Enrico Nardelli
Logic Circuits and
Computer Architecture

Appendix A
Digital Logic Circuits

Part 2: Combinational and
Sequential Circuits

Rev. 4.1 (2006-07) by Enrico Nardelli

Combinational circuits

L — M outputs
Circuit

1, e

Logic gates

—r:
n inputs ' Combinational
—{

e Each of the m outputs can be expressed as
function of n input variables

e Truth table has:

= ninput columns
= moutput columns

= 2" rows (all possible input combinations)
Rev. 4.1 (2006-07) by Enrico Nardelli

Multiplexer (Mux)

e 2" data inputs -- 1 output

e 1 controls, to select one of the inputs to be
“sent” to the output

Example: 4-to-1 mux Truth table
- S, |S,| F
D,) 0| 0] D,
Ei ™ Logic symbol o|1| D,
1(0]| D,

2130 11| b,

Rev. 4.1 (2006-07) by Enrico Nardelli

Logic circuit for a 4-to-1 Mux

Eﬁw

.

ANIIWAN

Rev. 4.1 (2006-07) by Enrico Nardelli

Exercise

e Consider a 2-to-1 multiplexer:
= 2 data inputs: D, and D,
= 1 control input: S,
= 1 data output: F
o Write
= Truth table
= Logic circuits which implements it

e Extend it to deal with 4 bits at a time

Rev. 4.1 (2006-07) by Enrico Nardelli

Quadruple 2-to-1 mux

Ty
i)
Ay _“x,l
D>
Ay —“wll
LA
Aa _“H,I
O——D—
B
¢ D_ Function table
E 5 |Output¥
B, o X AlDs
1 0| Salect A
1 1| SalectB
H D—

De-multiplexer (Demux)

e 1 input -- 2”7 data outputs --

e 11 controls, to select exactly one of the outputs
to “receive” the input

Example: 1-to-4 demux f)o 51 | Do | Dy | D, | Ds
input: E, controls: Sy, S ; 8 : -
outputs: Dy, D;, D,, D3 B -
11 E
Truth table

Rev. 4.1 (2006-07) by Enrico Nardelli A -

Logic circuit for a 1-to-4 Demux

Y

Y

Rev. 4.1 (2006-07) by Enrico Nardelli A -

Decoder

e Convert ninputs to exactly one of 2”7 outputs

i.e., given an r+bit value 7in input the decoder
activates only the £th output line

e Example: a 3-to-8 decoder
= A 3-bit value in input
= 8 output lines
= Write the truth table and the logic circuit

Rev. 4.1 (2006-07) by Enrico Nardelli A -

A 3-to-8 decoder

o
So
o

TITTI11T

2
Q2

I

=l
P
>

2=
=

3

1

p=
ha
e

I-
[]

D=

I
Fa

=

I
=]

i

Dy Rahs Ag

D,=A,K, K,

De=AnA A,

O B A

- 10

Read Only Memories (ROMs)

e They are just a

combinational circuits !

e A simple example for a

8-cell ROM with 3 bits

per cell

Rev. 4.1 (2006-07) by Enrico Nardelli

A, | A, | A | D, | D, | D,
ojlo|lo|o|O]|oO
ojlo|1]l1]0]0O
o|l1lo0|1]0]0O
ol1|1]1]1]0
1i|lo0jofl1|0]o0O
10|11]|1]o0
1|l1]ofl1]|1]o0
1| 1]1|l1]0]1

- 11

The implementation

Rev. 4.1 (2006-07) by Enrico Nardelli

OR Gates
N
|/
>) ’
|
— |
>: -
_\ @ @
/
> ~ |
|/
) ' .
-
_\l @ @
|/
B . .
|/
Do D, D,

