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Toolbox (to show a problem is FPT)

bounded-search trees

s :
kernelization color coding

algebraic techniques
iterative

compression

treewidth



Lower bounds

tools and theory
of the parameterized intractability



What kind of negative results we can prove?

- Can we show that a problem (e.g., k-Clique) is not FPT?
- Can we show that a problem (e.g., k-Vertex Cover) does not have
an algorithm running in time 2°n01)?

we have to assume P=NP
(if P=NP, k-Clique can be solved in polynomial time, and hence is FPT)

—

idea: develop a theory that provides evidence that a parameterized
problem is hard (e.g., not FPT)



Parameterized complexity

To build a complexity theory for parameterized problems, we need two
ingredients:

- An appropriate notion of reduction

- An appropriate (hardness) hypothesis

Polynomial-time reductions are not good for our purposes

Example: G has an Independent Set of size k iff has a Vertex Cover of

size n-k
IS problem Vertex Cover problem
Complexity: NP-complete NP-complete
A ho n°k-time a O(2kno) - =

i algorithm is known algorithm exists ~—



Parameterized reduction

Parameterized reduction from problem P to problem Q: a function ¢
mapping an instance (x k) of P into an instance (x' k)= ¢(x k) of Q, such that

- (x,k) is a YES-instance of P iff (x',k') is a YES-instance of Q;
- (x',K') can be computed in time f(k)nOW);
- k' < g(k) for some function g.

Note: if Q is FPT then P is also FPT.
Equivalently: if P is not FPT then Q is not FPT.

Non-example: from Independent Set to Vertex Cover

(6k) w  (6nk)

Example: from Independent Set to Clique

Gk = Gk



Multicolored Clique

Input:
- agraph 6=(V,E), vertices are colored with k colors
- a honnegative integer k

question:
is there a clique of size k containing one vertex for each color

parameter: k
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Theorem
There is a parameterized reduction form Clique to Multicolored Clique.

proof

- for each vertex v of G, G' has k vertices v;,...v,, one for each color
- if uand v are adjacent in G, connect all copies of u with all copies of v

G has a k-clique é@=) G has amulticolored k-clique

reduction from k-Clique to multicolored k-Independent Set



k-Dominating Set
Input:
- agraph 6=(V,E)
- a honnegative integer k
question:
is there a set U of vertices of size |U|<k such that each veV\U is
adjacent to a vertex ueU

parameter: k




Theorem
There is a parameterized reduction form Multicolored Independent Set to

Dominating Set.
proof
- G' has all vertices of G plus vertices x;, y,, for each color i

- for each edge (u,v) in 6 with ueV; and veV;, add a vertex w, to &
adjacent to every vertex of (ViuV;)\{uv}

except for
edge (x;y;)

Claim: a k-DS must choose a vertex from each V;and such vertices must
form and independent set in 6.



Theorem
There is a parameterized reduction form Multicolored Independent Set to

Dominating Set.
proof
- G' has all vertices of G plus vertices x;, y,, for each color i

- for each edge (u,v) in 6 with ueV; and veV;, add a vertex w, to &
adjacent to every vertex of (ViuV;)\{uv}

clique
except for
edge (x;y;)

Claim: a k-DS must choose a vertex from each V;and such vertices must
form and independent set in 6.



Hard problems

Hundreds of parameterized problems are known to be at least as hard as
Clique:

- Independent Set

- Dominating Set (even in bipartite graphs)

- Set Cover

- Hitting Set

- Connected Dominating Set

- Partial Vertex Cover (parameterized by the size of the cover)

We believe that none of these problems are FPT



Basic Hypotesis
It seems we have to assume something stronger that P=NP
Let's choose a basic hypothesis:

Engineers’ Hypothesis
k-Clique cannot be solved in time f(k) nW.

Theorists' Hypothesis
k-Step Halting Problem (is there a path of a give Nondeterministic Turing
Machine that stops in k steps?) cannot be solved in time f(k) nOo),

1

Exponential Time Hypothesis (ETH)
n-variable 3-SAT cannot be solved in time 20(”).

which hypothesis is most plausible?



Some observations

» k-Clique and k-Step Halting problem can be reduced to each other

— Engineers' Hypothesis and Theorists’ Hypothesis are equivalent!
 k-Clique and k-Step Halting problem can be reduced to k-Dominating Set
« Is there a parameterized reduction from k-Dominating Set to k-Clique?

* Probably not. Unlike in NP-completeness, where most problems are
equivalent, here we have a hierarchy of hard problems.

— Independent Set is W[1]-complete
— Dominating Set is W[2]-complete
« Does not matter if we only care about whether a problem is FPT or not!



a Boolean circuit
consists of input
gates, negation
gates, AND gates,
OR gates, and a
single output gate

Circuit Satisfiability
Given a Boolean circuit C, decide if there is an assignment on the inputs of
C making the output true

weight of an assignment: number of true variables

Weighted Circuit Satisfiability
Given a Boolean circuit C and an integer k, decide if there is an assignment
of weight k making the output true



