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Parameterized algorithms 
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Toolbox (to show a problem is FPT)

bounded-search trees

kernelization

algebraic techniques

treewidth

color coding

iterative 
compression



color coding



Input:

question:

- a graph G=(V,E) 
- a nonnegative integer k

is there a simple path of k vertices

parameter: k

k-Path

obs: NP-hard since it contains the Hamiltonian path as special case

Theorem [Alon, Yuster, Zwick 1994] 

k-Path can be solved in time 2O(k) nO(1).

previous best algorithms had running time kO(k) nO(1).



- assign colors from {1,...,k} to vertices V(G) uniformly and independently 
at random.

color coding



- assign colors from {1,...,k} to vertices V(G) uniformly and independently 
at random.

- check if there is a path colored 1-2-...-k and output YES or NO

color coding
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- assign colors from {1,...,k} to vertices V(G) uniformly and independently 
at random.

- check if there is a path colored 1-2-...-k and output YES or NO

probability of success:

color coding

NO

obs1: if there is no k-path: no path colored 1-2-...-k exists

4 4 5 4

3 3 2 2

1 2

obs2: if there is a k-path: there is some probability that this path is 
colored 1-2-...-k

k-k.

YES with probability k-k. 



boosting the probability of success: independent repetitions

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1-p)1/p  (e-p)   =  1/e  0.38
1/p

- Thus, if pk-k then error probability is at most 1/e after kk repetitions

- repeating the whole algorithm a constant number of times can make 
the error probability an arbitrary small constant

example: trying 100 kk random colorings, the probability of a wrong 
answer is at most (1/e)100.



- edges connecting nonadjacent color classes are removed

- the remaining edges are directed towards the larger class

Finding a path colored 1-2-...-k
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- all we need to check if there is a directed path from class 1 to class k
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Finding a path colored 1-2-...-k

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

5

5

5
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color coding 
success probability

k-k

color coding

k-Path
finding a 

1-...-k 
colored path

polynomial time 
solvable



- assign colors from {1,...,k} to vertices V(G) uniformly and independently 
at random.

- check if there is a colorful path (each color appears exactly once) and 
output YES or NO

probability of success:

improved color coding

NO

obs1: if there is no k-path: no colorful path exists

4 4 5 4

3 3 2 2

1 2

obs2: if there is a k-path: there is some probability that it is colorful

kn
YES with probability e-k. k! kn-k

kk

k! 
kk

(k/e)k

e-k= =



- assign colors from {1,...,k} to vertices V(G) uniformly and independently 
at random.

- repeating the algorithm 100 ek times, the probability of a wrong   
answer is at most (1/e)100.

how to find a colorful path?

improved color coding

4 4 5 4

3 3 2 2

1 2

- try all permutations: k! nO(1) time

- dynamic programming: 2k nO(1) time



vV, non-empty subset S{1,...,k}

is there a path P ending at v such that each color of S 
appears in P exactly once and no other color appears in P?

subproblems:

finding a colorful path

obs1: There is a colorful path iff Path(v,{1,...,k})=TRUE for some v

obs2: # of subproblems 2k n

Path(v,S):



vV, non-empty subset S{1,...,k}

is there a path P ending at v such that each color of S 
appears in P exactly once and no other color appears in P?

subproblems:

finding a colorful path

|S|=1 (base case)

Path(v,S):

Path(v,S)=TRUE  iff S={col(v)}

|S|1

Path(v,S)=

FALSE

if col(v)S

otherwise

OR   Path(u,S-{col(v)})
(u,v)E

v

u



color coding 
success probability

e-k

color coding

k-Path
finding a 

colorful path

solvable in 

2k nO(1) time 

Theorem

There is a randomized algorithm for k-Path that runs in time (e2)k nO(1)

that either reports a failure or find a path of k vertices. Moreover, the 
algorithm finds a solution of a YES-instance with constant probability.



Kernelization

a 2k-vertex kernel for VC 

based on linear programming



an Integer Linear Programming (ILP) formulation of VC

subject to e=(u,v)E

minimize 
vV

xv

xu +xv  1

xv{0,1} vV

xv0 & xv 1
relax with

redundant

subject to e=(u,v)E

minimize 
vV

xv

xu +xv  1

xv0 vV

LP-relaxation

a feasible solution is 
a fractional VC

OPTf: cost of the min fractional VC

OPTf  OPT



Theorem (Nemhauser-Trotter)
There is a minimum vertex cover S of G such that

V0    = { vV : xv  ½  }

Let x be an optimal fractional solution.

V0.5 = { vV : xv = ½  }

V1    = { vV : xv  ½  }

V1  S  V1V0.5



proofLet S* be a minimum VC

S is a VC

|S*V0|  |V1\S*|

Let S=(S*\V0) V1

S*

V0.5 V0
V1

since every adjacent vertex of V0 must be in V1

claim: S is minimum assume by contradiction that |S|>|S*|

A AB

B
yv =

xv-

xv+

xv

if vA

if vB

otherwise

 = min{|xv - ½ | : v V0V1 }

-

+

claim: 
- y is strictly better that x
- y is feasible

u v

interesting case: 
u or v A

A

-

since S* is a VC then    uB or      uS*\B

u vA

-+
u vA

-
½  

½  

contradicts 
optimality of x



kernelization 
compute an optimal fractional solution x of the LP-relaxation for 
the VC instance (G,k). Define V0,V0.5, V1 as before.    

if                   conclude that (G,k) is a No-instance. 

Otherwise, greedily pick V1 in the VC, delete vertices in V1 and V0

(and all their incident edges). 
The new instance is (G’=G-(V1V0),k’=k-|V1|). 


vV

xv k

Theorem
k-Vertex Cover admits a kernel of at most 2k vertices.

proof

(G,k) is a YES-instance iff (G’,k’) is a YES-instance

|V(G’)| = |V0.5 | = 
vV0.5

2xv  2
vV

xv  2k



...in the next episode...



problem: invite people to a party

constraint: everyone should be having fun

maximize: total fun factor of the invited people

The party problem

do not invite a colleague and his 
direct boss at the same time!

2

7 6

3 1 2 3 3

input: a tree with weights 
on the nodes

goal: an independent set of 
maximum total weight 



problem: invite people to a party

constraint: everyone should be having fun

maximize: total fun factor of the invited people

The party problem

do not invite a colleague and his 
direct boss at the same time!

2

7 6

3 1 2 3 3

input: a tree with weights 
on the nodes

goal: an independent set of 
maximum total weight 

OPT= 15
Exercise: give a polynomial time algorithm for it
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