
Algoritmi e Strutture Dati

Luciano Gualà

guala@mat.uniroma2.it

www.mat.uniroma2.it/~guala

mailto:guala@mat.uniroma2.it

Informazioni utili

• Orario lezioni
– martedì: 9,00 – 11,00

– giovedì: 16,00 – 18,00

• Orario ricevimento
– per appuntamento (online o presenza)

– Ufficio: dip. di matematica, piano 0,
corridoio A0, stanza 103

Struttura del corso

• Corso strutturato in due moduli
– Modulo I

• 6 CFU
• Ottobre – Gennaio

– Modulo II
• 6 CFU
• Marzo – Giugno

Modulo II (per Data Science)
• 3 CFU
• Marzo – Aprile (12 lezioni)

Prerequisiti del corso
Cosa è necessario sapere…

– programmazione di base
– strutture dati elementari
– concetto di ricorsione
– dimostrazione per induzione e calcolo

infinitesimale

Propedeuticità
– programmazione

– analisi matematica

– matematica discreta

Libri di testo

Slide e materiale didattico

http://www.mat.uniroma2.it/~guala/

J. Kleinberg, E. Tardos
Algorithm Design

C. Demetrescu, I. Finocchi, G. Italiano
Algoritmi e Strutture dati (sec. ed.)

(modulo I)

(modulo II)

T.H. Cormen, C.E. Leiserson,
R.L. Rivest, C. Stein
Introduzione agli algortimi
e strutture dati

P. Crescenzi, G. Gambosi, R.
Grossi, G. Rossi
Strutture di dati e algoritmi

A. Bertossi, A. Montresor
Algoritmi e strutture di dati

S. Dasgupta, C.
Papadimitriou,
U. Vazirani
Algorithms

testi alternativi:

T. Roughgarden
Algorithms Illuminated

Modalità d’esame

• L’esame consiste in una prova scritta e una prova
orale (per ogni modulo)
– problem set, 2 a modulo (opzionali)

• 6 appelli
– 2 giugno/luglio
– 2 settembre
– 2 gennaio/febbraio

• Prova parziale a febbraio
• Per sostenere l’esame è obbligatorio prenotarsi

online (una settimana prima) su
delphi.uniroma2.it

Teoria degli algoritmi piena di idee bellissime

cg(n)

f(n)

n0 n

f(n) = (g(n))

1 Fi-2 Fi-1 Fi Fn

+

37

22 31

14251513

37 912

…
…

Qualche consiglio:
• Studiare giorno per giorno

• Lavorare sui problemi
assegnati in gruppo

• Scrivere/formalizzare la
soluzione individualmente

• Cercate di divertirvi!

Algoritmo
Procedimento che descrive una sequenza di
passi ben definiti finalizzato a risolvere un
dato problema (computazionale).

etimologia
Il termine Algoritmo deriva

da Algorismus,
traslitterazione latina del
nome di un matematico
persiano del IX secolo,
Muhammad al-Khwarizmi,
che descrisse delle
procedure per i calcoli
matematici

• Un algoritmo può essere visto come l’essenza
computazionale di un programma, nel senso che
fornisce il procedimento per giungere alla soluzione di
un dato problema di calcolo

• Algoritmo diverso da programma
– programma è la codifica (in un linguaggio di programmazione) di un

algoritmo

– un algoritmo può essere visto come un programma distillato da
dettagli riguardanti il linguaggio di programmazione, ambiente di
sviluppo, sistema operativo

– Algoritmo è un concetto autonomo da quello di programma

Algoritmi e programmi

Cosa studieremo?

…ad analizzare e progettare “buoni” algoritmi

…che intendiamo per “buoni”?
– Corretti: producono correttamente il

risultato desiderato
– Efficienti: usano poche risorse di

calcolo, come tempo e memoria.

algoritmi veloci!

Cosa è (più) importante oltre l’efficienza?

• Correttezza

• Mantenibilità

• Stabilità

• Modularità

• Sicurezza

• User-friendliness

• …

Allora perché tanta enfasi
sull’efficienza?

• Veloce è bello

• A volte: o veloce o non
funzionale

• Legato alla User-friendliness

• Efficienza può essere usata
per “pagare” altre
caratteristiche

“L’algoritmica è l’anima dell’informatica."

