Advanced topics on Algorithms

Luciano Guala
www.mat.uniroma2.it/~guala/

What: 3 topics, 4 lectures per topic

approximation algorithms:
- well-established field
- widely used approach for (NP-)hard problems
rounding, dual-fitting, primal-dual approach

parameterized algorithms:
- multivariate analysis of algorithms
- refined notions of efficiency and hardness
color coding, kernelization, treewidth

algorithms for massive data:
- primitives for most data mining applications
- sublinear time and space algorithms
sampling, sketches, locality sensitive hashing

How (fo get credits)

- attend lectures
- final oral exam and/or class presentation (of uncovered material)

Why

- expand your background: wider view of the huge world of algorithms
- useful: be better theorists and practitioners
- fun: amazing material and techniques

any question?

Approximation algorithms:
Episode I
(pilot)

main reference:

Def.

An o-approximation algorithm for an optimization problem is a polynomial-
time algorithm that for all instances of the problem produces a solution
whose value is within a factor of o the value of an optimal solution.

minimization problem:
- o1
- for each returned solution x, cost(x)< oo OPT

maximization problem:
- o<l
- for each returned solution x, value(x) > oo OPT

minimum Vertex Cover
problem

min cardinality Vertex Cover problem
Input:
an undirected graph 6=(V,E)

Feasible solution:
UcV such that every edge (u,v)<E is covered, i.e. ucU or veU

measure (min):
cardinality of U

min cardinality Vertex Cover problem
Input:
an undirected graph 6=(V,E)

Feasible solution:
UcV such that every edge (u,v)<E is covered, i.e. ucU or veU

measure (min):
cardinality of U

a vertex cover of size 7

min cardinality Vertex Cover problem
Input:
an undirected graph 6=(V,E)

Feasible solution:
UcV such that every edge (u,v)<E is covered, i.e. ucU or veU

measure (min):
cardinality of U

a better vertex cover of size 4

Def.
Given a graph 6=(V,E), a subset of edges McE is a matching if no two

edges in M share an endpoint.

Def.
A matching McE is maximal if for every eeE\M, MU{e} is not a matching.

Algorithm 1.2 (Cardinality vertex cover)

Find a maximal matching in (G and output the set of matched vertices.

\ ’/’ Ve
/ \
\
/ \ \
/ \

the computed vertex
cover of size 6

Lemma
The algorithm returns a feasible VC.

proof
let McE be the maximal matching computed by the algorithm.

o—@ x
Y

edges in M are clearly covered

for maximality of M any other edge (x,y) shares and endpoint with some
edge in M...

...and thus it is covered

Theorem
The algorithm is a 2-approximation algorithm for the VC problem.

proof

The returned solution is a feasible VC (previous lemma)

let McE be the maximal matching computed by the algorithm, and U the
corresponding VC.

o—O
o—O
o—O
o—e0

any optimal solution must have size OPT at least |M|

the size of any maximal matching
is a lower bound to the size of an optimal VC

thus:
|U[=2|M|<20PT 0

Three important questions:

1. Can the approximation ratio of Algorithm 1.2 be improved by a better
analysis?

2. Can an approximation algorithm with a better apx ratio be designed
using the lower bounding scheme of Algorithm 1.2, i.e. the size of a
maximal matching?

3. Is there some other lower bounding scheme that can lead to a better
approximation algorithm for VC?

1. Can the approximation ratio of Algorithm 1.2 be improved by a better
analysis? NO

complete bipartite graph K, ,

Algorithm 1.2 will pick all the 2n vertices

OPT=n (one side is an optimal VC)

2. Can an approximation algorithm with a better apx ratio be designed
using the lower bounding scheme of Algorithm 1.2, i.e. the size of a
maximal matching? NO

complete graph K, where n is odd

size of any maximal matching is (n-1)/2

OPT=n-1

3. Is there some other lower bounding scheme that can lead to a better
approximation algorithm for VC? OPEN

Partial answer:

Theorem
Assuming the unique games conjecture holds, if there exists an
a-approximation algorithm for the VC problem with a<2, then P=NP.

roughly: a particular
problem (called unique
games) is NP-hard

Minimum Set Cover
problem

minimum Set Cover problem

Input:
- universe U of n elements
- acollection of subsets of U, 5={S,.....5,}

- each Se5 has a positive cost ¢(S)

Feasible solution:
a subcollection €5 that covers U (whose union is U)

measure (min):

cost of € : > c(S)
SeC

O

O

cost 16

greedy strategy: pick the most cost-effective set and remove the covered
elements, until all elements are covered.

