
Capitolo 13

Cammini minimi:

algoritmo di Dijkstra

Algoritmi e Strutture Dati



Cammini minimi in grafi:
cammini minimi a singola sorgente 

(senza pesi negativi)



Cammini minimi in grafi pesati

Sia G=(V,E,w) un grafo orientato o non orientato con pesi w 

reali sugli archi. Il costo o lunghezza di un cammino 

=<v0,v1,v2,… ,vk> è:

Un cammino minimo tra una coppia di vertici x e y è un 

cammino avente costo minore o uguale a quello di ogni 

altro cammino tra gli stessi vertici.

NOTA: Il cammino minimo non è necessariamente unico.
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Esempio:

cammino minimo su un grafo pesato
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Esempio:

cammino minimo su un grafo pesato

cammino di 

lunghezza

43
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Esempio:

cammino minimo su un grafo pesato
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Esempio:

cammino minimo su un grafo pesato
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la distanza dG(u,v) da u a 

v in G è il costo di un 

qualsiasi cammino 

minimo da u a v.
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Esempio:

cammino minimo su un grafo pesato

la distanza dG(u,v) da u a 

v in G è il costo di un 

qualsiasi cammino 

minimo da u a v.

Problema: dati u e v, trovare un cammino minimo (e/o distanza) da u a v
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problema: 
trovare il cammino minimo fra due nodi



problema: 
trovare il cammino minimo fra due nodi

pesi archi:
lunghezze 

pesi archi:
tempo 
percorrenza

strada 
più breve

strada 
più veloce



esiste sempre un cammino 
minimo fra due nodi?



…no!
• se non esiste nessun cammino da u a v

– d(u,v)=+∞

• se c’è un cammino che contiene un ciclo 
(raggiungibile) il cui costo è negativo
– d(u,v)=-∞

u v

Σw(e)<0
Oss:  se G non contiene
cicli negativi, esistono
cammini minimi che 
sono cammini semplici

non contiene 
nodi ripetuti



sottostruttura ottima
Ogni sottocammino di un cammino 

minimo è un cammino minimo.

u x vy

dim: tecnica cut&paste

ipotetico cammino 
più corto da x a y allora il cammino 

da u a v non era minimo!



disuguaglianza triangolare

per ogni u, v, x  V, vale: 

      d(u,v)  d(u,x) + d(x,v)

u v

il cammino da u a v che passa
per x è un cammino nel grafo 
e quindi il suo costo è almeno il costo
del cammino minimo da u a v

x



Cammini minimi a singola sorgente



Problema del calcolo dei cammini 

minimi a singola sorgente

Due varianti:

• Dato G=(V,E,w), sV, calcola le distanze di 

tutti i nodi da s, ovvero, dG(s,v) per ogni vV

• Dato G=(V,E,w), sV, calcola l’albero dei 

cammini minimi di G radicato in s



Albero dei cammini minimi 
(o Shortest Path Tree - SPT)

T è un albero dei cammini minimi con 
sorgente s di un grafo G=(V,E,w) se:

- T è un albero radicato in s

- per ogni vV, vale:
dT(s,v)=dG(s,v)
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=
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Albero dei cammini minimi 
(o Shortest Path Tree - SPT)



Esercizio 
1. Progettare un algoritmo che, dato un grafo diretto e pesato G=(V,E,w) e 

un suo albero dei cammini minimi radicato in un nodo s, calcola in tempo 

lineare (nella dimensione del grafo) le distanze di ogni nodo da s.

2. Progettare un algoritmo che, dato un grafo diretto e pesato G=(V,E,w) e le 

distanze di ogni nodo da un nodo s, calcola in tempo lineare (nella 

dimensione del grafo) un albero dei cammini minimi di G radicato in s.

