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The party problem

problem: invite people to a party
maximize: total fun factor of the invited people

constraint: everyone should be having fun

# do not invite a colleague and his
direct boss at the same timel!

9 input: a tree with weights
on the nodes

e e goal: an independent set of

maximum total weight
OJONOIONO
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weighted independent set on frees: a dynamic programming algorithm

For each v of T:

- T, subtree of T rooted atv

- A[v]: weight of a maximum weighted IS of T,

- B[v]: weight of a maximum weighted IS of T,
that does not contain v

determine A[r] for the root r
v leaf: Alv]=w, B[v]=0
v internal node with children u;,...,uy

d
Blv]= ;A[ui]
d
Alvl= max{ B[v], w,+> B[u] }
i=1

bottom up



Generalizing trees: How could we define that a graph is "treelike"?

number of cycles is bounded
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good bad bad

removing a bounded number of vertices makes it acyclic
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good good bad

bounded-size parts connected in a tree-like way
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bad good good




A tree decomposition (T, {V,:1€T}) of a graph 6=(V E) consists of atree T
(on a different node set from G), and a piece V.cV associated with each
node t of T that satisfies the following three properties:

- (Node Coverage): every node of G belongs to at least one piece V,;

- (Edge Coverage): for every edge e of G, there is some piece V.
containing both endpoints of e;

- (Coherence): Let 1, t, and t; be three nodes of T such that t, lies on
the path from t;and t;. Then, if a node v of G belongs to both Vi, and VT
it also belongs to Vi,

the width of (T, {V;:teT}): max, |V,|-1
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A tree decomposition (T, {V,:1€T}) of a graph 6=(V E) consists of atree T
(on a different node set from G), and a piece V.cV associated with each
node t of T that satisfies the following three properties:

- (Node Coverage): every node of G belongs to at least one piece V,;

- (Edge Coverage): for every edge e of G, there is some piece V.
containing both endpoints of e;

- (Coherence): Let 1, t, and t; be three nodes of T such that t, lies on
the path from t;and t;. Then, if a node v of G belongs to both Vi, and V‘r3
it also belongs to Vi,

the width of (T, {V;:teT}): max, |V,|-1

the treewidth of 6: width of the best tree decomposition of 6



the treewidth of a treeis 1



Let T" be a subgraph of T.
G+ subgraph of G induced by the nodes in all pieces associated with nodes

of T, that is, the set U, _+ V..

deleting a node T from T

Lemma
Suppose that T-1 has components T;,..., T4. Then the subgraphs

GTI- v-r, GTZ- v-r,..., GTd- V-r,

have no nodes in common, and there are no edges between them.



» contradiction!

no nodes in
common




» contradiction!

ho edges
between them

u&v must belong
to some V,




Let T" be a subgraph of T.
G+ subgraph of G induced by the nodes in all pieces associated with nodes

of T, that is, the set U, _+ V..

deleting an edge (x,y) from T

Lemma
Let X and Y be the two components of T after the deletion of the edge
(x.y). Then the two subgraphs

GX-(VX M Vy) Gnd Gy-(vx M Vy)

have no nodes in common, and there are no edges between them.



X T y Y
» contradiction!

no nodes in
common




X T y Y
» contradiction!

no nodes in
common




A tree decomposition (T, {V,:teT}) is redundant if there is an edge (x,y)
with V, c V..

obtaining a nonredundant tree decomposition:
- whenever a tree decomposition (T, {V,:teT}) is redundant:
- contract the edge (x.y) by folding the piece V, into the piece V..

Lemma

Any nonredundant tree decomposition of an n-node graph has at most n
pieces.

proof (induction on n.)
n=1is trivial. Let n>1.

consider a leaf t of T and the corresponding V;

nonrundancy implies there is at least a node in V, not in the piece of t's
parent (and for coherency in no other piece).

Let U be the set of such nodes
T-1 is a nonredundant tree decomposition of 6-U with at most

n-|U| < n- 1 pieces » (T, {V;:1eT}) has at most n pieces




Dynamic Programming on graph
with bounded treewidth w

Solving the weighted Independent Set



defining the subproblems
root T at a node r

for any node ¥,
- let T, be the subtree of T rooted at t

- let G, be the subgraph of G induce by the nodes of all pieces
associated with nodes of T,

subproblems:

for each node t, and each U cV,:

f.(U)= maximum weight of an independent set S in 6, , subject to the
requirement that SNV, =U

f.(U) = -0 (or undefined) if U is hot an IS

nhumber of subproblems: goal:
2"+*1 for each node t compute  max f.(U)
2"*1n overall for nonredundant UcV,

tree decomposition



f.(U) = maximum weight of an independent set S in G, , subject to the
requirement that SNV, =U

let S be a maximum-weight IS in G, subject to the requirement that
5nV;=U, that is w(S)= f,(V)

assume that t has children t,,... 14

S; : infersection of S and the nodes of Gy

Lemma
S; is a maximum-weight IS of G4, subject to

SinVi= UnVg



f.(U) = maximum weight of an independent set S in G, , subject to the
requirement that SNV, =U




f.(U) = maximum weight of an independent set S in G, , subject to the
requirement that SNV, =U

S; : intersection of S and the nodes of 6,

claim: S; is opt for 6, , subject o SNV;= UnVy
G, cut & paste argument: assume S, better than S,

S'=(S- S)US!,
» is a better IS
for G,




f.(U) = maximum weight of an independent set S in G, , subject to the
requirement that SNV, =U

S; : intersection of S and the nodes of 6,

weight of such an optimal S;:
max{f; (U)): UinV; = U Vs and U;cV is an IS}




case: t leaf in T UcV, independent set
(V) = w(V)

case: t has children t4,...,t,in T

d
+ f.(U)= w(U) + Zl max{ fTi(Ui) -w(U.nU)
: UiV, = U AV; and UiV isan IS )



To find a maximum—-weight independent set of G,
given a tree decomposition (T, {V;}) of G:
Modify the tree decomposition 1f necessary so it is nonredundant
Root T at a node r
For each node t of T 1n post-order
If t is a leaf then

For each independent set U of V;

fi(U) =w(U)
Else
For each independent set U of V;
f;(U) is determined by the recurrence +
Endif
Endfor

Return max {f.(U):U C V, is independent}.



case: t leaf in T UcV, independent set
(V) = w(V)

case: t has children t4,...,t,in T

d
+ f.(U)= w(U) + Zl max{ fTi(Ui) -w(U.nU)
- UiV, = U AV; and UiV isan IS )

fime to compute f,(U):
for each of the d children t; and each U;cVy.
- check in time O(w) if U isan IS el
and is consistent with V, and U 02w d)

there are 2! possible U for a node t: O(4v1w d)

total running time:

O(4"+1w n)

summing over all nodes ft:



How to compute a tree-decomposition?

Compute the treewidth of a given graph is NP-hard

There is an algorithm that, given a graph with
treewidth w, produce a tree decomposition with
width 4w in time O(f(w) mn)
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