

Advanced topics on Algorithms

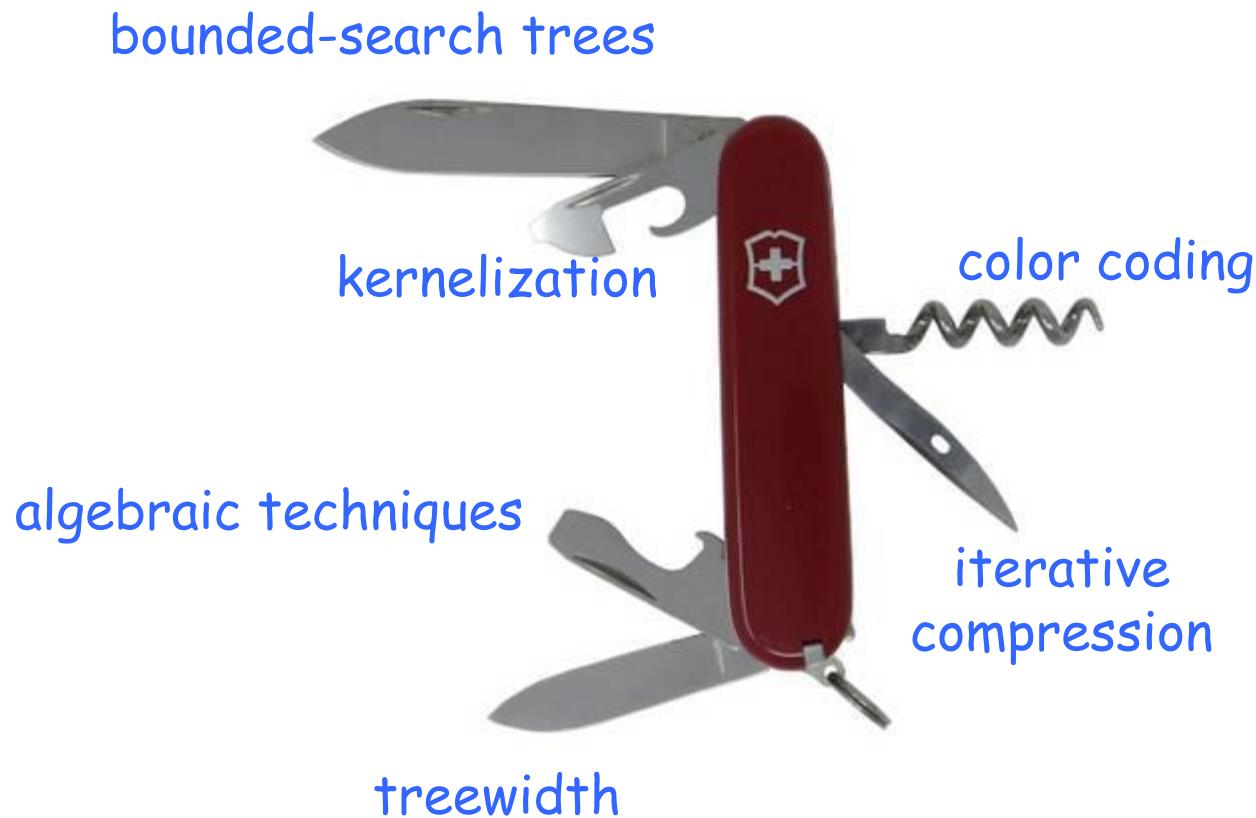
Luciano Gualà

www.mat.uniroma2.it/~guala/

Parameterized algorithms

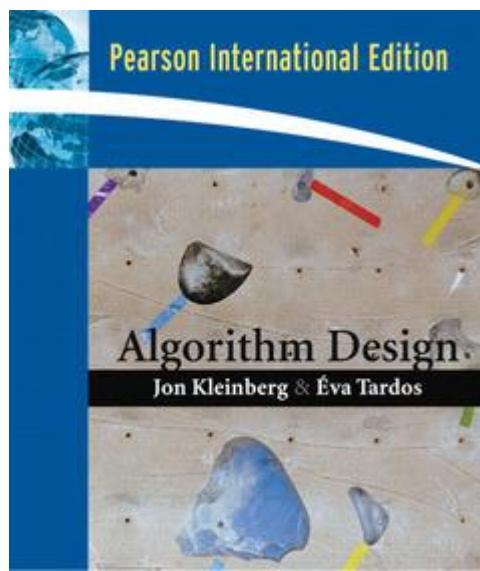
Episode III

Toolbox (to show a problem is FPT)



Treewidth

reference
(Chapter 10.4)



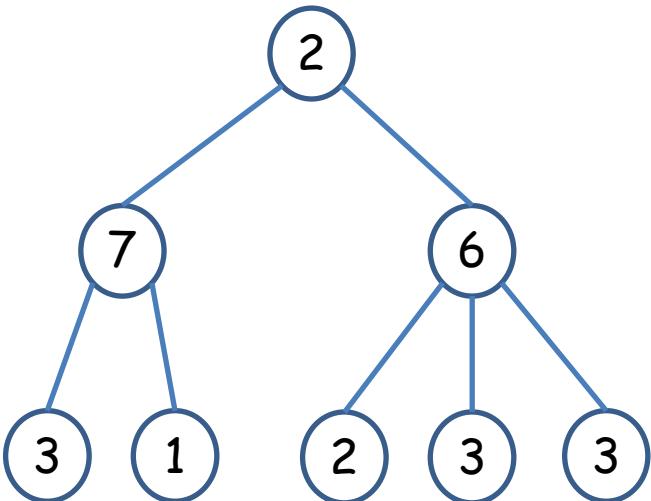
The party problem

problem: invite people to a party

maximize: total fun factor of the invited people

constraint: everyone should be having fun

do not invite a colleague and his
direct boss at the same time!



input: a tree with weights
on the nodes

goal: an independent set of
maximum total weight

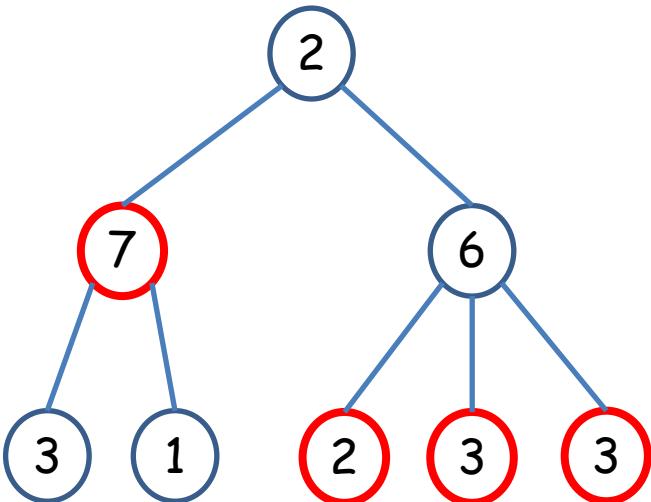
The party problem

problem: invite people to a party

maximize: total fun factor of the invited people

constraint: everyone should be having fun

do not invite a colleague and his
direct boss at the same time!



