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Approximation algorithms 

Episode III



Linear Programming: 
rounding



Input:

Feasible solution:

- universe U of n elements 
- a collection of subsets of U, S={S1,...,Sk}

- each SS has a positive cost c(S)

a subcollection CS that covers U (whose union is U)

measure (min):

cost of C :

minimum Set Cover problem

frequency of an element e: number of sets e belongs to


SC

c(S)

f: frequency of the most frequent element



an Integer Linear Programming (ILP) formulation of SC

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS{0,1} SS

xS0 & xS 1
relax with

redundant

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS0 SS

LP-relaxation

a feasible solution is 
a fractional SC

OPTf: cost of the min fractional SC

OPTf  OPT



OPT=2

an example

- 3 elements
- 3 sets
- all sets have cost 1

set all xS to ½ 

OPTf=1.5



subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS0 SS

LP-relaxation

which algorithm do you know to solve a linear program?

- simplex algorithm

- ellipsoid method

(exponential running time 
in the worst case, but 
almost linear in practice) 

(poly-time in the worst 
case, but not so good in 
practice) 

why worst-case complexity fails here to predict the behavior of these 
algorithms?

beyond worst case analysis a good candidate for 
another advanced topic



Theorem
The above algorithm is an f-approximation algorithm for the SC problem.
proof

the solution computed is a feasible cover

the rounding process increases each xS by a factor of at most f

pick an element e and consider the at most f sets 
containing e

since e is covered in the fractional solution 
there is at least a set S with xS1/f

e is covered in the computed integer solution
e

cost of the computed cover  f OPTf  f OPT



Input:

Feasible solution:

- an undirected graph G=(V,E)
- each vertex v has a cost c(v)

UV such that every edge (u,v)E is covered, i.e. uU or vU

measure (min):

cost(U) : 

a special case: weighted Vertex Cover problem


vU

c(v)

f: frequency of the most frequent element =2 

The LP-rounding algorithm is a 2-approximation 
algorithm for the weighted VC problem 



OPT=n        (pick V1)

returned rounded solution has cost kn

tight example

OPTf= n (set each set/vertex variable to 1/k)

view a set cover instance as a hypergraph:
- sets correspond to vertices
- elements correspond to hyperedges 
- a set/vertex v covers an element/hyperedge XV if vX

Let V1,...,Vk be k sets of cardinality n each. The hypergraph has:
- vertex set: V=V1... Vk

- nk hyperedges: each hyperedge picks one vertex from Vi

- all sets/vertices have cost 1

f=k



LP-duality



subject to

minimize 7x1 + x2 + 5x3 

x1,x2,x3 0

x1   - x2 + 3x3  10

5x1  +  2x2 - x3  6

z: value of the optimal solution

Is z at most ?

YES certificate: any feasible solution of value  

x=(2,1,3) feasible solution of value 72+11+53=30



subject to

minimize 7x1 + x2 + 5x3 

x1,x2,x3 0

x1   - x2 + 3x3  10

5x1  +  2x2 - x3  6

z: value of the optimal solution

z  10
7x1 + x2     +  5x3 

x1   - x2 + 3x3  10



Is z at least ?



subject to

minimize 7x1 + x2 + 5x3 

x1,x2,x3 0

x1   - x2 + 3x3  10

5x1  +  2x2 - x3  6

z: value of the optimal solution

z  16
7x1 + x2     +  5x3 

x1   - x2 + 3x3  10



Is z at least ?

5x1  +  2x2 - x3

+
 6

y1

y2



subject to

minimize 7x1 + x2 + 5x3 

x1,x2,x3 0

x1   - x2 + 3x3  10

5x1  +  2x2 - x3  6

subject to

maximize 10y1  + 6y2

y1,y2 0

y1   +  5y2  7

-y1   +  2y2  1

3y1   - y2  5

primal program dual program

every feasible solution of the dual gives a lower 
bound to the optimal solution of the primal

every feasible solution of the primal gives an 
upper bound to the optimal solution of the dual

two solutions with the same value must be both optimal!

optimal solutions:
x=(7/4,0,11/4) y=(2,1) both of value 26



subject to

minimize 7x1 + x2 + 5x3 

x1,x2,x3 0

x1   - x2 + 3x3  10

5x1  +  2x2 - x3  6

subject to

maximize 10y1  + 6y2

y1,y2 0

y1   +  5y2  7

-y1   +  2y2  1

3y1   - y2  5

primal program dual program

primal solutionsdual solutions

dual opt = primal opt



subject to

minimize

subject to

maximize

primal program dual program


j=1

cjxj

n


j=1

aijxj bi

n
i=1,...,m

xj0 j=1,...,n


i=1

biyi

m


i=1

aijyi cj

m
j=1,...,n

yi0 i=1,...,m

Theorem (LP-duality theorem)
The primal program has a finite optimum iff its dual has finite optimum. 
Moreover, if x=(x1,...,xn) and y=(y1,...,ym) are optimal solutions for the 
primal and dual programs, respectively, then


j=1

cjxj

n


i=1

biyi

m

=



Theorem (weak duality theorem)
If x=(x1,...,xn) and y=(y1,...,ym) are feasible solutions for the primal and dual 
programs, respectively, then


j=1

cjxj

n


i=1

biyi

m



proof


j=1

cjxj

n
xj 

j=1

n


i=1

aijyi

m


i=1

biyi

m


i=1
yi

m


j=1

aijxj

n

=

=

since for y is feasible and xj’s are nonnegative

since for x is feasible and yi’s are nonnegative



Set Cover via dual-fitting



subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS{0,1} SS

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS0 SS

LP-relaxation

ILP:

subject to

eU

maximize 
e U

ye


e:eS

ye  c(S)

ye0

SS

dual program



greedy strategy: pick the most cost-effective set and remove the covered 
elements, until all elements are covered.

Let C be the set of elements already covered.

cost-effectiveness of S:  c(S)/|S-C|
average cost at which 
S covers new elements

average cost at which 
e is covered



Lemma
The vector y defined above is a feasible solution for the dual program. 

proof

We show that no set is overpacked in y

When ei is covered S contains at least k-i+1 uncovered elements

ye
price(e)

=
Hn

for each eU,

consider a set S of k element, and list them in the order they are covered 
by the algorithm (break ties arbitrarily), say e1,...,ek.

y 1


Hn

c(S)

k-i+1ei

S can cover ei at an average cost of at most c(S)/(k-i+1)

By the greedy choice, price(ei) c(S)/(k-i+1)

Thus:


i=1

k
y
ei


c(S)

Hn

c(S)
1
k

+
1

k-1
+

1
1 

Hn

Hk
 c(S)+ ...



Theorem
The greedy algorithm is a Hn-approximation algorithm for the SC problem.

proof

cost of the cover=
eU

price(e) Hn OPTf  HnOPT=Hn
eU

ye
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