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Approximation algorithms
Episode IIT



Linear Programming:
rounding



minimum Set Cover problem

Input:
- universe U of n elements
- acollection of subsets of U, 5={S,.....5,}

- each Se5 has a positive cost ¢(S)

Feasible solution:
a subcollection €5 that covers U (whose union is U)

measure (min):

cost of € : > c(S)
SeC

frequency of an element e: number of sets e belongs to

f: frequency of the most frequent element



an Integer Linear Programming (ILP) formulation of SC

minimize  ,c(S)Xs
Se$

subject to D) xg>1
Siee$S

xs<{0,1}

relax with
x>0 & x5<1

ecU

Se$

LP-relaxation

minimize  ,c(S)Xs
SeS

subject to ) xg>1 ecU
SieeS

x>0 SeS

a feasible solution is
a fractional SC

OPT;: cost of the min fractional SC

OPT, < OPT



OPT=2

- 3 elements
- 3 sets
- all sets have cost 1



LP-relaxation

minimize  ,c(S)xs
Se$

subject to ) xg>1 ecU
SieeS

x>0 SeS

which algorithm do you know to solve a linear program?

- simplex algorithm
- ellipsoid method

why worst-case complexity fails here to predict the behavior of these
algorithms?

a good candidate for

beyond worst case analysis another advanced topic



Algorithm 14.1 (Set cover via LP-rounding)

1. Find an optimal solution to the LP-relaxation.
2. Pick all sets S for which x5 > 1/f in this solution.

Theorem
The above algorithm is an f-approximation algorithm for the SC problem.
proof

the solution computed is a feasible cover

pick an element e and consider the at most f sets
containing e

since e is covered in the fractional solution
there is at least a set S with x>1/f

‘ e is covered in the computed integer solution

the rounding process increases each x by a factor of at most f

cost of the computed cover < f OPT, < f OPT




a special case: weighted Vertex Cover problem

Input:
- an undirected graph G=(V,E)
- each vertex v has a cost c(v)

Feasible solution:
UcV such that every edge (u,v)<E is covered, i.e. ucU or veU

measure (min):

cost(U) : D c(v)

velU

f: frequency of the most frequent element =2

‘ The LP-rounding algorithm is a 2-approximation
algorithm for the weighted VC problem



view a set cover instance as a hypergraph:

- sets correspond to vertices

- elements correspond to hyperedges

- aset/vertex v covers an element/hyperedge XcV if veX

Let V,....,.Vi be k sets of cardinality n each. The hypergraph has:
- vertex set: V=V,u... UV,

- nk hyperedges: each hyperedge picks one vertex from V,

- all sets/vertices have cost 1

f=k
OPT;=n  (set each set/vertex variable to 1/k)

returned rounded solution has cost kn
OPT=n (pick V,)



LP-duality



minimize  7x;+ X, + DX
subjectto x; - x, +3x3 > 10
Bx; + 2X, - X3 > 6

X1,X2,X3>0

z: value of the optimal solution

Is z at most a?

YES certificate: any feasible solution of value < a
x=(2,1,3) feasible solution of value 7-2+1.1+5.3=30



minimize  7X;+ X, + bx;
subjectto x; - x, +3x3 > 10
Bx; + 2X, - X3 > 6

X1,X2,X3>0

z: value of the optimal solution

Is z at least o?

7X{+ X, + DXz >

‘ z>10

X; - X, +3x3 > 10



minimize  7X;+ X, + bx;

subjectto x; - x, +3x3 > 10
Bx; + 2X, - X3 > 6

X1,X2,X3>0

z: value of the optimal solution

Is z at least o?

7X{+ X, + DXz >

‘ z>16

Yi Xy - X, +3x3 > 10
+

Y2 Bx + 2x, - X3 = 6



primal program dual program

minimize  7x;+ X, + DX maximize
subjectto x; - x, +3x3 > 10 subject to
Bx; + 2X, - X3 > 6

X1,X2,X3>0

every feasible solution of the dual gives a lower
bound to the optimal solution of the primal

every feasible solution of the primal gives an
upper bound to the optimal solution of the dual

two solutions with the same value must be both optimall

optimal solutions:
x=(7/4,0,11/4) y=(2,1) both of value 26

10y, + 6y,

Y1 + Y
Y1+ 2Y;
3y1 - Ye
Y1.Y220



primal program dual program

minimize  7X;+ X, + DX; maximize 10y, + 6y,
subjectto x; - x, +3x3 > 10 subject to y; + Dy,
Bx; + 2X, - X3 > 6 -y; + 2Y,
X1,X2,X3 >0 3y1 - Ye

Yi.Y2 >0

dual opt = primal opt
0 26

= -t

dual solutions primal solutions



primal program dual program

n m
minimize Y c.x; maximize Y by,
i1 =1
n . m
subject to Z a;X;=b;  i=1,...m subject fo Z a;yi<c;  j=l..n
j=1 i=1
x;=0 J=1,...n y;>0 i=1,....m

Theorem (LP-duality theorem)
The primal program has a finite optimum iff its dual has finite optimum.

Moreover, if x=(x,...,X,) and y=(yy,....Y,,) are optimal solutions for the
primal and dual programs, respectively, then

n m
D.cx; = Dby,
i1 =1



Theorem (weak duality theorem)
If x=(xy,...,X,) and y=(y.....Y,,) are feasible solutions for the primal and dual
programs, respectively, then

n m
D.cx; = Dby,
i
proof

since for y is feasible and x;'s are nonnegative

n m
chxj Z Z a;yil X =
j=1 =1

mif{n m
= D apx|yi = Dby,
=1 J:l i=1

M=

J

1
—

since for x is feasible and y;'s are nonnegative




Set Cover via dual-fitting



minimize Zc(S)xS

TLP:
subject to Z Xg2> 1 ecU
SieeS
xs€{0,1} Sed
LP-relaxation dual program
minimize  Y.c(S)Xs maximize Q. Ye
SesS ec U
subjectto D, xs>1 eeU subject to D, y.<c(S) Se$§
SieeS e.eeS
x>0 Se$S y.>0 ecU
0 OPLy OPT ~

o

rimal integral solutions
< > >
dual fractional solutions primal fractional solutions




greedy strategy: pick the most cost-effective set and remove the covered
elements, until all elements are covered.

Let C be the set of elements already covered.
cost-effectiveness of S: ¢(S)/|S-C|

Algorithm 2.2 (Greedy set cover algorithm)

1. C «(
2. While C' # U do

Find the most cost-effective set in the current iteration, say S.

Let v = %té? I.e., the cost-effectiveness of 5.
Pick S, and for each e € S — (', set price(e) = a.
C+—CuUSs.

3. Output the picked sets.




price(e)

for each ecU, Y, =
H,

Lemma
The vector y defined above is a feasible solution for the dual program.
proof

We show that no set is overpacked iny

consider a set S of k element, and list them in the order they are covered
by the algorithm (break ties arbitrarily), say e;,....e,.

When e, is covered S contains at least k-i+1 uncovered elements
S can cover e, at an average cost of at most c(S)/(k-i+1)
By the greedy choice, price(e;)< c(S)/(k-i+1)

. 1 <(S)
Thust Ve, <

k H
Zye_ <C(:)[ :'( +k1_—1+... +—1J SﬁkC(S)SC(S)




Theorem
The greedy algorithm is a H,-approximation algorithm for the SC problem.

proof
cost of the cover= Y price(e) = H, 2 Ye <H, OPT; < H,OPT
ecU

eclU
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