
Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

Parameterized algorithms

Episode III

Toolbox (to show a problem is FPT)

bounded-search trees

kernelization

algebraic techniques

treewidth

color coding

iterative
compression

Treewidth

reference
(Chapter 10.4)

problem: invite people to a party

constraint: everyone should be having fun

maximize: total fun factor of the invited people

The party problem

do not invite a colleague and his
direct boss at the same time!

2

7 6

3 1 2 3 3

input: a tree with weights
on the nodes

goal: an independent set of
maximum total weight

problem: invite people to a party

constraint: everyone should be having fun

maximize: total fun factor of the invited people

The party problem

do not invite a colleague and his
direct boss at the same time!

2

7 6

3 1 2 3 3

input: a tree with weights
on the nodes

goal: an independent set of
maximum total weight

OPT= 15

weighted independent set on trees: a dynamic programming algorithm

v leaf: A[v]=wv B[v]=0

For each v of T:

- Tv: subtree of T rooted at v
- A[v]: weight of a maximum weighted IS of Tv

- B[v]: weight of a maximum weighted IS of Tv

that does not contain v

goal: determine A[r] for the root r

Subproblems:

v internal node with children u1,...,ud :

B[v]=

A[v]= max{ B[v], wv + }


i=1

A[ui]
d


i=1

B[ui]
d

order for the subproblems: bottom up

Generalizing trees:

bad

How could we define that a graph is “treelike”?

def 1: number of cycles is bounded

badbadgood

def 2: removing a bounded number of vertices makes it acyclic

badbadgood good

def 3: bounded-size parts connected in a tree-like way

badbad good good

- (Node Coverage): every node of G belongs to at least one piece Vt;
- (Edge Coverage): for every edge e of G, there is some piece Vt

containing both endpoints of e;
- (Coherence): Let t1, t2 and t3 be three nodes of T such that t2 lies on

the path from t1 and t3. Then, if a node v of G belongs to both V and V
it also belongs to V

A tree decomposition (T, {Vt:tT}) of a graph G=(V,E) consists of a tree T
(on a different node set from G), and a piece VtV associated with each
node t of T that satisfies the following three properties:

t1 t3

t2

the width of (T, {Vt:tT}): maxt |Vt|-1

a b

c d e f

g h i

l m

n

a b c d e f
g h i l m n

width = 11

a b

c d e f

g h i

l m

n

c d e
g h m

a b
c d

g l
m n

e f
h i

width = 5

a b

c d e f

g h i

l m

n

d
g h

width = 2

a
b c

b
c d

c d
g

g h
m

g
l m

l m
n

d e
h

e
h i

e f
i

- (Node Coverage): every node of G belongs to at least one piece Vt;
- (Edge Coverage): for every edge e of G, there is some piece Vt

containing both endpoints of e;
- (Coherence): Let t1, t2 and t3 be three nodes of T such that t2 lies on

the path from t1 and t3. Then, if a node v of G belongs to both V and V
it also belongs to V

A tree decomposition (T, {Vt:tT}) of a graph G=(V,E) consists of a tree T
(on a different node set from G), and a piece VtV associated with each
node t of T that satisfies the following three properties:

t1 t3

t2

the width of (T, {Vt:tT}): maxt |Vt|-1

the treewidth of G: width of the best tree decomposition of G

the treewidth of a tree is 1

a

b c

d e f

g

a

b c

d e f

g

ab ac

cd

dg

ce cf

Lemma
Suppose that T-t has components T1,...,Td. Then the subgraphs

G – Vt, G – Vt,..., G – Vt,

have no nodes in common, and there are no edges between them.

T1 T2 Td

deleting a node t from T

Let T’ be a subgraph of T.
GT’: subgraph of G induced by the nodes in all pieces associated with nodes

of T’, that is, the set tT’ Vt.

Vt

G
T1

G
Ti

G
Td

T

T1 Ti Td

t

v

v

Va

Vb

a b

v

coherence

contradiction!

no nodes in
common

Vt

G
T1

G
Ti

G
Td

T

T1 Ti Td

t

v

v

Va

Vb

a b

v

coherence

contradiction!

no edges
between them

u

u edge coverage:
u&v must belong
to some Va

Let T’ be a subgraph of T.
GT’: subgraph of G induced by the nodes in all pieces associated with nodes

of T’, that is, the set tT’ Vt.

