
Capitolo 13

Cammini minimi:

algoritmo di Dijkstra

Algoritmi e Strutture Dati

Cammini minimi in grafi:
cammini minimi a singola sorgente

(senza pesi negativi)

Cammini minimi in grafi pesati

Sia G=(V,E,w) un grafo orientato o non orientato con pesi w

reali sugli archi. Il costo o lunghezza di un cammino

=<v0,v1,v2,… ,vk> è:

Un cammino minimo tra una coppia di vertici x e y è un

cammino avente costo minore o uguale a quello di ogni

altro cammino tra gli stessi vertici.

NOTA: Il cammino minimo non è necessariamente unico.

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati

Copyright © 2004 - The McGraw - Hill Companies, srl4

Esempio:

cammino minimo su un grafo pesato

u

3

v

2

6

7

4

5

-10

18
2

9

6

-1
8

30

20

44

16

11

6

18

6

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati

Copyright © 2004 - The McGraw - Hill Companies, srl5

Esempio:

cammino minimo su un grafo pesato

cammino di

lunghezza

43

u

3

v

2

6

7

4

5

-10

18
2

9

6

-1
8

30

20

44

16

11

6

18

6

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati

Copyright © 2004 - The McGraw - Hill Companies, srl6

Esempio:

cammino minimo su un grafo pesato

u

3

v

2

6

7

4

5

-10

18
2

9

6

-1
8

30

20

44

16

11

6

18

6

cammino di

lunghezza

35

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati

Copyright © 2004 - The McGraw - Hill Companies, srl7

Esempio:

cammino minimo su un grafo pesato

u

3

v

2

6

7

4

5

-10

18
2

9

6

-1
8

30

20

44

16

11

6

18

6

la distanza dG(u,v) da u a

v in G è il costo di un

qualsiasi cammino

minimo da u a v.

Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati

Copyright © 2004 - The McGraw - Hill Companies, srl8

Esempio:

cammino minimo su un grafo pesato

la distanza dG(u,v) da u a

v in G è il costo di un

qualsiasi cammino

minimo da u a v.

Problema: dati u e v, trovare un cammino minimo (e/o distanza) da u a v

u

3

v

2

6

7

4

5

-10

18
2

9

6

-1
8

30

20

44

16

11

6

18

6

dG(u,v)=17

problema:
trovare il cammino minimo fra due nodi

problema:
trovare il cammino minimo fra due nodi

pesi archi:
lunghezze

pesi archi:
tempo
percorrenza

strada
più breve

strada
più veloce

esiste sempre un cammino
minimo fra due nodi?

…no!
• se non esiste nessun cammino da u a v

– d(u,v)=+∞

• se c’è un cammino che contiene un ciclo
(raggiungibile) il cui costo è negativo
– d(u,v)=-∞

u v

Σw(e)<0
Oss: se G non contiene
cicli negativi, esistono
cammini minimi che
sono cammini semplici

non contiene
nodi ripetuti

sottostruttura ottima
Ogni sottocammino di un cammino

minimo è un cammino minimo.

u x vy

dim: tecnica cut&paste

ipotetico cammino
più corto da x a y allora il cammino

da u a v non era minimo!

disuguaglianza triangolare

per ogni u, v, x  V, vale:

 d(u,v)  d(u,x) + d(x,v)

u v

il cammino da u a v che passa
per x è un cammino nel grafo
e quindi il suo costo è almeno il costo
del cammino minimo da u a v

x

Cammini minimi a singola sorgente

Problema del calcolo dei cammini

minimi a singola sorgente

Due varianti:

• Dato G=(V,E,w), sV, calcola le distanze di

tutti i nodi da s, ovvero, dG(s,v) per ogni vV

• Dato G=(V,E,w), sV, calcola l’albero dei

cammini minimi di G radicato in s

Albero dei cammini minimi
(o Shortest Path Tree - SPT)

T è un albero dei cammini minimi con
sorgente s di un grafo G=(V,E,w) se:

- T è un albero radicato in s

- per ogni vV, vale:
dT(s,v)=dG(s,v)

s

1 1
0

4 5

1

1 1

5 6

2

7

T

A

B

D

C E

F

G

s 0

11

2

2

3

3

B

A C

D E

FG

albero
BFS

0

11

2 2

3 3

s

per grafi non pesati:
SPT radicato in s

=
Albero BFS radicato in s

Albero dei cammini minimi
(o Shortest Path Tree - SPT)

Esercizio
1. Progettare un algoritmo che, dato un grafo diretto e pesato G=(V,E,w) e

un suo albero dei cammini minimi radicato in un nodo s, calcola in tempo

lineare (nella dimensione del grafo) le distanze di ogni nodo da s.

