: moneta falsa) per una generica istanza, ovvero
indipendentemente da quante monete sono, e se la moneta
falsa e la "prima”“, la "seconda”, ecc.

tornando ai concetti fondamentali

complessita # di pesate che esegue prima di individuare la
temporale moneta falsa. Dipende dalla dimensione dell'istanza
(dell'algoritmo): e dall'istanza stessa.

complessita # massimo di pesate che esegue su una istanza di
temporale nel una certa dimensione. E' una delimitazione
caso peggiore: superiore a quanto mi “costa” risolvere una
generica istanza. Espressa come funzione della
dimensione dell'istanza.

efficienza l'algoritmo deve fare poche pesate, deve essere cioe
(dell'algoritmo): veloce. Ma veloce rispetto a che? quando si puo dire che un
algoritmo ¢ veloce?

uso la prima moneta e la
confronto con le altre

uso la prima moneta e la
confronto con le altre

uso la prima moneta e la
confronto con le altre

uso la prima moneta e la
confronto con le altre

uso la prima moneta e la
confronto con le altre

uso la prima moneta e la
confronto con le altre

trovatal

uso la prima moneta e la
confronto con le altre

uso la prima moneta e la
confronto con le altre

trovatal

due parole sui costrutti
sequenziamento, condizionale, ciclo

Algl (X=[xq, Xy, -, X,])

1. fori=2tondo

2. if peso(x,) > peso(x;) then return x,
3. if peso(x,) < peso(x;) then return x
Correfto? sil # pesate? dipendel!

nel caso peggiore? n-1

efficiente? ..boh?!

posso fare Oss: l'ultima - N2 |
meglio? pesata non serve pesate ..mah!

Alg2

peso le monete a coppie

1 2 3 4 5 6 7

Alg2

peso le monete a coppie

Alg2

peso le monete a coppie

) G o)
D) Al < <l |
B & D & 4

2 il s

@

W G
1 2 3 4 5 6 7

Alg2

peso le monete a coppie

trovatal

Alg2

peso le monete a coppie

1234567

Alg2

peso le monete a coppie

Alg2

peso le monete a coppie

; » IQ ,w
Al A Al
R & L & 0

> P i

o)
ey

y &
1 2 3 4 5 6 7

Alg2

peso le monete a coppie

trovatal

Alg2 (X=[xy, Xy, ..., X,])

1. k=|n/2]
2. fori=1tokdo
3 if peso(x,, ;) > peso(x,;) then return x,, ,
4. if peso(x,, ;) < peso(x,,) then return x,,
5. //ancora non ho trovato la moneta falsa; n é dispari
//e manca una moneta
return x,
Corretto? sil # pesate? dipendel!

nel caso peggiore? |n/2]

efficiente? ..boh?!

pero meglio posso fare

di Algl ealio?
N meglio:

Alg3
peso le monete

dividendole ogni volte in
due gruppi

Alg3
peso le monete

dividendole ogni volte in
due gruppi

Alg3
peso le monete

dividendole ogni volte in
due gruppi

trovatal

Alg3
peso le monete

dividendole ogni volte in
due gruppi

Alg3
l peso le monete

dividendole ogni volte in
due gruppi

n=10

1 2 3 4 5 6 7 8 9 10

Alg3
peso le monete

dividendole ogni volte in
due gruppi

Alg3
peso le monete

dividendole ogni volte in
due gruppi

trovatal

2 &
Ol A A

4 s E
(! A
\% Y

(3 @ 2 @ (3 w

ol 7 ol \/ B “

g = 2y g Y & Sy
: : el

1 2 3 4 5 6 7 8 9 10

Alg3(X)
1. if (|X]|=1) then return unica moneta in X

2. dividi X in due gruppi X, e X, di (uguale)
dimensione k = |_|X|/2J e se |X| e dispari una
ulteriore monetay

3. if peso(X,) = peso(X,) then returny

4. if peso(X,) > peso(X,) then return Alg3(X,)
else return Alg3(X,)

Corretto? sil

pesate nel caso peggiore? Llog, n]
efficiente? ..boh?! (da argomentare)

pero meglio
di Alg2
©

Alg3: analisi della complessita

P(n): # pesate che Alg3 esegue nel caso peggiore su un'istanza
di dimensione n

P(n)= P(Ln/2])+1 P(1)=0

Oss.: P(x) e una funzione non decrescente in x

Oss.: vale
P(n) = P(Ln/2]) + 1 L(1/72)n/2]] <
= P(L(1/2).n/2]]) + 2 L(1/2) n/2 | <[n/4]
<P(n/4])+ 2

<P(n/81)+3
(n/8) quando [n/2'] =1?

