Algoritmi e Strutture Dati

Capitolo 13
Cammini minimi:
algoritmo di Dyjkstra



Cammini minimi in grafi:
cammini minimi a singola sorgente
(senza pesi negativi)



Cammini minimi in grafi pesati

S1a G=(V,E,w) un grafo orientato o non orientato con pesi w
reali sugli archi. Il costo o lunghezza di un cammino
T=<V(,V{,V,... ,V}=> €:

w (ﬂ-) — Z w (’U 1—1 3 "U"E)

1=1

Un cammino minimo tra una coppia di vertici X € y € un
cammino avente costo minore o uguale a quello di ogni
altro cammino tra gl stessi vertici.

NOTA: Il cammino minimo non € necessariamente unico.
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Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. lItaliano

Esempio:

cammino minimo su un grafo pesato

la distanza d;(u,v) dau a
v in G ¢ 1l costo di un
"' qualsiasi cammino
minimo dau a v.

dg(u,v)=17

Problema: dati u e v, trovare un cammino minimo (e/o distanza) da u a v



problema:
trovare il cammino minimo fra due nodi
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problema:
trovare il cammino minimo fra due nodi
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esiste sempre un cammino
minimo fra due nodi?



.ho!

- Se hoh esiste hessun cammino da u a v
- d(u,v)=+e

* Se c'eé un cammino che contiene un ciclo
(raggiungibile) il cui costo e negativo
- d(u,v)=-

Oss: se G non contiene
cicli negativi, esistono
cammini minimi che

@/\/\/ @) sono cammini}mplici

hoh contiene
nodi ripetuti

2w(e)<0



sottostruttura ottima

Ogni sottocammino di un cammino
minimo € un cammino minimo.

dim: tecnica cutépaste

Ipotetico cammino

pit cortodaxay allora il cammino

da u a v non era minimo!



disuguaglianza triangolare

per ogni u, v, X € V, vale:
d(u,v) < d(u,x)+ d(x,v)

o AT

il cammino da u a v che passa

per X e un cammino nel grafo

e quindi il suo costo e almeno il costo
del cammino minimo dauav



ammini minimi a singola sorgente
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Problema del calcolo dei cammini
minimi a singola sorgente

Due varianti:

* Dato G=(V,E,w), seV, calcola le distanze di
tutti 1 nodi da s, ovvero, d;(s,v) per ogni veV

* Dato G=(V,E,w), seV, calcola ’albero dei
cammini minimi di G radicato 1n s



Albero dei cammini minimi
(o Shortest Path Tree - SPT)

T & un albero dei cammini minimi con
sorgente s di un grafo G=(V E,w) se:
- T & un albero radicato in s

- per ogni veV, vale:

dr(s,v)=dg(s,v)




Albero dei cammini minimi
(o Shortest Path Tree - SPT)

0 albero
BFS

per grafi non pesati:
SPT radicato in s

Albero BFS radicato in s



Esercizio

Progettare un algoritmo che, dato un grafo diretto e pesato G=(V,E,w) e
un suo albero dei cammini minimi radicato in un nodo s, calcola in tempo
lineare (nella dimensione del grafo) le distanze di ogni nodo da s.

Progettare un algoritmo che, dato un grafo diretto e pesato G=(V,E,w) ¢ le

distanze di ogni nodo da un nodo s, calcola in tempo lineare (nella
dimensione del grafo) un albero dei cammini minimi di G radicato 1n s.

