

Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

Approximation algorithms: Episode IV (the final one)

Primal-dual schema

High-level idea of the approach

Algorithm

start with:

- an infeasible integral primal solution, and
- a dual feasible solution

Iteratively:

- improve the dual solution
- improve the feasibility of the integral primal solution

Until a feasible integral primal solution is obtained

analysis: prove the approximation guarantee using the value of the dual solution as a lower bound

minimum Set Cover problem

Input:

- universe U of n elements
- a collection of subsets of U , $S = \{S_1, \dots, S_k\}$
- each $S \in S$ has a positive cost $c(S)$

Feasible solution:

a subcollection $C \subseteq S$ that covers U (whose union is U)

measure (min):

cost of C : $\sum_{S \in C} c(S)$

frequency of an element e : number of sets e belongs to

f : frequency of the most frequent element

ILP:

$$\begin{aligned}
 & \text{minimize} && \sum_{S \in \mathcal{S}} c(S)x_S \\
 & \text{subject to} && \sum_{S: e \in S} x_S \geq 1 \quad e \in U \\
 & && x_S \in \{0,1\} \quad S \in \mathcal{S}
 \end{aligned}$$

LP-relaxation

$$\begin{aligned}
 & \text{minimize} && \sum_{S \in \mathcal{S}} c(S)x_S \\
 & \text{subject to} && \sum_{S: e \in S} x_S \geq 1 \quad e \in U \\
 & && x_S \geq 0 \quad S \in \mathcal{S}
 \end{aligned}$$

dual program

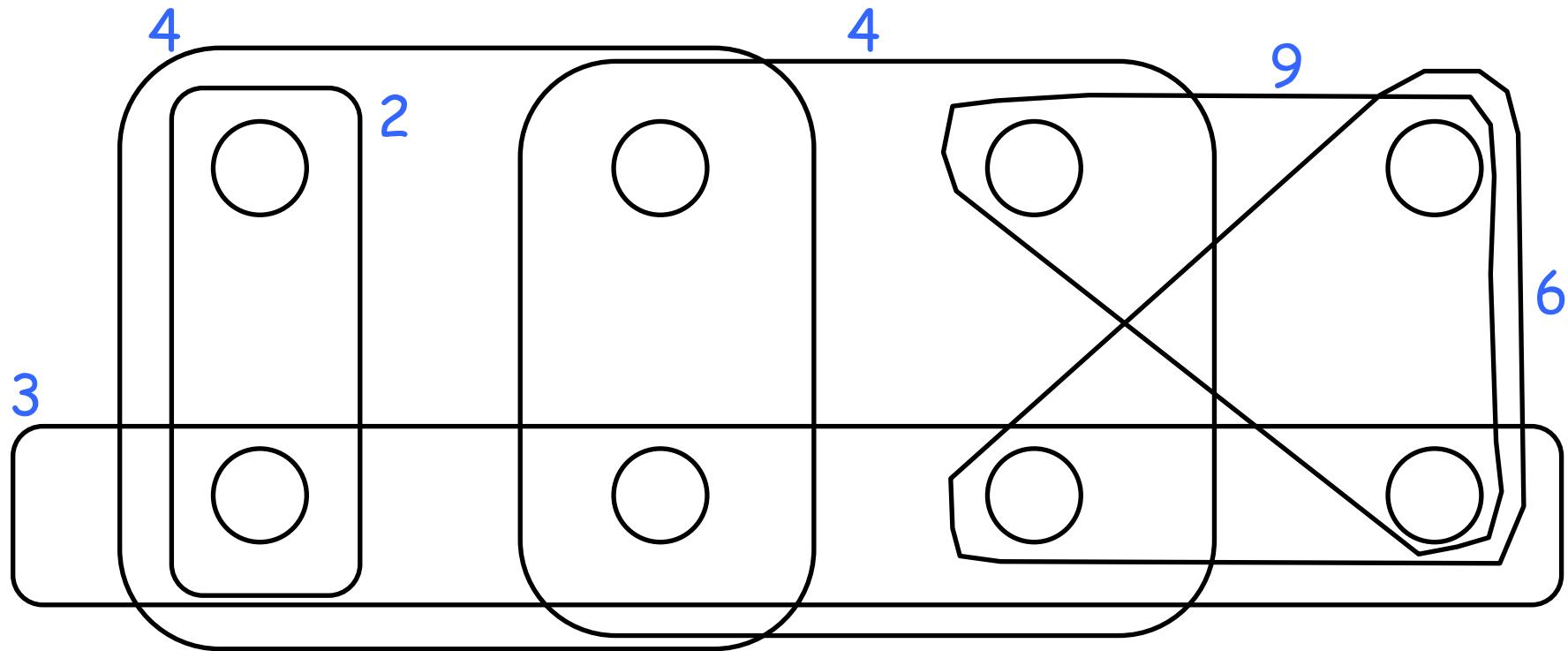
$$\begin{aligned}
 & \text{maximize} && \sum_{e \in U} y_e \\
 & \text{subject to} && \sum_{e: e \in S} y_e \leq c(S) \quad S \in \mathcal{S} \\
 & && y_e \geq 0 \quad e \in U
 \end{aligned}$$

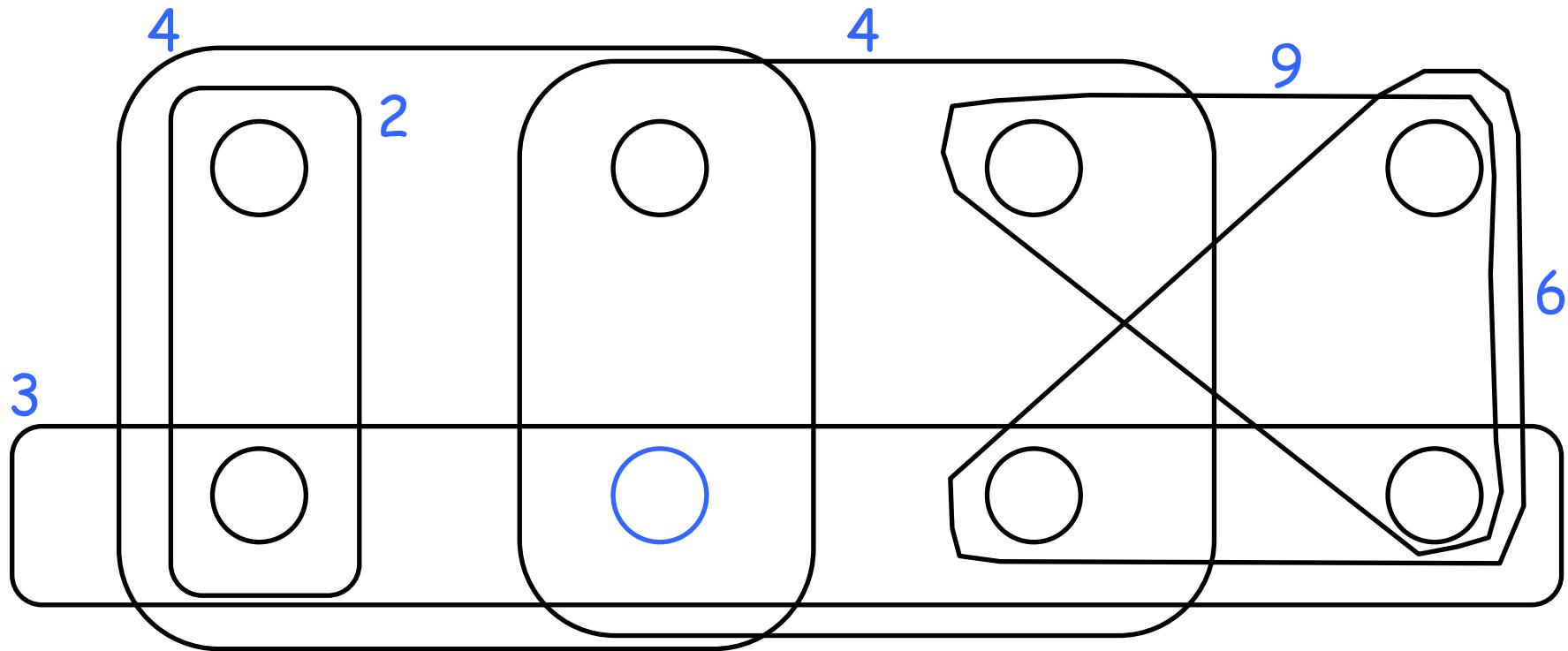
Given a dual solution \mathbf{y} , we say that a set S is **tight** if $\sum_{e \in S} y_e = c(S)$

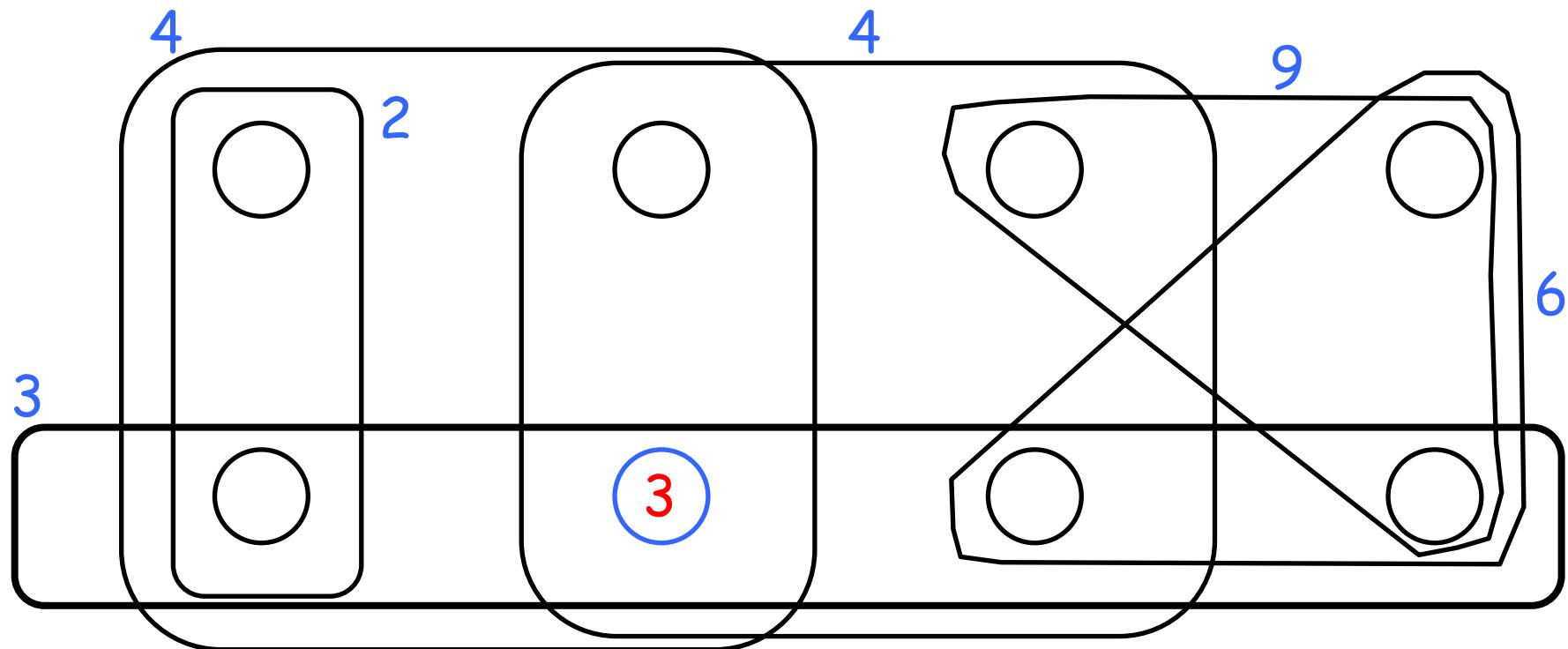
idea: pick only tight sets & do not overpack any set.

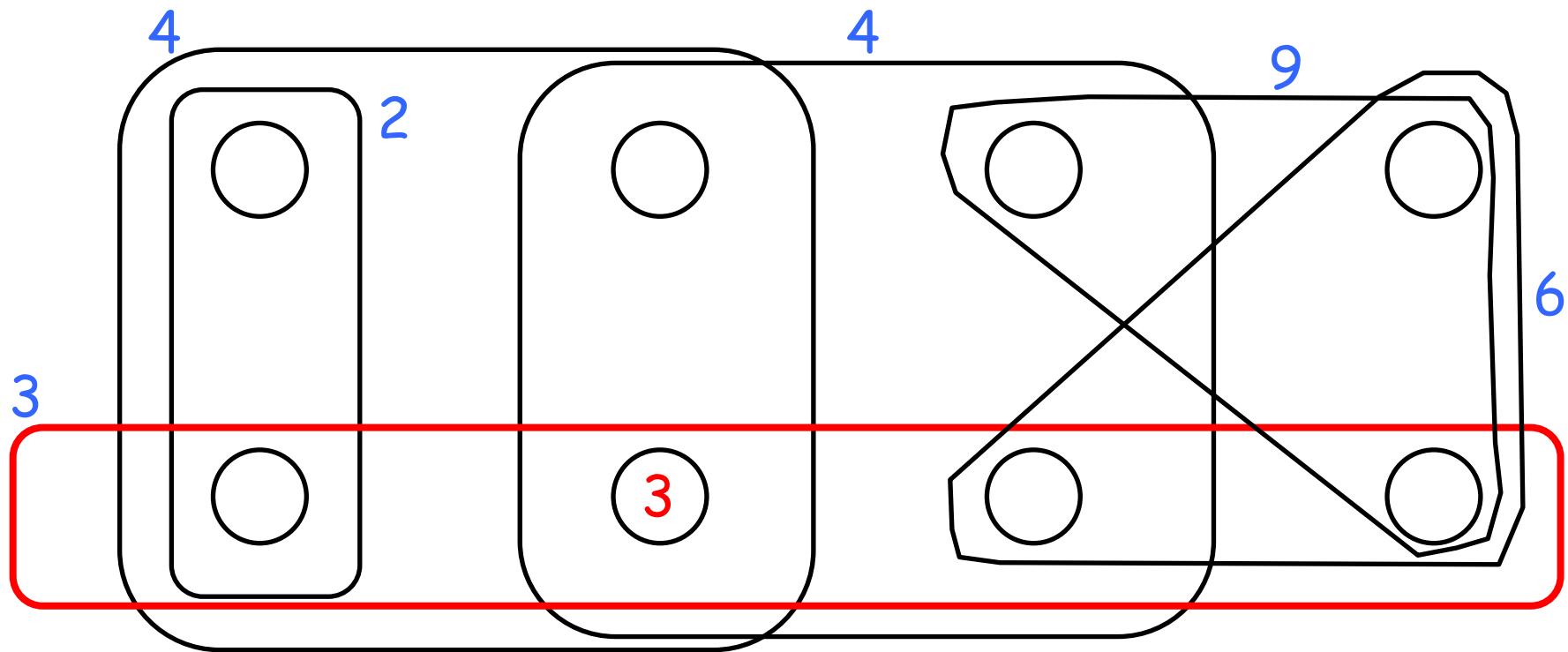
Algorithm 15.2 (Set cover – factor f)

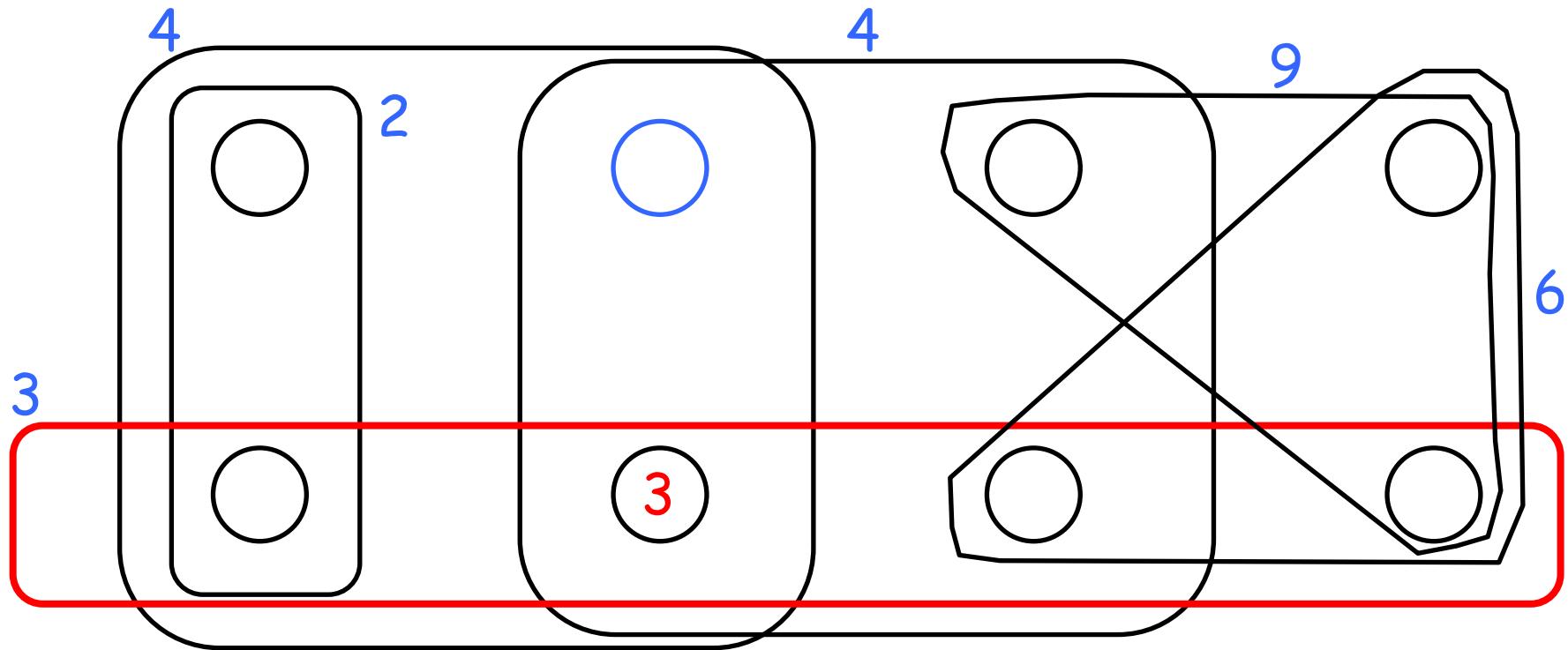
1. **Initialization:** $x \leftarrow 0$; $y \leftarrow 0$
2. Until all elements are covered, do:
 - Pick an uncovered element, say e , and raise y_e until some set goes tight.
 - Pick all tight sets in the cover and update x .
 - Declare all the elements occurring in these sets as “covered”.
3. Output the set cover x .