David Harel

Le idee algoritmiche non solo trovano soluzioni a problemi ben
posti, quanto costituiscono il linguaggio che porta ad
esprimere chiaramente il problema soggiacente

Altri motivi per studiare gli algoritmi

importanza teorica
“Se è vero che un problema non si capisce a
fondo finché non lo si deve insegnare a
qualcuno altro, a maggior ragione nulla è
compreso in modo più approfondito di ciò
che si deve insegnare ad una macchina,
ovvero di ciò che va espresso tramite un
algoritmo."

Donald Knuth

In ogni algoritmo è possibile individuare due componenti fondamentali:
• l’identificazione della appropriata tecnica di progetto algoritmico (basato
sulla struttura del problema);
• la chiara individuazione del nucleo matematico del problema stesso.

Altri motivi per studiare gli algoritmi

"There is a saying: If you want to be a
good programmer, you just program every
day for two years, you will be an excellent
programmer. If you want to be a world-
class programmer, you can program every
day for ten years. Or you can program
every day for two years and take an
algorithms class."

Charles E. Leiserson

importanza pratica
Altri motivi per studiare gli algoritmi

Altri motivi per studiare gli algoritmi

cosa sapere per lavorare a ?

Altri motivi per studiare gli algoritmi

cosa sapere per lavorare a ?

Altri motivi per studiare gli algoritmi

cosa sapere per lavorare a ?

Altri motivi per studiare gli algoritmi

cosa sapere per lavorare a ?

Altri motivi per studiare gli algoritmi

Potenzia le capacità di:

• Critical Thinking:
– un modo di decidere se un certo

enunciato è sempre vero, vero a
volte, parzialmente vero, o falso

• Problem Solving:
– insieme dei processi atti ad

analizzare, affrontare e risolvere
positivamente problemi

alcuni concetti di cui non è
sempre facile parlare

algoritmo

problema

istanza

modello di
calcolo

dimensione
dell’istanza

caso
peggiore

efficienza

correttezza

complessità
temporale

un puzzle può aiutare; eccone uno famoso

n monete tutte identiche d’aspetto
una delle monete è falsa e pesa

leggermente più delle altre

obiettivo: individuare la moneta falsa
(facendo poche pesate)

ho a disposizione solo una
bilancia a due piatti

tornando ai concetti fondamentali

modello di calcolo: bilancia a due piatti; specifica quello che si può
fare

problema: individuare una moneta falsa fra n monete

istanza: n specifiche monete; quella falsa è una di queste; può
essere la “prima”, la “seconda”, ecc.

dimensione dell’istanza: il valore n

algoritmo: strategia di pesatura. La descrizione deve essere
“comprensibile” e “compatta”. Deve descrivere la sequenza di
operazioni sul modello di calcolo eseguite per una generica
istanza

correttezza
dell’algoritmo:

la strategia di pesatura deve funzionare (individuare la
moneta falsa) per una generica istanza, ovvero
indipendentemente da quante monete sono, e se la moneta
falsa è la “prima”, la “seconda”, ecc.

complessità
temporale

(dell’algoritmo):

di pesate che esegue prima di individuare la
moneta falsa. Dipende dalla dimensione dell’istanza
e dall’istanza stessa.

efficienza
(dell’algoritmo):

l’algoritmo deve fare poche pesate, deve essere cioè
veloce. Ma veloce rispetto a che? quando si può dire che un
algoritmo è veloce?

complessità
temporale nel
caso peggiore:

massimo di pesate che esegue su una istanza di
una certa dimensione. E’ una delimitazione
superiore a quanto mi “costa” risolvere una
generica istanza. Espressa come funzione della
dimensione dell’istanza.

tornando ai concetti fondamentali

Alg1
uso la prima moneta e la
confronto con le altre

1 2 3 4 5 6 7

n=7

Alg1
uso la prima moneta e la
confronto con le altre

1 2 3 4 5 6 7

n=7

Alg1
uso la prima moneta e la
confronto con le altre

1 2 3 4 5 6 7

n=7

Alg1
uso la prima moneta e la
confronto con le altre

1 2 3 4 5 6 7

n=7

Alg1
uso la prima moneta e la
confronto con le altre

1 2 3 4 5 6 7

n=7

Alg1
uso la prima moneta e la
confronto con le altre

1 2 3 4 5 6 7

n=7

trovata!

Alg1
uso la prima moneta e la
confronto con le altre

1 2 3 4 5 6 7

n=7

Alg1
uso la prima moneta e la
confronto con le altre

1 2 3 4 5 6 7

n=7

trovata!