input: a tree with weights
on the nodes

goal: an independent set of
maximum total weight

OPT= 15

weighted independent set on trees: a dynamic programming algorithm

Subproblems:

For each v of T :

- T_v : subtree of T rooted at v
- $A[v]$: weight of a maximum weighted IS of T_v
- $B[v]$: weight of a maximum weighted IS of T_v
that does not contain v

goal: determine $A[r]$ for the root r

v leaf: $A[v] = w_v$ $B[v] = 0$

v internal node with children u_1, \dots, u_d :

$$B[v] = \sum_{i=1}^d A[u_i]$$

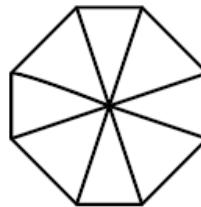
$$A[v] = \max\{ B[v], w_v + \sum_{i=1}^d B[u_i] \}$$

order for the subproblems: bottom up

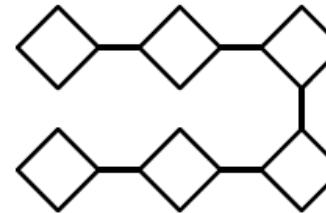
Generalizing trees: How could we define that a graph is "treelike"?

def 1: number of cycles is bounded

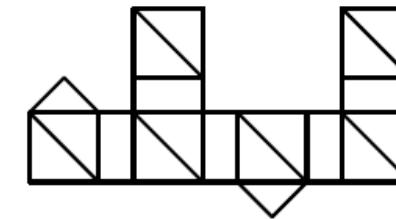
good



bad

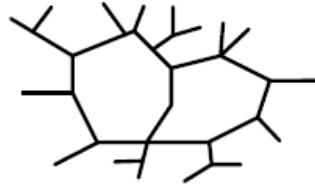


bad

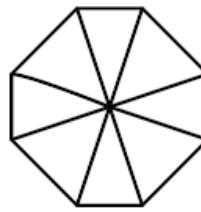


bad

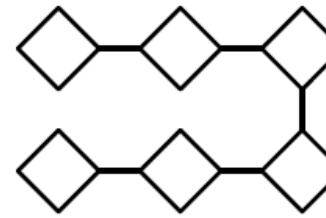
def 2: removing a bounded number of vertices makes it acyclic



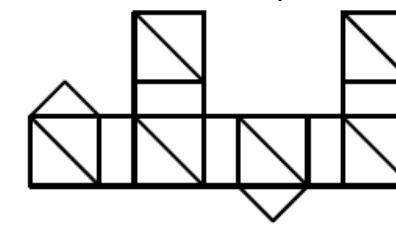
good



good

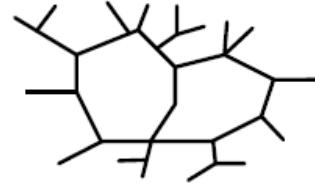


bad

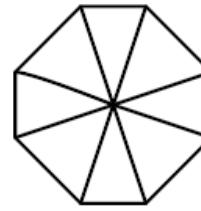


bad

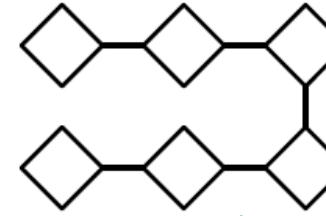
def 3: bounded-size parts connected in a tree-like way



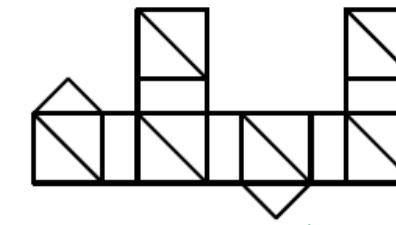
bad



bad



good

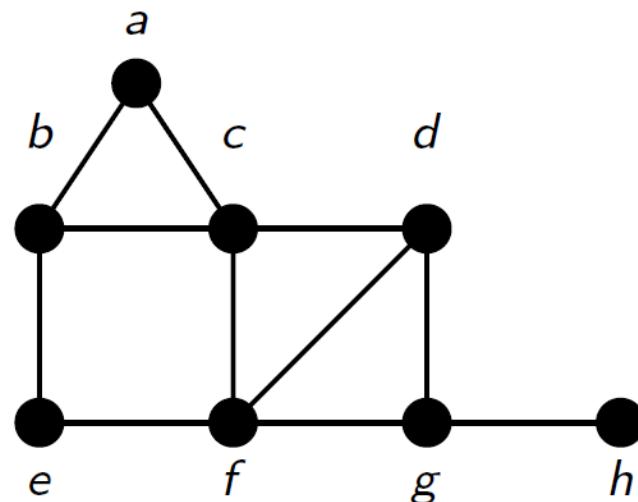
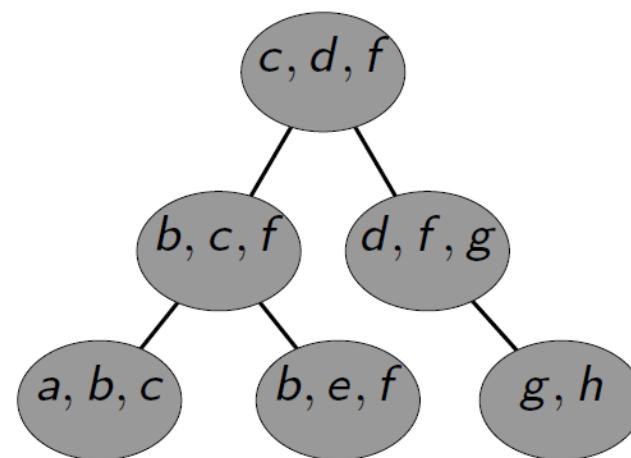


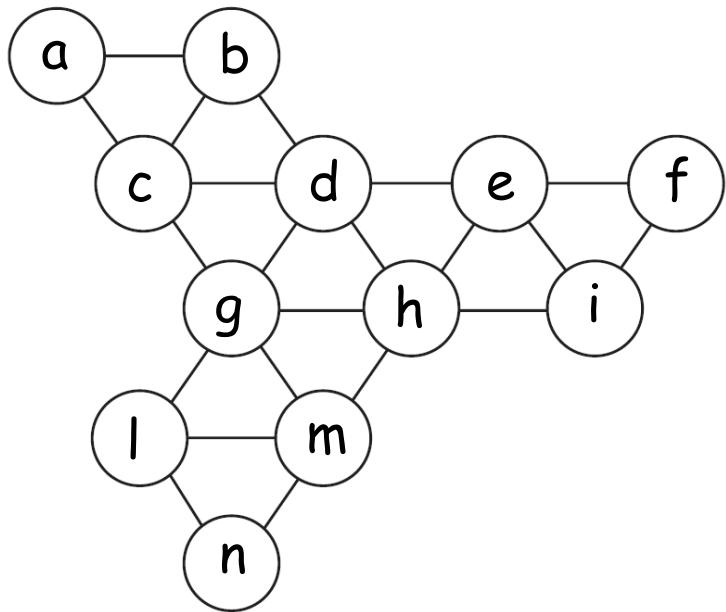
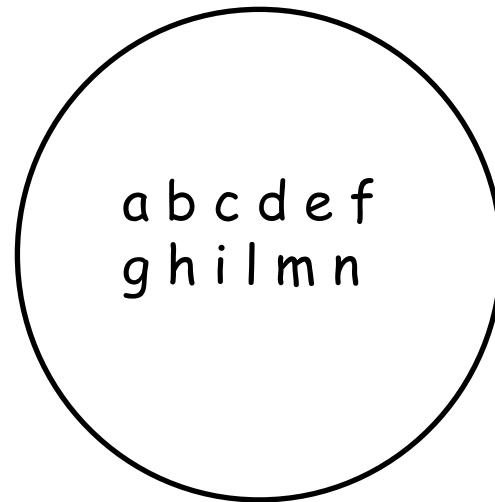
good

