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Approximation algorithms:
Episode IV

(the final one)



Primal-dual schema



High-level idea of the approach

Algorithm

start with:

- an infeasible integral primal solution, and

- a dual feasible solution

Iteratively:

- improve the dual solution

- improve the feasibility of the integral primal solution
Until a feasible integral primal solution is obtained

analysis: prove the approximation guarantee using the value of the dual
solution as a lower bound



minimum Set Cover problem

Input:
- universe U of n elements
- acollection of subsets of U, 5={S,.....5,}

- each Se5 has a positive cost ¢(S)

Feasible solution:
a subcollection €5 that covers U (whose union is U)

measure (min):

cost of € : > c(S)
SeC

frequency of an element e: number of sets e belongs to

f: frequency of the most frequent element



minimize ZC(S)XS

TLP:
subject to Z Xg2> 1 ecU
SieeS
xs€{0,1} Sed
LP-relaxation dual program
minimize  Y.c(S)Xs maximize Q. Ye
Se$d ec U
subjectto D, xs>1 eeU subject to D, y.<c(S) Se$§
SieeS e.eeS

x>0 seS Y20 ecU



Given a dual solution y, we say that a set S is tight if Z Ye=c(S)

eec S

idea: pick only tight sets & do not overpack any set.

Algorithm 15.2 (Set cover — factor f)

1. Initialization: x <+ 0; y + 0
2. Until all elements are covered, do:
Pick an uncovered element, say e, and raise vy, until some set goes
tight.
Pick all tight sets in the cover and update .
Declare all the elements occurring in these sets as “covered”.

3. Output the set cover x.
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Theorem
The algorithm is an f-approximation algorithm for the SC problem.

proof
the computed cover is clearly feasible.

we claim that: ZC(S)XS < fz Ye
Se$S ec U

each element e: £ Think of it as
- has f-y, amount of money <P~ money you can use

to buy the picked

- pays y, for each picked set S containinge <o orimal solution

since each e is in at most f sets, e has enough money for its payments
since each picked set S is tight, S is fully paid for by the elements it
contains

since y is feasible: )y, <OPT

ec U




n+l elements
f=n

l+¢

returned solution has

suppose the algorithm # cost n+e
raises first variable 'y,
n OPT=1+¢



The Steiner Forest
problem



minimum Steiner Forest problem
Input:
- undirected graph 6=(V,E) with non-negative edge costs
- collection of disjoint subsets of V, S;,...,S,

Feasible solution:

a forest F in which each pair of vertices belonging to the same set S; is
connected

measure (min):

cost of F: Zc(e)
ecE(F)
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minimum Steiner Forest problem
Input:
- undirected graph 6=(V,E) with non-negative edge costs
- collection of disjoint subsets of V, S;,...,S,

Feasible solution:
a forest F in which each pair of vertices belonging to the same set S; is
connected

measure (min):

cost of F: Zc(e)
ecE(F)

- G is complete, and
- edge costs satisfy the triangle inequality
for every u,v,w : c(u,v)<c(uw)+c(w,v)



minimum Steiner Forest problem
Input:
- undirected graph 6=(V,E) with non-negative edge costs
- collection of disjoint subsets of V, S;,...,S,

Feasible solution:

a forest F in which each pair of vertices belonging to the same set S; is
connected

measure (min):

cost of F: Zc(e)
ecE(F)

a connectivity requirement functionr

1 if uand v belong to the same S,
r(u,v)=

O otherwise

a function f on all cuts in G, for each ScV i.e. cut (5,5'=V\S):
1 if 3ueS and veS' such that r(u,v)=1
£(S)= { if 3ueS and ve S’ such that r(u,v)

O otherwise



an Integer Linear Programming (ILP) formulation of SF

minimize  ).C. X,
eck

subject to Z x,>f(S) ScV
e:ecd(S)

x,{0,1} eck

relax with

3(S): edges crossing the cut (S5,5'=V\S)

LP-relaxation

minimize Zce X,
eck

subject fo Y, x,>f(S) ScV
e:ecd(S)

x,>0 eck



LP-relaxation dual program

minimize  ).C. X, maximize . f(S)Ys
ecE ScV
subject to  D,x,> f(S) ScV subject fo D, ys<c, ecE
e:ecd(S) S:eed(S)
X,>0 eck ys>0 ScV

edge e feels dual ys if ys>0 and e<d(S)

S has been raised in a dual solution if yo> 0

raising S or S' has the same effect
no advantage in raising a set S with f(S)=0
mE) assume hever raise such sets

edge e is tight if the total amount of dual it feels equals its cost

dual program tries to maximize the sum of the duals subject to
no edge is overtight (i.e., feels more than its cost)



at any point, the currently picked edges form a forest F
S is unsatisfied if f(S)=1 but there is no picked edge crossing the cut (S,S')
S is active if it is a minimal (w.r.t. inclusion) unsatisfied set in F

if F is not feasible then there must be an active set

Lemma

Set S is active iff it is a connected component in the currently picked
forest and f(S)=1.

proof
Let S be an active set

S cannot contain part of a connected component because otherwise there
will already be a picked edge in the cut (S,S')

m) S is the union of connected components

Since f(S)=1, there is a vertex ueS and veS' such that r(u,v)=1
Let S’ be the connected component containing u

minimality of S implies S'=S.




Algorithm 22.3 (Steiner forest)

1. (Initialization) F' < (; for each S C V, yg «+ 0.
2. (Edge augmentation) while there exists an unsatisfied set do:
simultaneously raise yg for each active set S, until some edge e goes
tight;
F + Fu{e}.
3. (Pruning) return F" = {e € F'| F —{e} is primal infeasible}

discard all redundant edges
an edge ecF is redundant if F-{e} is also a feasible solution
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Theorem
The algorithm is a 2-approximation algorithm for the SF problem.

proof

The primal computed solution F' is feasible
The dual solution is feasible, since there is no overtight edge

We claim that: ZCe <2 ZYs
eckF' ScV

.- z[ 3 ys}z[ 3 ys}z g (5) s

ecF'| Sieed(S) ScV|eed(S)F ScV

degr(S)= # of picked edges crossing the cut (S,5'=V\S)



we heed to show that: Z degr(S) ys < 2 ZYs
ScV ScV

We prove a stronger claim:
- in each iteration the increase in the l.h.s. < the increase of in r.h.s.

Consider an iteration, and let A be the extent to which active sets were
raised in this iteration.

we need to show that:

Ax| ) dege(S)| <2 A x(# of active sets)
S active

Z degr(S) <2 (# of active sets)

S active



Z degr(S) <2 (# of active sets)

S active

F'is a forest with no redundant edges
#of red _, #of blue

sticks circles

shrink blue circles and root the
obtained tree arbitrarily

every shrunk circle pays for:
- its red stick tfowards its parent
- parent's red stick towards it

Thus:

Zce =< ZZYS <2 OPT
eckF ScV
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