
Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

Parameterized algorithms

Episode II

Toolbox (to show a problem is FPT)

bounded-search trees

kernelization

algebraic techniques

treewidth

color coding

iterative
compression

color coding

Input:

question:

- a graph G=(V,E)
- a nonnegative integer k

is there a simple path of k vertices

parameter: k

k-Path

obs: NP-hard since it contains the Hamiltonian path as special case

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time 2O(k) nO(1).

previous best algorithms had running time kO(k) nO(1).

- assign colors from {1,...,k} to vertices V(G) uniformly and independently
at random.

color coding

- assign colors from {1,...,k} to vertices V(G) uniformly and independently
at random.

- check if there is a path colored 1-2-...-k and output YES or NO

color coding

4 4 5 4

3 3 2 2

1 2

- assign colors from {1,...,k} to vertices V(G) uniformly and independently
at random.

- check if there is a path colored 1-2-...-k and output YES or NO

probability of success:

color coding

NO

obs1: if there is no k-path: no path colored 1-2-...-k exists

4 4 5 4

3 3 2 2

1 2

obs2: if there is a k-path: there is some probability that this path is
colored 1-2-...-k

k-k.

YES with probability k-k.

boosting the probability of success: independent repetitions

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1-p)1/p  (e-p) = 1/e  0.38
1/p

- Thus, if pk-k then error probability is at most 1/e after kk repetitions

- repeating the whole algorithm a constant number of times can make
the error probability an arbitrary small constant

example: trying 100 kk random colorings, the probability of a wrong
answer is at most (1/e)100.

- edges connecting nonadjacent color classes are removed

- the remaining edges are directed towards the larger class

Finding a path colored 1-2-...-k

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

5

5

5

- all we need to check if there is a directed path from class 1 to class k

- edges connecting nonadjacent color classes are removed

- the remaining edges are directed towards the larger class

Finding a path colored 1-2-...-k

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

5

5

5

- all we need to check if there is a directed path from class 1 to class k

- edges connecting nonadjacent color classes are removed

- the remaining edges are directed towards the larger class

Finding a path colored 1-2-...-k

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

5

5

5

- all we need to check if there is a directed path from class 1 to class k

- edges connecting nonadjacent color classes are removed

- the remaining edges are directed towards the larger class

Finding a path colored 1-2-...-k

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

5

5

5

- all we need to check if there is a directed path from class 1 to class k

- edges connecting nonadjacent color classes are removed

- the remaining edges are directed towards the larger class

Finding a path colored 1-2-...-k

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

5

5

5

- all we need to check if there is a directed path from class 1 to class k

color coding
success probability

k-k

color coding

k-Path
finding a

1-...-k
colored path

polynomial time
solvable

- assign colors from {1,...,k} to vertices V(G) uniformly and independently
at random.

- check if there is a colorful path (each color appears exactly once) and
output YES or NO

probability of success:

improved color coding

NO

obs1: if there is no k-path: no colorful path exists

4 4 5 4

3 3 2 2

1 2

obs2: if there is a k-path: there is some probability that it is colorful

kn
YES with probability e-k. k! kn-k

kk

k!
kk

(k/e)k

e-k= =

- assign colors from {1,...,k} to vertices V(G) uniformly and independently
at random.

- repeating the algorithm 100 ek times, the probability of a wrong
answer is at most (1/e)100.

how to find a colorful path?

improved color coding

4 4 5 4

3 3 2 2

1 2

- try all permutations: k! nO(1) time

- dynamic programming: 2k nO(1) time

vV, non-empty subset S{1,...,k}

is there a path P ending at v such that each color of S
appears in P exactly once and no other color appears in P?

subproblems:

finding a colorful path

obs1: There is a colorful path iff Path(v,{1,...,k})=TRUE for some v

obs2: # of subproblems 2k n

Path(v,S):

vV, non-empty subset S{1,...,k}

is there a path P ending at v such that each color of S
appears in P exactly once and no other color appears in P?

subproblems:

finding a colorful path

|S|=1 (base case)

Path(v,S):

Path(v,S)=TRUE iff S={col(v)}

|S|1

Path(v,S)=

FALSE

if col(v)S

otherwise

OR Path(u,S-{col(v)})
(u,v)E

v

u

color coding
success probability

e-k

color coding

k-Path
finding a

colorful path

solvable in

2k nO(1) time

Theorem

There is a randomized algorithm for k-Path that runs in time (e2)k nO(1)

that either reports a failure or find a path of k vertices. Moreover, the
algorithm finds a solution of a YES-instance with constant probability.

Kernelization

a 2k-vertex kernel for VC

based on linear programming

an Integer Linear Programming (ILP) formulation of VC

subject to e=(u,v)E

minimize 
vV

xv

xu +xv  1

xv{0,1} vV

xv0 & xv 1
relax with

redundant

subject to e=(u,v)E

minimize 
vV

xv

xu +xv  1

xv0 vV

LP-relaxation

a feasible solution is
a fractional VC

OPTf: cost of the min fractional VC

OPTf  OPT

Theorem (Nemhauser-Trotter)
There is a minimum vertex cover S of G such that

V0 = { vV : xv  ½ }

Let x be an optimal fractional solution.

V0.5 = { vV : xv = ½ }

V1 = { vV : xv  ½ }

V1  S  V1V0.5

proofLet S* be a minimum VC

S is a VC

|S*V0|  |V1\S*|

Let S=(S*\V0) V1

S*

V0.5 V0
V1

since every adjacent vertex of V0 must be in V1

claim: S is minimum assume by contradiction that |S|>|S*|

A AB

B
yv =

xv-

xv+

xv

if vA

if vB

otherwise

 = min{|xv - ½ | : v V0V1 }

-

+

claim:
- y is strictly better that x
- y is feasible

u v

interesting case:
u or v A

A

-

since S* is a VC then uB or uS*\B

u vA

-+
u vA

-
½

½

contradicts
optimality of x

kernelization
compute an optimal fractional solution x of the LP-relaxation for
the VC instance (G,k). Define V0,V0.5, V1 as before.

if conclude that (G,k) is a No-instance.

Otherwise, greedily pick V1 in the VC, delete vertices in V1 and V0

(and all their incident edges).
The new instance is (G’=G-(V1V0),k’=k-|V1|).


vV

xv k

Theorem
k-Vertex Cover admits a kernel of at most 2k vertices.

proof

(G,k) is a YES-instance iff (G’,k’) is a YES-instance

|V(G’)| = |V0.5 | = 
vV0.5

2xv  2
vV

xv  2k

...in the next episode...

problem: invite people to a party

constraint: everyone should be having fun

maximize: total fun factor of the invited people

The party problem

do not invite a colleague and his
direct boss at the same time!

2

7 6

3 1 2 3 3

input: a tree with weights
on the nodes

goal: an independent set of
maximum total weight

problem: invite people to a party

constraint: everyone should be having fun

maximize: total fun factor of the invited people

The party problem

do not invite a colleague and his
direct boss at the same time!

2

7 6

3 1 2 3 3

input: a tree with weights
on the nodes

goal: an independent set of
maximum total weight

OPT= 15
Exercise: give a polynomial time algorithm for it

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