Alg1 (X=[x1, x2, …, xn])

1. for i=2 to n do

2. if peso(x1) > peso(xi) then return x1

3. if peso(x1) < peso(xi) then return xi

due parole sui costrutti:
sequenziamento, condizionale, ciclo

Corretto? sì! # pesate? dipende!

nel caso peggiore? n-1

efficiente? …boh?!

posso fare
meglio?

Oss: l’ultima
pesata non serve

n-2
pesate …mah!

Alg2
peso le monete a coppie

1 2 3 4 5 6 7

n=7

Alg2
peso le monete a coppie

1 2 3 4 5 6 7

n=7

Alg2
peso le monete a coppie

1 2 3 4 5 6 7

n=7

Alg2
peso le monete a coppie

1 2 3 4 5 6 7

n=7

trovata!

Alg2
peso le monete a coppie

1 2 3 4 5 6 7

n=7

Alg2
peso le monete a coppie

1 2 3 4 5 6 7

n=7

Alg2
peso le monete a coppie

1 2 3 4 5 6 7

n=7

Alg2
peso le monete a coppie

1 2 3 4 5 6 7

n=7

trovata!

Alg2 (X=[x1, x2, …, xn])

1. k= n/2

2. for i=1 to k do

3. if peso(x2i-1) > peso(x2i) then return x2i-1

4. if peso(x2i-1) < peso(x2i) then return x2i

5. //ancora non ho trovato la moneta falsa; n è dispari
//e manca una moneta
return xn

Corretto? sì! # pesate? dipende!

nel caso peggiore? n/2

efficiente? …boh?!

posso fare
meglio?

però meglio
di Alg1
☺

Alg3
peso le monete

dividendole ogni volte in
due gruppi

1 2 3 4 5 6 7

n=7

Alg3
peso le monete

dividendole ogni volte in
due gruppi

1 2 3 4 5 6 7

n=7

Alg3
peso le monete

dividendole ogni volte in
due gruppi

1 2 3 4 5 6 7

n=7

trovata!

Alg3
peso le monete

dividendole ogni volte in
due gruppi

1 2 3 4 5 6 7

n=10

8 9 10

Alg3
peso le monete

dividendole ogni volte in
due gruppi

1 2 3 4 5 6 7

n=10

8 9 10

Alg3
peso le monete

dividendole ogni volte in
due gruppi

1 2 3 4 5 6 7

n=10

8 9 10

Alg3
peso le monete

dividendole ogni volte in
due gruppi

1 2 3 4 5 6 7

n=10

8 9 10

trovata!

Corretto? sì!

pesate nel caso peggiore? log2 n
(da argomentare)

efficiente? …boh?!

però meglio
di Alg2
☺

Alg3(X)

1. if (|X|=1) then return unica moneta in X

2. dividi X in due gruppi X1 e X2 di (uguale)
dimensione k = |X|/2 e se |X| è dispari una
ulteriore moneta y

3. if peso(X1) = peso(X2) then return y

4. if peso(X1) > peso(X2) then return Alg3(X1)
else return Alg3(X2)

Alg3: analisi della complessità

P(n): # pesate che Alg3 esegue nel caso peggiore su un’istanza
di dimensione n

P(n)= P(n/2) + 1 P(1)=0

Oss.: P(x) è una funzione non decrescente in x

quando n/2i  = 1?

= P(n/2) + 1
= P((1/2)n/2) + 2

 P(n/2i ) + i

 P(1) + log2 n  = log2 n 

P(n)

per i= log2 n 

 P(n/4) + 2

 P(n/8) + 3

Oss.: vale
(1/2)n/2  
(1/2) n/2   n/4

Una domanda: quanto è più veloce Alg3 rispetto agli altri?

assunzione: ogni pesata richiede un minuto

TABELLA

posso fare meglio di
Alg3?

n 10 100 1.000 10.000 100.000

Alg1 9m  1h, 39m 16 h 7gg 69gg

Alg2 5 m  50 min 8 h 3,5gg 35gg

Alg3 3 m 6m 9m 13m 16m

Alg4
posso dividere in tre
gruppi invece di due

1 2 3 4 5 6 7

n=7

Alg4
posso dividere in tre
gruppi invece di due

1 2 3 4 5 6 7

n=7

Alg4
posso dividere in tre
gruppi invece di due

1 2 3 4 5 6 7

n=7

trovata!