- 12

Exercise

e Build a ROM-based combinatorial circuit with

= INPUT: 3 boolean variables
= OQUTPUT: the number of the 1s in the input

Rev. 4.1 (2006-07) by Enrico Nardelli

- 13

Solution: Truth Table

14

Rev. 4.1 (2006-07) by Enrico Nardelli

Solution: the implementation

OR Gates
N
|/
>) ¢
A |
° Y
> =i |
A; N !
/
[D :
— |
-
— |
|/
B ‘ s
|/

D, Do
Rev. 4.1 (2006-07) by Enrico Nardelli A- 15

Binary sum

Addend-1 o+ O+ 1+ 1+
Addend-2 0= 1= 0= 1+
Sum 0 1 1

Carry 0 0 0 1

It's just a 2-input, 2-output boolean function !
Called half sum since it ignores the carry-in

Rev. 4.1 (2006-07) by Enrico Nardelli

- 16

The half adder

e Sum two binary inputs without the carry-in

Truth table Logic Circuit
X|Y]|S]|C
0o|0|0]|O " "
I 5
O(1 (10 ¥
1 0|1] O0 |
C
1101 _)7

Rev. 4.1 (2006-07) by Enrico Nardelli A- 17

The complete addition

e Has to be able to deal Truth table
with the carry-in

It's called full adder

Z represents the carry-in

=Rl Rr|l|O|lo|lo| o X
= | =Rl OoO|lo|l R | ROl O] <
=l Ol =R | Ol =R| Ol ~=| O|N
~ |l lo|lo|l~r|lo|l~r|—~|loOo|l W

Rev. 4.1 (2006-07) by Enrico Nardelli

= ROl R, OlO|l O O

>

=
o

Karnaugh’s maps for full adder

\ ¥ | YZ i
X% 00 01 11 10 XN 00 01 11 10
0 1 1 0 1
% 1] 1 . X1 1 |1 1
Z r;
S = XYZ+XYZ'+XY'Z'+XYZ C=XY+XZ+YZ
=X0O0YDOZ = XY + XY'Z + XYZ
= XY + Z.(XY'+XYY)
= XY+ Z.(XOY)

Rev. 4.1 (2006-07) by Enrico Nardelli A- 19

The logic circuit of a full adder

S

B
D

Rev. 4.1 (2006-07) by Enrico Nardelli A -

20

Binary adder

e Has to be able to deal with more bits

e An rbit adder can be built chaining 7 full adders
o It's called ripple-carry adder

|i_i E
‘ FA ‘ FA
Son =y

Rev. 4.1 (2006-07) by Enrico Nardelli

|__:.|

ideal behaviour of circuits

e Consider an inverter (NOT gate) _Do_

Time g

Rev. 4.1 (2006-07) by Enrico Nardelli

- 22

The real behaviour

e Propagation delay: time needed for a change in
the input to affect the output (gate delay)

e Fall time: time taken for the signal to fall from
high level to low level

e Rise time: time taken to rise from low to high

I
|
/ \
| |
| |
N ‘D‘} Gdl OuT :tPHL: : oLy

A- 23

Carry Propagation

e Signals must propagate from inputs for output
to be valid

e Carry and sum outputs of a single full-adder are
valid ¢ “gate-delays” after inputs are stable

e Value of cdepends on the used technology

e In a binary adder of n bits the last carry is valid
c/ri “gate-delays” after inputs are stable

e For nlarge it may be unacceptable !

Rev. 4.1 (2006-07) by Enrico Nardelli A- 24

Solution

e Pre-compute all carry-ins:
= carry look-ahead adder

e Write a general expression

for a carry

= When does an input carry

propagates to the output?

= When is a carry generated

in the output?

