
Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

What: 3 topics, 4 lectures per topic

approximation algorithms:
- well-established field
- widely used approach for (NP-)hard problems
- cool techniques: rounding, dual-fitting, primal-dual approach

parameterized algorithms:
- multivariate analysis of algorithms
- refined notions of efficiency and hardness
- cool techniques: color coding, kernelization, treewidth

algorithms for massive data:
- primitives for most data mining applications
- sublinear time and space algorithms
- cool techniques: sampling, sketches, locality sensitive hashing

How (to get credits)

- attend lectures
- final oral exam and/or class presentation (of uncovered material)

- expand your background: wider view of the huge world of algorithms
- useful: be better theorists and practitioners
- fun: amazing material and techniques

Why

any question?

Approximation algorithms:

Episode I
(pilot)

main reference:

Def.
An -approximation algorithm for an optimization problem is a polynomial-
time algorithm that for all instances of the problem produces a solution
whose value is within a factor of  the value of an optimal solution.

: approximation ratio or approximation factor

minimization problem:
- 1

- for each returned solution x, cost(x)  OPT

maximization problem:
- 1

- for each returned solution x, value(x)   OPT

minimum Vertex Cover
problem

Input:

Feasible solution:

an undirected graph G=(V,E)

UV such that every edge (u,v)E is covered, i.e. uU or vU

measure (min):

cardinality of U

min cardinality Vertex Cover problem

Input:

Feasible solution:

an undirected graph G=(V,E)

UV such that every edge (u,v)E is covered, i.e. uU or vU

measure (min):

cardinality of U

min cardinality Vertex Cover problem

a vertex cover of size 7

Input:

Feasible solution:

an undirected graph G=(V,E)

UV such that every edge (u,v)E is covered, i.e. uU or vU

measure (min):

cardinality of U

min cardinality Vertex Cover problem

a better vertex cover of size 4

Def.
Given a graph G=(V,E), a subset of edges ME is a matching if no two
edges in M share an endpoint.

Def.
A matching ME is maximal if for every eE\M, M{e} is not a matching.

the computed vertex
cover of size 6

Lemma
The algorithm returns a feasible VC.

proof

let ME be the maximal matching computed by the algorithm.

edges in M are clearly covered

for maximality of M any other edge (x,y) shares and endpoint with some
edge in M...

...and thus it is covered

y

x

Theorem
The algorithm is a 2-approximation algorithm for the VC problem.

proof

let ME be the maximal matching computed by the algorithm, and U the
corresponding VC.

any optimal solution must have size OPT at least |M|

thus:
|U|=2|M|2OPT

The returned solution is a feasible VC (previous lemma)

Lower bounding scheme: the size of any maximal matching
is a lower bound to the size of an optimal VC

Three important questions:

1. Can the approximation ratio of Algorithm 1.2 be improved by a better
analysis?

2. Can an approximation algorithm with a better apx ratio be designed
using the lower bounding scheme of Algorithm 1.2, i.e. the size of a
maximal matching?

3. Is there some other lower bounding scheme that can lead to a better
approximation algorithm for VC?

1. Can the approximation ratio of Algorithm 1.2 be improved by a better
analysis? NO

complete bipartite graph Kn,n

OPT=n (one side is an optimal VC)

Algorithm 1.2 will pick all the 2n vertices

tight example

2. Can an approximation algorithm with a better apx ratio be designed
using the lower bounding scheme of Algorithm 1.2, i.e. the size of a
maximal matching? NO

complete graph Kn where n is odd

OPT=n-1

size of any maximal matching is (n-1)/2

3. Is there some other lower bounding scheme that can lead to a better
approximation algorithm for VC? OPEN

Partial answer:

Theorem
Assuming the unique games conjecture holds, if there exists an
-approximation algorithm for the VC problem with <2, then P=NP.

roughly: a particular
problem (called unique
games) is NP-hard

Minimum Set Cover
problem

Input:

Feasible solution:

- universe U of n elements
- a collection of subsets of U, S={S1,...,Sk}

- each SS has a positive cost c(S)

a subcollection CS that covers U (whose union is U)

measure (min):

cost of C :

minimum Set Cover problem


SC

c(S)

4 4

2

3

9

6

a set cover of
cost 16

4 4

2

3

9

6

4 4

2

3

9

6

a better set
cover of cost 15

4 4

2

3

9

6

a better set
cover of cost 12

greedy strategy: pick the most cost-effective set and remove the covered
elements, until all elements are covered.