Lemma
Let X and Y be the two components of T after the deletion of the edge
(x,y). Then the two subgraphs

GX–(Vx  Vy) and GY–(Vx  Vy)

have no nodes in common, and there are no edges between them.

deleting an edge (x,y) from T

TX
x y

Y

a b

Vx Vy

GX–(Vx  Vy) GY–(Vx  Vy)

Vx  Vy

v v

Va

Vb

v

coherence

contradiction!

no nodes in
common

TX
x y

Y

a b

Vx Vy

GX–(Vx  Vy) GY–(Vx  Vy)

Vx  Vy

u v
Va

Vbv

coherence

contradiction!

no nodes in
common

u v

A tree decomposition (T, {Vt:tT}) is redundant if there is an edge (x,y)
with Vx  Vy.

Lemma
Any nonredundant tree decomposition of an n-node graph has at most n
pieces.

obtaining a nonredundant tree decomposition:
- whenever a tree decomposition (T, {Vt:tT}) is redundant:

- contract the edge (x,y) by folding the piece Vx into the piece Vy.

proof (induction on n.)
n=1 is trivial. Let n>1.

consider a leaf t of T and the corresponding Vt

nonrundancy implies there is at least a node in Vt not in the piece of t’s
parent (and for coherency in no other piece).

Let U be the set of such nodes

T-t is a nonredundant tree decomposition of G-U with at most

n-|U|  n- 1 pieces (T, {Vt:tT}) has at most n pieces

Dynamic Programming on graph
with bounded treewidth w

Solving the weighted Independent Set

defining the subproblems

root T at a node r

for any node t,
- let Tt be the subtree of T rooted at t
- let Gt be the subgraph of G induce by the nodes of all pieces

associated with nodes of Tt

subproblems:

for each node t, and each U Vt :

ft(U)= maximum weight of an independent set S in Gt , subject to the
requirement that SVt =U

number of subproblems:

2w+1 for each node t
2w+1n overall for nonredundant
tree decomposition

goal:

compute max fr(U)
UVr

obs: ft(U) = - (or undefined) if U is not an IS

Lemma
Si is a maximum-weight IS of G , subject to

SiVt= UV

assume that t has children t1,...,td :

ft(U) = maximum weight of an independent set S in Gt , subject to the
requirement that SVt =U

let S be a maximum-weight IS in Gt subject to the requirement that
SVt =U, that is w(S)= ft(U)

Si : intersection of S and the nodes of Gti

ti

ti

Vt

G
t1

G
ti

G
td

V
ti

ft(U) = maximum weight of an independent set S in Gt , subject to the
requirement that SVt =U

Gt

Vt

G
t1

G
ti

G
td

V
ti

ft(U) = maximum weight of an independent set S in Gt , subject to the
requirement that SVt =U

Gt

Si : intersection of S and the nodes of G

cut & paste argument: assume S’i better than Si

S’=(S- Si)S’i
is a better IS

for Gt

no
edge

no edge

claim: Si is opt for G , subject to SiVt= UVti ti

ti

Vt

G
t1

G
ti

G
td

V
ti

ft(U) = maximum weight of an independent set S in Gt , subject to the
requirement that SVt =U

Gt

Si : intersection of S and the nodes of G

weight of such an optimal Si :

max{f (Ui): Ui Vt = U V and Ui V is an IS}ti titi

ti

ft(U) = w(U) +

case: t leaf in T

ft(U) = w(U)

UVt independent set


i=1

d

case: t has children t1,...,td in T

max{ f (Ui) - w(Ui U) :ti

Ui Vt = U V and Ui V is an IS }ti ti

ft(U) = w(U) +

case: t leaf in T

ft(U) = w(U)

UVt independent set


i=1

d

case: t has children t1,...,td in T

max{ f (Ui) - w(Ui U) :ti

Ui Vt = U V and Ui V is an IS }ti ti

time to compute ft(U):

for each of the d children ti and each Ui V

- check in time O(w) if Ui is an IS
and is consistent with Vt and U

ti

O(2w+1 w d)

there are 2w+1 possible U for a node t: O(4w+1 w d)

summing over all nodes t:
O(4w+1 w n)

total running time:

How to compute a tree-decomposition?

Compute the treewidth of a given graph is NP-hard

There is an algorithm that, given a graph with
treewidth w, produce a tree decomposition with
width 4w in time O(f(w) mn)

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