1 2 3 4 5 6 7

n=10

8 9 10

Alg4
posso dividere in tre
gruppi invece di due

1 2 3 4 5 6 7

n=10

8 9 10

Alg4
posso dividere in tre
gruppi invece di due

1 2 3 4 5 6 7

n=10

8 9 10

Alg4
posso dividere in tre
gruppi invece di due

trovata!

Alg4 (X)

1. if (|X|=1) then return unica moneta in X

2. dividi X in tre gruppi X1, X2, X3 di dimensione bilanciata
siano X1 e X2 i gruppi che hanno la stessa dimensione (ci
sono sempre)

3. if peso(X1) = peso(X2) then return Alg4(X3)

4. if peso(X1) > peso(X2) then return Alg4(X1)
else return Alg4(X2)

Corretto? sì!

pesate nel caso peggiore? log3 n
(da argomentare)

efficiente? …boh?!

però meglio
di Alg3
☺

Alg4: analisi della complessità
P(n): # pesate che Alg4 esegue nel caso peggiore su un’istanza

di dimensione n

P(n)= P(n/3) + 1 P(1)=0

Oss.: P(x) è una funzione non decrescente in x

sia k il più piccolo intero tale che 3kn n’=3k

k  log3 n k= log3 n
k intero

P(n)  P(n’)

= P(n’/3) + 1
= P(n’/9) + 2

= P(n’/3i) + i

= P(1) + k =k

P(n’)

per i=k

=k = log3 n

…torniamo alla tabella: quanto è più veloce Alg4 rispetto
agli altri?

assunzione: ogni pesata richiede un minuto

TABELLA

posso fare meglio di
Alg4?

n 10 100 1.000 10.000 100.000

Alg1 9m  1h, 39m 16 h 6gg 69gg

Alg2 5 m  50 m 8 h 3,5gg 35gg

Alg3 3 m 6m 9m 13m 16m

Alg4 3 m 5m 7m 9m 11m

Sui limiti della velocità: una
delimitazione inferiore

(lower bound) alla
complessità

del problema

Un qualsiasi algoritmo che correttamente individua la moneta falsa
fra n monete deve effettuare nel caso peggiore almeno log3 n
pesate.

Teorema

la dimostrazione usa argomentazioni matematiche per mostrare
che un generico algoritmo se è corretto deve avere almeno una
certa complessità temporale nel caso peggiore.

dimostrazione elegante e non banale che usa la tecnica
dell’albero di decisione di un problema (che vedremo durante il
corso)

Alg4 è un algoritmo ottimo per il problema.

Corollario

Si devono cuocere n frittelle. Si ha a disposizione una padella che
riesce a contenere due frittelle alla volta. Ogni frittella va cotta su
tutte e due i lati e ogni lato richiede un minuto.
Progettare un algoritmo che frigge le frittelle nel minor tempo
possibile. Si argomenti, se possibile, sulla ottimalità dell’algoritmo
proposto.

Esercizio

Si devono cuocere n frittelle. Si ha a disposizione una padella che
riesce a contenere due frittelle alla volta. Ogni frittella va cotta su
tutte e due i lati e ogni lato richiede un minuto.
Progettare un algoritmo che frigge le frittelle nel minor tempo
possibile. Si argomenti, se possibile, sulla ottimalità dell’algoritmo
proposto.

Esercizio

Buon inizio anno!

	Slide 1: Algoritmi e Strutture Dati
	Slide 2: Informazioni utili
	Slide 3: Struttura del corso
	Slide 4: Prerequisiti del corso
	Slide 5: Libri di testo
	Slide 6: testi alternativi:
	Slide 7: Modalità d’esame
	Slide 8: Teoria degli algoritmi piena di idee bellissime
	Slide 9: Qualche consiglio:
	Slide 10: Algoritmo
	Slide 11: etimologia
	Slide 12
	Slide 13: Cosa studieremo?
	Slide 14: Cosa è (più) importante oltre l’efficienza?
	Slide 15: Altri motivi per studiare gli algoritmi
	Slide 16: importanza teorica
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Altri motivi per studiare gli algoritmi
	Slide 23: alcuni concetti di cui non è sempre facile parlare
	Slide 24: un puzzle può aiutare; eccone uno famoso
	Slide 25: tornando ai concetti fondamentali
	Slide 26: tornando ai concetti fondamentali
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Alg3: analisi della complessità
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Alg4: analisi della complessità
	Slide 63
	Slide 64: Sui limiti della velocità: una delimitazione inferiore (lower bound) alla complessità del problema
	Slide 65
	Slide 66
	Slide 67