=~ Rr|l|O|lo|lo| o X

Rev. 4.1 (2006-07) by Enrico Nardelli

Rl lo|lo|lRr| ROl O] <

= Ol R | Ol R | Ol LR O N

= | Ol =mR|O|l =] O W

= ROl R, OlO|l O O

- 25

General expression

e General expression for the (i+1)-th carry
" Gy = XY + G (X +Y) =g +Cp
= g, — generate carry
" p, — propagate carry
= Jterate the expression for ¢,

Rev. 4.1 (2006-07) by Enrico Nardelli

- 26

General expression (2)

Cir1 = Gi + P(9i1+Ci1Pit) = G+PGi 1 TPP1Ciy =
= g;+P9i-1+PiP;-1(9i-2+Ci,P;-2)
= Gi1P9i-1 T PiPi-19i2 T PiPi-1Pi-2Ci-2
= GitPiGi-1 T PiPi-19i-2FPiPi-1Pi-29i-3 1 PiP;-1Pi-2Pi-39i4 - -
e It could be developed until the least significant
input bits

e Every c; depends only on ¢y, p;, g; (3<i)

Rev. 4.1 (2006-07) by Enrico Nardelli A- 27

Carry expressions for a 4-bit adder

®* C=Qp T
* =0t
* CG=g, T
* =03+

D0Co
D19y T
D>,g; +

D3g, +

D4
D)

D3

D0Co
D19 T+ P2P1PoCo

0,91 + P3P2P190 T P3P2P1PeCo

Rev. 4.1 (2006-07) by Enrico Nardelli A- 28

Carry Look-Ahead: the architecture

b; & b, & b, & by &
| b | |

generation/propagation

Paf 1% Pl 1% Py} P %

carry look-ahead = G
ST T N T,
| | FA I._ FA i._ FA i‘_ FA I‘-
! ! ! !

SS Re\§24.1 (2006-07) by Enri§& Nardelli SO A- 29

A pratical problem

® C;= o T PoCo

® =0y T P9o T
® CG3= 0y T P9y T
® =03 T P3G,

D4
D)

D3

D0Co
D19 T+ P2P1PoCo

0,91 + P3P2P190 T P3P2P1PeCo

/

thereisalimit due to circuit fan-in:
the maximum number of inputs

Rev. 4.1 (2006-07) by Enrico Nardelli A- 30

Practical solution for n bits

e Use carry look-ahead adders for just m
consecutive bits (4-8 is typical)

e Each of these is a stage

o Use rn/m stages connected by means of the
ripple-carry technique

e The overall delay is now only c/rd/m “gate
delays”

Rev. 4.1 (2006-07) by Enrico Nardelli

- 31

A mixed solution

b[15...12] A 15.12] b[ll...8]a[11..8] b[?...4]a{7--4] b[3. 013{3..01

| I ! '

C
3 lcoiasal=2 {cLag I,CL CLA4 f—2a CLA4|<— Gy

} } } }
15..12] J11.8] 7.4 3..0]

Rev. 4.1 (2006-07) by Enrico Nardelli A- 32

Sequential circuits

e More difficult to analyze since there is feedback:
output is fed back to input

* Need to introduce a concept of state
= Current state and next state

e Asynchronous: change of state of an element is
fed into other elements without any coordination

 Synchronous: change of state of each element
is fed into other elements only at a given instant,
the same for all elements

Rev. 4.1 (2006-07) by Enrico Nardelli A- 33

Initial examples

e What does this circuit do ? ‘}n I

e What about this one ?

0)

ﬂ....-- These are ""'/ —
the samae 0l
CircCuits

e Replace inverters with NOR gates

Rev. 4.1 (2006-07) by Enrico Nardelli A -

34

SR-Latch

e Analyze this circuit (write truth table)

H (Resst) j :

S (Sef 4D\l

Rev. 4.1 (2006-07) by Enrico Nardelli

2

Analysis of SR-Latch

e Two kinds of analysis

e COMBINATIONAL

= Consider all possible configurations of S,R,Q and
check their feasibility

o SEQUENTIAL

= Consider all possible configurations of S,R,Q at a
generic step k£ and check what happens for Q at step
K+1