Let C be the set of elements already covered.
cost-effectiveness of S: ¢(S)/|S-C|

Algorithm 2.2 (Greedy set cover algorithm)

1. C « ()
2. While C' # U do

Find the most cost-effective set in the current iteration, say S.

Let v = (f)%té? l.e., the cost-effectiveness of S.
Pick S, and for each e € S — (', set price(e) = a.
C+— CUS.

3. Output the picked sets.

O

O

155

|

o (o) @ 17O

e ~@))

@F (0] @ VO

Number the elements of U in order in which they were covered, resoving
ties arbitrarily. Let e;,..., e, this numbering.

Lemma
For each ke{l,...,n}, price(e,) < OPT/(n-k+1)

proof

at any iteration, the leftovers sets of the optimal solution can cover all
the remaining elements C'=U-C at cost at most OPT.

one of these leftovers sets has cost-effectiveness at most OPT/|C'|

at iteration in which e, is covered, C' contains at least n-k+1 elements.

by the greedy choice:
price(e,) < OPT/|C'| < OPT/(n-k+1)

Theorem
The greedy algorithm is H, factor approximation algorithm for the
minimum Set Cover problem, where H,=1+1/2+_..+1/n.

proof

Since the cost of each picked set is distributed among the new covered
elements:

n n
cost of the cover= Z price(e,) < Z OPT/(n-k+1) < H,OPT
k=1 k=1

n
H, = kz-:1 1/k <Ilnn+1 n-th harmonic number

/A A S A

the greedy alg

< . . e \\ l+e¢ computes a cover having
“‘Ln: II"-. / e lr’ ,/ cost H,
T —— U
OPT=1+¢
1/n 1/(n-1) I
Theorem

There exists some constant ¢>0 such that if there exists a (¢ In n)-apx
algorithm for the unweighted SC problem, then P=NP.

Theorem

If there exists a (¢ In n)-apx algorithm for the unweighted SC problem,
for some constant c<1, then there is an O(n%Ueglogn)-time alg for each NP-
complete problem.

the approximation game: get better and better approximation factor

Polynomial-Time Approximation Scheme:
(1+g)-apx for any 0.
running time depends on ¢

A
[\

1 FPTAS EPTAS PTAS O(1) logkn ne

apx factor

Application to shortest
superstring

the shortest superstring problem

Input:
a set of n strings over a finite alphabet S={s;,...,s,}

Feasible solution:
a string s that contains each s; as a substring

measure (min):
length of s

w.l.o.g. we can assume no string s; is a substring of another s,

S={abbc, cccaab, bccc}

a solution of length 12: abbcccaabcecc

a better solution of length 9: bcccaabbce

reducing the problem to set cover

fors;, s; €S, and k>0

if the last k symbols of s; are the same as the first k symbols of s,
let 6, be the string obtained by overlapping those k positions

Tijk

let M be the set of the strings o, for all valid choices of i, j, k.
for a given string =,
let set(n)={seS : s is a substring of n}
the Set Cover instance:

- the set of objectsis S
- collection of subsets: we have set(n) for each 1 e SUM of cost |r|

Algorithm 2.10 (Shortest superstring via set cover)

1. Use the greedy set cover algorithm to find a cover for the instance S.
Let set(my),...,set(m.) be the sets picked by this cover.

2. Concatenate the strings 7y, Tk, In any order.

3. Output the resulting string, say s.

Theorem
The above algorithm is a 2H,-approximation algorithm for the shortest
superstring problem.

proof
since we have computed a set cover, every se$S is a substring of some n;

the computed string is a feasible superstring

OPT: the value of the optimal solution for the shortest superstring
OPTg.: the value of the optimal solution for the SC instance

claim: OPT¢. < 2 OPT.
the computed string has length < H, OPT4. < 2H, OPT

Let s be the optimal superstring of length OPT

we show there is a feasible SC of cost at most 2 OPT
. leftmost

occurrences (in s) of
the n strings of S

S

Sb,

: . , since there is

E | ' | no string that

5 N is substring of
B ' another: they

start and then

; | end at distinct

R | places in s

T2

T3

all the sets set(n,) is a feasible SC of cost Y. ||
i

n;and ©,, do not overlap

—> 2lml<2|s| <2 OPT
|

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

