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What: 3 topics, 4 lectures per topic

approximation algorithms:
- well-established field
- widely used approach for (NP-)hard problems
- cool techniques: rounding, dual-fitting, primal-dual approach

parameterized algorithms:
- multivariate analysis of algorithms
- refined notions of efficiency and hardness
- cool techniques: color coding, kernelization, treewidth

algorithms for massive data:
- primitives for most data mining applications
- sublinear time and space algorithms
- cool techniques: sampling, sketches, locality sensitive hashing



How (to get credits)

- attend lectures
- final oral exam and/or class presentation (of uncovered material)

- expand your background: wider view of the huge world of algorithms
- useful: be better theorists and practitioners
- fun: amazing material and techniques

Why

any question?



Approximation algorithms:

Episode I
(pilot) 

main reference:



Def.
An -approximation algorithm for an optimization problem is a polynomial-
time algorithm that for all instances of the problem produces a solution 
whose value is within a factor of  the value of an optimal solution.

: approximation ratio or approximation factor

minimization problem:
- 1 

- for each returned solution x, cost(x)  OPT  

maximization problem:
- 1 

- for each returned solution x, value(x)   OPT  



minimum Vertex Cover 
problem



Input:

Feasible solution:

an undirected graph G=(V,E)

UV such that every edge (u,v)E is covered, i.e. uU or vU

measure (min):

cardinality of U

min cardinality Vertex Cover problem



Input:

Feasible solution:

an undirected graph G=(V,E)

UV such that every edge (u,v)E is covered, i.e. uU or vU

measure (min):

cardinality of U

min cardinality Vertex Cover problem

a vertex cover of size 7



Input:

Feasible solution:

an undirected graph G=(V,E)

UV such that every edge (u,v)E is covered, i.e. uU or vU

measure (min):

cardinality of U

min cardinality Vertex Cover problem

a better vertex cover of size 4



Def.
Given a graph G=(V,E), a subset of edges ME is a matching if no two 
edges in M share an endpoint.

Def.
A matching ME is maximal if for every eE\M, M{e} is not a matching.  

















the computed vertex 
cover of size 6



Lemma
The algorithm returns a feasible VC.

proof

let ME be the maximal matching computed by the algorithm.

edges in M are clearly covered

for maximality of M any other edge (x,y) shares and endpoint with some 
edge in M...

...and thus it is covered

y

x



Theorem
The algorithm is a 2-approximation algorithm for the VC problem.

proof

let ME be the maximal matching computed by the algorithm, and U the 
corresponding VC.

any optimal solution must have size OPT at least |M|

thus: 
|U|=2|M|2OPT

The returned solution is a feasible VC (previous lemma)

Lower bounding scheme: the size of any maximal matching 
is a lower bound to the size of an optimal VC



Three important questions:

1. Can the approximation ratio of Algorithm 1.2 be improved by a better 
analysis?

2. Can an approximation algorithm with a better apx ratio be designed
using the lower bounding scheme of Algorithm 1.2, i.e. the size of a 
maximal matching?

3. Is there some other lower bounding scheme that can lead to a better
approximation algorithm for VC?



1. Can the approximation ratio of Algorithm 1.2 be improved by a better 
analysis? NO

complete bipartite graph Kn,n

OPT=n (one side is an optimal VC)

Algorithm 1.2 will pick all the 2n vertices

tight example



2. Can an approximation algorithm with a better apx ratio be designed
using the lower bounding scheme of Algorithm 1.2, i.e. the size of a 
maximal matching? NO

complete graph Kn where n is odd

OPT=n-1

size of any maximal matching is (n-1)/2



3. Is there some other lower bounding scheme that can lead to a better
approximation algorithm for VC? OPEN

Partial answer:

Theorem
Assuming the unique games conjecture holds, if there exists an                 
-approximation algorithm for the VC problem with <2, then P=NP.

roughly: a particular 
problem (called unique 
games) is NP-hard 



Minimum Set Cover 
problem



Input:

Feasible solution:

- universe U of n elements 
- a collection of subsets of U, S={S1,...,Sk}

- each SS has a positive cost c(S)

a subcollection CS that covers U (whose union is U)

measure (min):

cost of C :

minimum Set Cover problem


SC

c(S)
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a set cover of 
cost 16
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9
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4 4
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3

9

6

a better set 
cover of cost 15



4 4

2

3

9

6

a better set 
cover of cost 12



greedy strategy: pick the most cost-effective set and remove the covered 
elements, until all elements are covered.