Rev. 4.1 (2006-07) by Enrico Nardelli A- 36

SR-Latch Truth Table:
Combinational View

e 8 possible combinations (Q= NOT Q)

| S R|1 Q| Q@ name

01 0 0 0 1 Keep

1 0 0 1 0 Keep

210 1 0 1 Reset

511 0 1 0 Set

7/ |1 1 1 0 Unfeasible combination
310 1 1 0 | Unfeasible combination
4 1 0 0 1 Unfeasible combination
6 1 1 0 1 Unfeasible combination

Rev. 4.1 (2006-07) by Enrico Nardelli

- 37

SR-Latch Truth Table:
Sequential View

e Next state as a function of current state

#1'S | R | Q) | Q(k+1) | Q'(k+1) name

0| 0| O 0 0 1 Keep (stable)
11010 1 1 0 Keep (stable)

210 |1 0 0 1 Reset (stable)

31 0 |1 1 0 1 Reset (fransient)
51110 1 1 0 Set (stable)

411 1|0 0 1 0 Set (transient)

6| 1 1 0 0 0 Transient but unacceptable !
711 1 1 0 0 Transient but unacceptable!

Rev. 4.1 (2006-07) by Enrico Nardelli A- 38

First reason to avoid S=R=1

e When both inputs go from 1 to 0:
= a race condition happens

e Both outputs are driven from 0 to 1

e Due to unpredictable physical differences one of
the NOR gates may commute earlier from 0 to 1

e Then it will prevent the commutation of the
other gate

e Conclusion: output value is unpredictable !

Rev. 4.1 (2006-07) by Enrico Nardelli A- 39

Second reason to avoid S=R=1

e When both inputs go from 1 to 0:
= a race condition happens

e Both outputs are driven from 0 to 1

e Both the NOR gates commute from 0 to 1
almost at the same time
= This drives both outputs from 1 to 0
= Both gates are again forced to commute
= This repeats again and again

e Conclusion: output values oscillate !

Rev. 4.1 (2006-07) by Enrico Nardelli

- 40

Temporal evolution of SR-latch

¥ e POE e e BIE ANE TE FIE

Rev. 4.1 (2006-07) by Enrico Nardelli A- 41

Adding a clock to SR-latch

e An additional input (the clock) is used to

ensure the latch commutes only when required
pulses of a clock

e The latch senses S and R only when Clock=1
S5

Q

Clock 1. —+

Rev. 4.1 (2006-07) by Enrico Nardelli A -

42

The role of the clock

e A clock ensures commutation is propagated
from the input to the output only when required

e But the general system clock is running
continuously: how can it be used to control a
circuit only when needed?

Enable— Clock for the specific circuit
System Clock—

Rev. 4.1 (2006-07) by Enrico Nardelli A- 43

Circuit clock from system clock

Enable — Clock for the specific circuit
System Clock —

System Clock

Circuit Enable

Circuit Clock 1 I B S

Rev. 4.1 (2006-07) by Enrico Nardelli

- 44

A more subtie problem

e Even if the circuit is clocked, inputs to the
internal NOR gates receiving S and R may arrive
with different delays

e In a commutation from (S=1,R=0) to
(5=0,R=1) the SR-latch outputs may be (for
some time) in the unacceptable state where
both are 0

Rev. 4.1 (2006-07) by Enrico Nardelli A- 45

Example

e The NOR gate receiving the R:0-to-1 input may
commute earlier than the other gate and now outputs of
the SR-latch are in an unacceptable state

Initial

Input

Transient

Stable

state | change | state state
S| 1 0 0 0
R| O 1 1 1
Q| 1 1 0 0
Q| O 0 0 1

e If Q and Q" are in input to a further circuit, this receives
wrong input values, hence its computed output may

differ from the required one

Rev. 4.1 (2006-07) by Enrico Nardelli A- 46

The solution: a Flip-Flop circuit

A 2-stage (master and s/ave) circuit

First the master stalqe (connected to circuit’s inputs only)
changes its state (flip) when clock commutes to 1