A **tree decomposition** $(T, \{V_t : t \in T\})$ of a graph $G = (V, E)$ consists of a tree T (on a different node set from G), and a **piece** $V_t \subseteq V$ associated with each node t of T that satisfies the following three properties:

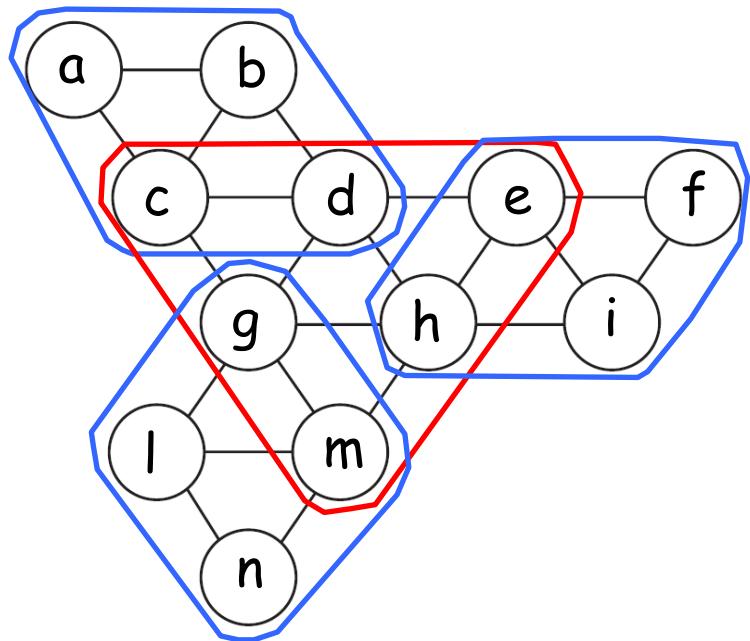
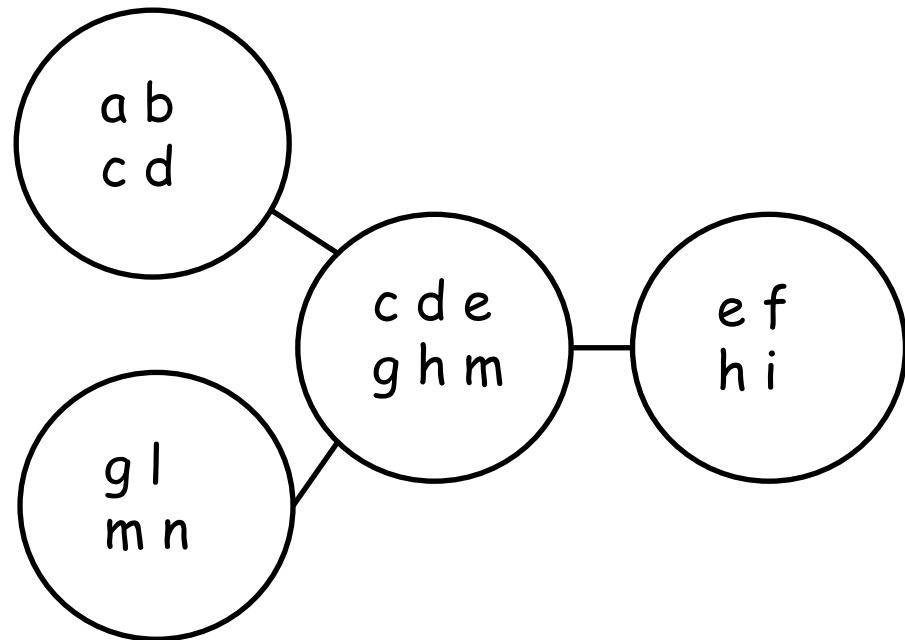
- **(Node Coverage)**: every node of G belongs to at least one piece V_t ;
- **(Edge Coverage)**: for every edge e of G , there is some piece V_t containing both endpoints of e ;
- **(Coherence)**: Let t_1, t_2 and t_3 be three nodes of T such that t_2 lies on the path from t_1 and t_3 . Then, if a node v of G belongs to both V_{t_1} and V_{t_3} it also belongs to V_{t_2}

