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Parameterized algorithms 

Episode IV



Toolbox (to show a problem is FPT)

bounded-search trees

kernelization

algebraic techniques

treewidth

color coding

iterative 
compression



Lower bounds

tools and theory 

of the parameterized intractability



What kind of negative results we can prove? 

idea: develop a theory that provides evidence that a parameterized 
problem is hard (e.g., not FPT)

- Can we show that a problem (e.g., k-Clique) is not FPT?

conditional lower bounds

- Can we show that a problem (e.g., k-Vertex Cover) does not have 
an algorithm running in time 2o(k)nO(1)?

obs: we have to assume PNP 
(if P=NP, k-Clique can be solved in polynomial time, and hence is FPT)



Parameterized complexity

Example: G has an Independent Set of size k iff has a Vertex Cover of 
size n-k

- An appropriate notion of reduction

- An appropriate (hardness) hypothesis

obs: Polynomial-time reductions are not good for our purposes

To build a complexity theory for parameterized problems, we need two 
ingredients:

IS problem Vertex Cover problem

Complexity: NP-complete NP-complete

a O(2knO(1)) 
algorithm exists

no no(k)-time 
algorithm is known



- (x,k) is a YES-instance of P iff (x’,k’) is a YES-instance of Q; 
- (x’,k’) can be computed in time f(k)nO(1);
- k’  g(k) for some function g.

Parameterized reduction from problem P to problem Q: a function 
mapping an instance (x,k) of P into an instance (x’,k’)= (x,k) of Q, such that

Note: if Q is FPT then P is also FPT.

Parameterized reduction

Equivalently: if P is not FPT then Q is not FPT.

Non-example: from Independent Set to Vertex Cover

(G,k) (G,n-k)

Example: from Independent Set to Clique

(G,k) (G,k)



Input:

question:

- a graph G=(V,E), vertices are colored with k colors 
- a nonnegative integer k

is there a clique of size k containing one vertex for each color

parameter: k

Multicolored Clique 

V1 V2 Vk



Theorem
There is a parameterized reduction form Clique to Multicolored Clique.

proof

V1 V2 Vk

u

v

- for each vertex v of G, G’ has k vertices v1,...vk, one for each color

- if u and v are adjacent in G, connect all copies of u with all copies of v

G has a k-clique G’ has a multicolored k-clique

Similarly: reduction from k-Clique to multicolored k-Independent Set



Input:

question:

- a graph G=(V,E) 
- a nonnegative integer k

is there a set U of vertices of size |U|k such that each vV\U is 
adjacent to a vertex uU

parameter: k

k-Dominating Set



Theorem
There is a parameterized reduction form Multicolored Independent Set to 
Dominating Set.
proof

- G’ has all vertices of G plus vertices xi, yi, for each color i

- for each edge (u,v) in G with uVi and vVj, add a vertex we to G’ 
adjacent to every vertex of (ViVj)\{u,v}

clique 
except for  
edge (xi,yi)

Claim: a k-DS must choose a vertex from each Vi and such vertices must 
form and independent set in G.

we



Theorem
There is a parameterized reduction form Multicolored Independent Set to 
Dominating Set.
proof

we

- G’ has all vertices of G plus vertices xi, yi, for each color i

- for each edge (u,v) in G with uVi and vVj, add a vertex we to G’ 
adjacent to every vertex of (ViVj)\{u,v}

clique 
except for  
edge (xi,yi)

Claim: a k-DS must choose a vertex from each Vi and such vertices must 
form and independent set in G.



- Independent Set
- Dominating Set (even in bipartite graphs)
- Set Cover
- Hitting Set
- Connected Dominating Set
- Partial Vertex Cover (parameterized by the size of the cover)
- ...

Hundreds of parameterized problems are known to be at least as hard as 
Clique:

Hard problems

We believe that none of these problems are FPT



It seems we have to assume something stronger that PNP

Let’s choose a basic hypothesis: 

Basic Hypotesis

Engineers’ Hypothesis

k-Clique cannot be solved in time f(k) nO(1).

which hypothesis is most plausible?

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of a give Nondeterministic Turing 

Machine that stops in k steps?) cannot be solved in time f(k) nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time 2o(n).



• k-Clique and k-Step Halting problem can be reduced to each other 

– Engineers’ Hypothesis and Theorists’ Hypothesis are equivalent!

• k-Clique and k-Step Halting problem can be reduced to k-Dominating Set

• Is there a parameterized reduction from k-Dominating Set to k-Clique?

• Probably not. Unlike in NP-completeness, where most problems are 
equivalent, here we have a hierarchy of hard problems.

– Independent Set is W[1]-complete

– Dominating Set is W[2]-complete

• Does not matter if we only care about whether a problem is FPT or not!