Then the slave stage (connected to circuit’s outputs only)
reads master’s outputs after they have stabilized, when clock
commutes to 0, and changes its state (flop)

The next circuit will read slave’s outputs in the next clock
commutation to 1, when they have stabilized

Outputs from the £th circuit are read in input to the (/+1)-th
circuit only after the transient unacceptable phase is ended,
since adjacent stages are “active” only during different half
periods of the cloc

In a chain of circuits this allows to control exactly when the
écommuted) output of the ~th circuit acts on the input of the

/+1)-th circuit
Rev. 4.1 (2006-07) by Enrico Nardelli A- 47

SR flip-flop

S S
C - C __le
= R Y A

.

Rev. 4.1 (2006-07) by Enrico Nardelli

]

- 48

How SR flip-flop solve the problem

e Temporal evolution (both stages have a transient phase,

but its effect on the next stage are hidden):

c2

Tr.

Ci

cl

Tr.

c2 | SR | Ct

Ci

cl

Ct

St

In.

49

Rev. 4.1 (2006-07) by Enrico Nardelli

D flip-flop: a secure SR flip-flop

e Forcing R to always be NOT(S) the critical
condition S=R=1 is avoided

SR flip-flop

D S — Q

4[>:R — 0

Rev. 4.1 (2006-07) by Enrico Nardelli A -

Use of D flip-flop

e A D flip-flop is a memory cell, since it stores
what is presented at its input

Symbol Truth table
b a b— D Qn+1
0| 0
—CK 1 1

o Read-Enable (RE) and Write-Enable (WE)
signals to store and read values

o Additional Preset (writes 1) and Clear (writes 0)
signals to prepare the gate

Rev. 4.1 (2006-07) by Enrico Nardelli

4 bit register

X, X, X, X,
WE
WE.Pr \/ \/ \j
5>—D Qﬂ,‘DD QﬂjD ol D,
Ck Ck Ck Ck
WE.Ck
RE

Rev. 4.1 (2006-07) by Enrico Nardelli A- 52

Use of D flip-flop (2)

o A D flip-flop is a delay unit, since it replicates at
the output - one propagation delay later - what
is presented at its input (delay flip-flop)

e A chain of n D flip-flops can be used to delay a
bit value for n clock pulses

Rev. 4.1 (2006-07) by Enrico Nardelli A- 53

4 bit delay unit

DiniDD Q LDD Q LDD Q >D Q+— D

Ck Ck Ck Ck

out

SE.Ck

RE

Rev. 4.1 (2006-07) by Enrico Nardelli A- 54

4 bit shift register

X,

WE

Y

Ck

(SE.Ck)+

Ck

Ck

Ck

(WE.Ck)

RE

Rev. 4.1 (2006-07) by Enrico Nardelli

Register Control Signals

e WE (Write Enable): needed since many registers
are attached to (i.e., receive data from) the
same data bus

o SE (Shift Enable): allows a register output to
drive next register input

e RE (Read Enable): needed since many registers
are attached to (i.e., put data on) the same
data bus

Rev. 4.1 (2006-07) by Enrico Nardelli A- 56

JK flip-flop: using also S=R=1

]

AT

o

Rev. 4.1 (2006-07) by Enrico Nardelli A -

57

temporal evolution (1)

JK flip-flop

Ci

©

Ct

Ci

1

Ct

Cli |

o]0 D}

Cr

1

AVM .I_OOAI_V
Q —Alolo|lo]|—~| O
Q —Alo|lo|lo]l+H| O
. (0))
— 100010._m
s[-T=[eefel=]-]= %
© L
sl-lole]~[-]-|&®
- Q
y 01@001 m
Ol H]jJ]O|O|lO | %
O
A_UR Q
ol L&~ 9
(@4
M | X]