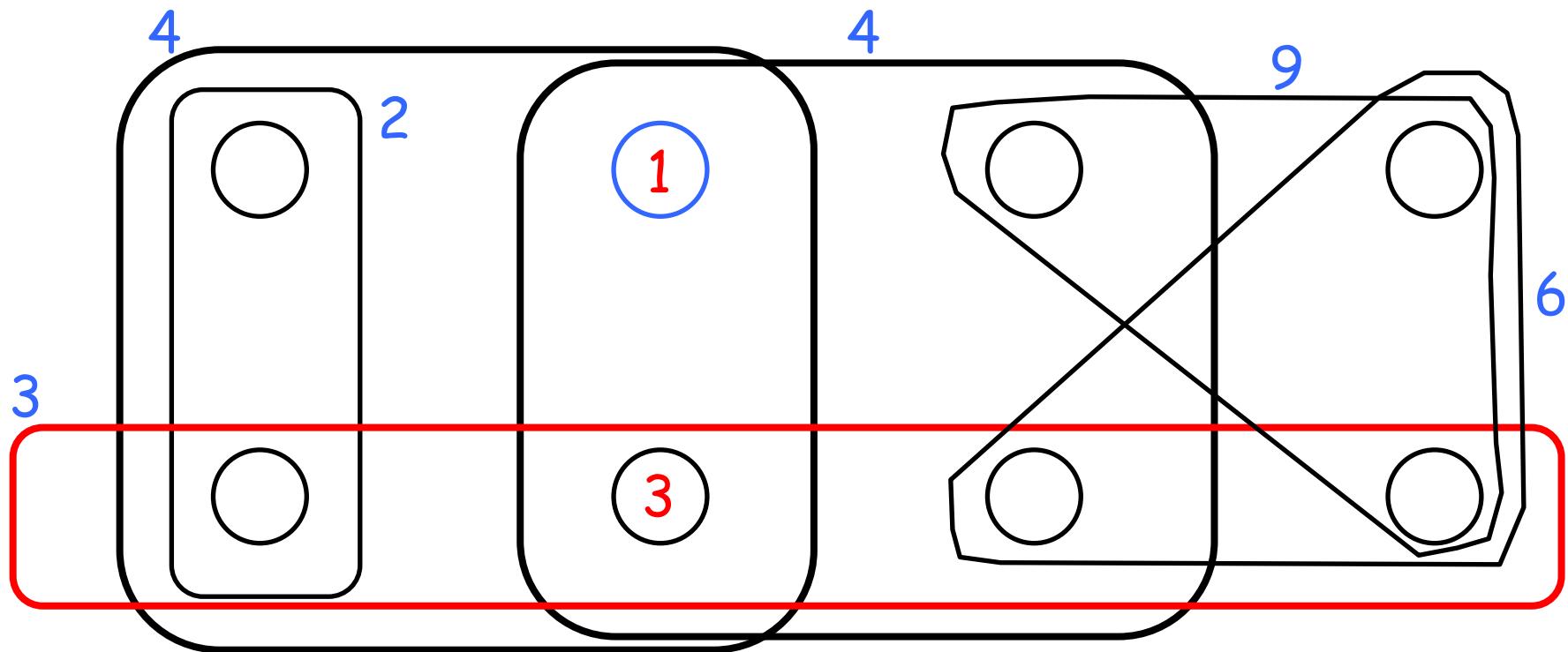


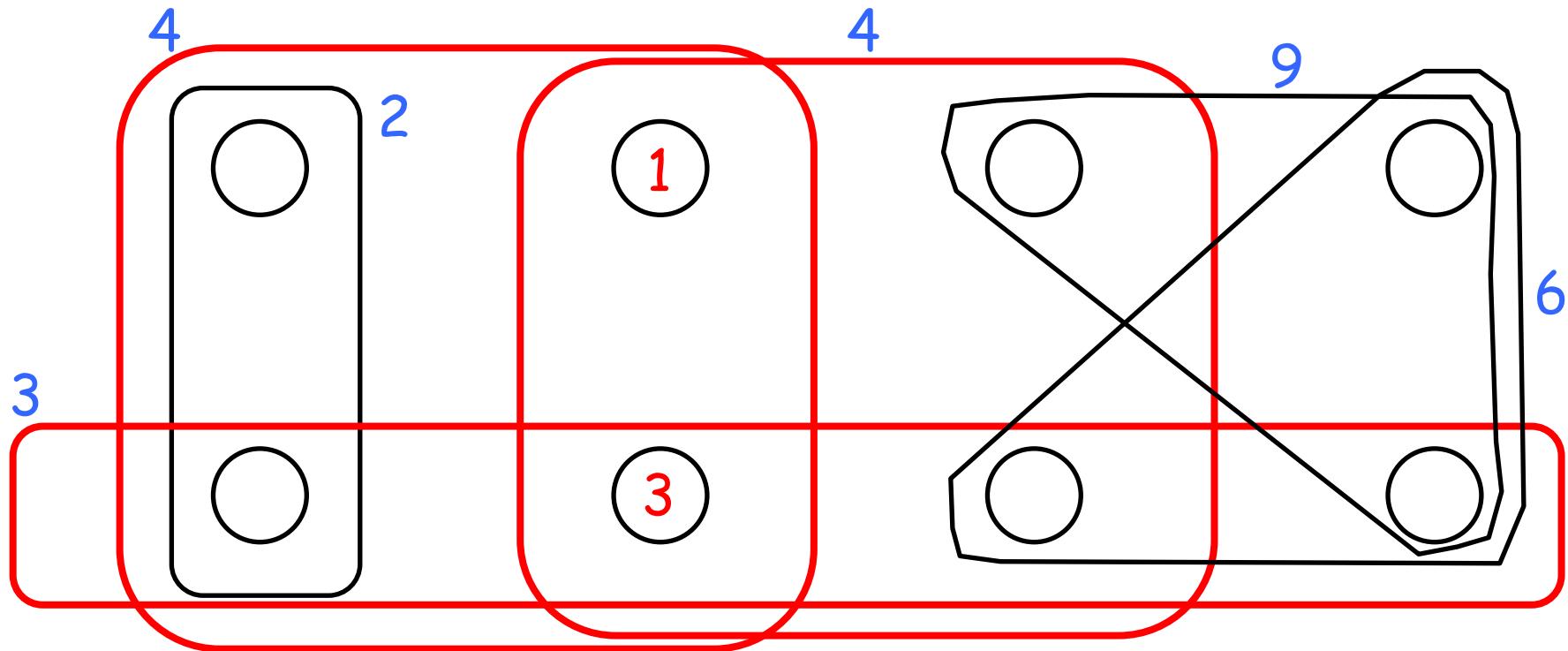


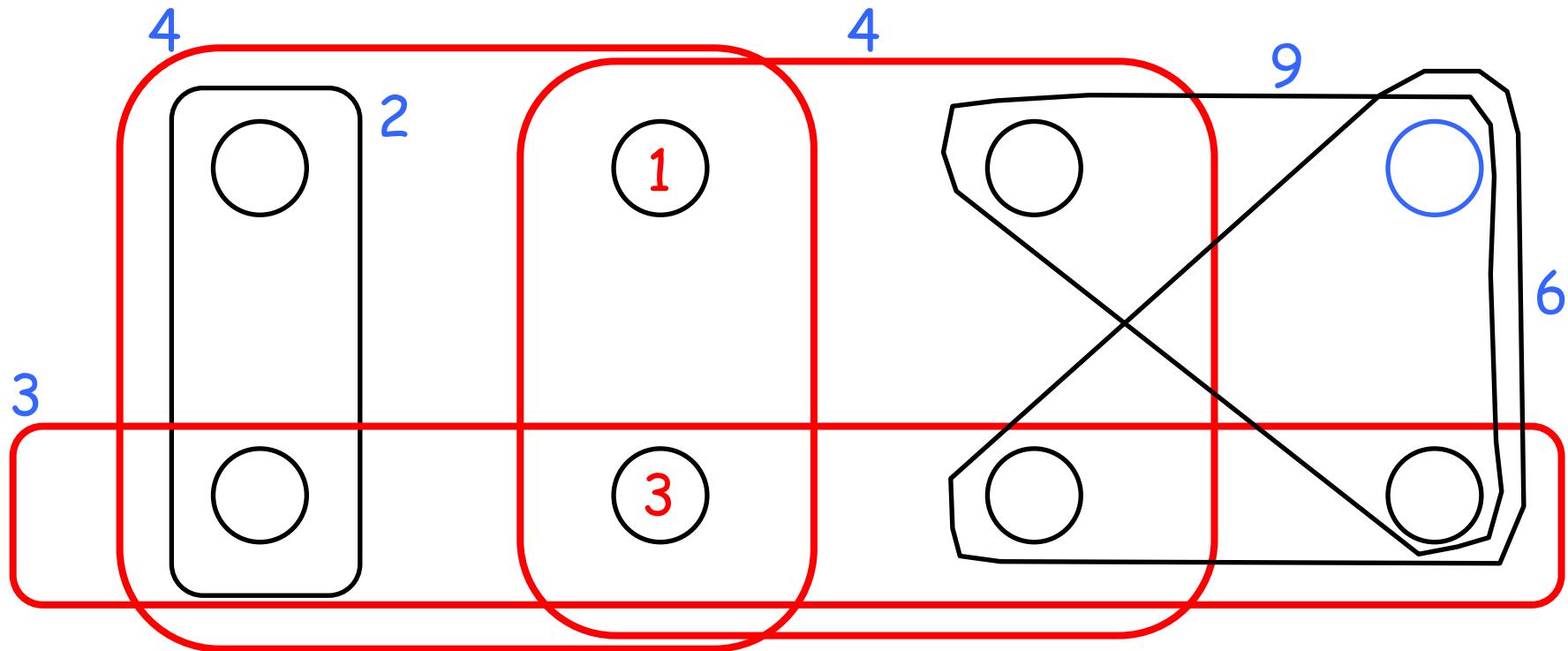


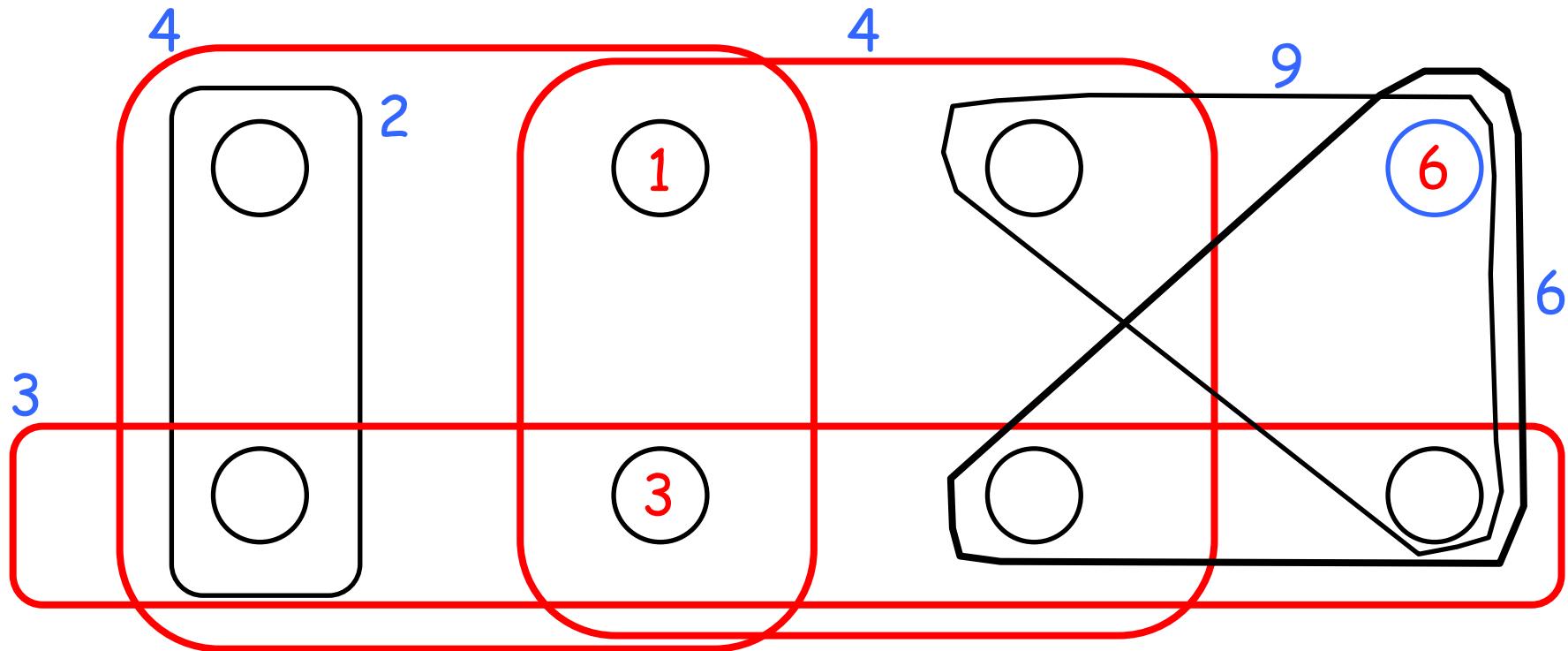


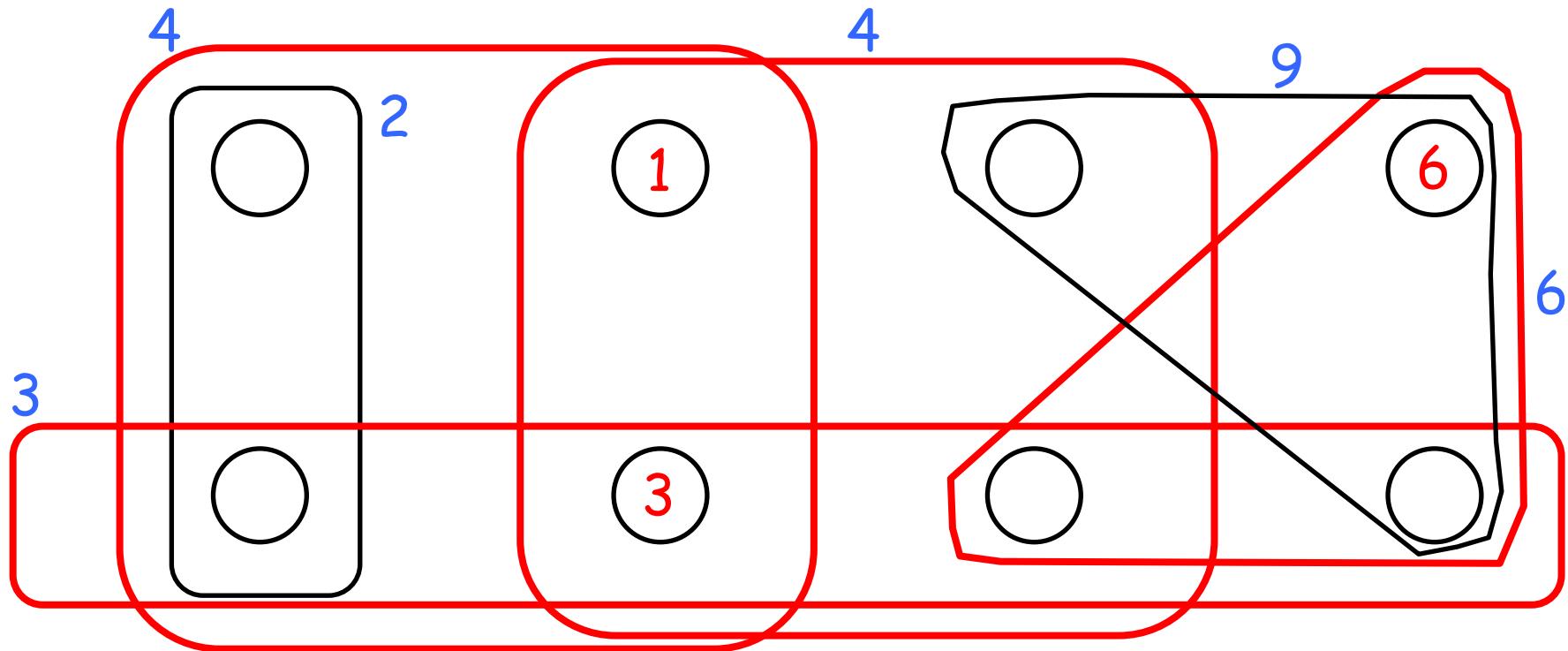












Theorem

The algorithm is an f -approximation algorithm for the SC problem.

proof

the computed cover is clearly feasible.

we claim that:
$$\sum_{S \in \mathcal{S}} c(S)x_S \leq f \sum_{e \in U} y_e$$

$\underbrace{\phantom{\sum_{e \in U} y_e}}$

each element e :

- has $f \cdot y_e$ amount of money
- pays y_e for each picked set S containing e

Think of it as
money you can use
to buy the picked
primal solution

since each e is in at most f sets, e has enough money for its payments

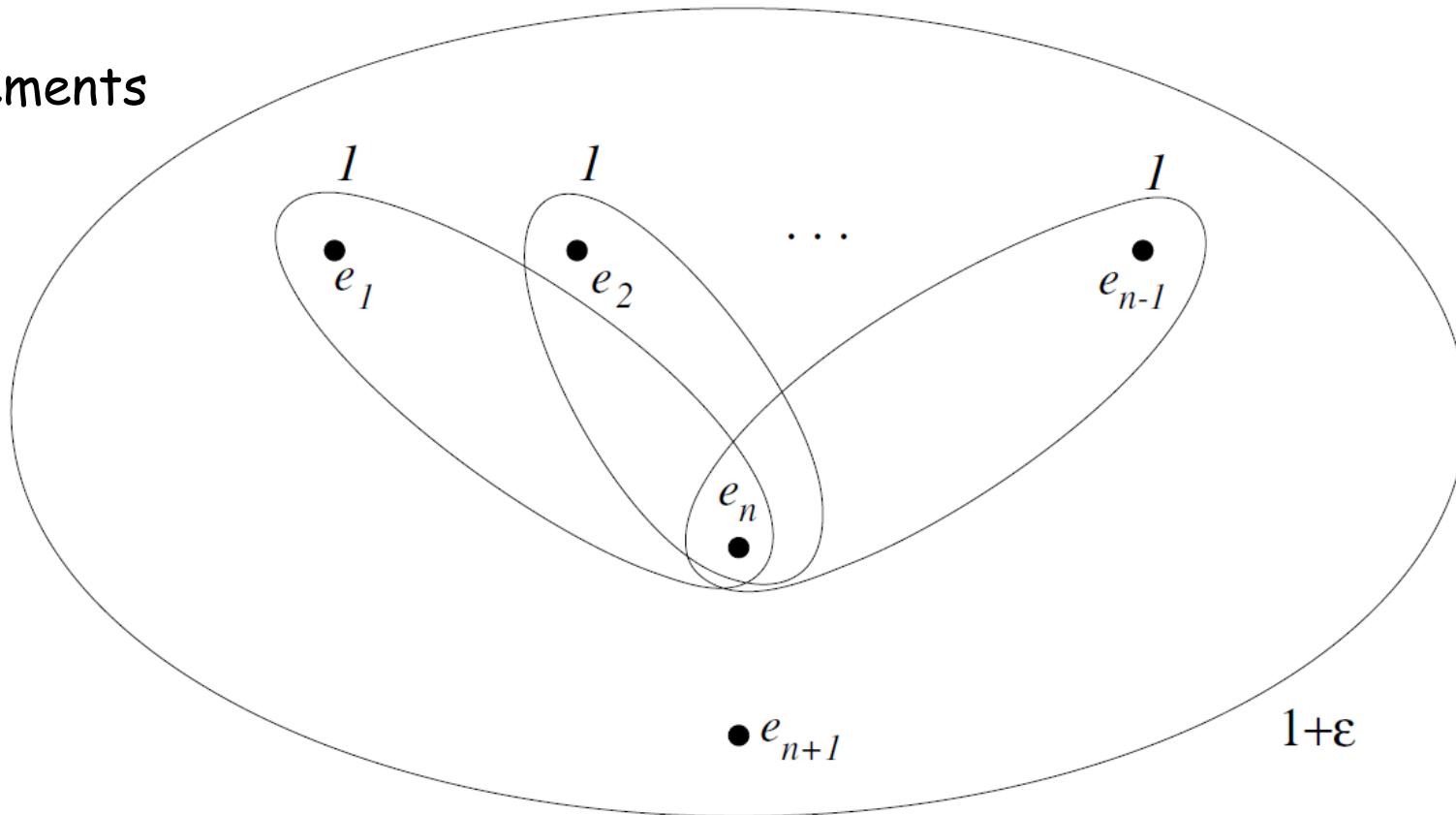
since each picked set S is tight, S is fully paid for by the elements it contains

since \mathbf{y} is feasible:
$$\sum_{e \in U} y_e \leq \text{OPT}$$

tight example

$n+1$ elements

$f=n$



suppose the algorithm
raises first variable y_{e_n}



returned solution has
cost $n+\varepsilon$
