Algoritmi e Strutture Dati

Capitolo 13
Cammini minimi:
algoritmo di Dyjkstra

Cammini minimi in grafi:
cammini minimi a singola sorgente
(senza pesi negativi)

Cammini minimi in grafi pesati

S1a G=(V,E,w) un grafo orientato o non orientato con pesi w
reali sugli archi. Il costo o lunghezza di un cammino
T=<V(,V{,V,... ,V}=> €:

w (ﬂ-) — Z w (’U 1—1 3 "U"E)

1=1

Un cammino minimo tra una coppia di vertici X € y € un
cammino avente costo minore o uguale a quello di ogni
altro cammino tra gl stessi vertici.

NOTA: Il cammino minimo non € necessariamente unico.

Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. lItaliano
Esempio:
cammino minimo su un grafo pesato

Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. lItaliano

Esempio:

cammino minimo su un grafo pesato

cammino di

lunghezza
43

Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. lItaliano

Esempio:

cammino minimo su un grafo pesato

6 18) ¥ cammino di
“ lunghezza
35

Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. lItaliano

Esempio:

cammino minimo su un grafo pesato

la distanza d;(u,v) dau a
v in G ¢ 1l costo di un

"' qualsiasi cammino
minimo dau a v.

Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. lItaliano

Esempio:

cammino minimo su un grafo pesato

la distanza d;(u,v) dau a
v in G ¢ 1l costo di un
"' qualsiasi cammino
minimo dau a v.

dg(u,v)=17

Problema: dati u e v, trovare un cammino minimo (e/o distanza) da u a v

problema:
trovare il cammino minimo fra due nodi

fl' 9 el 1 g i SnUMIA
MUNICIPIO A0 & \ 7
ROMA XIV (\ MUNICIPIO | MUNICIPIO
" 'ROMA Il

ROMA IV

sl di MUNICIPIO | ' /™y I = 42 min
do BOMA Xl b&] s
La Massimina-casal
Lumbroso MUNICIPIO
itale ROMA XIlI

MUNICIRIOF

Ponte o
Galeria-la ,@2&} 72 E

Pisana ZEAC L
Sole Palalottomatica

MUNICIPIO SS511]
ROMA IX Er
Clampino
Vitinia : Zona -
ACILIA SPINAGETO G 27 min | Industriale Grott
Google za0km | ApviaNuova
¥ o rs Laued . . Marin

problema:
trovare il cammino minimo fra due nodi

Fr ~za : ~“"” .ﬂUNlH i
MUNICIPIO (i
ROMA X1V
5| di MUNICIPIO |
do ROMA Xl ' 15.1 km
0 | [SS1] T
La Massimina-casal
Lumbroso/ MUNICIPIO
itale 5. ROMA XII
. E
i MUNICIRIO :
Galeria-la | wA_,x’
coe @2 1 palalottomatica
=" | & municipio SSS11
: . & IMA 1X
pesi archi: ~ strada AN Fr
i N lampino
lunghezze - ~7 piu breve = R
Vitinia I Zona
: ACIIA SPINAGETO (=Y Industriale Grott
pesi archi: (strada 23,0 km | «4ppiaNuova A

tempo pitl veloce
percorrenza

esiste sempre un cammino
minimo fra due nodi?

.ho!

- Se hoh esiste hessun cammino da u a v
- d(u,v)=+e

* Se c'eé un cammino che contiene un ciclo
(raggiungibile) il cui costo e negativo
- d(u,v)=-

Oss: se G non contiene
cicli negativi, esistono
cammini minimi che

@/\/\/ @) sono cammini}mplici

hoh contiene
nodi ripetuti

2w(e)<0

sottostruttura ottima

Ogni sottocammino di un cammino
minimo € un cammino minimo.

dim: tecnica cutépaste

Ipotetico cammino

pit cortodaxay allora il cammino

da u a v non era minimo!

disuguaglianza triangolare

per ogni u, v, X € V, vale:
d(u,v) < d(u,x)+ d(x,v)

o AT

il cammino da u a v che passa

per X e un cammino nel grafo

e quindi il suo costo e almeno il costo
del cammino minimo dauav

ammini minimi a singola sorgente

N A o
\
\ >
A i - y
{ $
{ \ J L
\ = o)
) -~ s
J { e AT AN >
¢ 3% i
/ \\ _;/ ’\/_ SN
7 e | 4
iy { / 3
1] \ 4
X r 5 (.)
7/ J 5
2 b / (Y
) 1 5)) ¥ 1
K ! % / .
{ ‘// /
) .
\ x \J l N
\ \ - \ j Y
\ T L \
N ; / oY) S 52
S 2 .