the **width** of $(T, \{V_t : t \in T\})$: $\max_t |V_t| - 1$

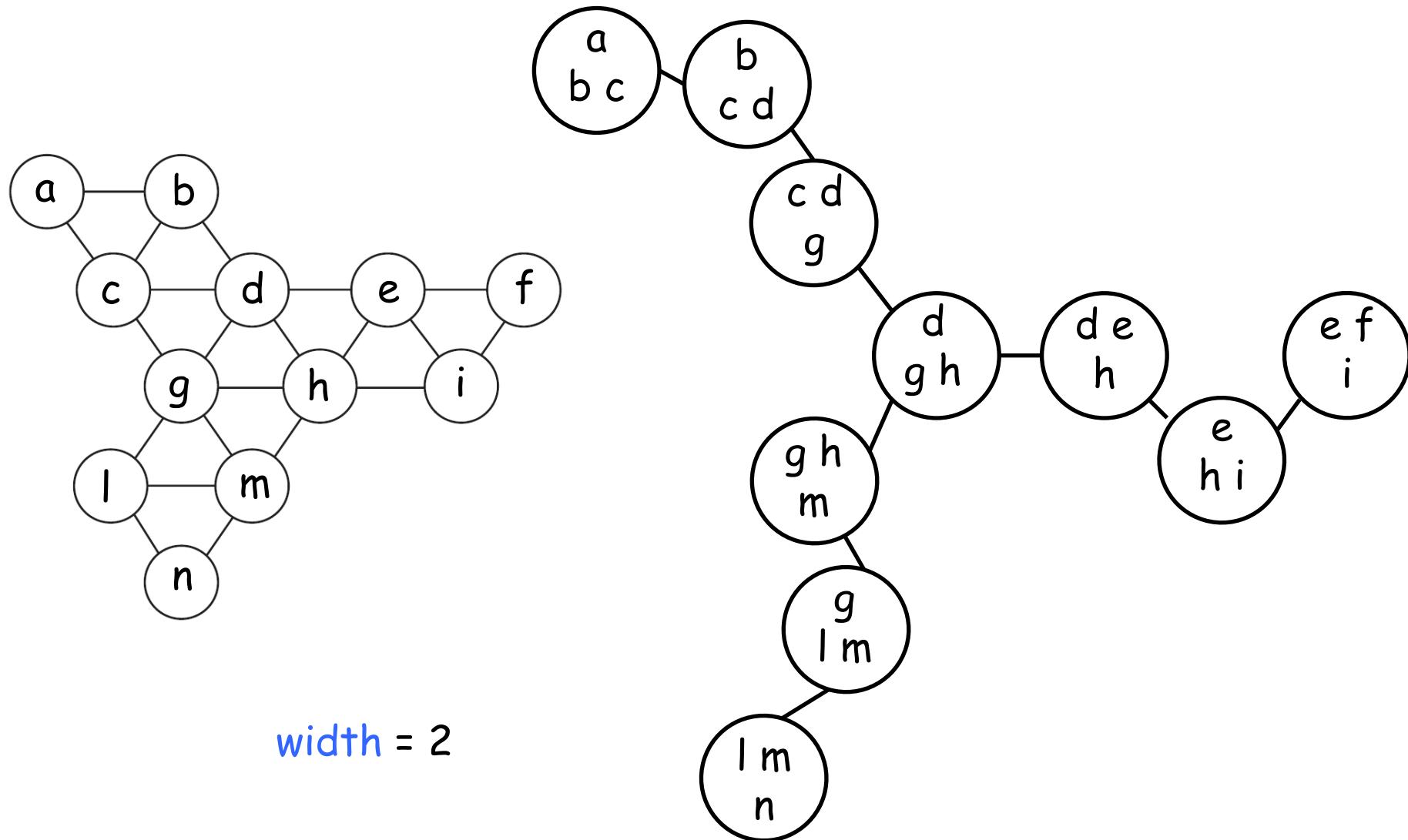




width = 11



width = 5

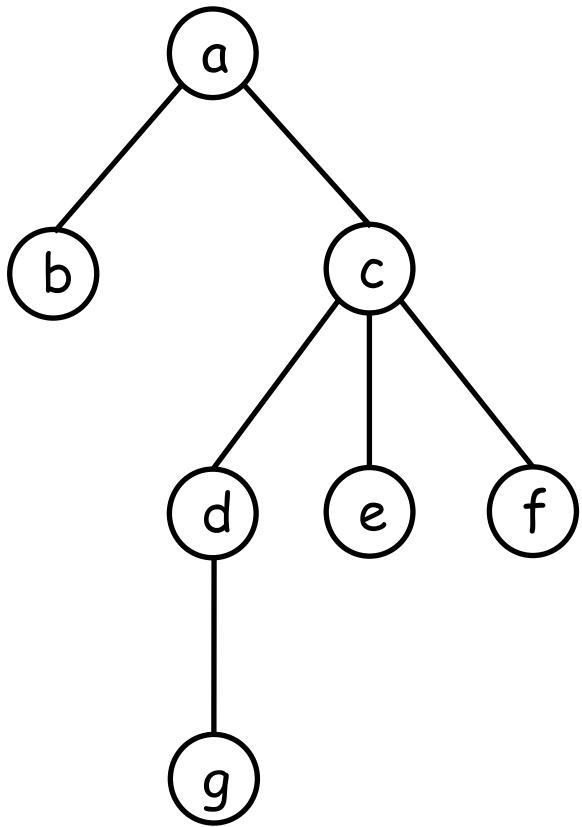
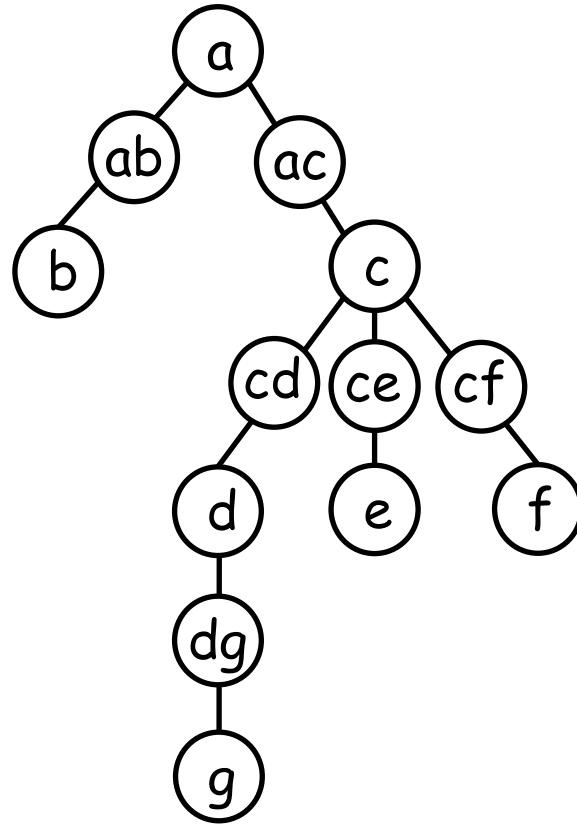


A **tree decomposition** $(T, \{V_t : t \in T\})$ of a graph $G = (V, E)$ consists of a tree T (on a different node set from G), and a **piece** $V_t \subseteq V$ associated with each node t of T that satisfies the following three properties:

- **(Node Coverage)**: every node of G belongs to at least one piece V_t ;
- **(Edge Coverage)**: for every edge e of G , there is some piece V_t containing both endpoints of e ;
- **(Coherence)**: Let t_1, t_2 and t_3 be three nodes of T such that t_2 lies on the path from t_1 and t_3 . Then, if a node v of G belongs to both V_{t_1} and V_{t_3} it also belongs to V_{t_2}

the **width** of $(T, \{V_t : t \in T\})$: $\max_t |V_t| - 1$

the **treewidth** of G : width of the best tree decomposition of G



the **treewidth** of a tree is 1

Let T' be a subgraph of T .

$G_{T'}$: subgraph of G induced by the nodes in all pieces associated with nodes of T' , that is, the set $\cup_{t \in T'} V_t$.