Let C be the set of elements already covered.

cost-effectiveness of S:  c(S)/|S-C|
average cost at which 
S covers new elements

average cost at which 
e is covered
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the computed set 
cover of cost 17



Lemma
For each k{1,...,n}, price(ek)  OPT/(n-k+1)

proof

at any iteration, the leftovers sets of the optimal solution can cover all 
the remaining elements C’=U-C at cost at most OPT.

price(ek) 

Number the elements of U in order in which they were covered, resoving
ties arbitrarily. Let e1,..., en this numbering.

one of these leftovers sets has cost-effectiveness at most OPT/|C’|

at iteration in which ek is covered, C’ contains at least n-k+1 elements.

by the greedy choice: 

OPT/|C’|  OPT/(n-k+1)



Theorem
The greedy algorithm is Hn factor approximation algorithm for the 
minimum Set Cover problem, where Hn =1+1/2+...+1/n.

proof

cost of the cover=

Since the cost of each picked set is distributed among the new covered 
elements:


k=1

price(ek)
n


k=1

OPT/(n-k+1)
n

 HnOPT

 ln n + 1
k=1

n

1/kHn = n-th harmonic number



OPT=1+

the greedy alg
computes a cover having 
cost Hn

tight example

Theorem
There exists some constant c>0 such that if there exists a (c ln n)-apx
algorithm for the unweighted SC problem, then P=NP.

Theorem
If there exists a (c ln n)-apx algorithm for the unweighted SC problem, 
for some constant c<1, then there is an O(nO(log log n))-time alg for each NP-
complete problem.



the approximation game: get better and better approximation factor

exact 
algorithms (1+)-apx in time 

f(1/)nO(1/)

apx factor

1 nlogknO(1)PTAS

(1+)-apx in time 
f(1/) nO(1)

EPTAS

(1+)-apx in time 
poly(1/) nO(1)

FPTAS

Polynomial-Time Approximation Scheme: 
(1+)-apx for any >0. 
running time depends on 



Application to shortest 
superstring



Input:

Feasible solution:

a set of n strings over a finite alphabet S={s1,...,sn}

a string s that contains each si as a substring

measure (min):

length of s

the shortest superstring problem

notice: w.l.o.g. we can assume no string si is a substring of another sj

S={abbc, cccaab, bccc}

a solution of length 12:            abbcccaabccc

a better solution of length 9:  bcccaabbc



for si, sj S, and k>0

if the last k symbols of si are the same as the first k symbols of sj,
let ijk be the string obtained by overlapping those k positions

let M be the set of the strings ijk for all valid choices of i, j, k.

reducing the problem to set cover

the Set Cover instance:

for a given string , 
let set()={sS : s is a substring of }

- the set of objects is S
- collection of subsets: we have set() for each  SM of cost ||



Theorem
The above algorithm is a 2Hn-approximation algorithm for the shortest 
superstring problem. 

proof

since we have computed a set cover, every sS is a substring of some j

the computed string is a feasible superstring

OPT: the value of the optimal solution for the shortest superstring 
OPTSC: the value of the optimal solution for the SC instance

claim: OPTSC  2 OPT.

the computed string has length  Hn OPTSC  2Hn OPT



Let s be the optimal superstring of length OPT

we show there is a feasible SC of cost at most 2 OPT

leftmost 
occurrences (in s) of 

the n strings of S

since there is 
no string that 
is substring of 
another: they 
start and then 
end at distinct 

places in s

all the sets set(i) is a feasible SC of cost 

notice: i and i+2 do not overlap 

 2 |s|  2 OPT


i

|i|


i

|i|
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