S .
X /
; = » < <) S "% L ; C
..... N / MX_A,,
S 43l) L V57 =L 4
A = 5 A
P L
({ \
—~ 5 4
‘ £ BV AP P o
—N A ;‘/ 5 S
Bt N / N) o=t % § \ q
N L { y < & X {
% / (i S - \
2) 7 s SAG
{ v w8 7
\ S g & P,
= L \ W 3 i) = »
3 2\ J
= N ! ey /
\ R { s / &) N G
{ \ " \
3 5 / NS !
7 ‘ / e
\ AL N < ; B \
& Y ! : ~ s o 7 e
= X \ N
AT oy
| 7
2 A
> = N
N 3 \ %, Wipgin S I
s £ 57 '
T o 55 N
7] L2y o~
j i) AP
- =
= { < R Neoae,
{ T

Problema del calcolo dei cammini
minimi a singola sorgente

Due varianti:

* Dato G=(V,E,w), seV, calcola le distanze di
tutti 1 nodi da s, ovvero, d;(s,v) per ogni veV

* Dato G=(V,E,w), seV, calcola ’albero dei
cammini minimi di G radicato 1n s

Albero dei cammini minimi
(o Shortest Path Tree - SPT)

T & un albero dei cammini minimi con
sorgente s di un grafo G=(V E,w) se:
- T & un albero radicato in s

- per ogni veV, vale:

dr(s,v)=dg(s,v)

Albero dei cammini minimi
(o Shortest Path Tree - SPT)

0 albero
BFS

per grafi non pesati:
SPT radicato in s

Albero BFS radicato in s

Esercizio

Progettare un algoritmo che, dato un grafo diretto e pesato G=(V,E,w) e
un suo albero dei cammini minimi radicato in un nodo s, calcola in tempo
lineare (nella dimensione del grafo) le distanze di ogni nodo da s.

Progettare un algoritmo che, dato un grafo diretto e pesato G=(V,E,w) ¢ le

distanze di ogni nodo da un nodo s, calcola in tempo lineare (nella
dimensione del grafo) un albero dei cammini minimi di G radicato 1n s.

Osservazione: le due varianti del problema sono essenzialmente
equivalenti

Algoritmo di Dijkstra

Assunzione: tutti gli archi hanno peso
non negativo, ovvero ogni arco (u,v)
del grafo ha peso w(u,v)>0

Idea intuitiva dell'algoritmo: pompare
acqua nella sorgente

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

Idea intuitiva dell'algoritmo: pompare

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

acqua nella sorgente

Idea intuitiva dell'algoritmo: pompare

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

acqua nella sorgente

Idea intuitiva dell'algoritmo: pompare

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

acqua nella sorgente

Idea intuitiva dell'algoritmo: pompare

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

acqua nella sorgente

Idea intuitiva dell'algoritmo: pompare
acqua nella sorgente

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

Idea intuitiva dell'algoritmo: pompare
acqua nella sorgente

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

Idea intuitiva dell'algoritmo: pompare

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

acqua nella sorgente

Idea intuitiva dell'algoritmo: pompare

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

acqua nella sorgente

Idea intuitiva dell'algoritmo: pompare

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

acqua nella sorgente

Idea intuitiva dell'algoritmo: pompare
acqua nella sorgente

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

Idea intuitiva dell'algoritmo: pompare
acqua nella sorgente

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

Idea intuitiva dell'algoritmo: pompare
acqua nella sorgente

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocita costante

Verso l'algoritmo: approccio greedy (goloso)

mantiene per ogni hodo v una
stima (per eccesso) D, alla
distanza d(s,v). Inizialmente,
unica stima finita D_=0.

mantiene un inseme X di nodi per
cui le stime sono esatte; e anche
un albero T dei cammini minimi
verso nodi in X (albero nero).
Inizialmente X={s}, T non ha
archi.

ad ogni passo aggiunge a X il
hodo u in V-X la cui stima &
minima; aggiunge a T uno
specifico arco (arancione)
entrante inu

aggiorna le stime guardando i
nodi adiacenti a u

I nodi da aggiungere progressivamente
a X (e quindi a T) sono mantenuti in
una coda d1 priorita, associati ad un
unico arco (arco arancione) che li
connette a T.

la stima per un nodo ye V-X ¢:
D,,~min{D,+w(x,y) : (x.y)<E, xeX }
[’arco che fornisce 1l minimo € I’arco
arancione.