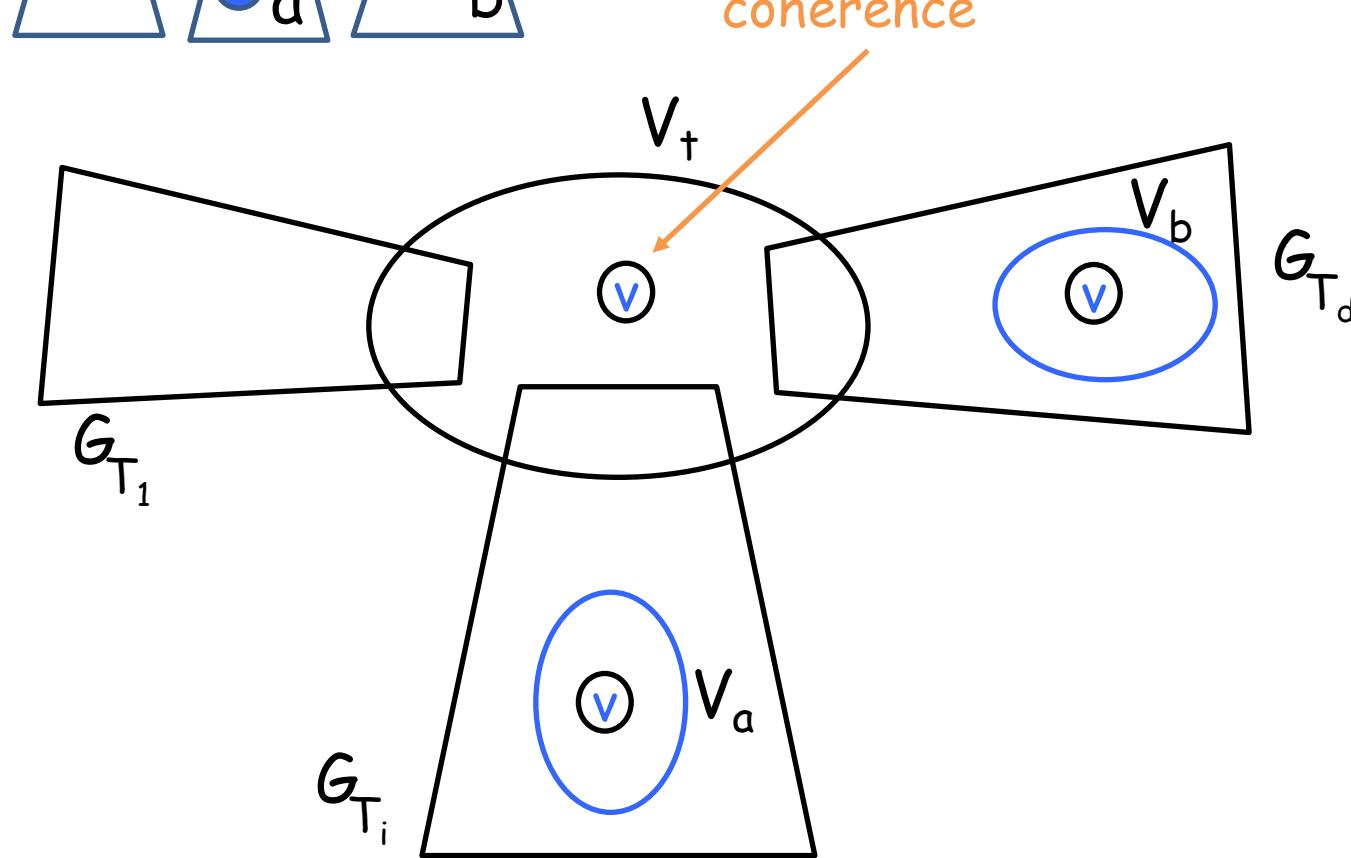
deleting a node t from T

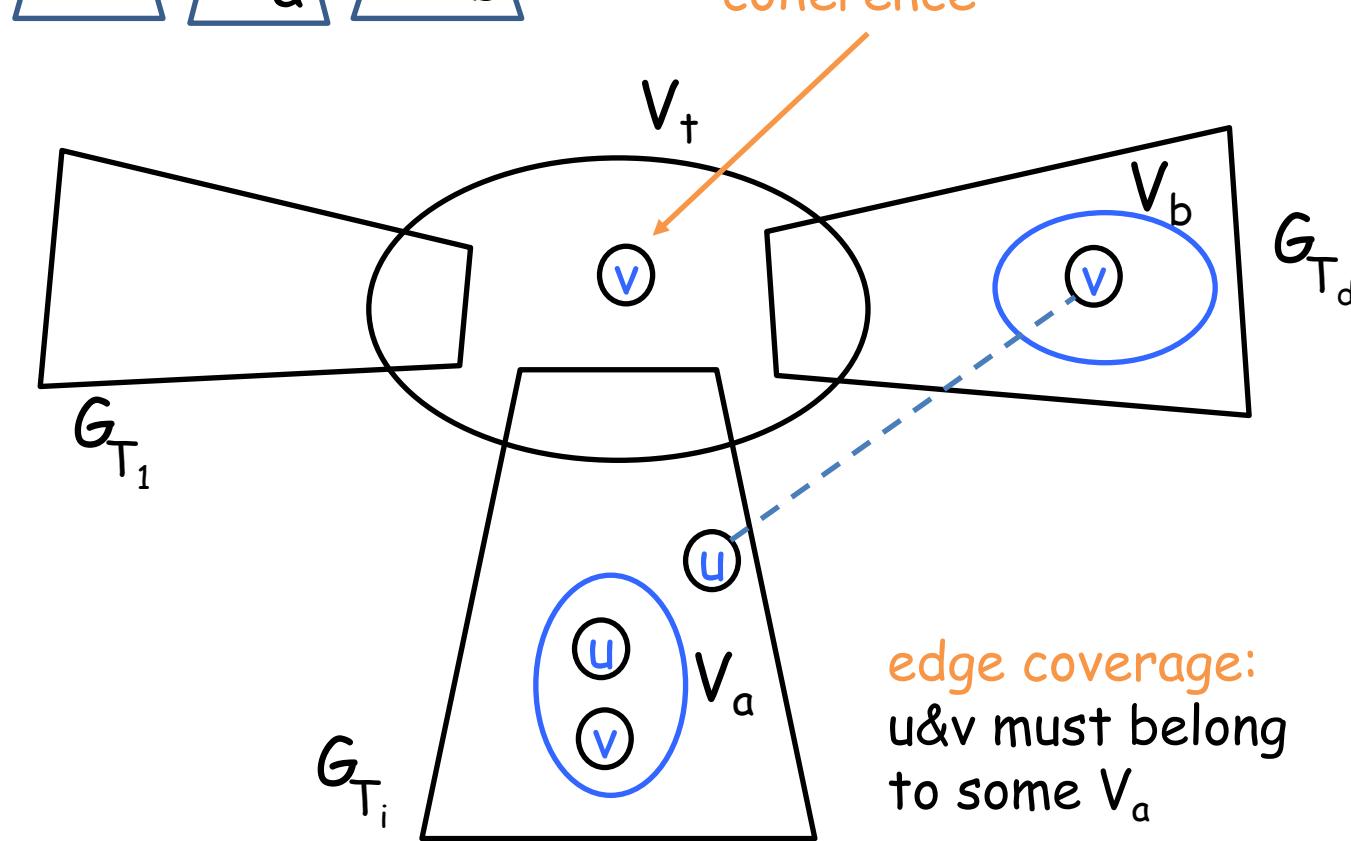
Lemma

Suppose that $T-t$ has components T_1, \dots, T_d . Then the subgraphs

$$G_{T_1} - V_t, G_{T_2} - V_t, \dots, G_{T_d} - V_t,$$

have no nodes in common, and there are no edges between them.





Let T' be a subgraph of T .

$G_{T'}$: subgraph of G induced by the nodes in all pieces associated with nodes of T' , that is, the set $\cup_{t \in T'} V_t$.