58

Rev. 4.1 (2006-07) by Enrico Nardelli

on (2)

temporal evoluti

JK flip-flop

S

0 |

1

= Sequence of events

59

Rev. 4.1 (2006-07) by Enrico Nardelli

Tabular description for JK-FF

e Input: J, K; State: Q; Output: Q

1 k| Q| Q 11K Q] Q.
0|00 0 0|00 0
0O|11]0 0 0|10 0
1 (0] 0 0 1 (0] 0 1
1({11]0 0 11110 1
0|10 1 1 0|10 1 1
0|1 1 1 0|1 1 0
1[0 1 1 1[0 1 1
1|1 1 1 1|1 1 0

Rev. 4.1 (2006-07) by Enrico Nardelli

- 60

Transition Tables

o Synthetic description of flip-flop dynamics

s | R | Q. D | Q,., 1| k] Q,,
0|o0]| q 0| o 0ol0] Q,
ol 1] o 1 o1 o
10| 1 10 1
1] 1 1(1] Q.

Rev. 4.1 (2006-07) by Enrico Nardelli

- 61

Counters

« IDEA: A single JK-FF U

with a periodic input 1.D,
commutes its output
with twice the period of

its input

e Use a chain of]
each time doub
period of the in

1.D,.D,
K-FF
ing the
Out 1.D,.D,.D,

e A counter modulo 2% is

shown

Ck

v

9

Rev. 4.1 (2006-07) by Enrico Nardelli

I

Temporal behaviour (1)

Ck

—

Rev. 4.1 (2006-07) by Enrico Nardelli

- 63

Temporal behaviour (2)

_ 0 1 2 3 4 5 6 7 8 9 1 1 1 1
I=Ck 0 1 5 6
Do
I)1

Rev. 4.1 (2006-07) by Enrico Nardelli

- 64

Temporal behaviour (3)

I=Ck 0 1 2 3 4 5 6 7 8 9 (1) 1 é :1)) ‘1} é é
Do e
D1
D2

Rev. 4.1 (2006-07) by Enrico Nardelli A- 65

Temporal behaviour (4)

=Ck 0 1 2 3 4 5 6 7 8 9 (1) 1 é é

Do e
D1

D2

D3

Rev. 4.1 (2006-07) by Enrico Nardelli

- 66

Temporal behaviour (5)

I=Ck 0 1 2 3 4 5 6 7 8 9 (1) 1 i é 613
D, |1 Jo [1 Jo [1 Jo [12 Jo [1 Jo [1 Jo o [1 Jo [1
D, o (1 1 |o o |1 1 |o o |1 1 |o 1 1 |o o
D o 0o o |1 1 1 1 Jo o o o [1 1 1 [0 o
D 9o 0o o o o o o |1 1 1 1 1 1 1 |0 o
S T

Rev. 4.1 (2006-07) by Enrico Nardelli

Finite State Machines (FSM)

Called also Finite State Automata (FSA)

Described by a table of transitions between
states as a consequence of inputs

If an input is true in a given state, a transition
changes the state and may produce an output

Graphical representation (states are circles,
transition are arrows, input and output are arrow

la bGlS): Input / Output

Rev. 4.1 (2006-07) by Enrico Nardelli A- 68

A very simple example of FSM

e When the tank of my car is fu//, if it is an holiday
I make a trip, but if it is a week-day 1 go to
work by bus. After the trip, the tank is empty
and when I find a gas station 1 fil/ the tank

Holiday / Make a trip

Week
Go to

Gas station / Fill the tank

Rev. 4.1 (2006-07) by Enrico Nardelli A- 69

Tabular description for this FSM

e Next state as Current state Input Next state
3 function Of Tank full Holiday Tank empty

