
Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

Approximation algorithms

Episode II

minimum Steiner Tree
problem

Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs
- subset of required vertices RV; V-R are called Steiner vertices

a tree T containing all the required vertices and any subset of Steiner
ones

measure (min):

cost of T :

minimum Steiner Tree problem


eE(T)

c(e)

: required vertices

: Steiner vertices

5
3

3

9

5
2

2

12

11

4

: required vertices

: Steiner vertices

5
3

3

9

5
2

2

12

11

4

a Steiner tree of cost 20

: required vertices

: Steiner vertices

5
3

3

9

5
2

2

12

11

4

a better Steiner tree of cost 17

: required vertices

: Steiner vertices

5
3

3

9

5
2

2

12

11

4

a better Steiner tree of cost 12

special case: R=V

- Minimum Spanning Tree (MST) problem

- poly-time solvable

Input:

Feasible solution:

- undirected graph G=(V,E) with non-negative edge costs
- subset of required vertices RV; V-R are called Steiner vertices

a tree T containing all the required vertices and any subset of Steiner
ones

measure (min):

cost of T :

minimum Steiner Tree problem

metric Steiner tree problem:
- G is complete, and
- edge costs satisfy the triangle inequality


eE(T)

c(e)

for every u,v,w : c(u,v)c(u,w)+c(w,v)

Theorem
There is an approximation factor preserving reduction from the Steiner
tree problem to the metric Steiner tree problem.

proof

let I be an instance of the ST problem consisting of graph G=(V,E) and
required vertices R.

instance I’ of metric ST problem:
- G’=(V,E’) complete; c’(u,v) in G’= cost of any u-v shortest path in G
- R’=R

any steiner tree T’ of I’ can be converted in poly-time into a steiner tree T
of I of at most the same cost:

- replace each edge (u,v) of T’ with the shortest path in G
- pick any spanning tree T of the obtained subgraph of G

in poly-time

since for every (u,v)E, c’(u,v)c(u,v), OPT(I’)OPT(I).

cost(T)cost(T’)

output a Minimum Spanning Tree (MST) of the subgraph
of G induced by R

Algorithm

5 5

5

3

33

: required vertices

: Steiner vertices

output a Minimum Spanning Tree (MST) of the subgraph
of G induced by R

Algorithm

5 5

5

3

33

: required vertices

: Steiner vertices

OPT=9

returned tree T has cost: 10

Theorem
The algorithm is a 2-approximation algorithm for metric ST problem.
proof

let T be an optimal Steiner tree of cost OPT, and M the MST on R.

double the edges of T obtaining an Eulerian graph of cost 2 OPT

obtain a Hamiltonian cycle C on R by traversing the Eulerian tour and
“shortcutting” Stainer vertices and previously visited vertices of R

by triangle inequality: cost(C)2 OPT

consider an Eulerian tour of cost 2 OPT

T
C

Since C is a spanning subgraph of G[R]: cost(M) cost(C)

OPT=n

returned solution has
cost 2(n-1)

tight example

- edges incident to the Steiner
vertex have cost 1

- all the other edges have cost 2

n+1
vertices

Steiner Tree: state of the art

2 [Takahashi & Matsuyama, J.of Math. Jap, 1980]

11/6= 1.834 [Zelikovsky, Algorithmica 93]

1.746 [Berman & Ramaiyer, SODA 92]

1+ln 2+=1.693 [Zelikovsky, Tech. Rep. 96]

5/3+ = 1.667 [Promel & Steger, STACS 96]

1.644 [Karpinski & Zelikovsky, JOCO 97]

1.598 [Hougardy &. Promel, SODA 99]

1+(ln 3)/2+=1.55 [Robins & Zelikovsky, SODA 2000]

ln 4 + =1.39 [Byrka et al., STOC 2010]

Traveling Salesman Problem
(TSP)

Input:

Feasible solution:

undirected complete graph G=(V,E) with non-negative edge costs

a cycle C visiting every vertex exactly once

measure (min):

cost of C :

Traveling Salesman Problem


eE(C)

c(e)

6

12

11

4

5

4

Input:

Feasible solution:

undirected complete graph G=(V,E) with non-negative edge costs

a cycle C visiting every vertex exactly once

measure (min):

cost of C :

Traveling Salesman Problem


eE(C)

c(e)