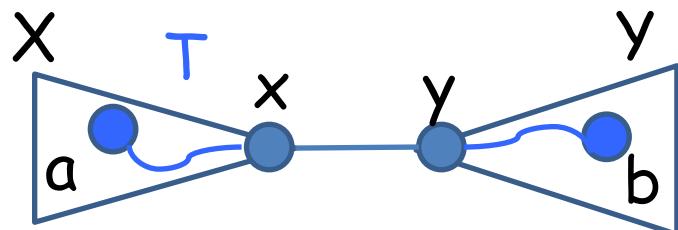
deleting an edge (x,y) from T

Lemma

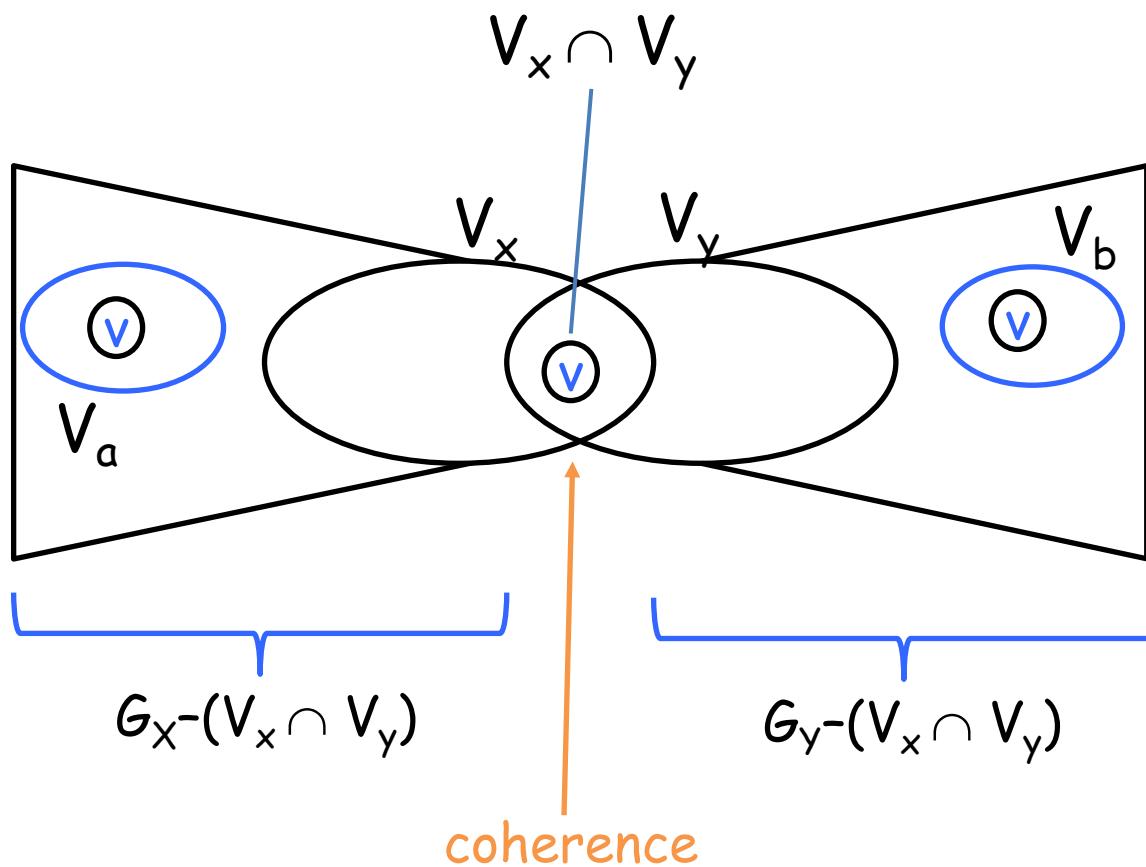
Let X and Y be the two components of T after the deletion of the edge (x,y) . Then the two subgraphs

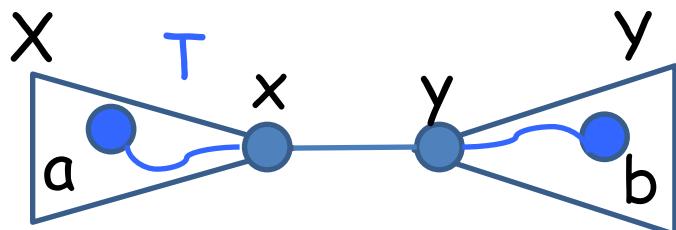
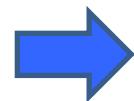
$G_x - (V_x \cap V_y)$ and $G_y - (V_x \cap V_y)$

have no nodes in common, and there are no edges between them.



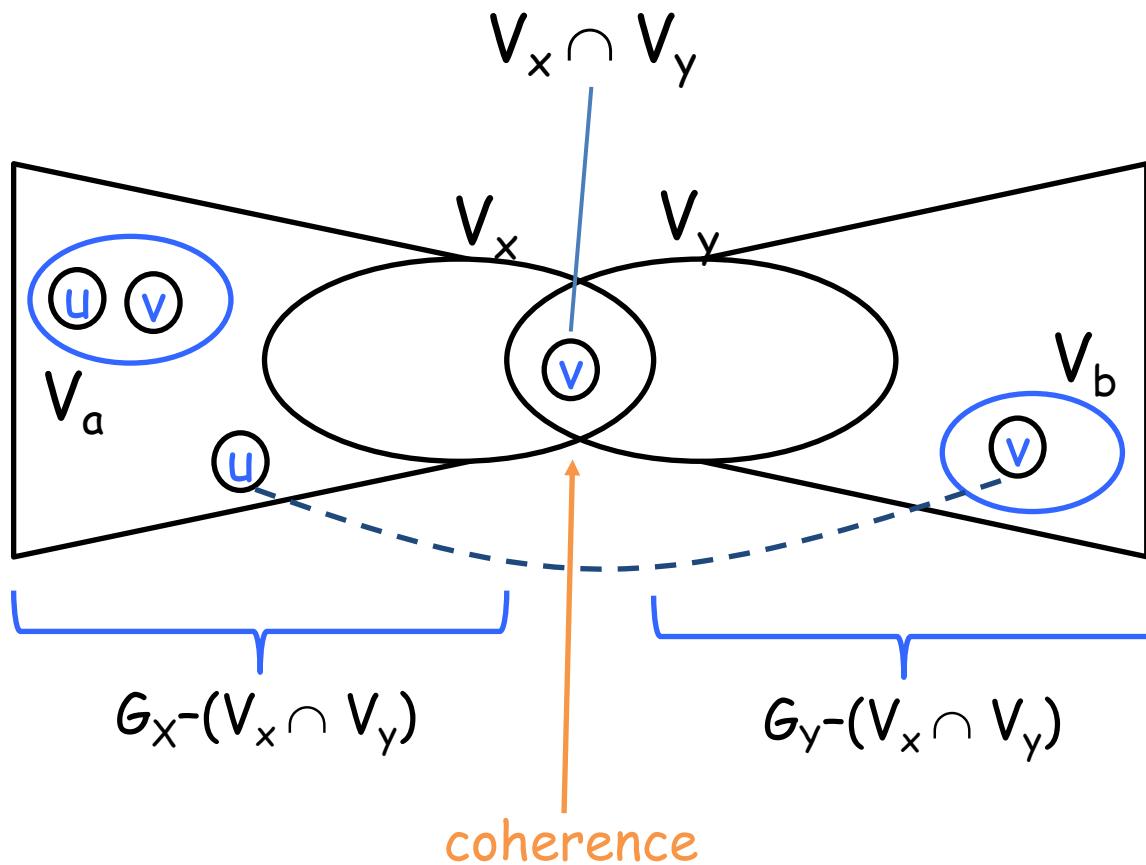
contradiction!
no nodes in
common





contradiction!

no nodes in
common



A tree decomposition $(T, \{V_t : t \in T\})$ is **redundant** if there is an edge (x, y) with $V_x \subseteq V_y$.

obtaining a **nonredundant** tree decomposition:

- whenever a tree decomposition $(T, \{V_t : t \in T\})$ is **redundant**:
 - contract the edge (x, y) by folding the piece V_x into the piece V_y .