Osservazione: le due varianti del problema sono essenzialmente
equivalenti



Algoritmo di Dijkstra

Assunzione: tutti gli archi hanno peso
non negativo, ovvero ogni arco (u,v)
del grafo ha peso w(u,v)>0



Idea intuitiva dell'algoritmo: pompare
acqua nella sorgente

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante
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Verso l'algoritmo: approccio greedy (goloso)

mantiene per ogni hodo v una
stima (per eccesso) D, alla
distanza d(s,v). Inizialmente,
unica stima finita D_=0.

mantiene un inseme X di nodi per
cui le stime sono esatte; e anche
un albero T dei cammini minimi
verso nodi in X (albero nero).
Inizialmente X={s}, T non ha
archi.

ad ogni passo aggiunge a X il
hodo u in V-X la cui stima &
minima; aggiunge a T uno
specifico arco (arancione)
entrante inu

aggiorna le stime guardando i
nodi adiacenti a u




I nodi da aggiungere progressivamente
a X (e quindi a T) sono mantenuti in
una coda d1 priorita, associati ad un
unico arco (arco arancione) che li
connette a T.

la stima per un nodo ye V-X ¢:
D,,~min{D,+w(x,y) : (x.y)<E, xeX }
[’arco che fornisce 1l minimo € I’arco
arancione.

Se y € 1n coda con arco (X,y) associato,
e se dopo aver aggiunto u a T troviamo
un arco (u,y) tale che

D, w(wy) < D +w(X,y), allora
rimpiazziamo (x,y) con (u,y), ed
aggiorniamo Dy,

nodi per i quali non & stato
“scoperto” nessun cammino;
stima=+oo

nodi “scoperti”; hanno stima<+e
sono mantenuti in una coda con
priorita insieme al "miglior"
arco entrante (arancione)




Pseudocodice
algoritmo Dijkstra(grafo G,vertice s) — albero
for each ( vertice uin G ) do Dsy < +00 Nt 18 & v slleims che
T «— albero formato dal solo nodo s; X€&
CodaPriorita S

contiene tutti 1 nod1 in X

D.. — 0 piu 1 nodi correntemente
S.insert(s,0) contenuti nella coda di
while ( not S.isEmpty() ) do priorita (nodi arancioni);
u <S.deleteMin(); X< X U{uj ¢ composto cio¢ dagli
for each (arco (u,v)in G ) do archi di T (albero dei
if (D,,, = +0oc) then .. ..
\s.insert&hihﬂ—kuﬂﬂﬂﬂ) cgnnngprnnnqurQUeﬁo
Dy — Dy + w(u,v) al nodi in X) piu gli
rendi u padre di v in T archi arancioni
else if (Dgy, + w(u,v) < Dg,) then (potenziali archi da

S.decreaseKey (v, Do~ D= w(u, v)) aggiung ere a T)
D sv D su T "[LJ{:_ i, "LT)

rendi « nuovo padre di v in 7’
return 7’























































correttezza



Lemma

Quando il nodo v viene estratto dalla coda con priorita vale:

- D.,=d(s,v) (stima esatta)
- il cammino da s a v nell'albero corrente ha costo d(s,v) (camm. min in G)

dim (per assurdo)
Sia v il primo nodo per cui l'alg sbaglia
sia (u,v) I'arco aggiunto all'albero corrente (arco arancione)

camm min verso v di costo
<d(s,u)+w(u,v)

wVv
T: albero

corrente D,=d(s,u) D _=d(s,u)+w(u,v)




Lemma

Quando il nodo v viene estratto dalla coda con priorita vale:

- D.,=d(s,v) (stima esatta)
- il cammino da s a v nell'albero corrente ha costo d(s,v) (camm. min in G)

dim (per assurdo)

Sia v il primo nodo per cui l'alg sbaglia
sia (u,v) I'arco aggiunto all'albero corrente (arco arancione)

(x.,y): primo arco del cammino t.c xeTeyeT camm min verso v di costo

<d(s,u)+w(u,v)

ox—d(s,X)

T: albero \‘Y

corrente D =d(s,u D ,=d(s,u)+w(u,v)




Lemma

Quando il nodo v viene estratto dalla coda con priorita vale:

- D.,=d(s,v)

(stima esatta)

- il cammino da s a v nell'albero corrente ha costo d(s,v) (camm. min in G)

dim (per assurdo)