Let C be the set of elements already covered.

cost-effectiveness of S: c(S)/|S-C|
average cost at which
S covers new elements

average cost at which
e is covered

4 4

2

3

9

6

4 4

2

3

9

6

3/4 3/4 3/4 3/4

4 4

2

3

9

6

3/4 3/4 3/4 3/4

2 2

4 4

2

3

9

6

3/4 3/4 3/4 3/4

2 2 4

4 4

2

3

9

6

3/4 3/4 3/4 3/4

2 2 4 6

the computed set
cover of cost 17

Lemma
For each k{1,...,n}, price(ek)  OPT/(n-k+1)

proof

at any iteration, the leftovers sets of the optimal solution can cover all
the remaining elements C’=U-C at cost at most OPT.

price(ek) 

Number the elements of U in order in which they were covered, resoving
ties arbitrarily. Let e1,..., en this numbering.

one of these leftovers sets has cost-effectiveness at most OPT/|C’|

at iteration in which ek is covered, C’ contains at least n-k+1 elements.

by the greedy choice:

OPT/|C’|  OPT/(n-k+1)

Theorem
The greedy algorithm is Hn factor approximation algorithm for the
minimum Set Cover problem, where Hn =1+1/2+...+1/n.

proof

cost of the cover=

Since the cost of each picked set is distributed among the new covered
elements:


k=1

price(ek)
n


k=1

OPT/(n-k+1)
n

 HnOPT

 ln n + 1
k=1

n

1/kHn = n-th harmonic number

OPT=1+

the greedy alg
computes a cover having
cost Hn

tight example

Theorem
There exists some constant c>0 such that if there exists a (c ln n)-apx
algorithm for the unweighted SC problem, then P=NP.

Theorem
If there exists a (c ln n)-apx algorithm for the unweighted SC problem,
for some constant c<1, then there is an O(nO(log log n))-time alg for each NP-
complete problem.

the approximation game: get better and better approximation factor

exact
algorithms (1+)-apx in time

f(1/)nO(1/)

apx factor

1 nlogknO(1)PTAS

(1+)-apx in time
f(1/) nO(1)

EPTAS

(1+)-apx in time
poly(1/) nO(1)

FPTAS

Polynomial-Time Approximation Scheme:
(1+)-apx for any >0.
running time depends on 

Application to shortest
superstring

Input:

Feasible solution:

a set of n strings over a finite alphabet S={s1,...,sn}

a string s that contains each si as a substring

measure (min):

length of s

the shortest superstring problem

notice: w.l.o.g. we can assume no string si is a substring of another sj

S={abbc, cccaab, bccc}

a solution of length 12: abbcccaabccc

a better solution of length 9: bcccaabbc

for si, sj S, and k>0

if the last k symbols of si are the same as the first k symbols of sj,
let ijk be the string obtained by overlapping those k positions

let M be the set of the strings ijk for all valid choices of i, j, k.

reducing the problem to set cover

the Set Cover instance:

for a given string ,
let set()={sS : s is a substring of }

- the set of objects is S
- collection of subsets: we have set() for each  SM of cost ||

Theorem
The above algorithm is a 2Hn-approximation algorithm for the shortest
superstring problem.

proof

since we have computed a set cover, every sS is a substring of some j

the computed string is a feasible superstring

OPT: the value of the optimal solution for the shortest superstring
OPTSC: the value of the optimal solution for the SC instance

claim: OPTSC  2 OPT.

the computed string has length  Hn OPTSC  2Hn OPT

Let s be the optimal superstring of length OPT

we show there is a feasible SC of cost at most 2 OPT

leftmost
occurrences (in s) of

the n strings of S

since there is
no string that
is substring of
another: they
start and then
end at distinct

places in s

all the sets set(i) is a feasible SC of cost

notice: i and i+2 do not overlap

 2 |s|  2 OPT


i

|i|


i

|i|

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