Lemma

Any **nonredundant** tree decomposition of an n -node graph has at most n pieces.

proof (induction on n .)

$n=1$ is trivial. Let $n > 1$.

consider a leaf t of T and the corresponding V_t

nonrundancy implies there is at least a node in V_t not in the piece of t 's parent (and for coherency in no other piece).

Let U be the set of such nodes

$T - t$ is a nonredundant tree decomposition of $G - U$ with at most

$n - |U| \leq n - 1$ pieces $(T, \{V_t : t \in T\})$ has at most n pieces

Dynamic Programming on graph with bounded treewidth w

Solving the weighted Independent Set

defining the subproblems

root T at a node r

for any node t ,

- let T_t be the subtree of T rooted at t
- let G_t be the subgraph of G induced by the nodes of all pieces associated with nodes of T_t

subproblems:

for each node t , and each $U \subseteq V_t$:

$f_t(U) =$ maximum weight of an independent set S in G_t , subject to the requirement that $S \cap V_t = U$

obs: $f_t(U) = -\infty$ (or undefined) if U is not an IS

number of subproblems:

2^{w+1} for each node t

$2^{w+1}n$ overall for nonredundant tree decomposition

goal:

compute $\max_{U \subseteq V_r} f_r(U)$

$f_t(U) = \text{maximum weight of an independent set } S \text{ in } G_t, \text{ subject to the requirement that } S \cap V_t = U$

let S be a maximum-weight IS in G_t subject to the requirement that $S \cap V_t = U$, that is $w(S) = f_t(U)$

assume that t has children t_1, \dots, t_d :

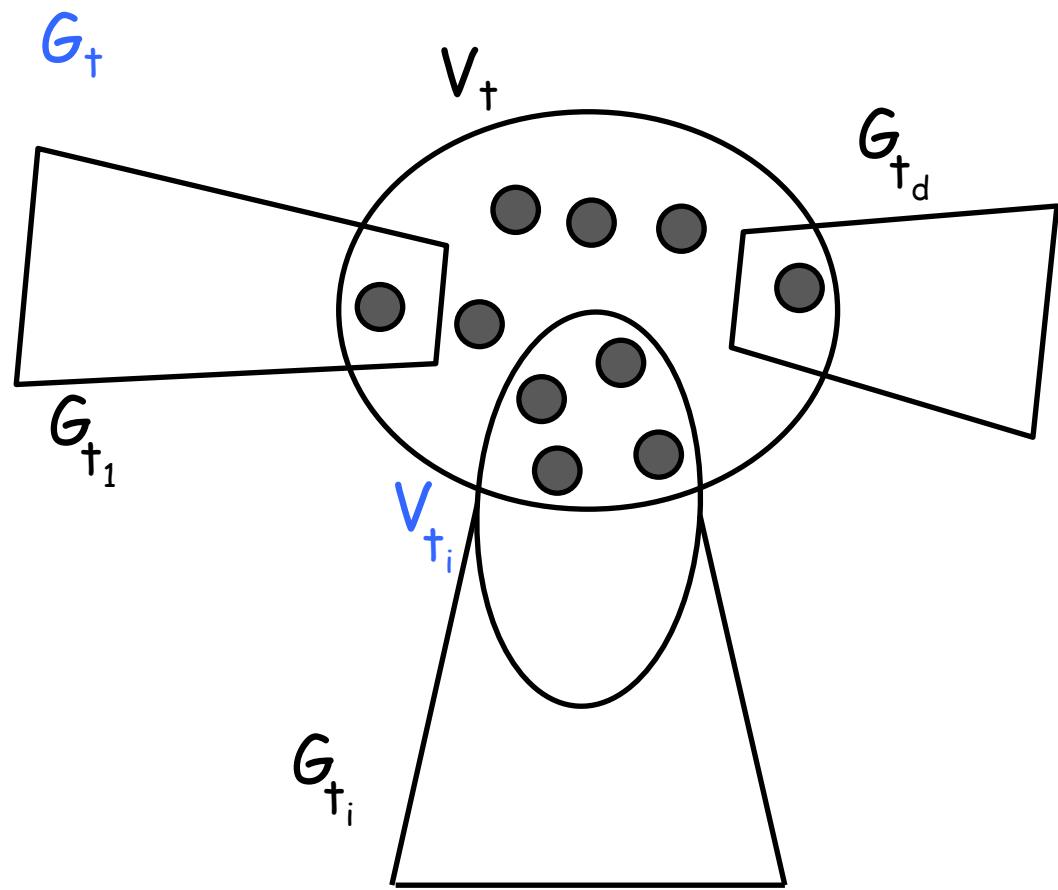
S_i : intersection of S and the nodes of G_{t_i}

Lemma

S_i is a maximum-weight IS of G_{t_i} , subject to

$$S_i \cap V_t = U \cap V_{t_i}$$

$f_t(U) = \text{maximum weight of an independent set } S \text{ in } G_t, \text{ subject to the requirement that } S \cap V_t = U$



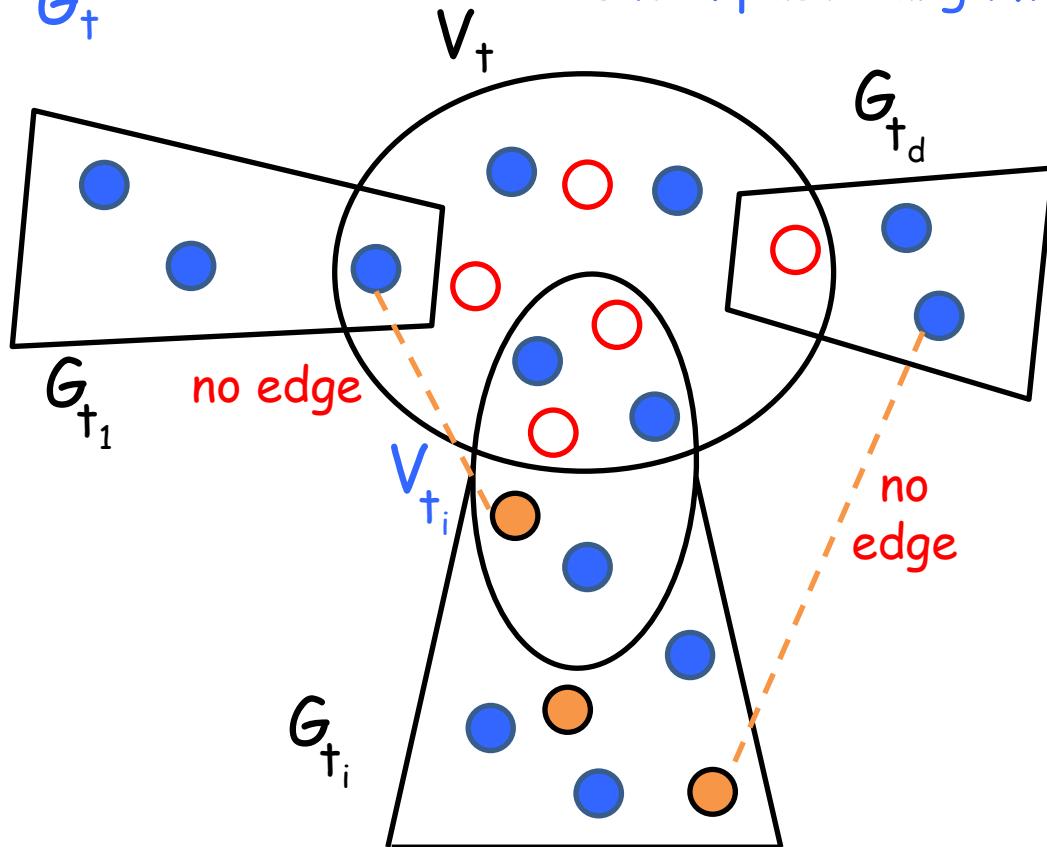
$f_t(U) = \text{maximum weight of an independent set } S \text{ in } G_t, \text{ subject to the requirement that } S \cap V_t = U$

