
Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

Parameterized algorithms

Episode I

(pilot)

main reference:

pick any two

1. to solve (NP-)hard problems
2. fast (polynomial time) algorithms
3. to compute exact solutions

We would like

problems in P

apx algorithms

parameterized
algorithms

idea: aim for exact algorithms, but confine the exponential dependence to
a parameter

parameter: k(x) nonnegative integer associated to the instance x

goal: an algorithm whose running time is polynomial in the problem size n
and exponential in the parameter

exact algorithm running fast provided k is small

parameterized problem: a problem + a parameter

we say: “problem P w.r.t. parameter k”

Input:

question:

- a graph G=(V,E)
- a nonnegative integer k

is there a vertex cover SV of size at most |S|k

parameter: k

k-Vertex Cover

star graph

example: k can actually be small

- try all O(nk) subsets of k vertices
- for each subset S:

- check whether S is a vertex cover

running time:

Brute-force solution:

O(nk m) BAD
exponent

depends on k
nf(k)

Definition (FPT)
A parameterized problem is Fixed Parameter Tractable (FPT) if it can be
solved in time

f(k) nO(1)

independent
of n & k

any function

- consider any (uncovered) edge e=(u,v)
(if there is no uncovered edge return TRUE)

Bounded-search tree algorithm:

- either uS or vS (or both)
- guess which one: try both possibilities

1. – add u to S, delete u and all incident edges from G
- recurse on G with k’=k-1

2. – add v to S, delete v and all incident edges from G
- recurse on G with k’=k-1

3. - return the OR of the two outcomes

- base case: k=0
if there is an (uncovered) edge in G return FALSE, return TRUE otherwise

running time: analysis of the recursion tree

n,k

n-2,k-2 n-2,k-2

n-1,k-1

n-2,k-2 n-2,k-2

n-1,k-1
k

- height of the tree  k

- # of nodes O(2k)

- any node costs O(n)

time
O(2k n) GOOD FPT algorithm

Toolbox (to show a problem is FPT)

bounded-search trees

kernelization

algebraic techniques

treewidth

color coding

iterative
compression

kernelization

idea: pre-processing an instance in order to simplify it to a much smaller
equivalent instance

equivalent: the answer of (x,k) is the same of the answer of (x’,k’)

kernelization: a polynomial-time algorithm that converts an instance (x,k)
into a small and equivalent instance (x’,k’)

kernel

small: the size of (x’,k’) is  f(k)

obs: after you can run every
algorithm you want on
the kernel

(x,k)

kernelization
(x’,k’)

Theorem
A parameterized problem is FPT iff it admits a kernelization.

proof

kernelize and obtain an instance of size n’  f(k).

the instance is already kernelized

1. solve the instance by running A in time f(k)nc  nc+1 (polynomial)

()

run any finite algorithm with running time g(n) on the kernel.

Total running time: nO(1)+g(f(k)).

()

Let A be an f(k)nc time algorithm

if n  f(k)

if f(k)  n

2. output a O(1)-size YES/NO instance as appropriate (to kernelize)

polynomial kernel for k-Vertex Cover

based on reduction rules

rule 1: if there is a vertex v of degree  k+1, then delete v (and all
its incident edges) from G and decrement the parameter k
by 1. The new instance is (G-v,k-1)

v

k+1

rule 2: if G contains an isolated (0-degree) vertex v, delete v from
G. The new instance is (G-v,k)

polynomial kernel for k-Vertex Cover

Lemma
If (G,k) is a YES-instance and none of the above rules is applicable to G,
then |E(G)|k2 and |V(G)|2k2.
proof

Since rule 1 is not applicable every vertex has degree  k

k vertices can cover  k2 edges

Since rule 2 is not applicable, every vertex has an incident edge

|V(G)|2k2 (worst case E(G) is a matching of k2 edges)

based on reduction rules

rule 1: if there is a vertex v of degree  k+1, then delete v (and all
its incident edges) from G and decrement the parameter k
by 1. The new instance is (G-v,k-1)

rule 2: if G contains an isolated (0-degree) vertex v, delete v from
G. The new instance is (G-v,k)

polynomial kernel for k-Vertex Cover

rule 3: let (G, k) be an instance such that rule 1 & 2 are not
applicable. If k0 or G has more than k2 edges or more
than 2k2 vertices, conclude that (G,k) is a NO-instance.
Output a canonical NO-instance.

based on reduction rules

rule 1: if there is a vertex v of degree  k+1, then delete v (and all
its incident edges) from G and decrement the parameter k
by 1. The new instance is (G-v,k-1)

rule 2: if G contains an isolated (0-degree) vertex v, delete v from
G. The new instance is (G-v,k)

running time: naive implementation O(n2)

a clever implementation O(n+m)

solving k-Vertex Cover:

kernelization + bound-search tree alg O(n+m+2k k2)

- the size k of the solution we are looking for
- the maximum degree of the input graph
- the dimension of the point set in the input
- the length of the strings in the input
- the length of the clauses in the input Boolean formula
- the number of moves in a puzzle game
- the budget in an augmenting problem
- ...

what can be the parameter k?

- finding a vertex cover of size k
- finding a path of length k
- finding k disjoint triangles
- drawing a graph in the plane with k edge crossings
- finding disjoint paths that connects k pairs of vertices
- finding the maximum clique in a graph of maximum degree k
- ...

Examples of NP-hard problems that are FPT:

- finding a clique/independent set of size k
- finding a dominating set of size k
- finding k pairwise disjoint sets
- given a graph G, finding k vertices that covers at least s edges

(partial Vertex Cover)
- given a Boolean formula, decide if can be satisfied by assigning TRUE to

at most k variables
- ...

Examples of W[1]-hard problems:

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

- The FPT vs W[1]-hardness game
- is the problem FPT?

- The f(k) game for FPT problems
- what is the best f(k) dependence on the parameter?

- The exponent game for W[1]-hard problems
- what is the best possible dependence on k in the exponent?

games to play

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