2. Progettare un algoritmo che, dato un grafo diretto e pesato G=(V,E,w) e le

distanze di ogni nodo da un nodo s, calcola in tempo lineare (nella

dimensione del grafo) un albero dei cammini minimi di G radicato in s.

Osservazione: le due varianti del problema sono essenzialmente

equivalenti

Algoritmo di Dijkstra

Assunzione: tutti gli archi hanno peso
non negativo, ovvero ogni arco (u,v)
del grafo ha peso w(u,v)0

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

2

24

archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

Idea intuitiva dell’algoritmo: pompare
acqua nella sorgente

A

B

C E

D

s

2

4

1

2

24

2archi come tubi

peso degli archi
come lunghezza

acqua scorre a
velocità costante

0

2

3 5

4

Verso l’algoritmo: approccio greedy (goloso)

1. mantiene per ogni nodo v una
stima (per eccesso) Dsv alla
distanza d(s,v). Inizialmente,
unica stima finita Dss=0.

2. mantiene un inseme X di nodi per
cui le stime sono esatte; e anche
un albero T dei cammini minimi
verso nodi in X (albero nero).
Inizialmente X={s}, T non ha
archi.

3. ad ogni passo aggiunge a X il
nodo u in V-X la cui stima è
minima; aggiunge a T uno
specifico arco (arancione)
entrante in u

4. aggiorna le stime guardando i
nodi adiacenti a u

Copyright © 2004 - The McGraw - Hill Companies, srl34

s

X

G

I nodi da aggiungere progressivamente

a X (e quindi a T) sono mantenuti in

una coda di priorità, associati ad un

unico arco (arco arancione) che li

connette a T.

la stima per un nodo yV-X è:

Dsy=min{Dsx+w(x,y) : (x,y)E, xX }.

L’arco che fornisce il minimo è l’arco

arancione.

Se y è in coda con arco (x,y) associato,

e se dopo aver aggiunto u a T troviamo

un arco (u,y) tale che

Dsu+w(u,y) < Dsx+w(x,y), allora

rimpiazziamo (x,y) con (u,y), ed

aggiorniamo Dsy

s

X

G

nodi per i quali non è stato
“scoperto” nessun cammino;
stima=+∞

nodi “scoperti”; hanno stima<+∞
sono mantenuti in una coda con
priorità insieme al “miglior”
arco entrante (arancione)

y

Pseudocodice

Nota: T è un albero che

contiene tutti i nodi in X

più i nodi correntemente

contenuti nella coda di

priorità (nodi arancioni);

è composto cioè dagli

archi di T (albero dei

cammini minimi ristretto

ai nodi in X) più gli

archi arancioni

(potenziali archi da

aggiungere a T)