S_i : intersection of S and the nodes of G_{t_i}

claim: S_i is opt for G_{t_i} , subject to $S_i \cap V_t = U \cap V_{t_i}$

G_t

cut & paste argument: assume S'_i better than S_i



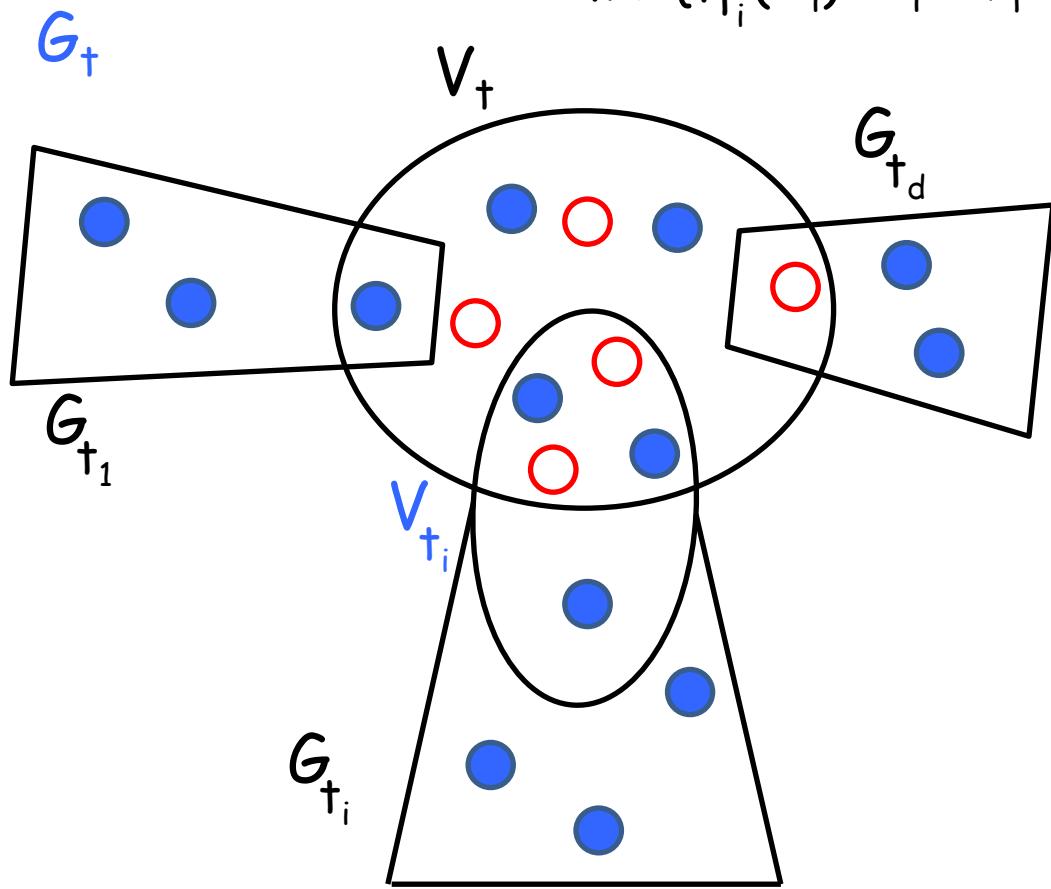
$S' = (S - S_i) \cup S'_i$
is a better IS
for G_t

$f_t(U) =$ maximum weight of an independent set S in G_t , subject to the requirement that $S \cap V_t = U$

S_i : intersection of S and the nodes of G_{t_i}

weight of such an optimal S_i :

$\max\{f_{t_i}(U_i) : U_i \cap V_t = U \cap V_{t_i} \text{ and } U_i \subseteq V_{t_i} \text{ is an IS}\}$



case: t leaf in T

$U \subseteq V_t$ independent set

$$f_t(U) = w(U)$$

case: t has children t_1, \dots, t_d in T

★ $f_t(U) = w(U) + \sum_{i=1}^d \max\{ f_{t_i}(U_i) - w(U_i \cap U) : U_i \cap V_t = U \cap V_{t_i} \text{ and } U_i \subseteq V_{t_i} \text{ is an IS} \}$

To find a maximum-weight independent set of G ,
given a tree decomposition $(T, \{V_t\})$ of G :

Modify the tree decomposition if necessary so it is nonredundant

Root T at a node r

For each node t of T in post-order

If t is a leaf then

For each independent set U of V_t

$$f_t(U) = w(U)$$

Else

For each independent set U of V_t

$f_t(U)$ is determined by the recurrence

Endif

Endfor

Return $\max \{f_r(U) : U \subseteq V_r \text{ is independent}\}$.

case: t leaf in T

$U \subseteq V_t$ independent set

$$f_t(U) = w(U)$$

case: t has children t_1, \dots, t_d in T

★ $f_t(U) = w(U) + \sum_{i=1}^d \max\{ f_{t_i}(U_i) - w(U_i \cap U) : U_i \cap V_t = U \cap V_{t_i} \text{ and } U_i \subseteq V_{t_i} \text{ is an IS} \}$

time to compute $f_t(U)$:

for each of the d children t_i and each $U_i \subseteq V_{t_i}$

- check in time $O(w)$ if U_i is an IS
and is consistent with V_t and U

$$O(2^{w+1} w d)$$

there are 2^{w+1} possible U for a node t :

$$O(4^{w+1} w d)$$

summing over all nodes t :

total running time:

$$O(4^{w+1} w n)$$

How to compute a tree-decomposition?

Compute the treewidth of a given graph is NP-hard

There is an algorithm that, given a graph with treewidth w , produce a tree decomposition with width $4w$ in time $O(f(w) mn)$