6

12

11

4

5

4

a tour of cost 33

Input:

Feasible solution:

undirected complete graph G=(V,E) with non-negative edge costs

a cycle C visiting every vertex exactly once

measure (min):

cost of C :

Traveling Salesman Problem


eE(C)

c(e)

6

12

11

4

5

4

a better tour of cost 32

Input:

Feasible solution:

undirected complete graph G=(V,E) with non-negative edge costs

a cycle C visiting every vertex exactly once

measure (min):

cost of C :

Traveling Salesman Problem


eE(C)

c(e)

6

12

11

4

5

4

a better tour of cost 19

Input:

Feasible solution:

undirected complete graph G=(V,E) with non-negative edge costs

a cycle C visiting every vertex exactly once

measure (min):

cost of C :

Traveling Salesman Problem

metric TSP:
edge costs satisfy the triangle inequality


eE(C)

c(e)

for every u,v,w : c(u,v)c(u,w)+c(w,v)

Theorem
For any polynomial time computable function (n), TSP cannot be
approximated within a factor of (n), unless P=NP.

proof

by contradiction: let A be a (n)-apx algorithm.

Let G be an instance of the Hamiltonian cycle. Define G’:
- G’=(V,E’) complete;
- c(u,v)=1 if (u,v)E(G); c(u,v)=n(n) otherwise

G has an Hamiltonian cycle iff A returns a tour of cost n

- if G has a Hamiltonian cycle, then optimal TSP tour in G’ costs n
- if G does not have a Hamiltonian cycle, then optimal TSP tour is of cost

> n(n)

Clearly:

We use A to decide Hamiltonian cycle.

1. Find an MST T of G
2. Double every edge of T to obtain an Eulerian graph
3. Find an Eulerian tour  on this graph
4. Output the tour that visits vertices of G in the order

of their first appearance in . Let C be this tour.

Algorithm (metric TSP – factor 2)

Theorem
The above algorithm is a 2-approximation algorithm for metric TSP.
proof

removing an edge from an optimal TSP tour gives us a spanning tree of G

We have:

Thus: cost(T) OPT

cost(C)  cost()=2cost(T)  2 OPT

tight example

- n vertices
- thick edges have cost 1

(star+(n-1)-cycle)
- all the other edges have cost 2

optimal tour of cost OPT=n

feasible MST returned tour of cost 2n-2
(for the feasible specified order)

1. Find an MST T of G
2. Compute a minimum cost perfect matching , M, on

the set V’ of odd-degree vertices of T. Add M to T
and obtain an Eulerian graph

3. Find an Eulerian tour  on this graph
4. Output the tour that visits vertices of G in the order

of their first appearance in . Let C be this tour.

Algorithm (metric TSP – factor 3/2)

idea: find a cheaper Eulerian subgraph/tour

recall:
- a graph is Eulerian iff all vertices have even degree
- in every undirected graph, the number of odd-degree vertices is even

Christofides, 1976

Lemma
Let V’ V, such that |V’| is even, and let M be a minimum cost perfect
matching on V’. Then, cost(M)OPT/2.
proof

let * be an optimal TSP of cost OPT.

*

Lemma
Let V’ V, such that |V’| is even, and let M be a minimum cost perfect
matching on V’. Then, cost(M)OPT/2.
proof

let * be an optimal TSP of cost OPT.

let ’ be the tour on V’ obtained by shortcutting *.

*

’
cost(’)cost(*)

Lemma
Let V’ V, such that |V’| is even, and let M be a minimum cost perfect
matching on V’. Then, cost(M)OPT/2.
proof

let * be an optimal TSP of cost OPT.

let ’ be the tour on V’ obtained by shortcutting *.

’ is the union of 2 perfect matching on V’, say M1 and M2.

*

’
cost(’)cost(*)

cost(M)  min{cost(M1), cost(M2)}  ½ cost(’)  ½ OPT

Theorem
Christofides’s algorithm is a 3/2-approximation algorithm for metric TSP.

proof

We have:

cost(C)  cost()=cost(T)+cost(M)  OPT + ½ OPT  3/2 OPT

tight example

- n vertices with n odd
- feasible MST: a path of n-1 edges
- matching: a single edge of cost n/2

OPT=n

returned tour of cost n-1+ n/2)

STOC 2021

TSP: state of the art

3/2 [Christofides, 1976]

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