Osservazione: le due varianti del problema sono essenzialmente 

equivalenti



Algoritmo di Dijkstra

Assunzione: tutti gli archi hanno peso 
non negativo, ovvero ogni arco (u,v) 
del grafo ha peso w(u,v)0



Idea intuitiva dell’algoritmo: pompare 
acqua nella sorgente
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Verso l’algoritmo: approccio greedy (goloso)

1. mantiene per ogni nodo v una 
stima (per eccesso) Dsv alla 
distanza d(s,v). Inizialmente, 
unica stima finita Dss=0.

2. mantiene un inseme X di nodi per 
cui le stime sono esatte; e anche 
un albero T dei cammini minimi 
verso nodi in X (albero nero). 
Inizialmente X={s}, T non ha 
archi. 

3. ad ogni passo aggiunge a X il 
nodo u in V-X la cui stima è 
minima; aggiunge a T uno 
specifico arco (arancione) 
entrante in u

4. aggiorna le stime guardando i 
nodi adiacenti a u 
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s

X

G



I nodi da aggiungere progressivamente 

a X (e quindi a T) sono mantenuti in 

una coda di priorità, associati ad un 

unico arco (arco arancione) che li 

connette a T. 

la stima per un nodo yV-X è:

Dsy=min{Dsx+w(x,y) : (x,y)E, xX }. 

L’arco che fornisce il minimo è l’arco 

arancione.

Se y è in coda con arco (x,y) associato, 

e se dopo aver aggiunto u a T troviamo 

un arco (u,y) tale che 

Dsu+w(u,y) < Dsx+w(x,y), allora  

rimpiazziamo (x,y) con (u,y), ed 

aggiorniamo Dsy

s

X

G

nodi per i quali non è stato 
“scoperto” nessun cammino; 
stima=+∞

nodi “scoperti”; hanno stima<+∞
sono mantenuti in una coda con 
priorità insieme al “miglior” 
arco entrante (arancione)

y



Pseudocodice

Nota: T è un albero che 

contiene tutti i nodi in X 

più i nodi correntemente 

contenuti nella coda di 

priorità (nodi arancioni); 

è composto cioè dagli 

archi di T (albero dei 

cammini minimi ristretto 

ai nodi in X) più gli 

archi arancioni 

(potenziali archi da 

aggiungere a T)



; X

; XX {u}
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correttezza



Quando il nodo v viene estratto dalla coda con priorità vale:
- Dsv=d(s,v)                                                                      (stima esatta)
- il cammino da s a v nell’albero corrente ha costo d(s,v) (camm. min in G)

Lemma

d(s,u)

dim (per assurdo)

Sia v il primo nodo per cui l’alg sbaglia 
sia (u,v) l’arco aggiunto all’albero corrente (arco arancione)

Dsu= Dsv=d(s,u)+w(u,v)

camm min verso v di costo 

<d(s,u)+w(u,v)

s

u v
w(u,v)

T: albero 

corrente



Quando il nodo v viene estratto dalla coda con priorità vale:
- Dsv=d(s,v)                                                                      (stima esatta)
- il cammino da s a v nell’albero corrente ha costo d(s,v) (camm. min in G)

Lemma

s
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w(u,v)

dim (per assurdo)

Sia v il primo nodo per cui l’alg sbaglia 
sia (u,v) l’arco aggiunto all’albero corrente (arco arancione)

Dsu= Dsv=d(s,u)+w(u,v)

camm min verso v di costo 

<d(s,u)+w(u,v)

x y

(x,y): primo arco del cammino t.c xT e yT

w(x,y)

Dsx=d(s,x)
≥0

T: albero 

corrente



Quando il nodo v viene estratto dalla coda con priorità vale:
- Dsv=d(s,v)                                                                      (stima esatta)
- il cammino da s a v nell’albero corrente ha costo d(s,v) (camm. min in G)

Lemma

s

u v
d(s,u)

w(u,v)

dim (per assurdo)

Sia v il primo nodo per cui l’alg sbaglia 
sia (u,v) l’arco aggiunto all’albero corrente (arco arancione)