<P(n/2) +i
per i=Llog, n |

<P()+ llog, n | =llog, n |

Una domanda: quanto ¢ piu veloce Alg3 rispetto agli altri?

assunzione: ogni pesata richiede un minuto

TABELLA
' n |10 | 100 |1.000 [10.000 |100.000
Algl 9m ~1h,39m ~16h ~7gg ~69gg
Alg2 5m ~50min ~8h ~3,5gg ~35gg
Alg3 3m 6m O9m 13m 16m

posso fare meglio di
Alg3?

Alg4
posso dividere in fre
gruppi invece di due

Alg4
posso dividere in fre
gruppi invece di due

Alg4
posso dividere in fre
gruppi invece di due

trovatal

Alg4
posso dividere in fre
gruppi invece di due

Alg4
posso dividere in fre
gruppi invece di due

n=10

4 s E
(A
\% Y

o G &
3y o D7
G .’~“’, N »‘_-3-3"-"4 &;: l,"z

2 3 4 5 6 7 8 9 10

Alg4
posso dividere in fre
gruppi invece di due

trovatal

Alg4 (X)
1. if (|X]|=1) then return unica moneta in X

2. dividi X in tre gruppi X, X,, X; di dimensione bilanciata
siano X, e X, i gruppi che hanno la stessa dimensione (ci
sono sempre)

3. if peso(X;) = peso(X,) then return Alg4(X,)

4. if peso(X,) > peso(X,) then return Alg4(X,)
else return Alg4(X,)

Corretto? sil

pesate nel caso peggiore? [logs n|
efficiente? ..boh?! (da argomentare)
pero meglio
di Alg3

©

Alg4: analisi della complessita

P(n): # pesate che Alg4 esegue nel caso peggiore su un'istanza
di dimensione n

P(n)=P(In/31)+1 P(1)=0

Oss.: P(x) e una funzione non decrescente in x

sia k il piu piccolo intero tale che 3k>n n'=3k
mmm) Kk >logsn km k=logs n|

P(n) <P(n')=k=Ilogsnl

P(n)=P(n'/3) +1
=P(n'/9) + 2

=P(n/3) +i

per i=k
=P(1) + k =k

..Torniamo alla tabella: quanto e piu veloce Alg4 rispetto
agli altri?

assunzione: ogni pesata richiede un minuto

TABELLA
010 | 1001000 10000 100000
Algl 9m ~1h,39m ~16h ~6gg ~69gg
Alg2 5m ~50m ~8 h ~3,5gg ~35gg
Alg3 3m 6m 9m 13m 16m
Algd 3 m 5m 7m 9m 11m

posso fare meglio di
Alg4?

Sui limiti della velocita: una
delimitazione inferiore
(lower bound) alla
complessita

del problema

Teorema

Un qualsiasi algoritmo che correttamente individua la moneta falsa
fra n monete deve effettuare nel caso peggiore almeno | logs n |
pesate.

la dimostrazione usa argomentazioni matematiche per mostrare
che un generico algoritmo se e corretto deve avere almeno una
certa complessita temporale nel caso peggiore.

dimostrazione elegante e non banale che usa la tecnica
dell'albero di decisione di un problema (che vedremo durante il
corso)

Corollario

Alg4 € un algoritmo ottimo per il problema.

Esercizio

Si devono cuocere n frittelle. Si ha a disposizione una padella che
riesce a contenere due frittelle alla volta. Ogni frittella va cotta su
tutte e due i lati e ogni lato richiede un minuto.

Progettare un algoritmo che frigge le frittelle nel minor fempo
possibile. Si argomenti, se possibile, sulla ottimalita dell'algoritmo
proposto.

|

.
1 S

Buon inizio anno!

e
|
!

	Slide 1: Algoritmi e Strutture Dati
	Slide 2: Informazioni utili
	Slide 3: Struttura del corso
	Slide 4: Prerequisiti del corso
	Slide 5: Libri di testo
	Slide 6: testi alternativi:
	Slide 7: Modalità d’esame
	Slide 8: Teoria degli algoritmi piena di idee bellissime
	Slide 9: Qualche consiglio:
	Slide 10: Algoritmo
	Slide 11: etimologia
	Slide 12
	Slide 13: Cosa studieremo?
	Slide 14: Cosa è (più) importante oltre l’efficienza?
	Slide 15: Altri motivi per studiare gli algoritmi
	Slide 16: importanza teorica
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Altri motivi per studiare gli algoritmi
	Slide 23: alcuni concetti di cui non è sempre facile parlare
	Slide 24: un puzzle può aiutare; eccone uno famoso
	Slide 25: tornando ai concetti fondamentali
	Slide 26: tornando ai concetti fondamentali
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Alg3: analisi della complessità
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Alg4: analisi della complessità
	Slide 63
	Slide 64: Sui limiti della velocità: una delimitazione inferiore (lower bound) alla complessità del problema
	Slide 65
	Slide 66
	Slide 67

