
Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

Approximation algorithms

Episode III

Linear Programming:
rounding

Input:

Feasible solution:

- universe U of n elements
- a collection of subsets of U, S={S1,...,Sk}

- each SS has a positive cost c(S)

a subcollection CS that covers U (whose union is U)

measure (min):

cost of C :

minimum Set Cover problem

frequency of an element e: number of sets e belongs to


SC

c(S)

f: frequency of the most frequent element

an Integer Linear Programming (ILP) formulation of SC

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS{0,1} SS

xS0 & xS 1
relax with

redundant

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS0 SS

LP-relaxation

a feasible solution is
a fractional SC

OPTf: cost of the min fractional SC

OPTf  OPT

OPT=2

an example

- 3 elements
- 3 sets
- all sets have cost 1

set all xS to ½

OPTf=1.5

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS0 SS

LP-relaxation

which algorithm do you know to solve a linear program?

- simplex algorithm

- ellipsoid method

(exponential running time
in the worst case, but
almost linear in practice)

(poly-time in the worst
case, but not so good in
practice)

why worst-case complexity fails here to predict the behavior of these
algorithms?

beyond worst case analysis a good candidate for
another advanced topic

Theorem
The above algorithm is an f-approximation algorithm for the SC problem.
proof

the solution computed is a feasible cover

the rounding process increases each xS by a factor of at most f

pick an element e and consider the at most f sets
containing e

since e is covered in the fractional solution
there is at least a set S with xS1/f

e is covered in the computed integer solution
e

cost of the computed cover  f OPTf  f OPT

Input:

Feasible solution:

- an undirected graph G=(V,E)
- each vertex v has a cost c(v)

UV such that every edge (u,v)E is covered, i.e. uU or vU

measure (min):

cost(U) :

a special case: weighted Vertex Cover problem


vU

c(v)

f: frequency of the most frequent element =2

The LP-rounding algorithm is a 2-approximation
algorithm for the weighted VC problem

OPT=n (pick V1)

returned rounded solution has cost kn

tight example

OPTf= n (set each set/vertex variable to 1/k)

view a set cover instance as a hypergraph:
- sets correspond to vertices
- elements correspond to hyperedges
- a set/vertex v covers an element/hyperedge XV if vX

Let V1,...,Vk be k sets of cardinality n each. The hypergraph has:
- vertex set: V=V1... Vk

- nk hyperedges: each hyperedge picks one vertex from Vi

- all sets/vertices have cost 1

f=k

LP-duality

subject to

minimize 7x1 + x2 + 5x3

x1,x2,x3 0

x1 - x2 + 3x3  10

5x1 + 2x2 - x3  6

z: value of the optimal solution

Is z at most ?

YES certificate: any feasible solution of value  

x=(2,1,3) feasible solution of value 72+11+53=30

subject to

minimize 7x1 + x2 + 5x3

x1,x2,x3 0

x1 - x2 + 3x3  10

5x1 + 2x2 - x3  6

z: value of the optimal solution

z  10
7x1 + x2 + 5x3

x1 - x2 + 3x3  10



Is z at least ?

subject to

minimize 7x1 + x2 + 5x3

x1,x2,x3 0

x1 - x2 + 3x3  10

5x1 + 2x2 - x3  6

z: value of the optimal solution

z  16
7x1 + x2 + 5x3

x1 - x2 + 3x3  10



Is z at least ?

5x1 + 2x2 - x3

+
 6

y1

y2

subject to

minimize 7x1 + x2 + 5x3

x1,x2,x3 0

x1 - x2 + 3x3  10

5x1 + 2x2 - x3  6

subject to

maximize 10y1 + 6y2

y1,y2 0

y1 + 5y2  7

-y1 + 2y2  1

3y1 - y2  5

primal program dual program

every feasible solution of the dual gives a lower
bound to the optimal solution of the primal

every feasible solution of the primal gives an
upper bound to the optimal solution of the dual

two solutions with the same value must be both optimal!

optimal solutions:
x=(7/4,0,11/4) y=(2,1) both of value 26

subject to

minimize 7x1 + x2 + 5x3

x1,x2,x3 0

x1 - x2 + 3x3  10

5x1 + 2x2 - x3  6

subject to

maximize 10y1 + 6y2

y1,y2 0

y1 + 5y2  7

-y1 + 2y2  1

3y1 - y2  5

primal program dual program

primal solutionsdual solutions

dual opt = primal opt

subject to

minimize

subject to

maximize

primal program dual program


j=1

cjxj

n


j=1

aijxj bi

n
i=1,...,m

xj0 j=1,...,n


i=1

biyi

m


i=1

aijyi cj

m
j=1,...,n

yi0 i=1,...,m

Theorem (LP-duality theorem)
The primal program has a finite optimum iff its dual has finite optimum.
Moreover, if x=(x1,...,xn) and y=(y1,...,ym) are optimal solutions for the
primal and dual programs, respectively, then


j=1

cjxj

n


i=1

biyi

m

=

Theorem (weak duality theorem)
If x=(x1,...,xn) and y=(y1,...,ym) are feasible solutions for the primal and dual
programs, respectively, then


j=1

cjxj

n


i=1

biyi

m



proof


j=1

cjxj

n
xj 

j=1

n


i=1

aijyi

m


i=1

biyi

m


i=1
yi

m


j=1

aijxj

n

=

=

since for y is feasible and xj’s are nonnegative

since for x is feasible and yi’s are nonnegative

Set Cover via dual-fitting

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS{0,1} SS

subject to eU

minimize 
SS

c(S)xS


S:eS

xS  1

xS0 SS

LP-relaxation

ILP:

subject to

eU

maximize 
e U

ye


e:eS

ye  c(S)

ye0

SS

dual program

greedy strategy: pick the most cost-effective set and remove the covered
elements, until all elements are covered.

Let C be the set of elements already covered.

cost-effectiveness of S: c(S)/|S-C|
average cost at which
S covers new elements

average cost at which
e is covered

Lemma
The vector y defined above is a feasible solution for the dual program.

proof

We show that no set is overpacked in y

When ei is covered S contains at least k-i+1 uncovered elements

ye
price(e)

=
Hn

for each eU,

consider a set S of k element, and list them in the order they are covered
by the algorithm (break ties arbitrarily), say e1,...,ek.

y 1


Hn

c(S)

k-i+1ei

S can cover ei at an average cost of at most c(S)/(k-i+1)

By the greedy choice, price(ei) c(S)/(k-i+1)

Thus:


i=1

k
y
ei


c(S)

Hn

c(S)
1
k

+
1

k-1
+

1
1 

Hn

Hk
 c(S)+ ...

Theorem
The greedy algorithm is a Hn-approximation algorithm for the SC problem.

proof

cost of the cover=
eU

price(e) Hn OPTf  HnOPT=Hn
eU

ye

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