 $OPT=1+\varepsilon$

The Steiner Forest problem

minimum Steiner Forest problem

Input:

- undirected graph $G=(V,E)$ with non-negative edge costs
- collection of disjoint subsets of V , S_1, \dots, S_k

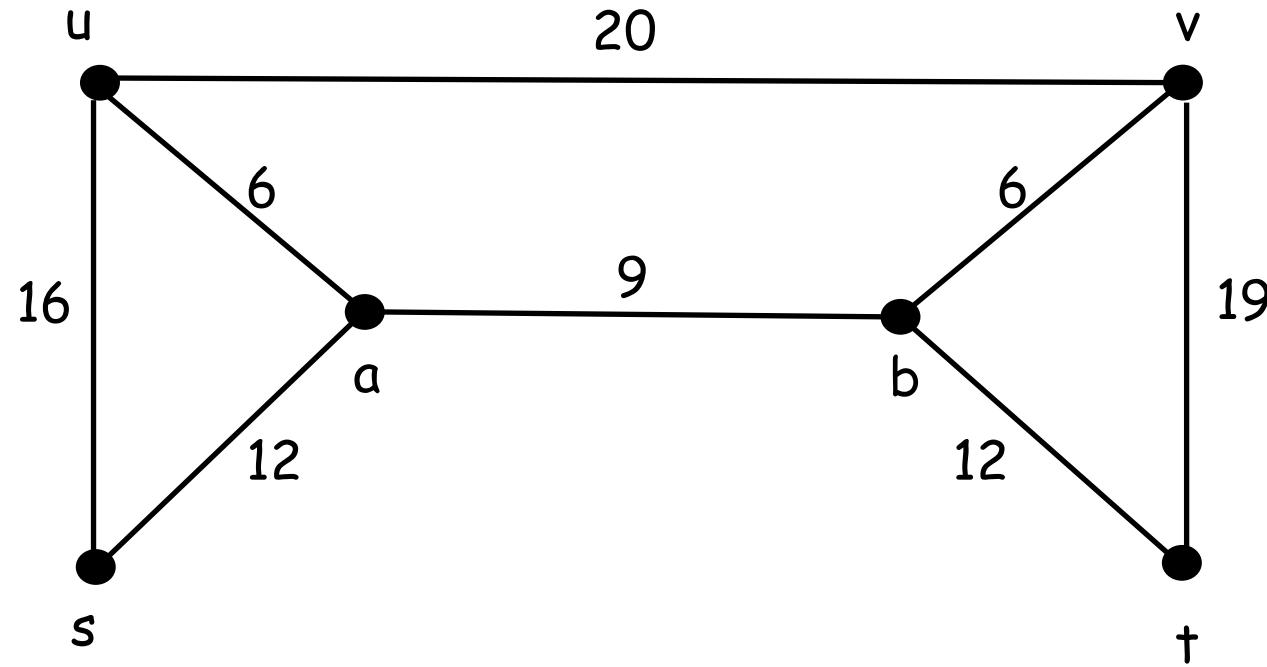
Feasible solution:

a forest F in which each pair of vertices belonging to the same set S_i is connected

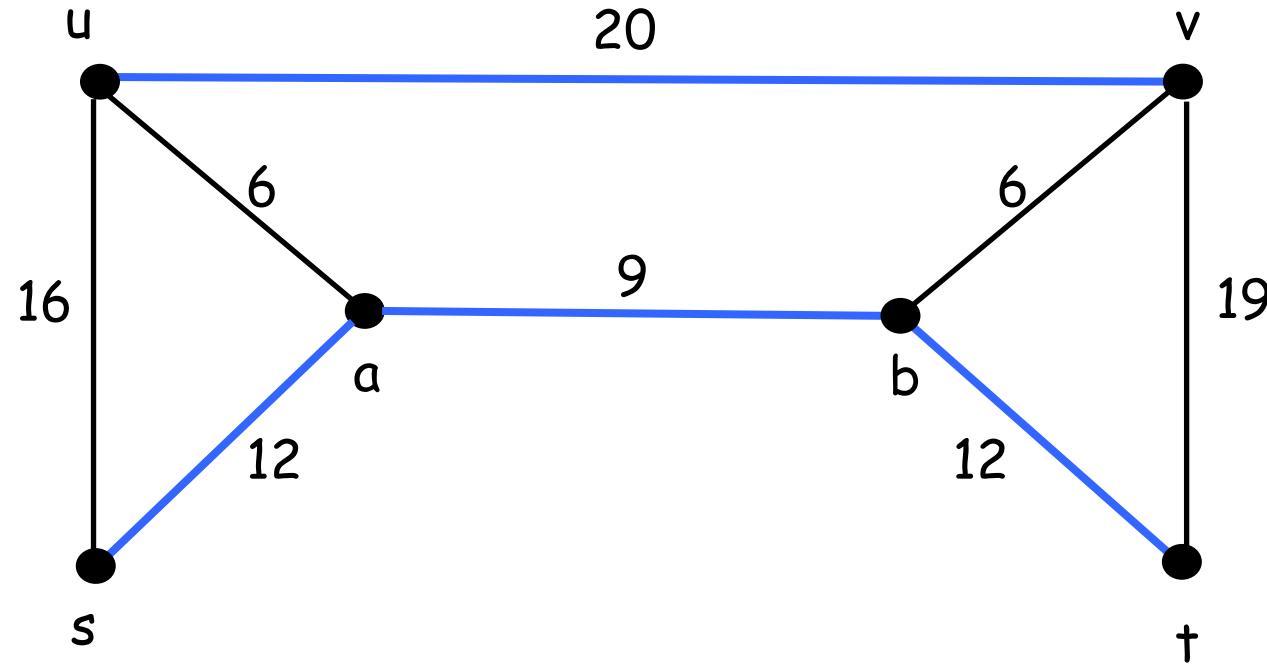
measure (min):

cost of F : $\sum_{e \in E(F)} c(e)$

$$S_1 = \{u, v\} \quad S_2 = \{s, t\}$$

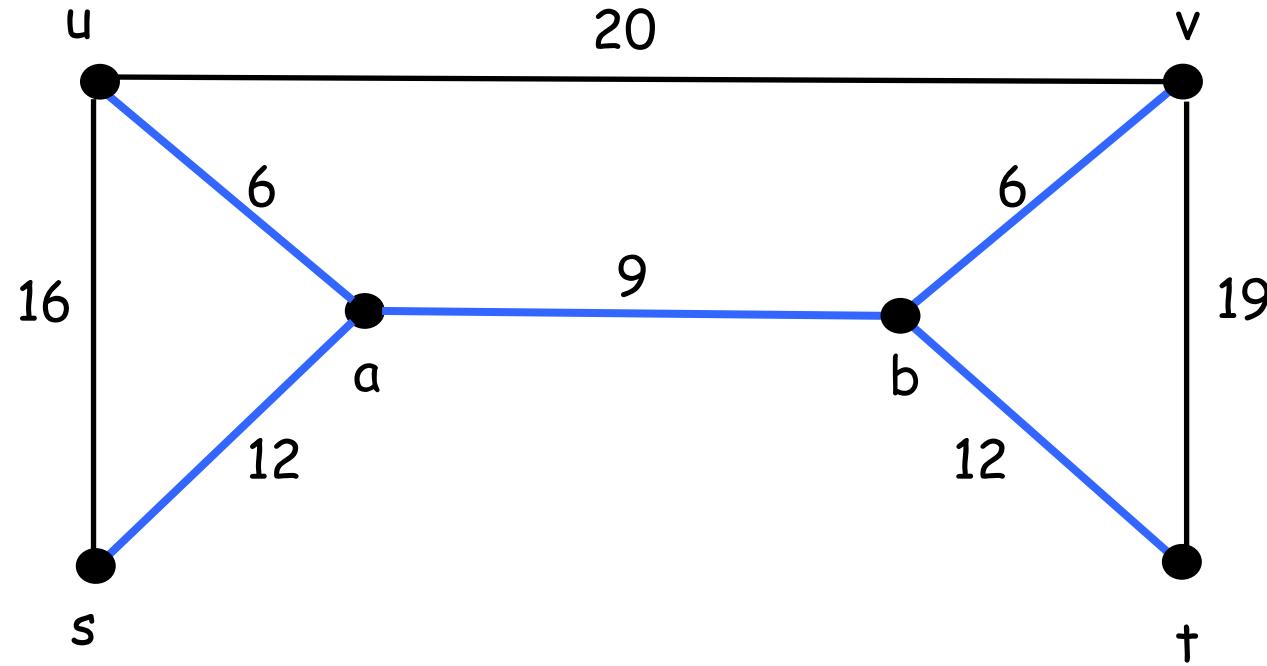


$$S_1 = \{u, v\} \quad S_2 = \{s, t\}$$



a Steiner forest of cost 53

$$S_1=\{u,v\} \quad S_2=\{s,t\}$$



a better Steiner forest of cost 45

minimum Steiner Forest problem

Input:

- undirected graph $G=(V,E)$ with non-negative edge costs
- collection of disjoint subsets of V , S_1, \dots, S_k

Feasible solution:

a forest F in which each pair of vertices belonging to the same set S_i is connected

measure (min):

$$\text{cost of } F : \sum_{e \in E(F)} c(e)$$

metric Steiner forest problem:

