Advanced topics on Algorithms

Luciano Guala
www.mat.uniroma2.it/~guala/

Parameterized algorithms
Episode I

(pilot)

Parameterized
main reference: LLUUULE

pick any two

We would like

1. to solve (NP-)hard problems
2., fast (polynomial time) algorithms
3./ to compute exact solutions

idea: aim for exact algorithms, but confine the exponential dependence to
a parameter

goal: an algorithm whose running time is polynomial in the problem size n
and exponential in the parameter

‘ exact algorithm running fast provided k is small

parameter: Kk(x) nonnegative integer associated to the instance x

parameterized problem: a problem + a parameter

we say: "problem P w.r.t. parameter k"

k-Vertex Cover

Input:
- agraph 6=(V,E)
- a honnegative integer k

question:
is there a vertex cover ScV of size at most |S|<k

parameter: k

k can actually be small

o @ Stargraph

Brute-force solution:

- try all O(nk) subsets of k vertices
- for each subset S:
- check whether S is a vertex cover

SO K £(K) exponent
running time: O(nk m) BAD n depends on k

Definition (FPT)
A parameterized problem is Fixed Parameter Tractable (FPT) if it can be
solved in time

f(k) n°®

Bounded-search tree algorithm:

- consider any (uncovered) edge e=(u,v)
(if there is no uncovered edge return TRUE)

- either ueS or veS (or both)
- guess which one: try both possibilities

1. -adduto S, delete uand all incident edges from G
- recurse on G with k'=k-1

2. -addvto S, delete v and all incident edges from G
- recurse on G with k'=k-1

3. - return the OR of the two outcomes
- base case: k=0

if there is an (uncovered) edge in G return FALSE, return TRUE otherwise

running time: analysis of the recursion tree

/ \) - height of the tree <k

n-1,k-1 n-1,k-1 - # of nodes O(2K)

/\ /\ - any node costs O(n)

n-2, k-2 n-2,k-2 n-2k-2 n-2k-2

"
o(lglen) GOOD | FPT algorithm

Toolbox (to show a problem is FPT)

bounded-search trees

s :
kernelization color coding

algebraic techniques
iterative

compression

treewidth

kernelization

idea: pre-processing an instance in order to simplify it to a much smaller
equivalent instance

kernelization: a polynomial-time algorithm that converts an instance (x,k)
intfo a small and equivalent instance (x' k')

equivalent: the answer of (x,k) is the same of the answer of (x',k’)

small: the size of (x',k') is < f(k)

kernelization I

after you can run every
algorithm you want on
the kernel

Theorem
A parameterized problem is FPT iff it admits a kernelization.

proof
=)

kernelize and obtain an instance of size n' < f(k).
run any finite algorithm with running time g(n) on the kernel.

Total running time: nOMW+g(f(k)).
=)
Let A be an f(k)n¢ time algorithm

if n<f(k) theinstance is already kernelized
if f(k)<n

1. solve the instance by running A in time f(k)nc < n¢*! (polynomial)

2. output a O(1)-size YES/NO instance as appropriate (o kernelize)

polynomial kernel for k-Vertex Cover
based on reduction rules

rule 11 if there is a vertex v of degree > k+1, then delete v (and all
its incident edges) from G and decrement the parameter k
by 1. The new instance is (G-v,k-1)

rule 2: if G contains an isolated (O-degree) vertex v, delete v from
G. The new instance is (G-v k)

>k+1

polynomial kernel for k-Vertex Cover
based on reduction rules

rule 11 if there is a vertex v of degree > k+1, then delete v (and all
its incident edges) from G and decrement the parameter k
by 1. The new instance is (G-v,k-1)

rule 2: if G contains an isolated (O-degree) vertex v, delete v from
G. The new instance is (G-v k)

Lemma

If (6,k) is a YES-instance and none of the above rules is applicable o G,
then |E(G)|<k? and |V(G)|<2k2.

proof

Since rule 1 is not applicable every vertex has degree < k
m) k vertices can cover < k? edges

Since rule 2 is not applicable, every vertex has an incident edge

m) |V(G)|<2k? (worst case E(G) is a matching of k2 edges)

polynomial kernel for k-Vertex Cover
based on reduction rules

rule 11 if there is a vertex v of degree > k+1, then delete v (and all
its incident edges) from G and decrement the parameter k

by 1. The new instance is (G-v,k-1)

rule 2: if G contains an isolated (O-degree) vertex v, delete v from
G. The new instance is (G-v k)

rule 3: let (G, k) be an instance such that rule 1 & 2 are not
applicable. If k<O or G has more than k? edges or more
than 2k? vertices, conclude that (6,k) is a NO-instance.

Output a canonical NO-instance.

running time: naive implementation O(n?)
a clever implementation O(n+m)

solving k-Vertex Cover:

kernelization + bound-search tree alg = O(n+m+2k k2)

what can be the parameter k?

- the size k of the solution we are looking for

- the maximum degree of the input graph

- the dimension of the point set in the input

- the length of the strings in the input

- the length of the clauses in the input Boolean formula
- the number of moves in a puzzle game

- the budget in an augmenting problem

Examples of NP-hard problems that are FPT:

- finding a vertex cover of size k

- finding a path of length k

- finding k disjoint triangles

- drawing a graph in the plane with k edge crossings

- finding disjoint paths that connects k pairs of vertices

- finding the maximum clique in a graph of maximum degree k

W]1]-hardness

Negative evidence similar to NP-completeness. If a problem is
WI[1]-hard, then the problem is not FPT unless FPT=W[1].

Examples of W[1]-hard problems:

- finding a clique/independent set of size k

- finding a dominating set of size k

- finding k pairwise disjoint sets

- given a graph G, finding k vertices that covers at least s edges
(partial Vertex Cover)

- given a Boolean formula, decide if can be satisfied by assigning TRUE to
at most k variables

games to play

- The FPT vs W[1]-hardness game
- is the problem FPT?
- The f(k) game for FPT problems
- what is the best f(k) dependence on the parameter?
- The exponent game for W[1]-hard problems
- what is the best possible dependence on k in the exponent?

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

