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Toolbox (to show a problem is FPT)

bounded-search trees

kernelization

algebraic techniques

treewidth

color coding

iterative 
compression



Treewidth

reference
(Chapter 10.4)



problem: invite people to a party

constraint: everyone should be having fun

maximize: total fun factor of the invited people

The party problem

do not invite a colleague and his 
direct boss at the same time!
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input: a tree with weights 
on the nodes

goal: an independent set of 
maximum total weight 
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weighted independent set on trees: a dynamic programming algorithm

v leaf: A[v]=wv B[v]=0

For each v of T:

- Tv: subtree of T rooted at v
- A[v]: weight of a maximum weighted IS of Tv

- B[v]: weight of a maximum weighted IS of Tv

that does not contain v

goal: determine A[r] for the root r

Subproblems:

v internal node with children u1,...,ud :

B[v]=

A[v]= max{ B[v],   wv +              }


i=1

A[ui]
d


i=1

B[ui]
d

order for the subproblems: bottom up



Generalizing trees:

bad

How could we define that a graph is “treelike”?

def 1: number of cycles is bounded

badbadgood

def 2: removing a bounded number of vertices makes it acyclic

badbadgood good

def 3: bounded-size parts connected in a tree-like way

badbad good good



- (Node Coverage): every node of G belongs to at least one piece Vt; 
- (Edge Coverage): for every edge e of G, there is some piece Vt

containing both endpoints of e;
- (Coherence): Let t1, t2 and t3 be three nodes of T such that t2 lies on 

the path from t1 and t3. Then, if a node v of G belongs to both V  and V  
it also belongs to V

A tree decomposition (T, {Vt:tT}) of a graph G=(V,E) consists of a tree T 
(on a different node set from G), and a piece VtV associated with each 
node t of T that satisfies the following three properties:

t1 t3

t2

the width of (T, {Vt:tT}): maxt |Vt|-1
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- (Node Coverage): every node of G belongs to at least one piece Vt; 
- (Edge Coverage): for every edge e of G, there is some piece Vt

containing both endpoints of e;
- (Coherence): Let t1, t2 and t3 be three nodes of T such that t2 lies on 

the path from t1 and t3. Then, if a node v of G belongs to both V  and V  
it also belongs to V

A tree decomposition (T, {Vt:tT}) of a graph G=(V,E) consists of a tree T 
(on a different node set from G), and a piece VtV associated with each 
node t of T that satisfies the following three properties:

t1 t3

t2

the width of (T, {Vt:tT}): maxt |Vt|-1

the treewidth of G:  width of the best tree decomposition of G



the treewidth of a tree is 1
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Lemma
Suppose that T-t has components T1,...,Td. Then the subgraphs

G  – Vt, G  – Vt,..., G  – Vt,

have no nodes in common, and there are no edges between them.

T1 T2 Td

deleting a node t from T

Let T’ be a subgraph of T.
GT’: subgraph of G induced by the nodes in all pieces associated with nodes 

of T’, that is, the set tT’ Vt.
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contradiction!

no nodes in 
common
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between them
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u edge coverage: 
u&v must belong 
to some Va



Let T’ be a subgraph of T.
GT’: subgraph of G induced by the nodes in all pieces associated with nodes 

of T’, that is, the set tT’ Vt.

Lemma
Let X and Y be the two components of T after the deletion of the edge 
(x,y). Then the two subgraphs

GX–(Vx  Vy) and GY–(Vx  Vy) 

have no nodes in common, and there are no edges between them.

deleting an edge (x,y) from T
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Vx  Vy

u v
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contradiction!

no nodes in 
common

u v



A tree decomposition (T, {Vt:tT}) is redundant if there is an edge (x,y) 
with Vx  Vy.

Lemma
Any nonredundant tree decomposition of an n-node graph has at most n 
pieces.

obtaining a nonredundant tree decomposition: 
- whenever a tree decomposition (T, {Vt:tT}) is redundant: 

- contract the edge (x,y) by folding the piece Vx into the piece Vy.

proof (induction on n.)
n=1 is trivial. Let n>1.

consider a leaf t of T and the corresponding Vt

nonrundancy implies there is at least a node in Vt not in the piece of t’s 
parent (and for coherency in no other piece). 

Let U be the set of such nodes

T-t is a nonredundant tree decomposition of G-U with at most

n-|U|  n- 1 pieces (T, {Vt:tT}) has at most n pieces



Dynamic Programming on graph 
with bounded treewidth w

Solving the weighted Independent Set



defining the subproblems

root T at a node r

for any node t, 
- let Tt be the subtree of T rooted at t
- let Gt be the subgraph of G induce by the nodes of all pieces 

associated with nodes of Tt 

subproblems:

for each node t, and each U Vt :

ft(U)= maximum weight of an independent set S in Gt , subject to the 
requirement that SVt =U

number of subproblems:

2w+1 for each node t
2w+1n overall for nonredundant 
tree decomposition

goal:

compute     max fr(U)
UVr

obs: ft(U) = - (or undefined) if U is not an IS



Lemma
Si is a maximum-weight IS of G  , subject to

SiVt= UV

assume that t has children t1,...,td :

ft(U) = maximum weight of an independent set S in Gt , subject to the 
requirement that SVt =U

let S be a maximum-weight IS in Gt subject to the requirement that 
SVt =U, that is w(S)= ft(U)

Si : intersection of S and the nodes of Gti

ti

ti
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ft(U) = maximum weight of an independent set S in Gt , subject to the 
requirement that SVt =U

Gt



Vt

G
t1

G
ti

G
td

V
ti

ft(U) = maximum weight of an independent set S in Gt , subject to the 
requirement that SVt =U

Gt

Si : intersection of S and the nodes of G

cut & paste argument: assume S’i better than Si

S’=(S- Si)S’i
is a better IS 

for Gt

no 
edge

no edge

claim: Si is opt for G  , subject to SiVt= UVti ti

ti



Vt

G
t1

G
ti

G
td

V
ti

ft(U) = maximum weight of an independent set S in Gt , subject to the 
requirement that SVt =U

Gt

Si : intersection of S and the nodes of G

weight of such an optimal Si :

max{f  (Ui): Ui Vt = U V   and Ui V  is an IS}ti titi

ti



ft(U) = w(U) +

case: t leaf in T

ft(U) = w(U)

UVt independent set 


i=1

d

case: t has children t1,...,td in T

max{ f  (Ui) - w(Ui U)  :ti

Ui Vt = U V   and Ui V  is an IS   }ti ti





ft(U) = w(U) +

case: t leaf in T

ft(U) = w(U)

UVt independent set 


i=1

d

case: t has children t1,...,td in T

max{ f  (Ui) - w(Ui U)  :ti

Ui Vt = U V   and Ui V  is an IS   }ti ti

time to compute ft(U):

for each of the d children ti and each Ui V

- check in time O(w) if Ui is an IS 
and is consistent with Vt and U

ti

O(2w+1 w d)

there are 2w+1  possible U for a node t: O(4w+1 w d)

summing over all nodes t:
O(4w+1 w n)

total running time:



How to compute a tree-decomposition?

Compute the treewidth of a given graph is NP-hard

There is an algorithm that, given a graph with 
treewidth w, produce a tree decomposition with 
width 4w in time O(f(w) mn)
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