; X

; XX {u}

Copyright © 2004 - The McGraw - Hill Companies, srl37

A

B

C E

D

s

10

3

1 4

2

2

7 98
0

+

+ +

+

Copyright © 2004 - The McGraw - Hill Companies, srl38

B

C E

D

s

10

3

1 4

2

2

7 98
0

+

+ +

+

A

Copyright © 2004 - The McGraw - Hill Companies, srl39

B

C E

D

s

10

3

1 4

2

2

7 98
0

10

+ +

+

A

Copyright © 2004 - The McGraw - Hill Companies, srl40

B

C E

D

s

10

3

1 4

2

2

7 98
0

10

+ +

+

A

Copyright © 2004 - The McGraw - Hill Companies, srl41

B

C E

D

s

10

3

1 4

2

2

7 98
0

10

3 +

+

A

Copyright © 2004 - The McGraw - Hill Companies, srl42

B

C E

D

s

10

3

1 4

2

2

7 98
0

10

3 +

+

A

Copyright © 2004 - The McGraw - Hill Companies, srl43

B

E

D

s

10

3

1 4

2

2

7 98
0

10

3 +

+

A

C

Copyright © 2004 - The McGraw - Hill Companies, srl44

B

E

D

s

10

3

1 4

2

2

7 98
0

10

3 +

+

A

C

Copyright © 2004 - The McGraw - Hill Companies, srl45

B

E

D

s

10

3

1 4

2

2

7 98
0

10

3 5

+

A

C

Copyright © 2004 - The McGraw - Hill Companies, srl46

B

E

D

s

10

3

1 4

2

2

7 98
0

10

3 5

11

A

C

Copyright © 2004 - The McGraw - Hill Companies, srl47

B

E

D

s

10

3

1 4

2

2

7 98
0

7

3 5

11

A

C

Copyright © 2004 - The McGraw - Hill Companies, srl48

B

E

D

s

10

3

1 4

2

2

7 98
0

7

3 5

11

A

C

Copyright © 2004 - The McGraw - Hill Companies, srl49

B D

s

10

3

1 4

2

2

7 98
0

7

3 5

11

A

C E

Copyright © 2004 - The McGraw - Hill Companies, srl50

D

s

10

3

1 4

2

2

7 98
0

7

3 5

11

A

C E

B

Copyright © 2004 - The McGraw - Hill Companies, srl51

D

s

10

3

1 4

2

2

7 98
0

7

3 5

9

A

C E

B

Copyright © 2004 - The McGraw - Hill Companies, srl52

s

10

3

1 4

2

2

7 98
0

7

3 5

9

A

C E

B D

Copyright © 2004 - The McGraw - Hill Companies, srl53

s

10

3

1 4

2

2

7 98
0

7

3 5

9

A

C E

B D

correttezza

Quando il nodo v viene estratto dalla coda con priorità vale:
- Dsv=d(s,v) (stima esatta)
- il cammino da s a v nell’albero corrente ha costo d(s,v) (camm. min in G)

Lemma

d(s,u)

dim (per assurdo)

Sia v il primo nodo per cui l’alg sbaglia
sia (u,v) l’arco aggiunto all’albero corrente (arco arancione)

Dsu= Dsv=d(s,u)+w(u,v)

camm min verso v di costo

<d(s,u)+w(u,v)

s

u v
w(u,v)

T: albero

corrente

Quando il nodo v viene estratto dalla coda con priorità vale:
- Dsv=d(s,v) (stima esatta)
- il cammino da s a v nell’albero corrente ha costo d(s,v) (camm. min in G)

Lemma

s

u v
d(s,u)

w(u,v)

dim (per assurdo)

Sia v il primo nodo per cui l’alg sbaglia
sia (u,v) l’arco aggiunto all’albero corrente (arco arancione)

Dsu= Dsv=d(s,u)+w(u,v)

camm min verso v di costo

<d(s,u)+w(u,v)

x y

(x,y): primo arco del cammino t.c xT e yT

w(x,y)

Dsx=d(s,x)
≥0

T: albero

corrente

Quando il nodo v viene estratto dalla coda con priorità vale:
- Dsv=d(s,v) (stima esatta)
- il cammino da s a v nell’albero corrente ha costo d(s,v) (camm. min in G)

Lemma

s

u v
d(s,u)

w(u,v)

dim (per assurdo)

Sia v il primo nodo per cui l’alg sbaglia
sia (u,v) l’arco aggiunto all’albero corrente (arco arancione)

Dsu= Dsv=d(s,u)+w(u,v)

camm min verso v di costo

<d(s,u)+w(u,v)

x y

(x,y): primo arco del cammino t.c xT e yT

w(x,y)

Dsx=d(s,x)
≥0

T: albero

corrente

sy

Dsy≤ d(s,x)+w(x,y)< d(s,u)+w(u,v)

ha costo d(s,x)+w(x,y)

 <d(s,u)+w(u,v)

assurdo: l’alg avrebbe estratto y e non v
 (se y=v, v avrebbe avuto una stima più piccola)

analisi della complessità

se si escludono le
operazioni sulla
coda con priorità:

; X

; XX {u}

tempo
O(m+n)

quanto costano le
operazioni sulla

coda con priorità?

