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minimum Steiner Tree
problem



minimum Steiner Tree problem

Input:
- undirected graph 6=(V,E) with non-negative edge costs
- subset of required vertices RcV; V-R are called Steiner vertices

Feasible solution:

a tree T containing all the required vertices and any subset of Steiner
ones

measure (min):

cost of T: Zc(e)
ecE(T)



@® : required vertices

O : Steiner vertices



a Steiner tree of cost 20

@® : required vertices

O : Steiner vertices



a better Steiner tree of cost 17

@® : required vertices

O : Steiner vertices



a better Steiner tree of cost 12

R=V
- Minimum Spanning Tree (MST) problem

@® : required vertices
- poly-time solvable

O : Steiner vertices



minimum Steiner Tree problem

Input:
- undirected graph 6=(V,E) with non-negative edge costs
- subset of required vertices RcV; V-R are called Steiner vertices

Feasible solution:
a tree T containing all the required vertices and any subset of Steiner
ones

measure (min):

cost of T: Zc(e)
ecE(T)

- G is complete, and
- edge costs satisfy the triangle inequality
for every u,v,w : c(u,v)<c(uw)+c(w,v)



Theorem

There is an approximation factor preserving reduction from the Steiner
tree problem to the metric Steiner tree problem.

proof

let I be an instance of the ST problem consisting of graph 6=(V,E) and
required vertices R.

in poly-time

instance I' of metric ST problem:

- 6'=(V,E') complete; c'(u,v) in G'= cost of any u-v shortest path in 6
- R:=R

since for every (uyv)eE, c'(uv)<c(u,v), OPT(I')<OPT(I).

any steiner tree T of I' can be converted in poly-time into a steiner free T
of I of at most the same cost:

- replace each edge (u,v) of T with the shortest path in 6
- pick any spanning tree T of the obtained subgraph of G

cost(T)<cost(T)




Algorithm

output a Minimum Spanning Tree (MST) of the subgraph
of G induced by R

@® : required vertices

O : Steiner vertices



Algorithm

output a Minimum Spanning Tree (MST) of the subgraph
of G induced by R

OPT=9

returned tree T has cost: 10

@® : required vertices

O : Steiner vertices



Theorem

The algorithm is a 2-approximation algorithm for metric ST problem.
proof

let T be an optimal Steiner tree of cost OPT, and M the MST on R.
double the edges of T obtaining an Eulerian graph of cost 2 OPT

consider an Eulerian tour of cost 2 OPT

obtain a Hamiltonian cycle C on R by traversing the Eulerian tour and
“shortcutting” Stainer vertices and previously visited vertices of R

by triangle inequality: cost(C)<2 OPT
Since C is a spanning subgraph of G[R]: cost(M)< cost(C)




n+1
vertices

returned solution has
cost 2(n-1)

OPT=n

- edges incident to the Steiner
vertex have cost 1
- all the other edges have cost 2



Steiner Tree: state of the art
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Traveling Salesman Problem
(TSP)



Traveling Salesman Problem

Input:

undirected complete graph 6=(V,E) with non-negative edge costs
Feasible solution:

a cycle C visiting every vertex exactly once

measure (min):

cost of C: Zc(e)
ecE(C)

12

11



Traveling Salesman Problem

Input:

undirected complete graph 6=(V,E) with non-negative edge costs
Feasible solution:

a cycle C visiting every vertex exactly once

measure (min):

cost of C: Zc(e)
ecE(C)

12

a tour of cost 33

11



Traveling Salesman Problem

Input:

undirected complete graph 6=(V,E) with non-negative edge costs
Feasible solution:

a cycle C visiting every vertex exactly once

measure (min):

cost of C: Zc(e)
ecE(C)

12

a better tour of cost 32

11



Traveling Salesman Problem

Input:

undirected complete graph 6=(V,E) with non-negative edge costs
Feasible solution:

a cycle C visiting every vertex exactly once

measure (min):

cost of C: Zc(e)
ecE(C)

12

a better tour of cost 19

11



Traveling Salesman Problem

Input:

undirected complete graph 6=(V,E) with non-negative edge costs
Feasible solution:

a cycle C visiting every vertex exactly once

measure (min):

cost of C: Zc(e)
ecE(C)

edge costs satisfy the triangle inequality
for every uv,w : c(u,v)<c(uw)+c(w,v)



Theorem
For any polynomial time computable function a(n), TSP cannot be

approximated within a factor of a(n), unless P=NP.
proof

by contradiction: let A be a a(n)-apx algorithm.