Se y € 1n coda con arco (X,y) associato,
e se dopo aver aggiunto u a T troviamo
un arco (u,y) tale che

D, w(wy) < D +w(X,y), allora
rimpiazziamo (x,y) con (u,y), ed
aggiorniamo Dy,

nodi per i quali non & stato
“scoperto” nessun cammino;
stima=+oo

nodi “scoperti”; hanno stima<+e
sono mantenuti in una coda con
priorita insieme al "miglior"
arco entrante (arancione)

Pseudocodice
algoritmo Dijkstra(grafo G,vertice s) — albero
for each (vertice uin G) do Dsy < +00 Nt 18 & v slleims che
T «— albero formato dal solo nodo s; X€&
CodaPriorita S

contiene tutti 1 nod1 in X

D.. — 0 piu 1 nodi correntemente
S.insert(s,0) contenuti nella coda di
while (not S.isEmpty()) do priorita (nodi arancioni);
u <S.deleteMin(); X< X U{uj ¢ composto cio¢ dagli
for each (arco (u,v)in G) do archi di T (albero dei
if (D,,, = +0oc) then
\s.insert&hihﬂ—kuﬂﬂﬂﬂ) cgnnngprnnnqurQUeﬁo
Dy — Dy + w(u,v) al nodi in X) piu gli
rendi u padre di v in T archi arancioni
else if (Dgy, + w(u,v) < Dg,) then (potenziali archi da

S.decreaseKey (v, Do~ D= w(u, v)) aggiung ere a T)
D sv D su T "[LJ{:_ i, "LT)

rendi « nuovo padre di v in 7’
return 7’

correttezza

Lemma

Quando il nodo v viene estratto dalla coda con priorita vale:

- D.,=d(s,v) (stima esatta)
- il cammino da s a v nell'albero corrente ha costo d(s,v) (camm. min in G)

dim (per assurdo)
Sia v il primo nodo per cui l'alg sbaglia
sia (u,v) I'arco aggiunto all'albero corrente (arco arancione)

camm min verso v di costo
<d(s,u)+w(u,v)

wVv
T: albero

corrente D,=d(s,u) D _=d(s,u)+w(u,v)

Lemma

Quando il nodo v viene estratto dalla coda con priorita vale:

- D.,=d(s,v) (stima esatta)
- il cammino da s a v nell'albero corrente ha costo d(s,v) (camm. min in G)

dim (per assurdo)

Sia v il primo nodo per cui l'alg sbaglia
sia (u,v) I'arco aggiunto all'albero corrente (arco arancione)

(x.,y): primo arco del cammino t.c xeTeyeT camm min verso v di costo

<d(s,u)+w(u,v)

ox—d(s,X)

T: albero \‘Y

corrente D =d(s,u D ,=d(s,u)+w(u,v)

Lemma

Quando il nodo v viene estratto dalla coda con priorita vale:

- D.,=d(s,v)

(stima esatta)

- il cammino da s a v nell'albero corrente ha costo d(s,v) (camm. min in G)

dim (per assurdo)

Sia v il primo nodo per cui l'alg sbaglia

sia (u,v) I'arco aggiunto all'albero corrente (arco arancione)

(x,y): primo arco del cammino t.c xeTeyeT

ox—d(s,X)

~_
T: albero \‘Y
corrente D =d(s,u
—)

D, < d(s,x)tw(X,y)< d(s,u)+w(u,v)

camm min verso v di costo
<d(s,u)+w(u,v)

TESy ha costo d(s,x)+w(x,y)
<d(s,u)+w(u,v)

>0

D =d(s,u)+w(u,v)

assurdo: l'alg avrebbe estrattoy e non v

(se y=v, v avrebbe avuto una stima piti piccola) M

analisi della complessita

algoritmo Dijkstra(grafo G,vertice s) — albero
for each (vertice uin G) do Dy, «— +0o0

T + albero formato dal solo nodo s; X<O
CodaPriorita S
Dgs — 0
S.insert(s,0)
while (not S.isEmpty()) do
u «—S.deleteMin(); XX U{u}
for each (arco (u,v) in G) do
if (D, = +00) then
S.insert(v, Dy, + w(u,v))
Dy «— Dgy + w(u,v)
rendi u padre di v in T
else if (Dg, + w(u,v) < Dg,) then
S.decreaseKey(v, Dy~ Doy~ w(u,v))

D sv D S + "[LJ{:_ U, "LT)

rendi « nuovo padre di v in 7’
return 7’

se si escludono le
operazioni sulla
coda con priorita:

Tempo
O(m+n)

quanto costano le
operazioni sulla
coda con priorita?