- G is complete, and
- edge costs satisfy the triangle inequality
for every $u, v, w : c(u, v) \leq c(u, w) + c(w, v)$

minimum Steiner Forest problem

Input:

- undirected graph $G=(V,E)$ with non-negative edge costs
- collection of disjoint subsets of V , S_1, \dots, S_k

Feasible solution:

a forest F in which each pair of vertices belonging to the same set S_i is connected

measure (min):

cost of F : $\sum_{e \in E(F)} c(e)$

a connectivity requirement function r

$$r(u,v) = \begin{cases} 1 & \text{if } u \text{ and } v \text{ belong to the same } S_i \\ 0 & \text{otherwise} \end{cases}$$

a function f on all cuts in G , for each $S \subseteq V$ i.e. cut $(S, S' = V \setminus S)$:

$$f(S) = \begin{cases} 1 & \text{if } \exists u \in S \text{ and } v \in S' \text{ such that } r(u,v)=1 \\ 0 & \text{otherwise} \end{cases}$$

an Integer Linear Programming (ILP) formulation of SF

LP-relaxation

$$\text{minimize} \quad \sum_{e \in E} c_e x_e$$

$$\text{minimize} \quad \sum_{e \in E} c_e x_e$$

$$\text{subject to} \quad \sum_{e: e \in \delta(S)} x_e \geq f(S) \quad S \subseteq V$$

$$\text{subject to} \quad \sum_{e: e \in \delta(S)} x_e \geq f(S) \quad S \subseteq V$$

$$x_e \in \{0,1\} \quad e \in E$$

$$x_e \geq 0 \quad e \in E$$

relax with
 $x_e \geq 0 \text{ } \& \text{ } x_e \leq 1$

redundant

$\delta(S)$: edges crossing the cut $(S, S' = V \setminus S)$

LP-relaxation

$$\text{minimize} \quad \sum_{e \in E} c_e x_e$$

$$\text{subject to} \quad \sum_{e: e \in \delta(S)} x_e \geq f(S) \quad S \subseteq V$$

$$x_e \geq 0 \quad e \in E$$

dual program

$$\text{maximize} \quad \sum_{S \subseteq V} f(S) y_S$$

$$\text{subject to} \quad \sum_{S: e \in \delta(S)} y_S \leq c_e \quad e \in E$$

$$y_S \geq 0 \quad S \subseteq V$$

edge e feels dual y_S if $y_S > 0$ and $e \in \delta(S)$

S has been *raised* in a dual solution if $y_S > 0$

obs: raising S or S' has the same effect

obs: no advantage in raising a set S with $f(S) = 0$

→ assume never raise such sets

edge e is *tight* if the total amount of dual it feels equals its cost

obs: dual program tries to maximize the sum of the duals subject to no edge is *overtight* (i.e., feels more than its cost)

at any point, the currently picked edges form a forest F

S is **unsatisfied** if $f(S)=1$ but there is no picked edge crossing the cut (S, S')

S is **active** if it is a minimal (w.r.t. inclusion) unsatisfied set in F

obs: if F is not feasible then there must be an active set

Lemma

Set S is active iff it is a connected component in the currently picked forest and $f(S)=1$.

proof

Let S be an active set

S cannot contain part of a connected component because otherwise there will already be a picked edge in the cut (S, S')

 S is the union of connected components

Since $f(S)=1$, there is a vertex $u \in S$ and $v \in S'$ such that $r(u, v)=1$

Let S' be the connected component containing u

minimality of S implies $S' = S$.

Algorithm 22.3 (Steiner forest)

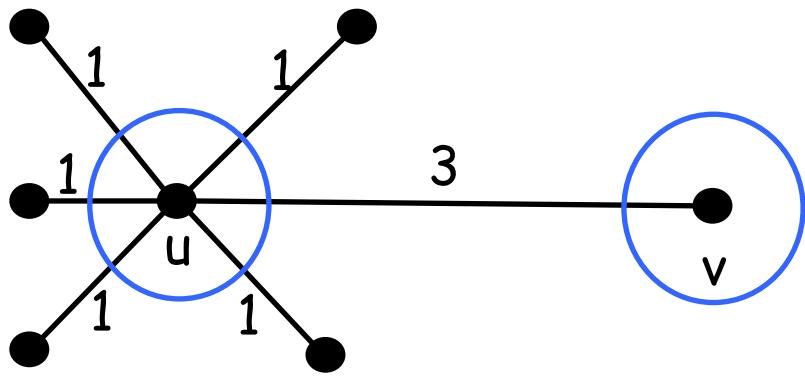
1. **(Initialization)** $F \leftarrow \emptyset$; for each $S \subseteq V$, $y_S \leftarrow 0$.
2. **(Edge augmentation)** while there exists an unsatisfied set do:
simultaneously raise y_S for each active set S , until some edge e goes tight;
 $F \leftarrow F \cup \{e\}$.
3. **(Pruning)** return $F' = \{e \in F \mid F - \{e\} \text{ is primal infeasible}\}$