Sia v il primo nodo per cui l'alg sbaglia

sia (u,v) I'arco aggiunto all'albero corrente (arco arancione)

(x,y): primo arco del cammino t.c xeTeyeT

ox—d(s,X)

~_
T: albero \‘Y
corrente D =d(s,u
—)

D, < d(s,x)tw(X,y)< d(s,u)+w(u,v)

camm min verso v di costo
<d(s,u)+w(u,v)

TESy ha costo d(s,x)+w(x,y)
<d(s,u)+w(u,v)

>0

D =d(s,u)+w(u,v)

assurdo: l'alg avrebbe estrattoy e non v

(se y=v, v avrebbe avuto una stima piti piccola) M




analisi della complessita



algoritmo Dijkstra(grafo G,vertice s) — albero
for each ( vertice uin G ) do Dy, «— +0o0

T + albero formato dal solo nodo s; X<O
CodaPriorita S
Dgs — 0
S.insert(s,0)
while ( not S.isEmpty() ) do
u «—S.deleteMin(); XX U{u}
for each ( arco (u,v) in G ) do
if (D, = +00) then
S.insert(v, Dy, + w(u,v))
Dy «— Dgy + w(u,v)
rendi u padre di v in T
else if (Dg, + w(u,v) < Dg,) then
S.decreaseKey(v, Dy~ Doy~ w(u,v))

D sv D S + "[LJ{:_ U, "LT)

rendi « nuovo padre di v in 7’
return 7’

se si escludono le
operazioni sulla
coda con priorita:

Tempo
O(m+n)

quanto costano le
operazioni sulla
coda con priorita?



Tempo di esecuzione: implementazioni elementari

Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti 1 nodi siano connessi ad s, avremo n insert, n deleteMin

¢ al piu nella coda di priorita, al costo di:
Insert | DelMin
Array non ord. | O(1) O(n)
Array ordinato | O(n) O(1)
Lista non ord. O(1) O (n)
Lista ordinata O(n) O(1)

n-O(1) + n:O(n) +
n-O(n) + n-O(1) +
n-O(1) + n-O(n) +
n-O(n) +n-O(1) +

+

= O(n”) con array non ordinati
= con array ordinati
= O(n”) con liste non ordinate

= con liste ordinate



Tempo di esecuzione: implementazioni efficienti

Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti 1 nodi siano connessi ad s, avremo n insert, n deleteMin

¢ al piu nella coda di priorita, al costo di:
Insert | DelMin
Heap binario | O(logn)| O(logn)
Heap Binom. | O(logn) | O(logn)
Heap Fibon. | O(1) | O(logn)

(ammortizzata)

* n'O(logn)+n-O(logn) + -
) utilizzando heap binari o binomiali
¢« n:O(1) +n-O(logn)" + = O(m +n-log n) utilizzando
heap di Fibonacci

soluzione migliore: mai peggiore,
a volte meglio delle altre



Tempo di esecuzione: implementazioni efficienti

Supponendo che 1l grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti 1 nodi siano connessi ad s, avremo n insert,
¢ al piu nella coda di priorita, al costo di:

Insert

Heap binario | O(logn)
Heap Binom. | O(log n)
Heap Fibon. | O(1)

 n-O(lo
) utilizze temp O

« n-O(l)

N O(m+n log n)

SOIUZione migliol <t 111l l.lpyylvl )
a volte meglio delle altre

) utilizzando




Osservazione sulla

e Ricordiamo che le complessita computazionali esposte
per la sono valide supponendo di1 avere
un puntatore diretto all’elemento su cui eseguire
I’operazione. Come possiamo garantire tale condizione?

« Semplicemente mantenendo un puntatore tra 1l nodo v
nell’array dei1 nodi della lista di adiacenza del grafo e
I’elemento nella coda di priorita associato al nodo v; tale
puntatore viene inizializzato nella fase di inserimento di
quest’ultimo all’interno della coda.
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