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Approximation algorithms 

Episode II



minimum Steiner Tree 
problem



Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs 
- subset of required vertices RV; V-R are called Steiner vertices

a tree T containing all the required vertices and any subset of Steiner 
ones 

measure (min):

cost of T :

minimum Steiner Tree problem


eE(T)

c(e)



: required vertices

: Steiner vertices
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special case: R=V

- Minimum Spanning Tree (MST) problem

- poly-time solvable



Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs 
- subset of required vertices RV; V-R are called Steiner vertices

a tree T containing all the required vertices and any subset of Steiner 
ones 

measure (min):

cost of T :

minimum Steiner Tree problem

metric Steiner tree problem:
- G is complete, and 
- edge costs satisfy the triangle inequality


eE(T)

c(e)

for every u,v,w : c(u,v)c(u,w)+c(w,v)



Theorem
There is an approximation factor preserving reduction from the Steiner 
tree problem to the metric Steiner tree problem.

proof

let I be an instance of the ST problem consisting of graph G=(V,E) and 
required vertices R.

instance I’ of metric ST problem:
- G’=(V,E’) complete; c’(u,v) in G’= cost of any u-v shortest path in G
- R’=R

any steiner tree T’ of I’ can be converted in poly-time into a steiner tree T
of I of at most the same cost:

- replace each edge (u,v) of T’ with the shortest path in G
- pick any spanning tree T of the obtained subgraph of G

in poly-time

since for every (u,v)E, c’(u,v)c(u,v), OPT(I’)OPT(I).

cost(T)cost(T’)



output a Minimum Spanning Tree (MST) of the subgraph 
of G induced by R

Algorithm
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output a Minimum Spanning Tree (MST) of the subgraph 
of G induced by R

Algorithm
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: required vertices

: Steiner vertices

OPT=9

returned tree T has cost: 10



Theorem
The algorithm is a 2-approximation algorithm for metric ST problem.
proof

let T be an optimal Steiner tree of cost OPT, and M the MST on R.

double the edges of T obtaining an Eulerian graph of cost 2 OPT

obtain a Hamiltonian cycle C on R by traversing the Eulerian tour and 
“shortcutting” Stainer vertices and previously visited vertices of R

by triangle inequality: cost(C)2 OPT

consider an Eulerian tour of cost 2 OPT

T
C

Since C is a spanning subgraph of G[R]: cost(M) cost(C)



OPT=n

returned solution has 
cost 2(n-1)

tight example

- edges incident to the Steiner 
vertex have cost 1

- all the other edges have cost 2

n+1 
vertices



Steiner Tree: state of the art

2 [Takahashi & Matsuyama, J.of Math. Jap, 1980]

11/6= 1.834 [Zelikovsky, Algorithmica 93]

1.746 [Berman & Ramaiyer, SODA 92]

1+ln 2+=1.693 [Zelikovsky, Tech. Rep. 96]

5/3+ = 1.667 [Promel & Steger, STACS 96]

1.644 [Karpinski & Zelikovsky, JOCO 97]

1.598 [Hougardy &. Promel, SODA 99]

1+(ln 3)/2+=1.55 [Robins & Zelikovsky, SODA 2000]

ln 4 + =1.39 [Byrka et al., STOC 2010]



Traveling Salesman Problem 
(TSP)



Input:

Feasible solution:

undirected complete graph G=(V,E) with non-negative edge costs 

a cycle C visiting every vertex exactly once

measure (min):

cost of C :

Traveling Salesman Problem


eE(C)

c(e)
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Input:

Feasible solution:

undirected complete graph G=(V,E) with non-negative edge costs 

a cycle C visiting every vertex exactly once

measure (min):

cost of C :

Traveling Salesman Problem

metric TSP:
edge costs satisfy the triangle inequality


eE(C)

c(e)

for every u,v,w : c(u,v)c(u,w)+c(w,v)



Theorem
For any polynomial time computable function (n), TSP cannot be 
approximated within a factor of (n), unless P=NP.

proof

by contradiction: let A be a (n)-apx algorithm.

Let G be an instance of the Hamiltonian cycle. Define G’:
- G’=(V,E’) complete; 
- c(u,v)=1 if (u,v)E(G); c(u,v)=n(n) otherwise

G has an Hamiltonian cycle iff A returns a tour of cost n

- if G has a Hamiltonian cycle, then optimal TSP tour in G’ costs n
- if G does not have a Hamiltonian cycle, then optimal TSP tour is of cost 

> n(n)

Clearly:

We use A to decide Hamiltonian cycle.



1. Find an MST T of G
2. Double every edge of T to obtain an Eulerian graph
3. Find an Eulerian tour  on this graph
4. Output the tour that visits vertices of G in the order 

of their first appearance in . Let C be this tour.

Algorithm (metric TSP – factor 2)

Theorem
The above algorithm is a 2-approximation algorithm for metric TSP.
proof

removing an edge from an optimal TSP tour gives us a spanning tree of G

We have:

Thus: cost(T) OPT

cost(C)  cost()=2cost(T)  2 OPT



tight example

- n vertices
- thick edges have cost 1 

(star+(n-1)-cycle)
- all the other edges have cost 2

optimal tour of cost OPT=n

feasible MST returned tour of cost 2n-2
(for the feasible specified order)



1. Find an MST T of G
2. Compute a minimum cost perfect matching , M, on 

the set V’ of odd-degree vertices of T. Add M to T
and obtain an Eulerian graph

3. Find an Eulerian tour  on this graph
4. Output the tour that visits vertices of G in the order 

of their first appearance in . Let C be this tour.

Algorithm (metric TSP – factor 3/2)

idea: find a cheaper Eulerian subgraph/tour

recall:
- a graph is Eulerian iff all vertices have even degree
- in every undirected graph, the number of odd-degree vertices is even 

Christofides, 1976



Lemma
Let V’ V, such that |V’| is even, and let M be a minimum cost perfect 
matching on V’. Then, cost(M)OPT/2.
proof

let * be an optimal TSP of cost OPT.

*



Lemma
Let V’ V, such that |V’| is even, and let M be a minimum cost perfect 
matching on V’. Then, cost(M)OPT/2.
proof

let * be an optimal TSP of cost OPT.

let ’ be the tour on V’ obtained by shortcutting *.

*

’
cost(’)cost(*)



Lemma
Let V’ V, such that |V’| is even, and let M be a minimum cost perfect 
matching on V’. Then, cost(M)OPT/2.
proof

let * be an optimal TSP of cost OPT.

let ’ be the tour on V’ obtained by shortcutting *.

’ is the union of 2 perfect matching on V’, say M1 and M2.

*

’
cost(’)cost(*)

cost(M)  min{cost(M1), cost(M2)}  ½ cost(’)  ½ OPT



Theorem
Christofides’s algorithm is a 3/2-approximation algorithm for metric TSP.

proof

We have:

cost(C)  cost()=cost(T)+cost(M)  OPT + ½ OPT  3/2 OPT 



tight example

- n vertices with n odd
- feasible MST: a path of n-1 edges
- matching: a single edge of cost n/2

OPT=n

returned tour of cost n-1+ n/2)



STOC 2021

TSP: state of the art

3/2 [Christofides, 1976]
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