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Approximation algorithms: 
Episode IV 

(the final one)



Primal-dual schema



High-level idea of the approach

start with: 
- an infeasible integral primal solution, and 
- a dual feasible solution
Iteratively:
- improve the dual solution 
- improve the feasibility of the integral primal solution
Until a feasible integral primal solution is obtained

analysis: prove the approximation guarantee using the value of the dual 
solution as a lower bound

Algorithm



Input:

Feasible solution:

- universe U of n elements 
- a collection of subsets of U, S={S1,...,Sk}

- each SS has a positive cost c(S)

a subcollection CS that covers U (whose union is U)

measure (min):

cost of C :

minimum Set Cover problem

frequency of an element e: number of sets e belongs to


SC

c(S)

f: frequency of the most frequent element



subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS{0,1} SS

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS0 SS

LP-relaxation

ILP:

subject to

eU

maximize 
e U

ye


e:eS

ye  c(S)

ye0

SS

dual program



idea: pick only tight sets & do not overpack any set.

Given a dual solution y, we say that a set S is tight if 
e S

ye =c(S)



4 4

2

3

9

6



4 4

2

3

9

6



4 4

2

3

9

6

3



4 4

2

3

9

6

3



4 4

2

3

9

6

3



4 4

2

3

9

6

3

1



4 4

2

3

9

6

3

1



4 4

2

3

9

6

3

1



4 4

2

3

9

6

3

1 6



4 4

2

3

9

6

3

1 6



Theorem 
The algorithm is an f-approximation algorithm for the SC problem.

proof

each element e:
- has fye amount of money
- pays ye for each picked set S containing e

since y is feasible:

the computed cover is clearly feasible. 

we claim that: 
SS

c(S)xS  f
e U

ye

Think of it as 
money you can use 
to buy the picked 
primal solution

since each e is in at most f sets, e has enough money for its payments

since each picked set S is tight, S is fully paid for by the elements it 
contains


e U

ye  OPT



OPT=1+

returned solution has 
cost n+

tight example

suppose the algorithm 
raises first variable  

n+1 elements
f=n

yen



The Steiner Forest 
problem



Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs 
- collection of disjoint subsets of V, S1,...,Sk

a forest F in which each pair of vertices belonging to the same set Si is 
connected

measure (min):

cost of F :

minimum Steiner Forest problem


eE(F)

c(e)
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Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs 
- collection of disjoint subsets of V, S1,...,Sk

a forest F in which each pair of vertices belonging to the same set Si is 
connected

measure (min):

cost of F :

minimum Steiner Forest problem

metric Steiner forest problem:
- G is complete, and 
- edge costs satisfy the triangle inequality


eE(F)

c(e)

for every u,v,w : c(u,v)c(u,w)+c(w,v)



Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs 
- collection of disjoint subsets of V, S1,...,Sk

a forest F in which each pair of vertices belonging to the same set Si is 
connected

measure (min):

cost of F :

minimum Steiner Forest problem

a connectivity requirement function r


eE(F)

c(e)

r(u,v)=
1    if u and v belong to the same Si

0    otherwise

a function f on all cuts in G, for each SV i.e. cut (S,S’=V\S):

f(S)=
1    if  uS and vS’ such that r(u,v)=1

0    otherwise



an Integer Linear Programming (ILP) formulation of SF

subject to SV

minimize 
eE

ce xe


e:e(S)

xe  f(S)

xe{0,1} eE

xe0 & xe 1
relax with

redundant

subject to SV

minimize 
eE

ce xe


e:e(S)

xe  f(S)

xe0 eE

LP-relaxation

(S): edges crossing the cut (S,S’=V\S)



subject to SV

minimize 
eE

ce xe


e:e(S)

xe  f(S)

xe0 eE

LP-relaxation

subject to

SV

maximize 
SV

f(S) yS


S:e(S)

yS  ce

yS0

eE

dual program

edge e feels dual yS if yS>0 and e(S)

S has been raised in a dual solution if yS > 0

obs: raising S or S’ has the same effect

obs: no advantage in raising a set S with f(S)=0

assume never raise such sets

edge e is tight if the total amount of dual it feels equals its cost

obs: dual program tries to maximize the sum of the duals subject to
no edge is overtight (i.e., feels more than its cost)



at any point, the currently picked  edges form a forest F

S is unsatisfied if f(S)=1 but there is no picked edge crossing the cut (S,S’)

S is active if it is a minimal (w.r.t. inclusion) unsatisfied set in F

Lemma
Set S is active iff it is a connected component in the currently picked 
forest and f(S)=1.
proof

Let S be an active set

Since f(S)=1, there is a vertex uS and vS’  such that r(u,v)=1

S cannot contain part of a connected component because otherwise there 
will already be a picked edge in the cut (S,S’)

obs: if F is not feasible then there must be an active set

Let S’ be the connected component containing u

minimality of S implies S’=S.

S is the union of connected components



an edge eF is redundant if F-{e} is also a feasible solution 

discard all redundant edges
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Theorem
The algorithm is a 2-approximation algorithm for the SF problem.

proof

The primal computed solution F’ is feasible
The dual solution is feasible, since there is no overtight edge

We claim that: 
eF’

ce  2
SV

yS


eF’

ce = 
S:e(S)


eF’

yS = 
e(S)F’


SV

yS = 
SV

degF’(S) yS

degF’(S)= # of picked edges crossing the cut (S,S’=V\S) 

since every picked 
edge is tight

changing the order 
of summation



we need to show that: 
SV

degF’(S) yS  2
SV

yS

We prove a stronger claim: 
- in each iteration the increase in the l.h.s.  the increase of in r.h.s.

Consider an iteration, and let  be the extent to which active sets were 
raised in this iteration.

we need to show that: 


S active

degF’(S)  2  (# of active sets) 


S active

degF’(S)  2 (# of active sets)




S active

degF’(S)  2 (# of active sets)

F’ is a forest with no redundant edges

 2
#of red 
sticks

#of blue 
circles

shrink blue circles and root the 
obtained tree arbitrarily 

every shrunk circle pays for:
- its red stick towards its parent
- parent’s red stick towards it

Thus: 


eF’

ce  2
SV

yS  2 OPT
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