discard all redundant edges

an edge $e \in F$ is **redundant** if $F - \{e\}$ is also a feasible solution

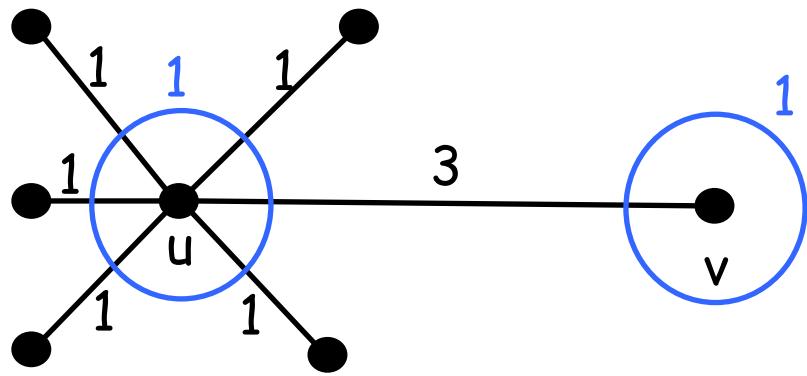
example: pruning step is needed

$$S_1 = \{u, v\}$$



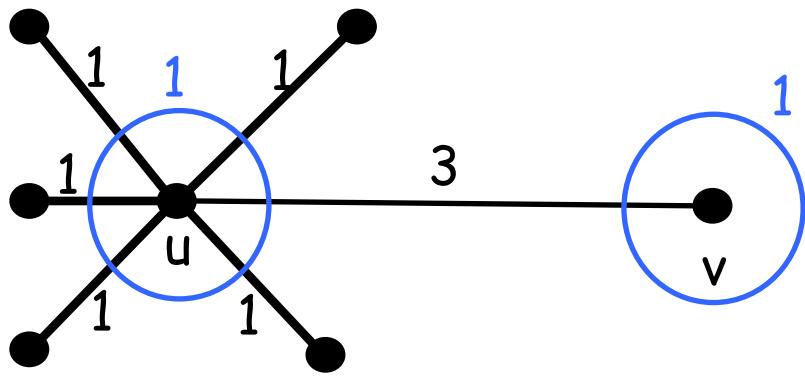
example: pruning step is needed

$$S_1 = \{u, v\}$$



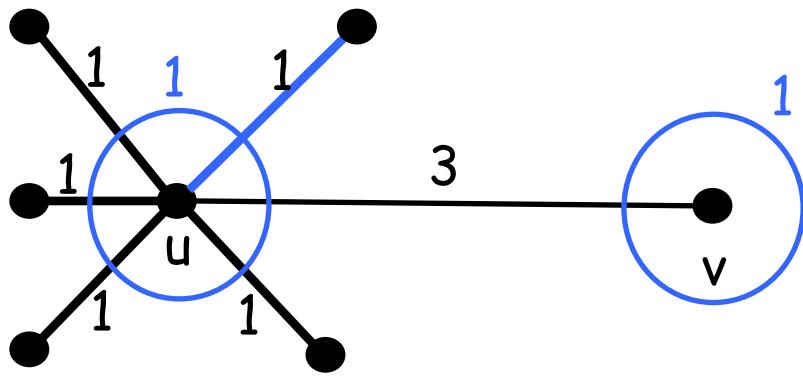
example: pruning step is needed

$$S_1 = \{u, v\}$$



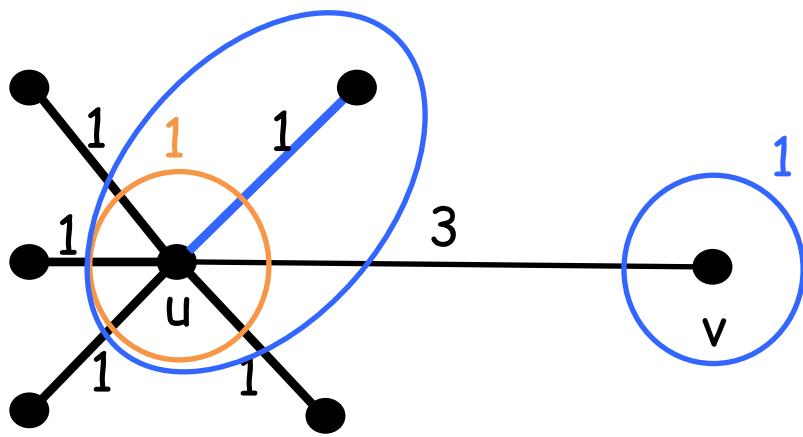
example: pruning step is needed

$$S_1 = \{u, v\}$$



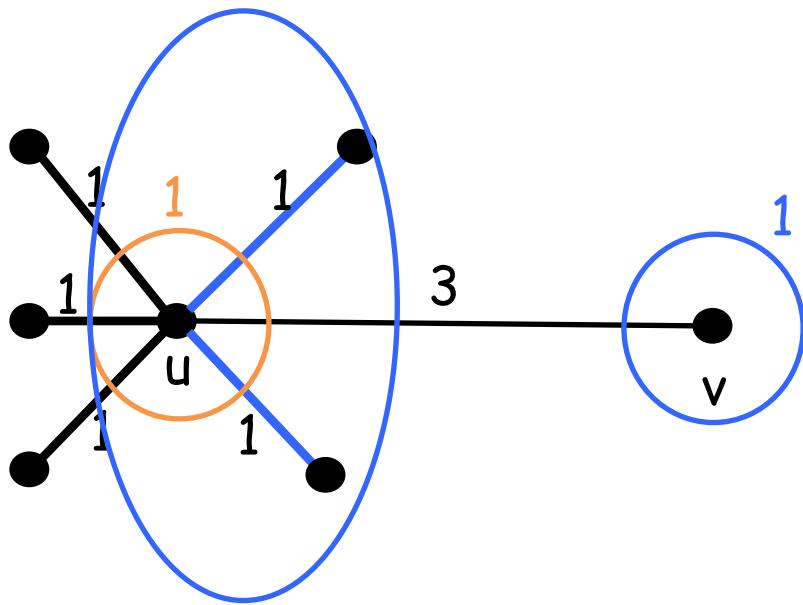
example: pruning step is needed

$$S_1 = \{u, v\}$$



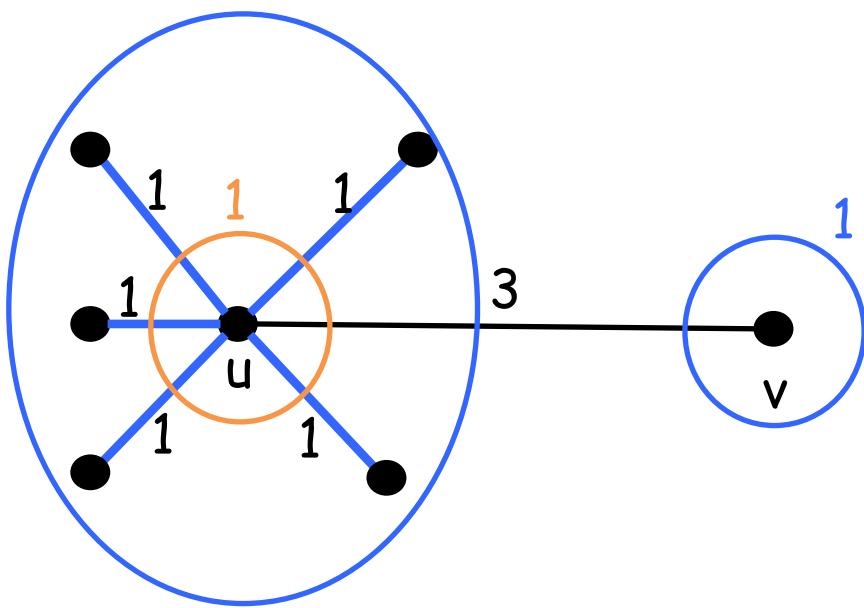
example: pruning step is needed

$$S_1 = \{u, v\}$$



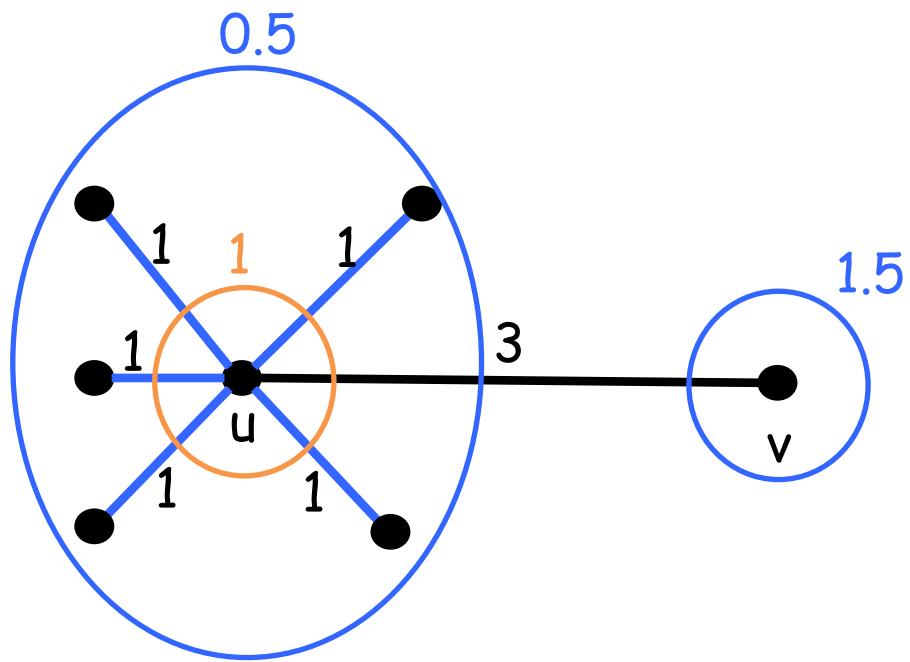
example: pruning step is needed

$$S_1 = \{u, v\}$$



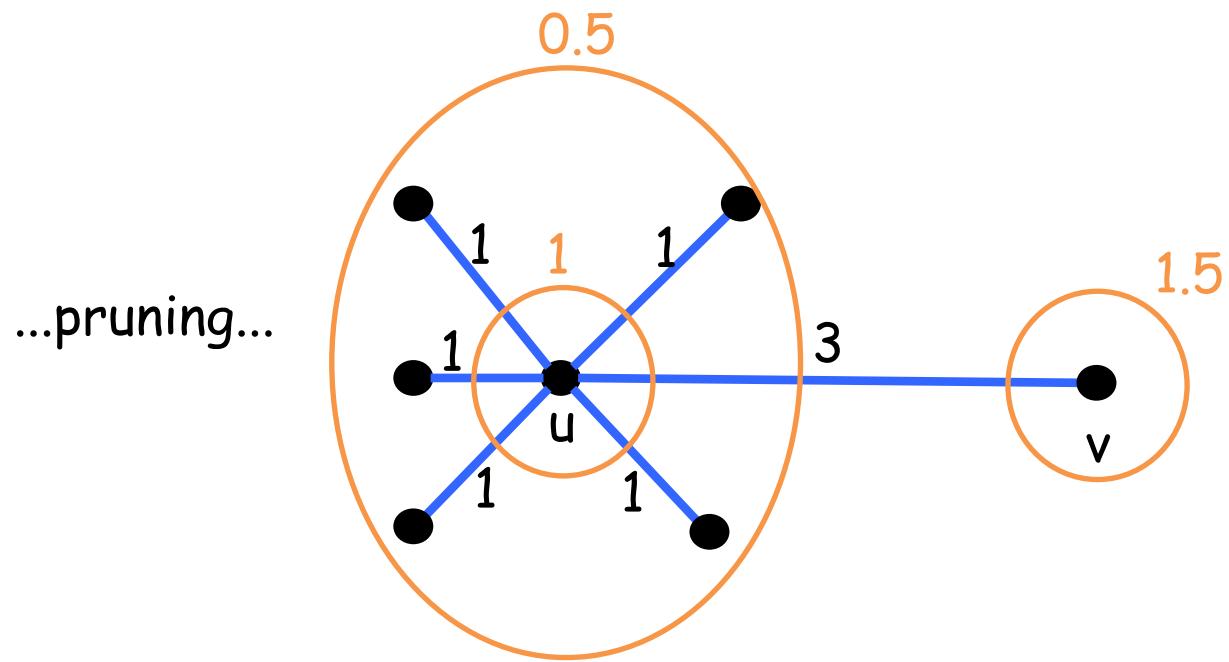
example: pruning step is needed

$$S_1 = \{u, v\}$$



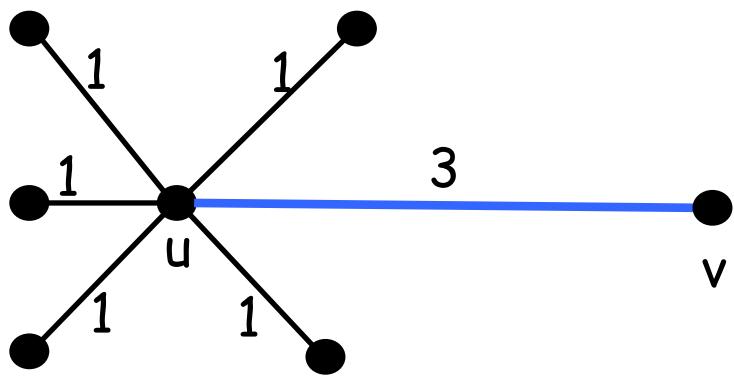
example: pruning step is needed