We use A to decide Hamiltonian cycle.

Let G be an instance of the Hamiltonian cycle. Define G
- G'=(V,E") complete;

- ¢c(u,v)=1if (u,v)eE(6); c(u,v)=na(n) otherwise

Clearly:

- if G has a Hamiltonian cycle, then optimal TSP tour in G’ costs n

- if G does not have a Hamiltonian cycle, then optimal TSP tour is of cost
> no(n)

—

G has an Hamiltonian cycle iff A returns a tour of cost n




Algorithm (metric TSP — factor 2)

1. Findan MST Tof G

2. Double every edge of T to obtain an Eulerian graph

3. Find an Eulerian tour t on this graph

4. Output the tour that visits vertices of G in the order
of their first appearance in t. Let C be this tour.

Theorem
The above algorithm is a 2-approximation algorithm for metric TSP.

proof

removing an edge from an optimal TSP tour gives us a spanning tree of G
Thus: cost(T)< OPT

We have:

cost(C) < cost(t)=2cost(T) < 2 OPT




n vertices optimal tour of cost OPT=n
thick edges have cost 1

(star+(n-1)-cycle)

all the other edges have cost 2

feasible MST returned tour of cost 2n-2
(for the feasible specified order)



idea: find a cheaper Eulerian subgraph/tour

recall:
- agraph is Eulerian iff all vertices have even degree
- in every undirected graph, the number of odd-degree vertices is even

Algorithm (metric TSP — factor 3/2)

1. Findan MST T of G

2. Compute a minimum cost perfect matching, M, on

the set V' of odd-degree vertices of T. Add Mto T

and obtain an Eulerian graph

Find an Eulerian tour t on this graph

4. Output the tour that visits vertices of G in the order
of their first appearance in 1. Let C be this tour.

w




Lemma

Let V' <V, such that |V'| is even, and let M be a minimum cost perfect
matching on V'. Then, cost(M)<OPT/2.

proof

let t* be an optimal TSP of cost OPT.

T*



Lemma

Let V' <V, such that |V'| is even, and let M be a minimum cost perfect
matching on V'. Then, cost(M)<OPT/2.

proof
let t* be an optimal TSP of cost OPT.
T*
‘ cost(t')<cost(z*)
T

let t" be the tour on V' obtained by shortcutting t*.



Lemma

Let V' <V, such that |V'| is even, and let M be a minimum cost perfect
matching on V'. Then, cost(M)<OPT/2.

proof
let t* be an optimal TSP of cost OPT.
T*
‘ cost(t')<cost(z*)
T

let t" be the tour on V' obtained by shortcutting t*.
© is the union of 2 perfect matching on V', say M; and M.

cost(M) < min{cost(M,), cost(M,)} < 3 cost(z') < 7 OPT




Theorem

Christofides's algorithm is a 3/2-approximation algorithm for metric TSP.
proof

We have:
cost(C) < cost(t)=cost(T)+cost(M) < OPT + 3 OPT < 3/2 OPT



[n/2]

- nvertices with n odd
- feasible MST: a path of n-1 edges
- matching: a single edge of cost[n/2]

OPT=n

returned tour of cost n-1+[n/21)



TSP: state of the art

3/2  [Christofides, 1976]
STOC 2021
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A (Slightly) Improved Approximation Algorithm
for Metric TSP

Anna R. Karlin? Nathan Klein! and Shayan Oveis Gharan?

University of Washington

March 16, 2022

Abstract

For some € > 107% we give a randomized 3/2 — € approximation algorithm for metric
TSP.
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