Tempo di esecuzione: implementazioni elementari

Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti 1 nodi siano connessi ad s, avremo n insert, n deleteMin

¢ al piu nella coda di priorita, al costo di:
Insert | DelMin
Array non ord. | O(1) O(n)
Array ordinato | O(n) O(1)
Lista non ord. O(1) O (n)
Lista ordinata O(n) O(1)

n-O(1) + n:O(n) +
n-O(n) + n-O(1) +
n-O(1) + n-O(n) +
n-O(n) +n-O(1) +

+

= O(n”) con array non ordinati
= con array ordinati
= O(n”) con liste non ordinate

= con liste ordinate

Tempo di esecuzione: implementazioni efficienti

Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti 1 nodi siano connessi ad s, avremo n insert, n deleteMin

¢ al piu nella coda di priorita, al costo di:
Insert | DelMin
Heap binario | O(logn)| O(logn)
Heap Binom. | O(logn) | O(logn)
Heap Fibon. | O(1) | O(logn)

(ammortizzata)

* n'O(logn)+n-O(logn) + -
) utilizzando heap binari o binomiali
¢« n:O(1) +n-O(logn)" + = O(m +n-log n) utilizzando
heap di Fibonacci

soluzione migliore: mai peggiore,
a volte meglio delle altre

Tempo di esecuzione: implementazioni efficienti

Supponendo che 1l grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti 1 nodi siano connessi ad s, avremo n insert,
¢ al piu nella coda di priorita, al costo di:

Insert

Heap binario | O(logn)
Heap Binom. | O(log n)
Heap Fibon. | O(1)

 n-O(lo
) utilizze temp O

« n-O(l)

N O(m+n log n)

SOIUZione migliol <t 111l l.lpyylvl)
a volte meglio delle altre

) utilizzando

Osservazione sulla

e Ricordiamo che le complessita computazionali esposte
per la sono valide supponendo di1 avere
un puntatore diretto all’elemento su cui eseguire
I’operazione. Come possiamo garantire tale condizione?

« Semplicemente mantenendo un puntatore tra 1l nodo v
nell’array dei1 nodi della lista di adiacenza del grafo e
I’elemento nella coda di priorita associato al nodo v; tale
puntatore viene inizializzato nella fase di inserimento di
quest’ultimo all’interno della coda.

	Slide 1: Algoritmi e Strutture Dati
	Slide 2
	Slide 3
	Slide 4: Esempio: cammino minimo su un grafo pesato
	Slide 5: Esempio: cammino minimo su un grafo pesato
	Slide 6: Esempio: cammino minimo su un grafo pesato
	Slide 7: Esempio: cammino minimo su un grafo pesato
	Slide 8: Esempio: cammino minimo su un grafo pesato
	Slide 9
	Slide 10
	Slide 11: esiste sempre un cammino minimo fra due nodi?
	Slide 12: …no!
	Slide 13: sottostruttura ottima
	Slide 14: disuguaglianza triangolare
	Slide 15: Cammini minimi a singola sorgente
	Slide 16: Problema del calcolo dei cammini minimi a singola sorgente
	Slide 17: Albero dei cammini minimi (o Shortest Path Tree - SPT)
	Slide 18: Albero dei cammini minimi (o Shortest Path Tree - SPT)
	Slide 19: Esercizio
	Slide 20: Algoritmo di Dijkstra
	Slide 21: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 22: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 23: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 24: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 25: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 26: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 27: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 28: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 29: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 30: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 31: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 32: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 33: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 34: Verso l’algoritmo: approccio greedy (goloso)
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: correttezza
	Slide 55
	Slide 56
	Slide 57
	Slide 58: analisi della complessità
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Osservazione sulla decreaseKey