$$S_1 = \{u, v\}$$



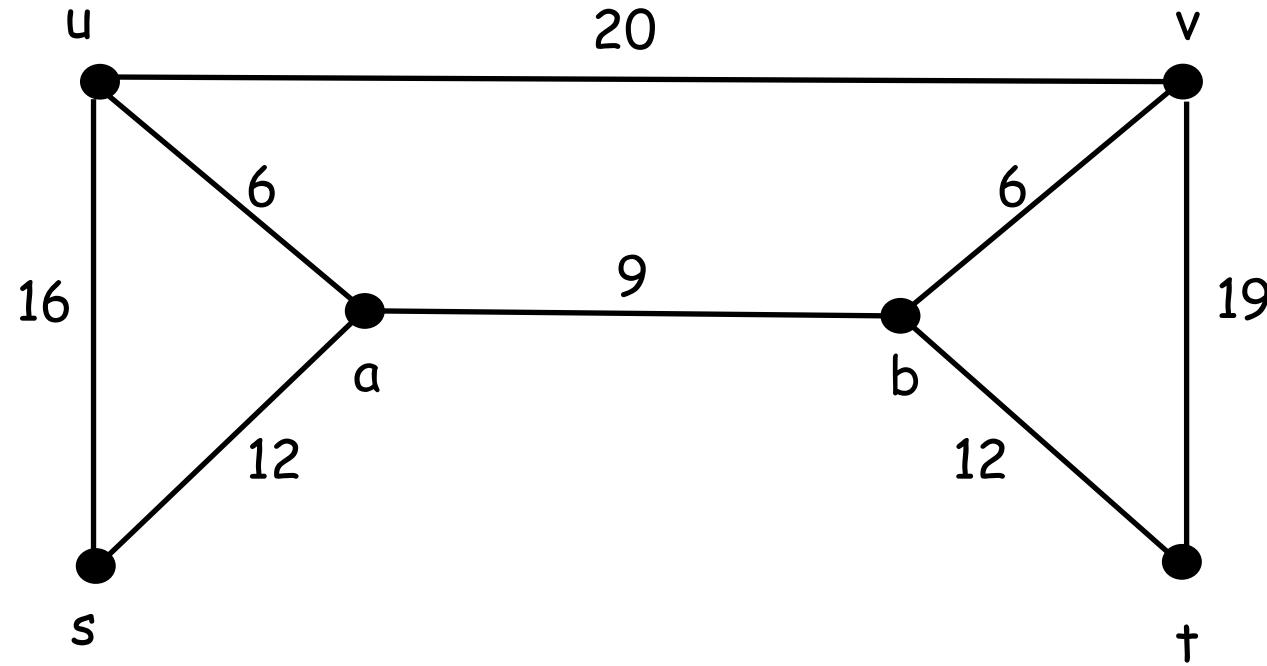
example: pruning step is needed

$$S_1 = \{u, v\}$$



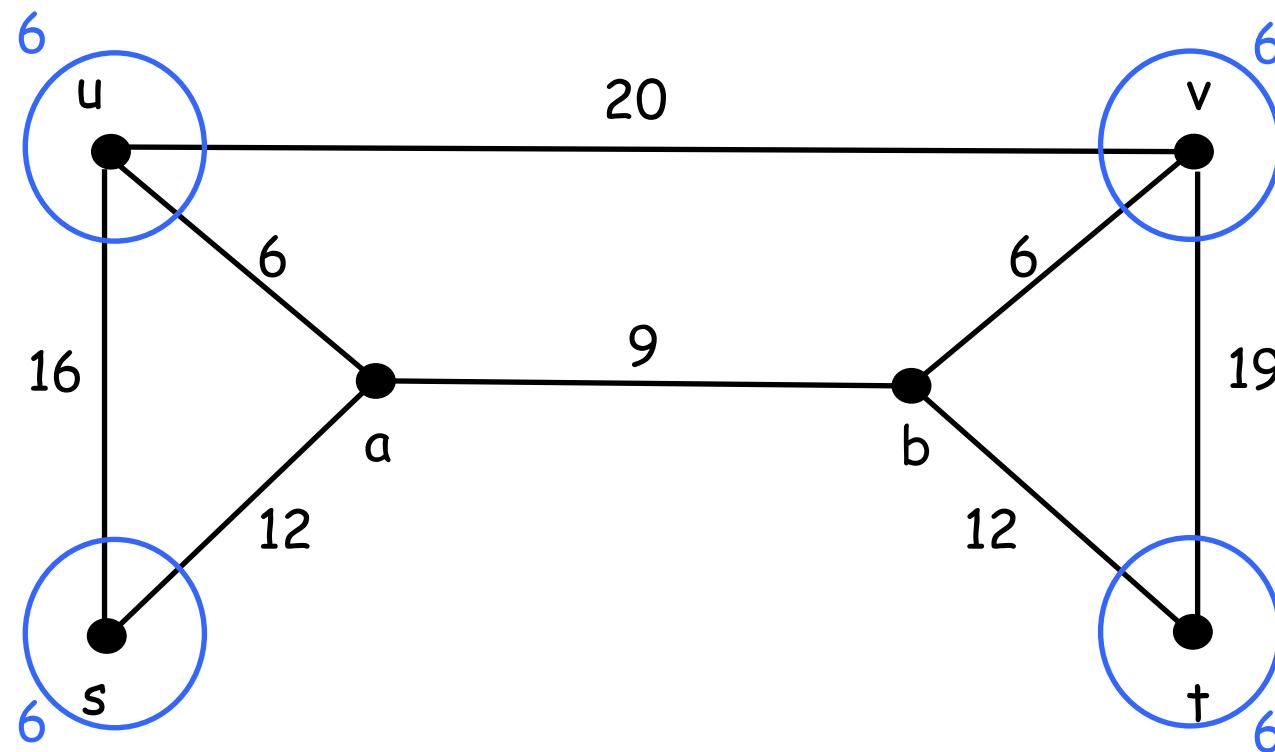
computed
solution

$$S_1 = \{u, v\} \quad S_2 = \{s, t\}$$



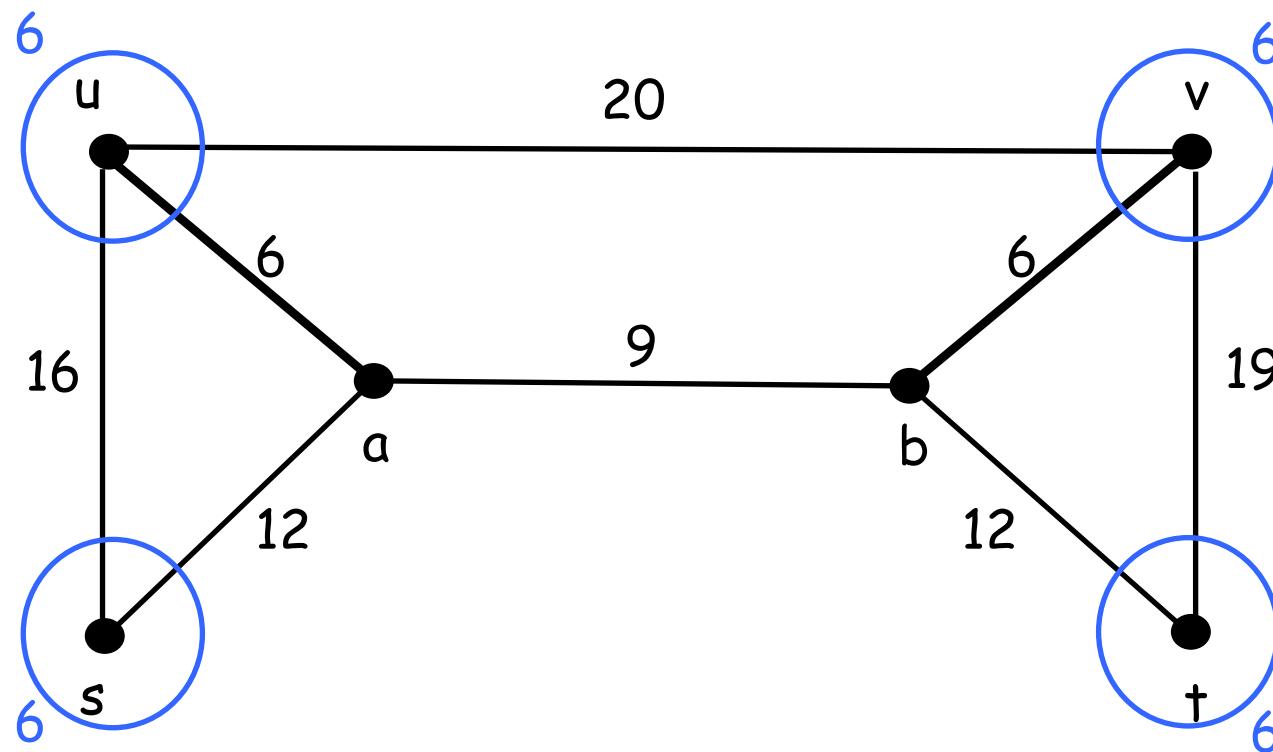
$$S_1=\{u,v\}$$

$$S_2=\{s,t\}$$



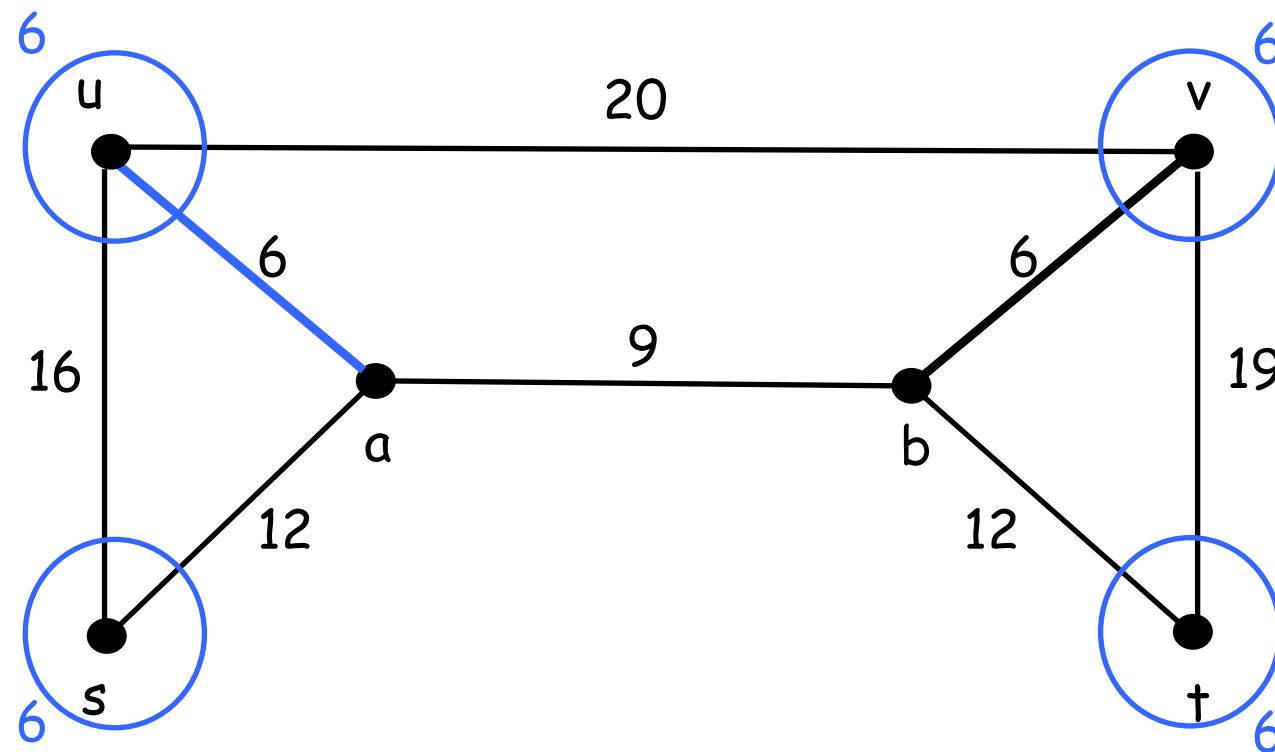
$$S_1=\{u,v\}$$

$$S_2=\{s,t\}$$



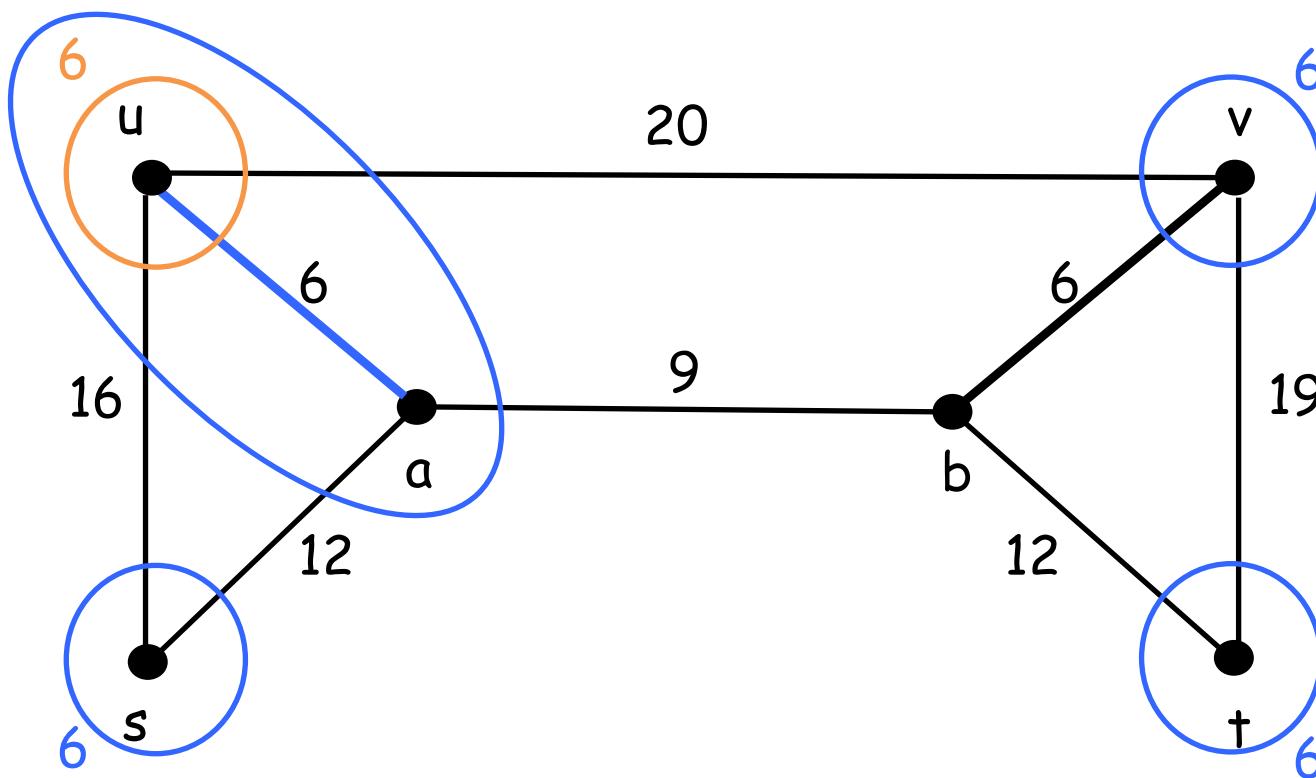
$$S_1=\{u,v\}$$

$$S_2=\{s,t\}$$



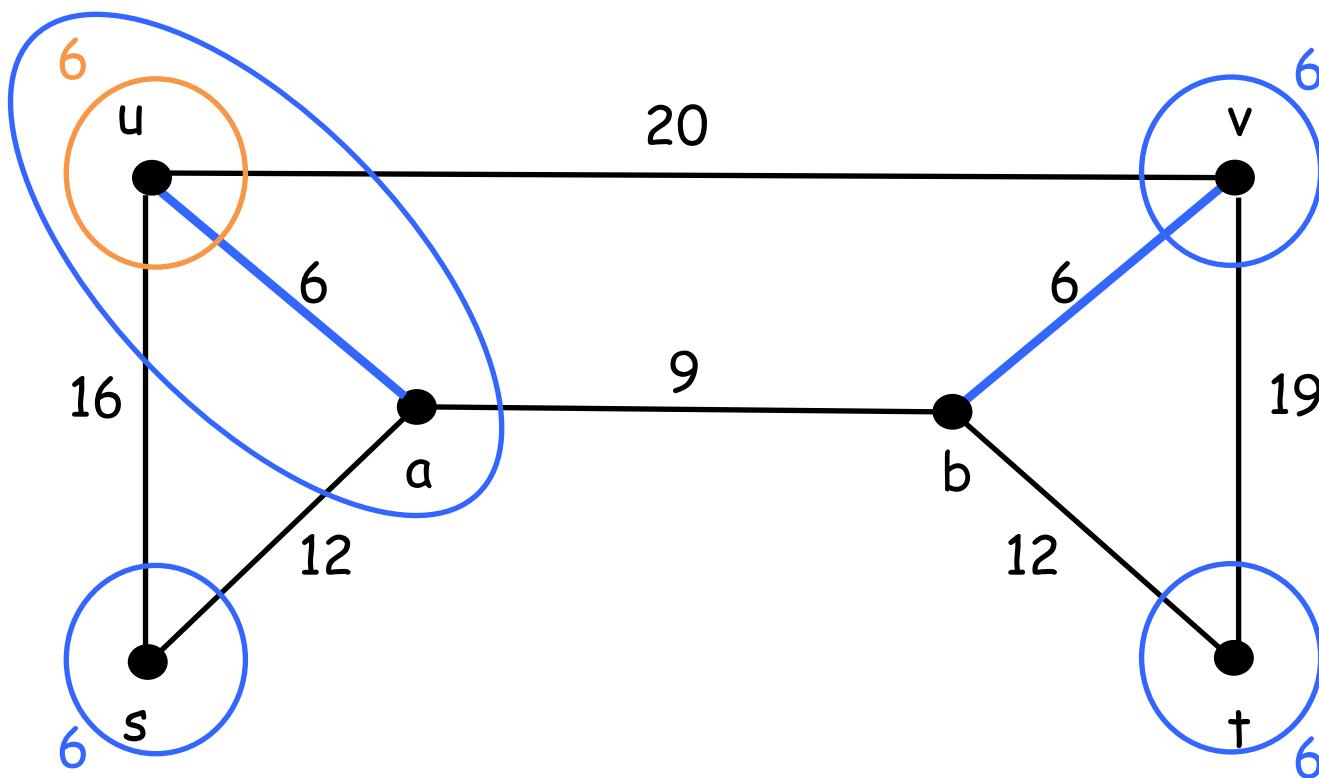
$$S_1=\{u,v\}$$

$$S_2=\{s,t\}$$



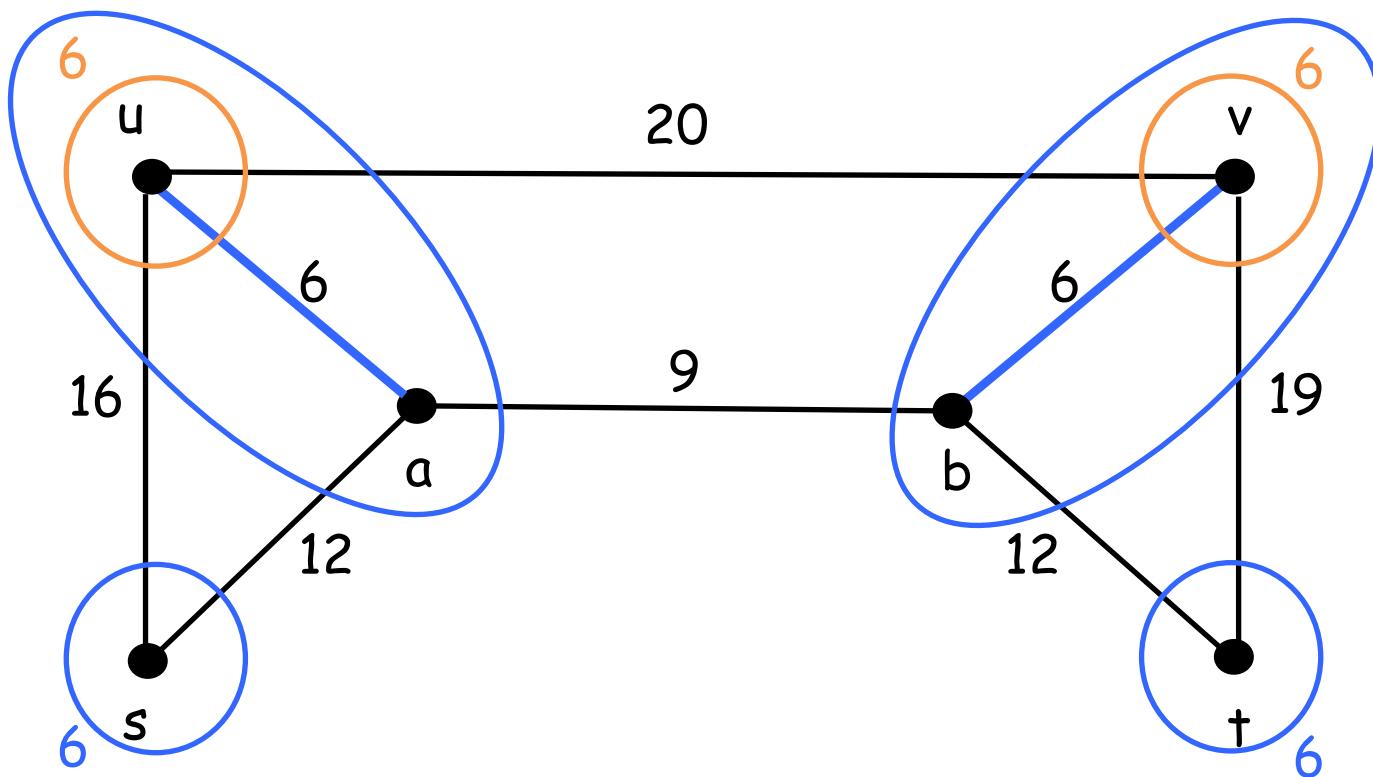
$$S_1=\{u,v\}$$

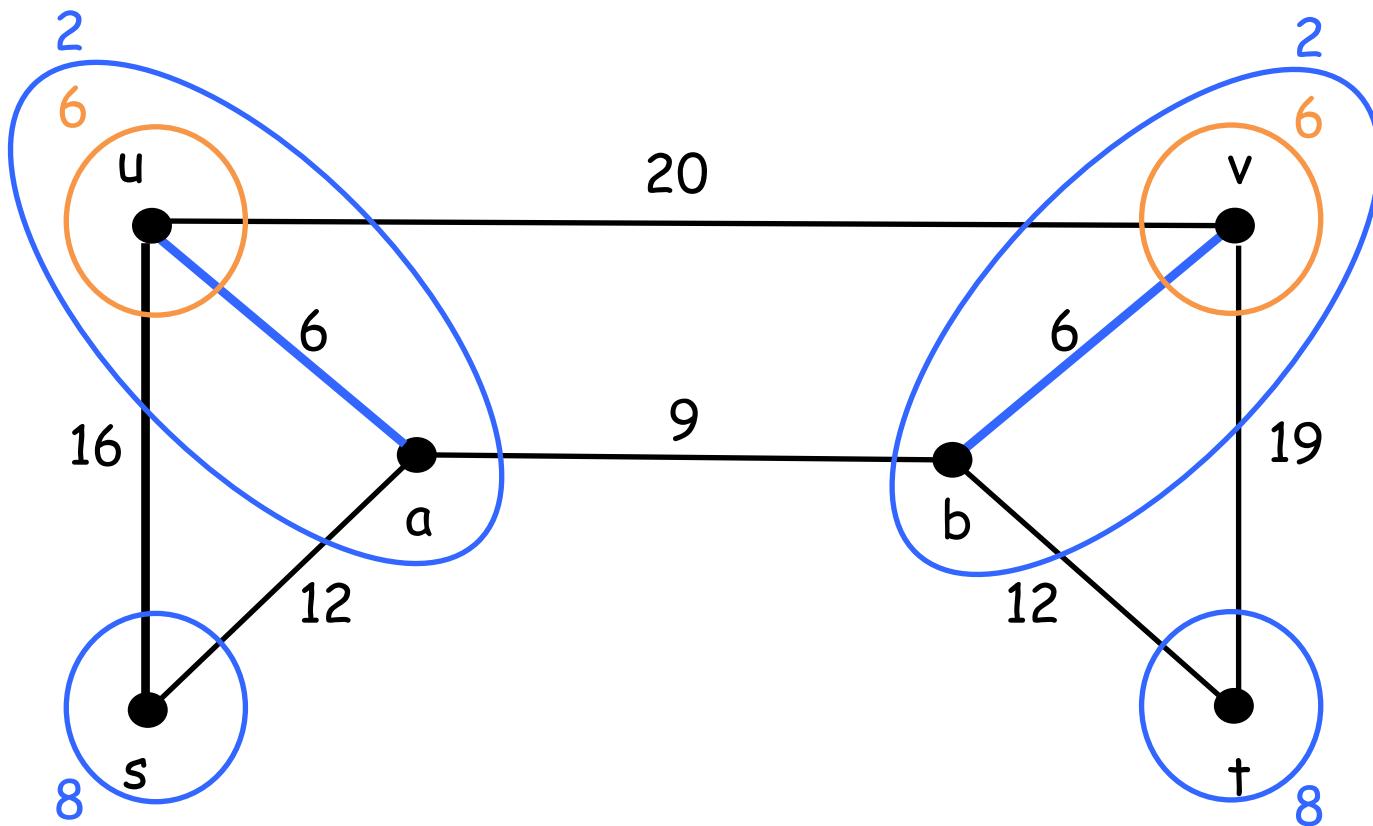
$$S_2=\{s,t\}$$

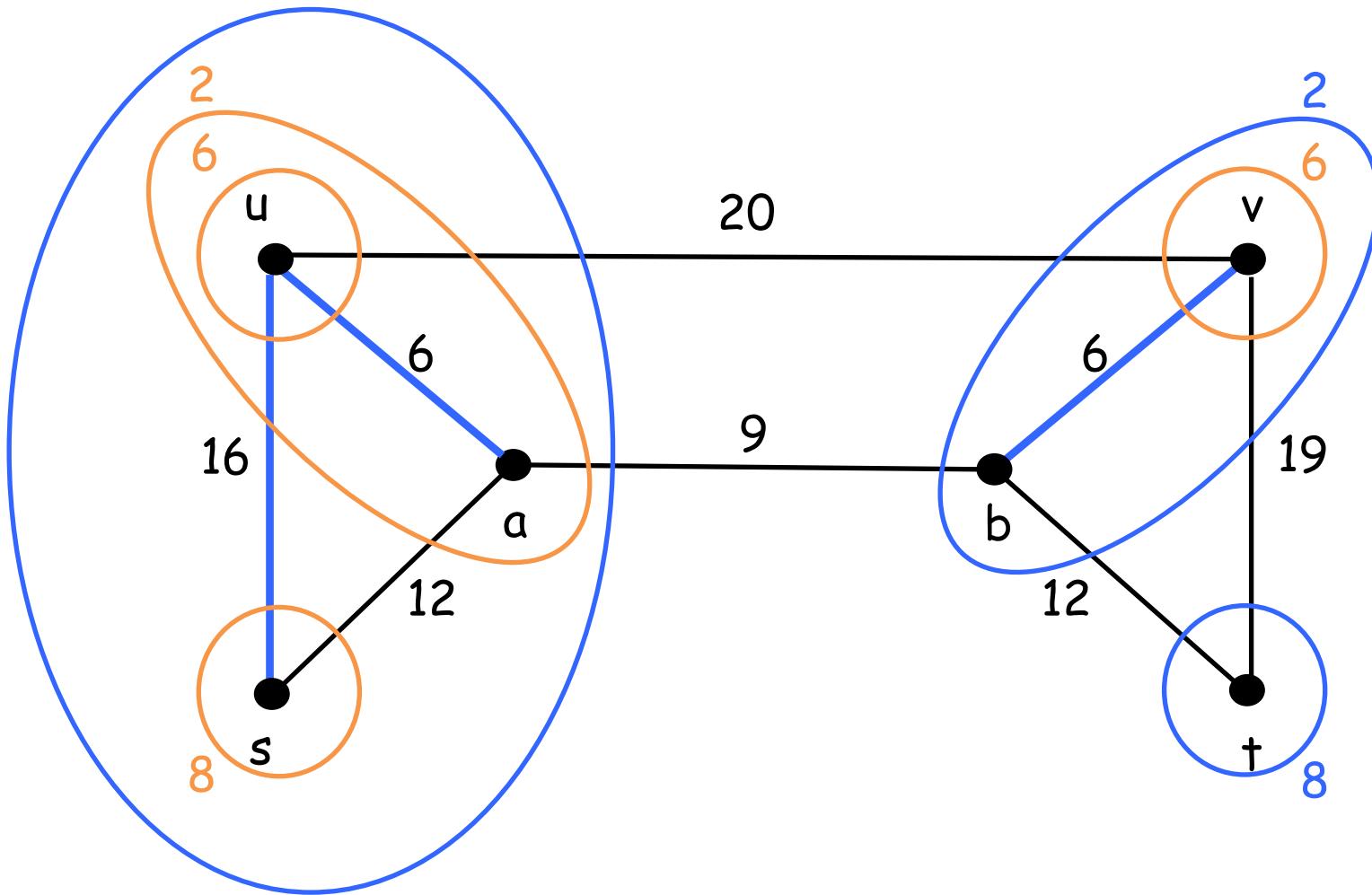


$$S_1=\{u,v\}$$

$$S_2=\{s,t\}$$

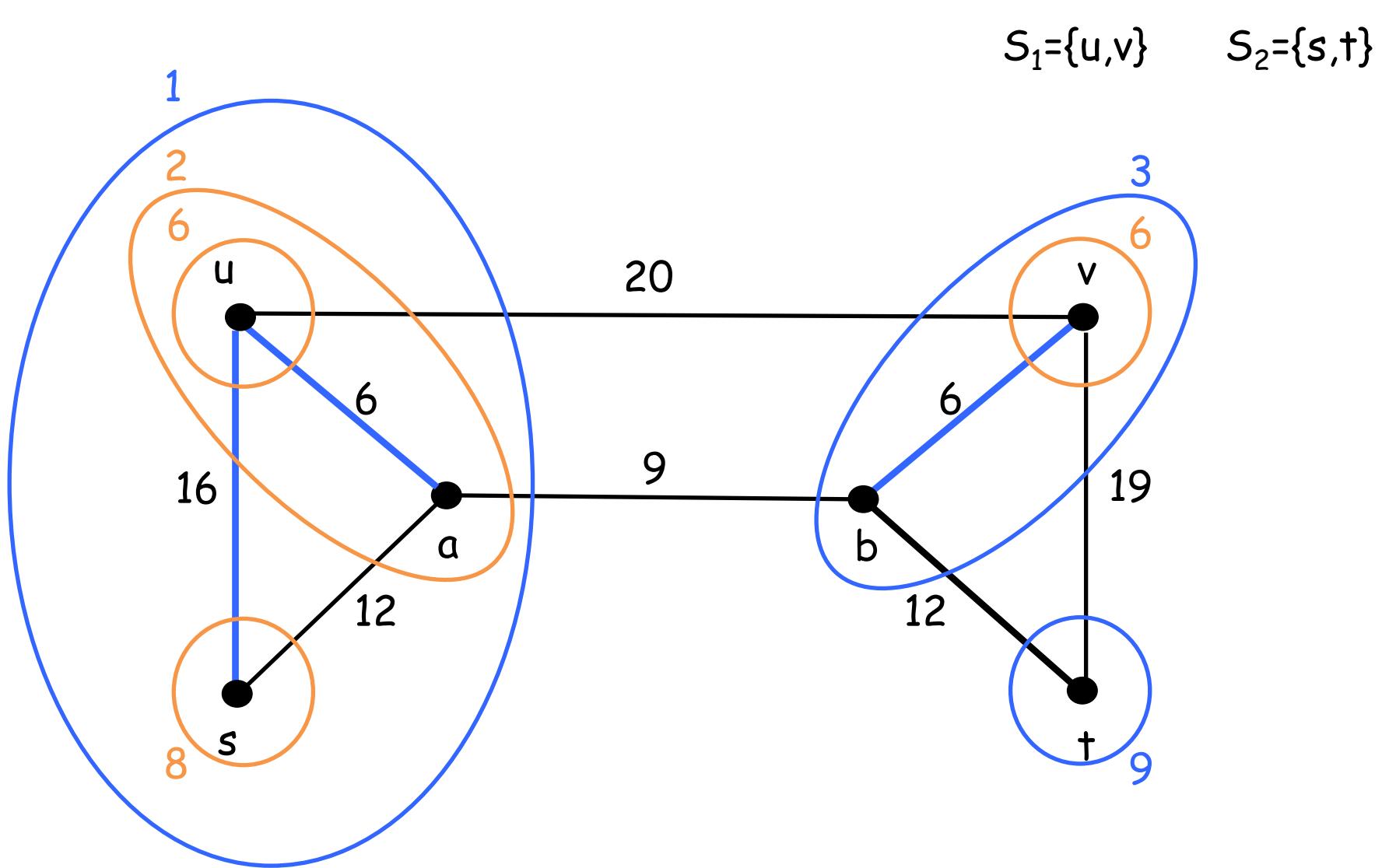


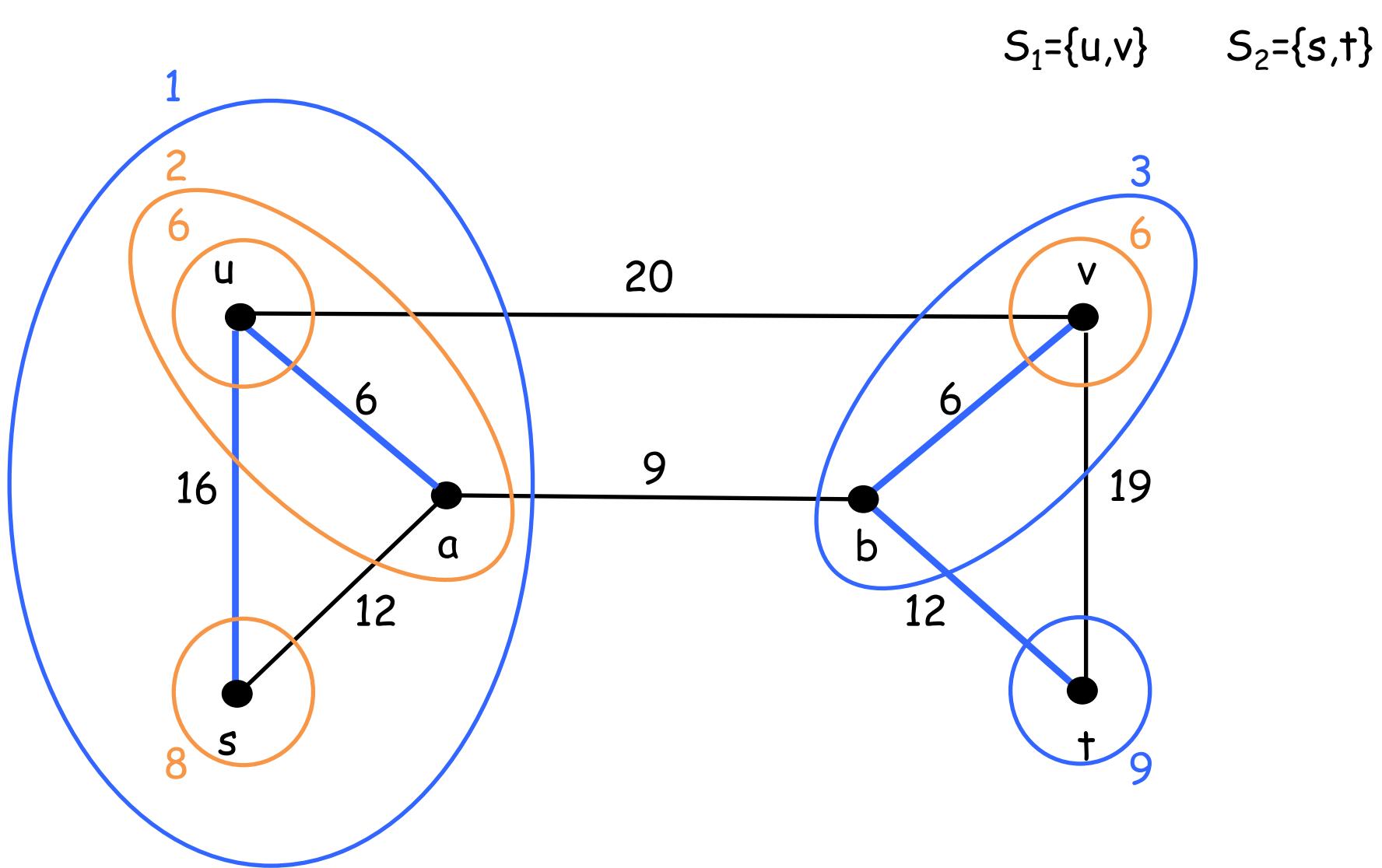
$S_1 = \{u, v\}$ $S_2 = \{s, t\}$ 

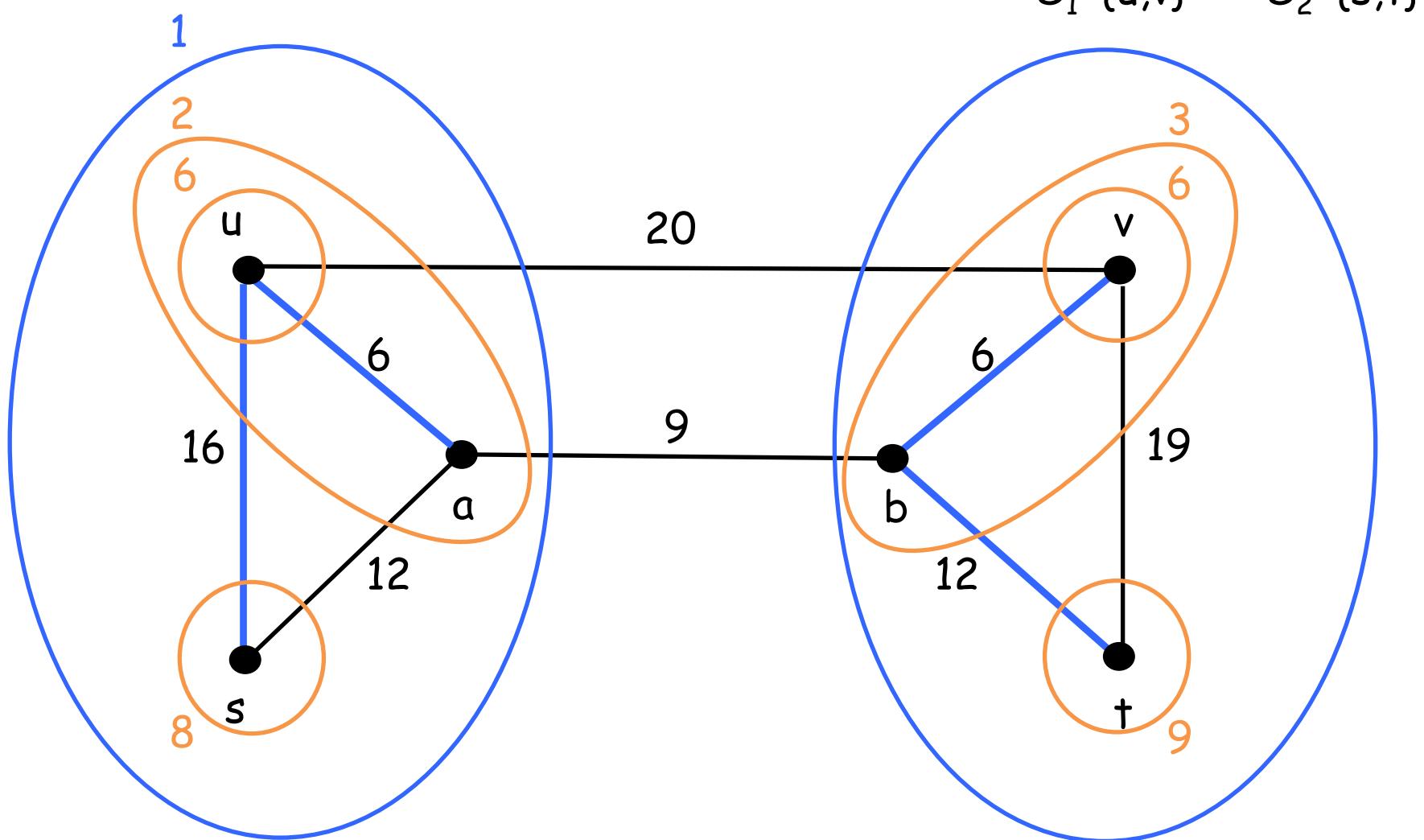


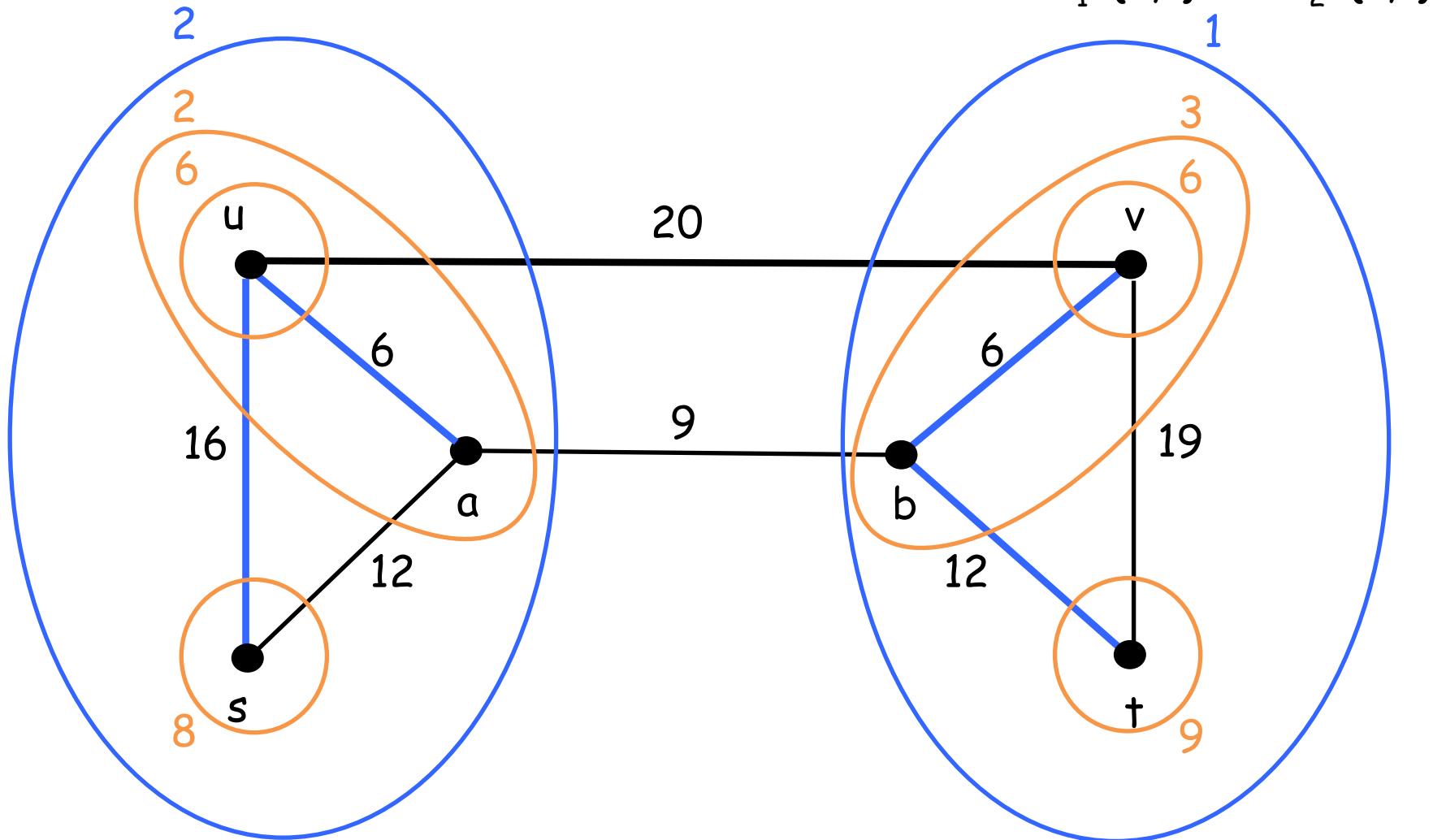
$$S_1 = \{u, v\}$$