Both k-Independent Set and k-Dominating Set can be reduced to
Weighted Circuit Satisfiability

out

k-Independent Set k-Dominating Set

idea: DS is harder than IS because we need a more complicated circuit



depth of a circuit: the maximum length of an input-output path

a gate is large if it has more than 2 inputs

weft of a circuit: the maximum number of large gates in an input-output
path

depth: 3 weft: 1 depth: 2 weft: 2
a b ¢ d e a b c d e

out

k-Independent Set k-Dominating Set



The W-hierarchy

Let C[t; d] be the set of all circuits having weft at most + and depth at
most d

Definition
A problem P is in the class W[t] if there is a constant d and a
parameterized reduction from P fo Weighted Circuit Satisfiability of

C[t.d]

Independent Set is in W[1] and Dominating Set is in W[2]

Independent Set is W[1]-complete
Dominating Set is W[2]-complete

a problem is complete for a given class if every other problem in the class
can be reduced tfo it

mm) areduction from DS to IS would imply W[1]=W[2]



ETH and some cool
consequences



Exponential Time Hypothesis (ETH)
There is no 2°(N)-time algorithm for n-variable 3-SAT

current best algorithm is 1.30704" [Hertli 2011].
an n-variable 3-SAT formula can have Q(n3) clauses.

Sparsification lemma [Impagliazzo, Paturi, Zane 2001]
There is no 2°("-time algorithm for n-variable 3-SAT

!

There is no 2°(™M)-time algorithm for m-clause 3-SAT



Transferring lower bounds: an example

Exponential Time Hypothesis (ETH)
There is no 2°(M-_time algorithm for m-clause 3-SAT

The textbook reduction from 3-SAT to 3-Coloring:

3-SAT formula F
n variables
m clauses

=)

a graph G
O(n+m) vertices
O(n+m) edges




Transferring lower bounds: an example

Exponential Time Hypothesis (ETH)
There is no 2°(M-_time algorithm for m-clause 3-SAT

The textbook reduction from 3-SAT to 3-Coloring:

3-SAT formula F a graph G
n variables » O(m) vertices
m clauses O(m) edges
Corollary

Assuming ETH, there is no 2°(n)_time algorithm for 3-coloring on an
n-vertex graph



Transferring lower bounds

There are many similar reductions from 3-SAT to other graph problems.

Consequence:

Assuming ETH, there is no 2°("-time algorithm on an n-vertex graph for:
- Independent Set

- Clique

- Dominating Set

- Vertex Cover

- Longest Path



Transferring lower bounds

There are many similar reductions from 3-SAT to other graph problems.

Consequence on the f(k) game:

Consequence:

Assuming ETH, there is no 2°(K)nO0) time algorithm on an n-vertex graph
for:

- k-Independent Set

- k-Clique

- k-Dominating Set

- k-Vertex Cover | roughly tights since they

- k-Path ]’ can be solved in time

- . 20()n00)



Engineers’ Hypothesis
k-Clique cannot be solved in time f(k) nW.

Theorists' Hypothesis
k-Step Halting Problem (is there a path of a give Nondeterministic Turing

Machine that stops in k steps?) cannot be solved in time f(k) nOo),

1

Exponential Time Hypothesis (ETH)
n-variable 3-SAT cannot be solved in time 20(”).

Assuming ETH we can prove that k-Clique is not FPT.
Indeed, we can prove a much stronger and interesting result:

Theorem [Chen et al. 2004]
k-Clique cannot be solved in time f(k) n°k) for any computable function f



proof
assume you can find a k-clique on a graph H in time f(k) |V(H)|k/s(®),
s(k): (positive) nondecreasing unbounded function

we show you can find a 3-coloring of G in 2°( time (contradicting ETH)
technical assumption:
f(k) > max{k, k/s(1)} otherwise set f'(k) = max{f(k) k, kk/s(1)}

partition the n vertices of G into k groups of at most [ n/k| vertices each

build H as follows:
- each vertex corresponds to a proper 3-coloring of one of the groups
- two vertices of H are connected iff the corresponding colorings are

compatible
IV(H)| < k 3/ n/k]

Claim: there is a k-clique in H iff G admits a proper 3-coloring

how, we suitably choose k...



for a given n, let k be the largest integer such that f(k) <n
k:=g(n) nondecreasing unbounded function on n (satisfying g(n)<n)

time to compute a 3-coloring of G:

(k) V)RS0 < f()[k 3Fn/k7}k/s(k) using f(k) <n
< n :k 3in/ H: K/st) using k=g(n) <n
< n :k 32"/": K/s(k) using s(k) nondecreasing
< n kk/st) 32n/s(k) using kKs( < f(k) < n
< n2 32n/s(g(n)) function s(g(n)) is

B nondecreasing & unbounded

20(n)




Strong ETH



k-Dominating Set

Input:
- agraph 6=(V,E)
- a honnegative integer k

question:

is there a set U of vertices of size |U|<k such that each veV\U is
adjacent to a vertex ueU

parameter: k

naive: nk+l

smarter: nk+o(l) kel o
assuming ETH: no f(k) netk)



Exponential Time Hypothesis (ETH)
There is no 2°(N)-time algorithm for n-variable 3-SAT

current best algorithm is 1.30704" [Hertli 2011].

Strong ETH (SETH)
There is no (2-¢)"-time algorithm for CNF-SAT

for any fixed k, a Nk"9.0! time algorithm for k-DS would violate SETH

assuming SETH:
no N%2? time algorithm for 3-DS
no 399 time algorithm for 4-DS
no %29 time algorithm for 5-DS
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