
Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

Approximation algorithms:
Episode IV

(the final one)

Primal-dual schema

High-level idea of the approach

start with:
- an infeasible integral primal solution, and
- a dual feasible solution
Iteratively:
- improve the dual solution
- improve the feasibility of the integral primal solution
Until a feasible integral primal solution is obtained

analysis: prove the approximation guarantee using the value of the dual
solution as a lower bound

Algorithm

Input:

Feasible solution:

- universe U of n elements
- a collection of subsets of U, S={S1,...,Sk}

- each SS has a positive cost c(S)

a subcollection CS that covers U (whose union is U)

measure (min):

cost of C :

minimum Set Cover problem

frequency of an element e: number of sets e belongs to


SC

c(S)

f: frequency of the most frequent element

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS{0,1} SS

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS0 SS

LP-relaxation

ILP:

subject to

eU

maximize 
e U

ye


e:eS

ye  c(S)

ye0

SS

dual program

idea: pick only tight sets & do not overpack any set.

Given a dual solution y, we say that a set S is tight if 
e S

ye =c(S)

4 4

2

3

9

6

4 4

2

3

9

6

4 4

2

3

9

6

3

4 4

2

3

9

6

3

4 4

2

3

9

6

3

4 4

2

3

9

6

3

1

4 4

2

3

9

6

3

1

4 4

2

3

9

6

3

1

4 4

2

3

9

6

3

1 6

4 4

2

3

9

6

3

1 6

Theorem
The algorithm is an f-approximation algorithm for the SC problem.

proof

each element e:
- has fye amount of money
- pays ye for each picked set S containing e

since y is feasible:

the computed cover is clearly feasible.

we claim that: 
SS

c(S)xS  f
e U

ye

Think of it as
money you can use
to buy the picked
primal solution

since each e is in at most f sets, e has enough money for its payments

since each picked set S is tight, S is fully paid for by the elements it
contains


e U

ye  OPT

OPT=1+

returned solution has
cost n+

tight example

suppose the algorithm
raises first variable

n+1 elements
f=n

yen

The Steiner Forest
problem

Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs
- collection of disjoint subsets of V, S1,...,Sk

a forest F in which each pair of vertices belonging to the same set Si is
connected

measure (min):

cost of F :

minimum Steiner Forest problem


eE(F)

c(e)

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

a Steiner forest of cost 53

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

a better Steiner forest of cost 45

Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs
- collection of disjoint subsets of V, S1,...,Sk

a forest F in which each pair of vertices belonging to the same set Si is
connected

measure (min):

cost of F :

minimum Steiner Forest problem

metric Steiner forest problem:
- G is complete, and
- edge costs satisfy the triangle inequality


eE(F)

c(e)

for every u,v,w : c(u,v)c(u,w)+c(w,v)

Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs
- collection of disjoint subsets of V, S1,...,Sk

a forest F in which each pair of vertices belonging to the same set Si is
connected

measure (min):

cost of F :

minimum Steiner Forest problem

a connectivity requirement function r


eE(F)

c(e)

r(u,v)=
1 if u and v belong to the same Si

0 otherwise

a function f on all cuts in G, for each SV i.e. cut (S,S’=V\S):

f(S)=
1 if  uS and vS’ such that r(u,v)=1

0 otherwise

an Integer Linear Programming (ILP) formulation of SF

subject to SV

minimize 
eE

ce xe


e:e(S)

xe  f(S)

xe{0,1} eE

xe0 & xe 1
relax with

redundant

subject to SV

minimize 
eE

ce xe


e:e(S)

xe  f(S)

xe0 eE

LP-relaxation

(S): edges crossing the cut (S,S’=V\S)

subject to SV

minimize 
eE

ce xe


e:e(S)

xe  f(S)

xe0 eE

LP-relaxation

subject to

SV

maximize 
SV

f(S) yS


S:e(S)

yS  ce

yS0

eE

dual program

edge e feels dual yS if yS>0 and e(S)

S has been raised in a dual solution if yS > 0

obs: raising S or S’ has the same effect

obs: no advantage in raising a set S with f(S)=0

assume never raise such sets

edge e is tight if the total amount of dual it feels equals its cost

obs: dual program tries to maximize the sum of the duals subject to
no edge is overtight (i.e., feels more than its cost)

at any point, the currently picked edges form a forest F

S is unsatisfied if f(S)=1 but there is no picked edge crossing the cut (S,S’)

S is active if it is a minimal (w.r.t. inclusion) unsatisfied set in F

Lemma
Set S is active iff it is a connected component in the currently picked
forest and f(S)=1.
proof

Let S be an active set

Since f(S)=1, there is a vertex uS and vS’ such that r(u,v)=1

S cannot contain part of a connected component because otherwise there
will already be a picked edge in the cut (S,S’)

obs: if F is not feasible then there must be an active set

Let S’ be the connected component containing u

minimality of S implies S’=S.

S is the union of connected components

an edge eF is redundant if F-{e} is also a feasible solution

discard all redundant edges

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

1 1

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

1 1

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

1 1

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

1 1

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

1 1

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

1 1

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

1 1.5

0.5

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

1 1.5

0.5

...pruning...

u v

3

1

1

S1={u,v}

1

1

1

example: pruning step is needed

computed
solution

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

6 6

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

6 6

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

6 6

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

6 6

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

6 6

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

6 6

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 8

2 2

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 8

2 2

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 9

2 3

1

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 9

2 3

1

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 9

2 3

1

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 9

2 3

2 1

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 9

2 3

2 1

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 9

2 3

2 1

...pruning...

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

6 6

8 9

2 3

2 1

u v

s t

a b

9

20

6

12

16 19

6

12

S1={u,v} S2={s,t}

computed
solution

Theorem
The algorithm is a 2-approximation algorithm for the SF problem.

proof

The primal computed solution F’ is feasible
The dual solution is feasible, since there is no overtight edge

We claim that: 
eF’

ce  2
SV

yS


eF’

ce = 
S:e(S)


eF’

yS = 
e(S)F’


SV

yS = 
SV

degF’(S) yS

degF’(S)= # of picked edges crossing the cut (S,S’=V\S)

since every picked
edge is tight

changing the order
of summation

we need to show that: 
SV

degF’(S) yS  2
SV

yS

We prove a stronger claim:
- in each iteration the increase in the l.h.s.  the increase of in r.h.s.

Consider an iteration, and let  be the extent to which active sets were
raised in this iteration.

we need to show that:


S active

degF’(S)  2  (# of active sets) 


S active

degF’(S)  2 (# of active sets)


S active

degF’(S)  2 (# of active sets)

F’ is a forest with no redundant edges

 2
#of red
sticks

#of blue
circles

shrink blue circles and root the
obtained tree arbitrarily

every shrunk circle pays for:
- its red stick towards its parent
- parent’s red stick towards it

Thus:


eF’

ce  2
SV

yS  2 OPT

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