$$S_2 = \{s, t\}$$



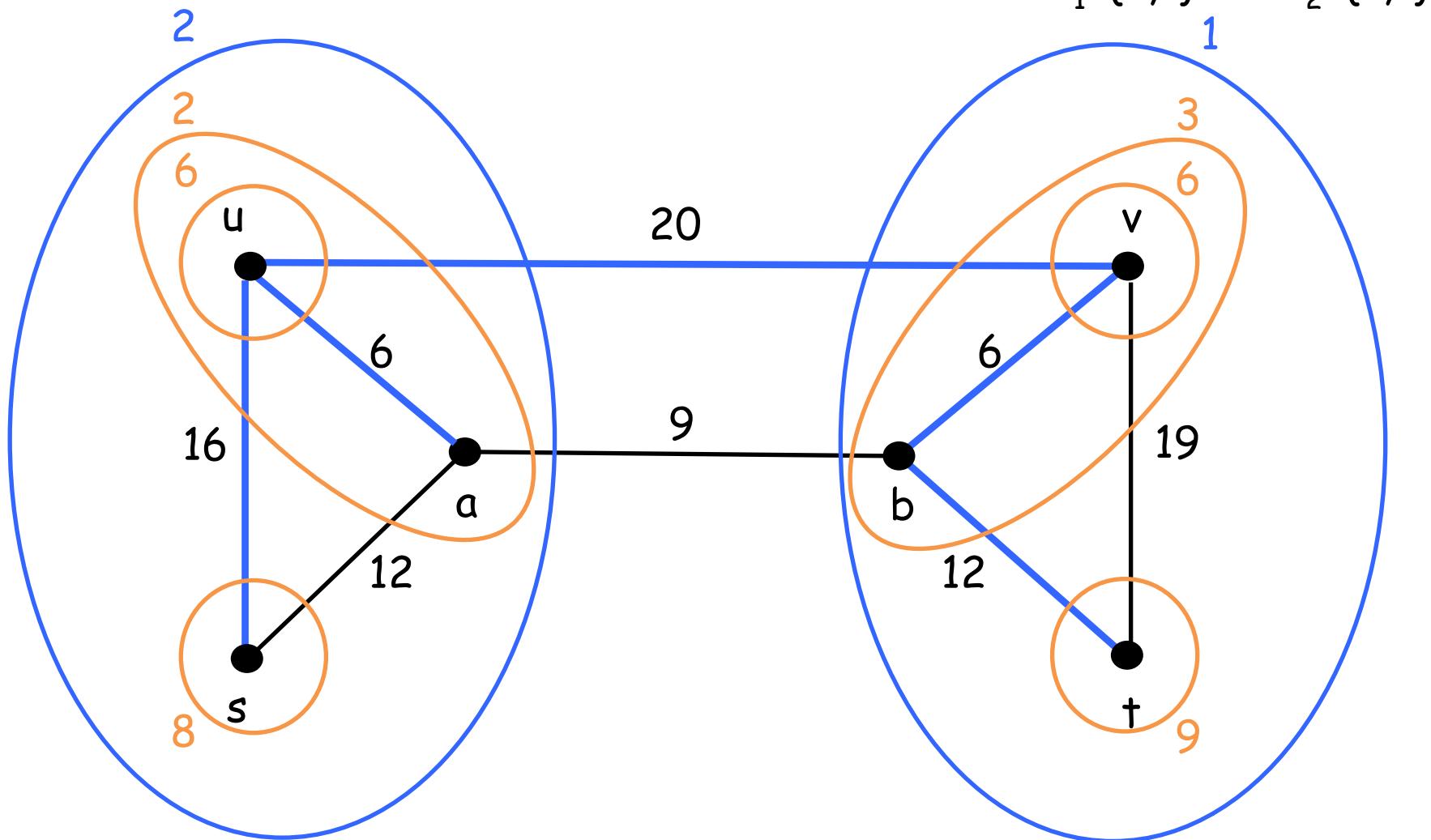


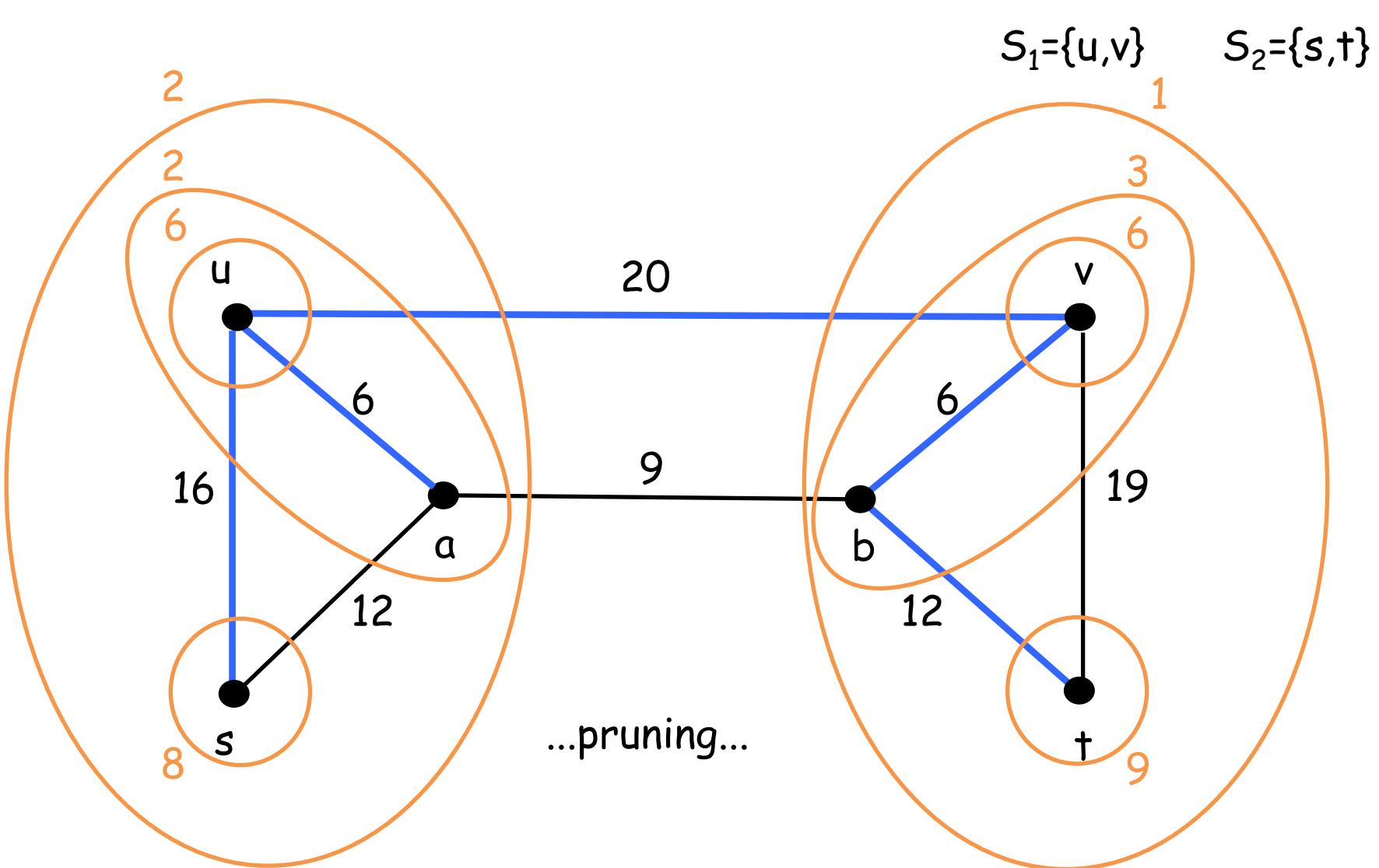


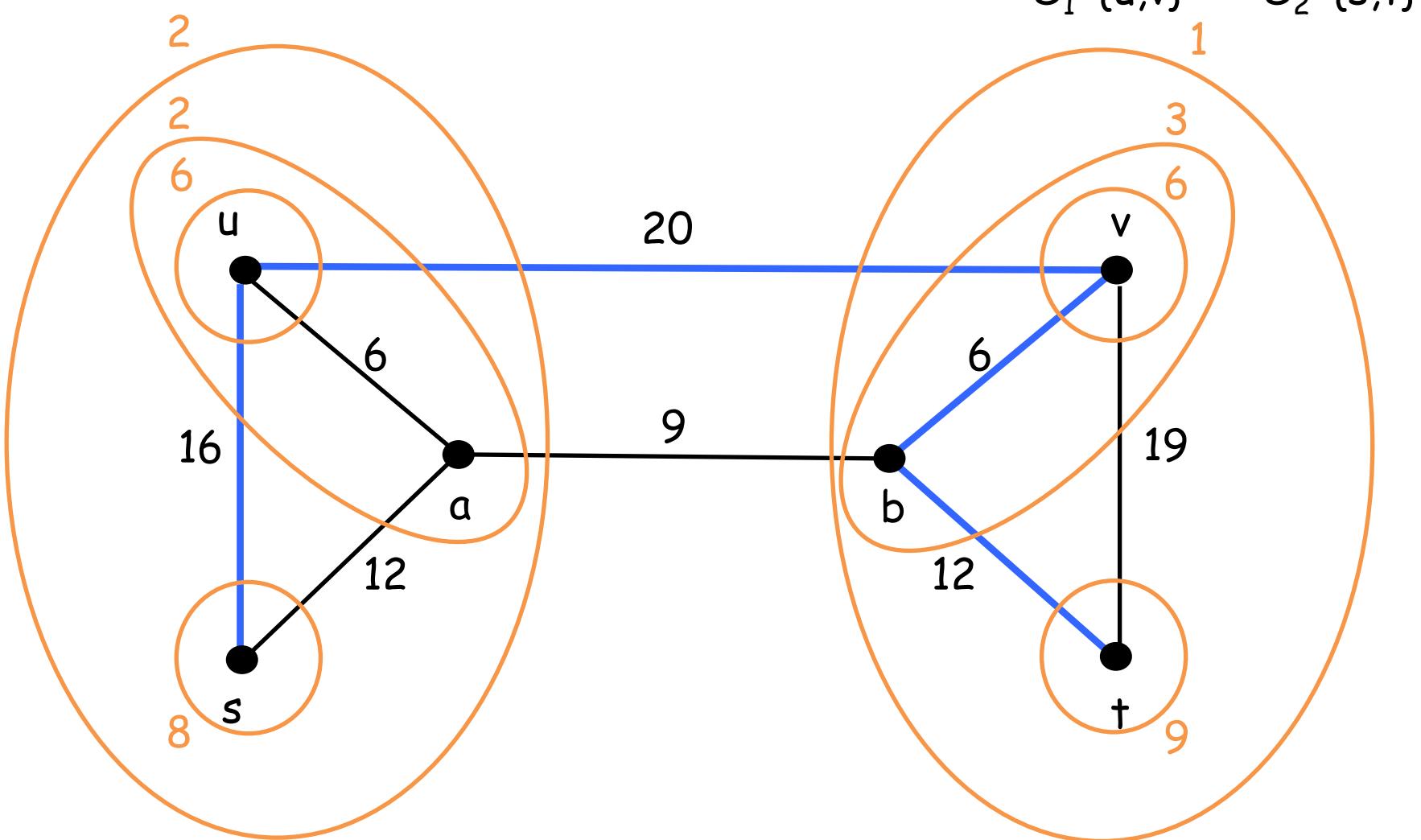


$$S_1 = \{u, v\}$$

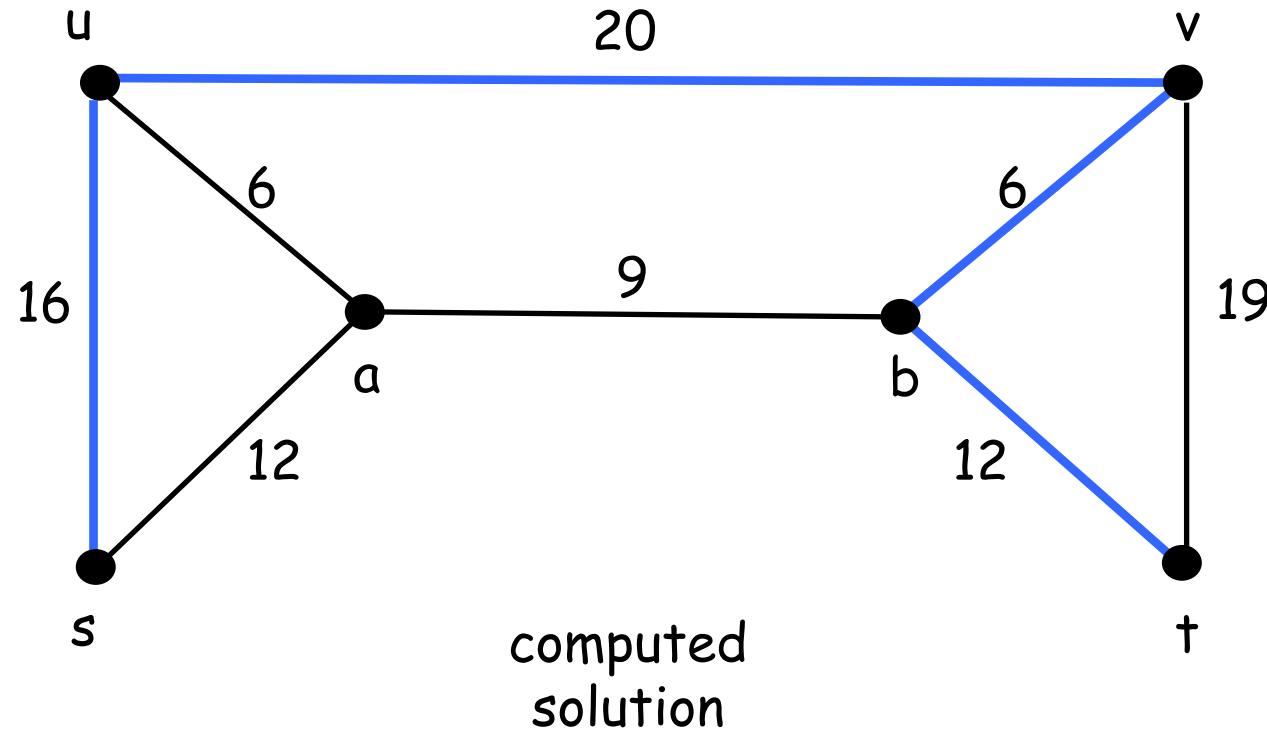
$$S_2 = \{s, t\}$$







$$S_1=\{u,v\} \quad S_2=\{s,t\}$$



Theorem

The algorithm is a 2-approximation algorithm for the SF problem.

proof

The primal computed solution F' is feasible

The dual solution is feasible, since there is no overtight edge

We claim that: $\sum_{e \in F'} c_e \leq 2 \sum_{S \subseteq V} y_S$

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \left(\sum_{S: e \in \delta(S)} y_S \right) = \sum_{S \subseteq V} \left(\sum_{e \in \delta(S) \cap F'} y_S \right) = \sum_{S \subseteq V} \deg_{F'}(S) y_S$$

since every picked edge is tight

changing the order of summation

$\deg_{F'}(S) = \# \text{ of picked edges crossing the cut } (S, S' = V \setminus S)$