Some observations



weight of an assignment: number of true variables

a Boolean circuit
consists of input 
gates, negation 
gates, AND gates, 
OR gates, and a 
single output gate

Circuit Satisfiability
Given a Boolean circuit C, decide if there is an assignment on the inputs of 
C making the output true

Weighted Circuit Satisfiability
Given a Boolean circuit C and an integer k, decide if there is an assignment 
of weight k making the output true



Both k-Independent Set and k-Dominating Set can be reduced to 
Weighted Circuit Satisfiability 

k-Independent Set k-Dominating Set 

idea: DS is harder than IS because we need a more complicated circuit



depth of a circuit: the maximum length of an input-output path

k-Independent Set k-Dominating Set 

a gate is large if it has more than 2 inputs

weft of a circuit: the maximum number of large gates in an input-output 
path

depth: 3 weft: 1 depth: 2 weft: 2



a problem is complete for a given class if every other problem in the class 
can be reduced to it

Let C[t; d] be the set of all circuits having weft at most t and depth at 
most d

Independent Set is in W[1] and Dominating Set is in W[2]

a reduction from DS to IS would imply W[1]=W[2]

The W-hierarchy 

Definition 
A problem P is in the class W[t] if there is a constant d and a 
parameterized reduction from P to Weighted Circuit Satisfiability of 
C[t;d] 

fact: Independent Set is W[1]-complete

fact: Dominating Set is W[2]-complete



ETH and some cool 
consequences



Exponential Time Hypothesis (ETH)

There is no 2o(n)-time algorithm for n-variable 3-SAT

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3-SAT formula can have (n3) clauses.

Sparsification lemma [Impagliazzo, Paturi, Zane 2001]

There is no 2o(n)-time algorithm for n-variable 3-SAT

There is no 2o(m)-time algorithm for m-clause 3-SAT



Transferring lower bounds: an example

Exponential Time Hypothesis (ETH)

There is no 2o(m)-time algorithm for m-clause 3-SAT

The textbook reduction from 3-SAT to 3-Coloring:

3-SAT formula F
n variables
m clauses

a graph G
O(n+m) vertices
O(n+m) edges



Transferring lower bounds: an example

Exponential Time Hypothesis (ETH)

There is no 2o(m)-time algorithm for m-clause 3-SAT

The textbook reduction from 3-SAT to 3-Coloring:

3-SAT formula F
n variables
m clauses

a graph G
O(m) vertices
O(m) edges

Corollary

Assuming ETH, there is no 2o(n)-time algorithm for 3-coloring on an         
n-vertex graph



Transferring lower bounds

There are many similar reductions from 3-SAT to other graph problems.

Consequence: 

Assuming ETH, there is no 2o(n)-time algorithm on an n-vertex graph for:
- Independent Set
- Clique
- Dominating Set
- Vertex Cover
- Longest Path
- ...



Transferring lower bounds

There are many similar reductions from 3-SAT to other graph problems.

Consequence: 

Assuming ETH, there is no 2o(k)nO(1) time algorithm on an n-vertex graph 
for:
- k-Independent Set
- k-Clique
- k-Dominating Set
- k-Vertex Cover
- k-Path
- ...

Consequence on the f(k) game:

roughly tights since they 
can be solved in time  

2O(k)nO(1)



Assuming ETH we can prove that k-Clique is not FPT.

Engineers’ Hypothesis

k-Clique cannot be solved in time f(k) nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of a give Nondeterministic Turing 

Machine that stops in k steps?) cannot be solved in time f(k) nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time 2o(n).

Indeed, we can prove a much stronger and interesting result:

Theorem [Chen et al. 2004]

k-Clique cannot be solved in time f(k) no(k) for any computable function f



proof

s(k): (positive) nondecreasing unbounded function

now, we suitably choose k...

assume you can find a k-clique on a graph H in time f(k) |V(H)|k/s(k),

we show you can find a 3-coloring of G in 2o(n) time (contradicting ETH)

technical assumption: 
f(k)  max{k, kk/s(1)} otherwise set f’(k) = max{f(k),k, kk/s(1)}

partition the n vertices of G into k groups of at most n/k vertices each

build H as follows: 
- each vertex corresponds to a proper 3-coloring of one of the groups 
- two vertices of H are connected iff the corresponding colorings are 

compatible

Claim: there is a k-clique in H iff G admits a proper 3-coloring

|V(H)|  k 3n/k



k:=g(n) nondecreasing unbounded function on n  (satisfying g(n)n)

for a given n, let k be the largest integer such that f(k)  n

time to compute a 3-coloring of G:

f(k) k 3n/kf(k) |V(H)|k/s(k) 



k/s(k)

n   k 3n/k
k/s(k)

 n   k 32n/k
k/s(k)

 n  kk/s(1) 32n/s(k)

using f(k)  n

 n2 32n/s(g(n))

= 2o(n)

using k=g(n)  n

using s(k) nondecreasing

using kk/s(1)  f(k)  n

function s(g(n)) is 
nondecreasing & unbounded



Strong ETH



Input:

question:

- a graph G=(V,E) 
- a nonnegative integer k

is there a set U of vertices of size |U|k such that each vV\U is 
adjacent to a vertex uU

parameter: k

k-Dominating Set

nk/10 ?

smarter: nk+o(1)

assuming ETH: no f(k) no(k)

naive: nk+1

nk-1  ?



Exponential Time Hypothesis (ETH)

There is no 2o(n)-time algorithm for n-variable 3-SAT

Note: current best algorithm is 1.30704n [Hertli 2011].

Strong ETH (SETH)

There is no (2-)n-time algorithm for CNF-SAT

for any fixed k, a nk-0.01 time algorithm for k-DS would violate SETH

assuming SETH:

no n2.99 time algorithm for 3-DS

no n3.99 time algorithm for 4-DS 

no n4.99 time algorithm for 5-DS
...
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