Tempo di esecuzione: implementazioni elementari
Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti i nodi siano connessi ad s, avremo n insert, n deleteMin

e al più m decreaseKey nella coda di priorità, al costo di:

• n·O(1) + n·O(n) + O(m)·O(1) = O(n2) con array non ordinati

• n·O(n) + n·O(1) + O(m)·O(n) = O(m·n) con array ordinati

• n·O(1) + n·O(n) + O(m)·O(1) = O(n2) con liste non ordinate

• n·O(n) + n·O(1) + O(m)·O(n) = O(m·n) con liste ordinate

Insert DelMin DecKey

Array non ord. O(1) O(n) O(1)

Array ordinato O(n) O(1) O(n)

Lista non ord. O(1) O (n) O(1)

Lista ordinata O(n) O(1) O(n)

Tempo di esecuzione: implementazioni efficienti

• n·O(log n) + n·O(log n) + O(m)·O(log n) = O(m·log n)

utilizzando heap binari o binomiali

• n·O(1) + n·O(log n)* + O(m)·O(1)* = O(m + n·log n) utilizzando

heap di Fibonacci

Insert DelMin DecKey

Heap binario O(log n) O(log n) O(log n)

Heap Binom. O(log n) O(log n) O(log n)

Heap Fibon. O(1) O(log n)*

(ammortizzata)
O(1)*

(ammortizzata)

Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti i nodi siano connessi ad s, avremo n insert, n deleteMin

e al più m decreaseKey nella coda di priorità, al costo di:

soluzione migliore: mai peggiore,
a volte meglio delle altre

Tempo di esecuzione: implementazioni efficienti

• n·O(log n) + n·O(log n) + O(m)·O(log n) = O(m·log n)

utilizzando heap binari o binomiali

• n·O(1) + n·O(log n)* + O(m)·O(1)* = O(m + n·log n) utilizzando

heap di Fibonacci

Insert DelMin DecKey

Heap binario O(log n) O(log n) O(log n)

Heap Binom. O(log n) O(log n) O(log n)

Heap Fibon. O(1) O(log n)*

(ammortizzata)
O(1)*

(ammortizzata)

Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e
supponendo che tutti i nodi siano connessi ad s, avremo n insert, n deleteMin

e al più m decreaseKey nella coda di priorità, al costo di:

soluzione migliore: mai peggiore,
a volte meglio delle altre

tempo

O(m+n log n)

Osservazione sulla decreaseKey

• Ricordiamo che le complessità computazionali esposte

per la decreaseKey sono valide supponendo di avere

un puntatore diretto all’elemento su cui eseguire

l’operazione. Come possiamo garantire tale condizione?

• Semplicemente mantenendo un puntatore tra il nodo v

nell’array dei nodi della lista di adiacenza del grafo e

l’elemento nella coda di priorità associato al nodo v; tale

puntatore viene inizializzato nella fase di inserimento di

quest’ultimo all’interno della coda.

	Slide 1: Algoritmi e Strutture Dati
	Slide 2
	Slide 3
	Slide 4: Esempio: cammino minimo su un grafo pesato
	Slide 5: Esempio: cammino minimo su un grafo pesato
	Slide 6: Esempio: cammino minimo su un grafo pesato
	Slide 7: Esempio: cammino minimo su un grafo pesato
	Slide 8: Esempio: cammino minimo su un grafo pesato
	Slide 9
	Slide 10
	Slide 11: esiste sempre un cammino minimo fra due nodi?
	Slide 12: …no!
	Slide 13: sottostruttura ottima
	Slide 14: disuguaglianza triangolare
	Slide 15: Cammini minimi a singola sorgente
	Slide 16: Problema del calcolo dei cammini minimi a singola sorgente
	Slide 17: Albero dei cammini minimi (o Shortest Path Tree - SPT)
	Slide 18: Albero dei cammini minimi (o Shortest Path Tree - SPT)
	Slide 19: Esercizio
	Slide 20: Algoritmo di Dijkstra
	Slide 21: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 22: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 23: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 24: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 25: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 26: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 27: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 28: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 29: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 30: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 31: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 32: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 33: Idea intuitiva dell’algoritmo: pompare acqua nella sorgente
	Slide 34: Verso l’algoritmo: approccio greedy (goloso)
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: correttezza
	Slide 55
	Slide 56
	Slide 57
	Slide 58: analisi della complessità
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Osservazione sulla decreaseKey