we need to show that: $\sum_{S \subseteq V} \deg_F(S) y_S \leq 2 \sum_{S \subseteq V} y_S$

We prove a stronger claim:

- in each iteration the increase in the l.h.s. \leq the increase of in r.h.s.

Consider an iteration, and let Δ be the extent to which active sets were raised in this iteration.

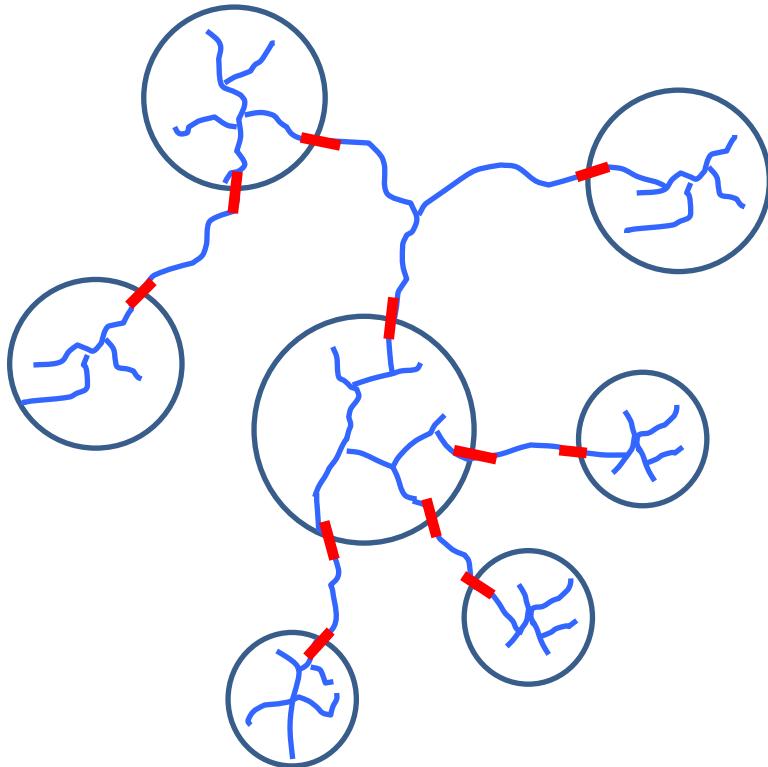
we need to show that:

$$\Delta \times \left(\sum_{S \text{ active}} \deg_F(S) \right) \leq 2 \Delta \times (\# \text{ of active sets})$$

$$\sum_{S \text{ active}} \deg_F(S) \leq 2 (\# \text{ of active sets})$$

$$\sum_{S \text{ active}} \deg_{F'}(S) \leq 2 \text{ (# of active sets)}$$

F' is a forest with no redundant edges



$$\# \text{ of red sticks} \leq 2 \# \text{ of blue circles}$$

shrink blue circles and root the obtained tree arbitrarily

every shrunk circle pays for:

- its red stick towards its parent
- parent's red stick towards it

Thus:

$$\sum_{e \in F'} c_e \leq 2 \sum_{S \subseteq V} y_s \leq 2 \text{ OPT}$$