Dsu= Dsv=d(s,u)+w(u,v)

camm min verso v di costo 

<d(s,u)+w(u,v)

x y

(x,y): primo arco del cammino t.c xT e yT

w(x,y)

Dsx=d(s,x)
≥0

T: albero 

corrente

sy

Dsy≤ d(s,x)+w(x,y)< d(s,u)+w(u,v)

ha costo d(s,x)+w(x,y) 

              <d(s,u)+w(u,v)

assurdo: l’alg avrebbe estratto y e non v 
                 (se y=v, v avrebbe avuto una stima più piccola)



analisi della complessità



se si escludono le 
operazioni sulla 
coda con priorità: 

; X

; XX {u}

tempo 
O(m+n)

quanto costano le 
operazioni sulla 

coda con priorità? 



Tempo di esecuzione: implementazioni elementari
Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e 
supponendo che tutti i nodi siano connessi ad s, avremo n insert, n deleteMin

e al più m decreaseKey nella coda di priorità, al costo di:

• n·O(1) + n·O(n) + O(m)·O(1) = O(n2) con array non ordinati

• n·O(n) + n·O(1) + O(m)·O(n) = O(m·n) con array ordinati

• n·O(1) + n·O(n) + O(m)·O(1) = O(n2) con liste non ordinate

• n·O(n) + n·O(1) + O(m)·O(n) = O(m·n) con liste ordinate

Insert DelMin DecKey

Array non ord. O(1) O(n) O(1)

Array ordinato O(n) O(1) O(n)

Lista non ord. O(1) O (n) O(1)

Lista ordinata O(n) O(1) O(n)



Tempo di esecuzione: implementazioni efficienti

• n·O(log n) + n·O(log n) + O(m)·O(log n) = O(m·log n)

utilizzando heap binari o binomiali

• n·O(1) + n·O(log n)* + O(m)·O(1)* = O(m + n·log n)  utilizzando 

heap di Fibonacci

Insert DelMin DecKey

Heap binario O(log n) O(log n) O(log n)

Heap Binom. O(log n) O(log n) O(log n)

Heap Fibon. O(1) O(log n)*

(ammortizzata)
O(1)*

(ammortizzata)

Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e 
supponendo che tutti i nodi siano connessi ad s, avremo n insert, n deleteMin

e al più m decreaseKey nella coda di priorità, al costo di:

soluzione migliore: mai peggiore, 
a volte meglio delle altre
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• n·O(log n) + n·O(log n) + O(m)·O(log n) = O(m·log n)

utilizzando heap binari o binomiali

• n·O(1) + n·O(log n)* + O(m)·O(1)* = O(m + n·log n)  utilizzando 

heap di Fibonacci

Insert DelMin DecKey

Heap binario O(log n) O(log n) O(log n)

Heap Binom. O(log n) O(log n) O(log n)

Heap Fibon. O(1) O(log n)*

(ammortizzata)
O(1)*

(ammortizzata)

Supponendo che il grafo G sia rappresentato tramite liste di adiacenza, e 
supponendo che tutti i nodi siano connessi ad s, avremo n insert, n deleteMin

e al più m decreaseKey nella coda di priorità, al costo di:

soluzione migliore: mai peggiore, 
a volte meglio delle altre

tempo 

O(m+n log n)



Osservazione sulla decreaseKey

• Ricordiamo che le complessità computazionali esposte 

per la decreaseKey sono valide supponendo di avere 

un puntatore diretto all’elemento su cui eseguire 

l’operazione. Come possiamo garantire tale condizione?

• Semplicemente mantenendo un puntatore tra il nodo v

nell’array dei nodi della lista di adiacenza del grafo e 

l’elemento nella coda di priorità associato al nodo v; tale 

puntatore viene inizializzato nella fase di inserimento di 

quest’ultimo all’interno della coda. 
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