Tank full Week-day Tank full

;ﬁ;reiglgj‘fate Tank empty Gas station Tank full

e Qutput asa Currentstate| Input Output
function of Tank full Holiday Make a trip
current state Tank full Week-day Go to work
Tank empty Gas station Fill the tank

and input

Rev. 4.1 (2006-07) by Enrico Nardelli

- 70

Abstraction process

e FSM describe sequential networks (SN)
e SN realizes Finite State Machines

e The analysis of a SN allows to write the corresponding FSM
e From a FSM a SN is obtain through a synthesis process

e Similar to boolean functions and logical circuits
= Boolean Functions (BF) describe logical circuits (LC)
= LC realize Boolean Functions

= The analisys of a LC produces a BF
= LC are combinational networks (memoryless) synthesizing BF
Rev. 4.1 (2006-07) by Enrico Nardelli A- 71

FSA for D flip-flop

s

s

s

se QQ as state descriptor (state variable)
se D as input
se Q as output

e Check for completeness

Rev. 4.1 (2006-07) by Enrico Nardelli

- 72

Its tabular description

e Qutput values as a function of input and current
state values

e Next state values as a function of input and
state value

= D flip-flop blol o blo o
n n n n+1
0|0 O 00| O
01| 1 0|1] 0
Output: 1|0 o State: 1o 1
10 1] 1 1l1] 1

Rev. 4.1 (2006-07) by Enrico Nardelli A- 73

FSA for SR flip-flop

Jse QQ as state variable

Jse S and R as input

Jse Q as output

e Transitions with multiple conditions

00,01/0 ‘0”0’ 00,10/1

e Unacceptable input configurations are NOT
represented

Rev. 4.1 (2006-07) by Enrico Nardelli

FSA for JK flip-flop

e Just add condition 11 to existing transitions

e Note stability and instability of states according
to input values

10.11/1
00,01/0 ° a 00,10/1
01,11/0

Rev. 4.1 (2006-07) by Enrico Nardelli A -

75

Synthesis of a SN from a FSA

o Identify input, output and state variables

e Build (and minimize) truth tables for ouput
variables as a function of input and state values

e Build (and minimize) transition tables for state
variables as a function of input and state values

e Decide which FF to use to store state values
= a D-FF is the simplest choice

= to store 0 present 0 at the input
= to store 1 present 1 at the input

Rev. 4.1 (2006-07) by Enrico Nardelli A- 76

Generic architecture of a SN

INELtS —- e CUTDLLES
D \ Combinaticnal M et
resen “irCLi =
s circuit state | Storage Fresent
& elements state
Inputs ——w o e CLtpLtS
Combinational
cincuit
—in o
Flip-flops
Clock pulses

Rev. 4.1 (2006-07) by Enrico Nardelli

Example 1: a given FSA

Rev. 4.1 (2006-07) by Enrico Nardelli

0/1

- 78

Example 1: variables

X Combinational
R circuit
An > An+1
Bn Bn+1
Bn Bn+1 “«
An An+1 <
Storage
elements

Rev. 4.1 (2006-07) by Enrico Nardelli

v

- 79

Example 1: transition tables

e Transition table for output and state variables

A | B | X A.. |B.,
ojolo|lo]| 1 |1
olo| 1] -] -] -
oj1]ofo] 1|1
o|1|1]|1] 0O
ilojlo|1] o0 | 1
1lo|1]l1] 0O
1l1]0]1] 1|0
i1l1|1]0] 0 | 1

Rev. 4.1 (2006-07) by Enrico Nardelli A -

Example 1: minimization

State variables Output

A1 X B X Y X
0|1 0|1 0|1
AB 11 [(1) AB 11| 0 AB 00| 0 | --
o1 [la)] o o1 [[1]] 0 01 0
00 00 11 | (1] o
1000 10 [l1)] o 10 [(@] 1

e NOTE: Unspecified inputs cannot be used for
minimization, otherwise a different FSM might
be synthesized, i.e. an FSM with more
transitions than in the initial specification !

Rev. 4.1 (2006-07) by Enrico Nardelli A -

Example 1: wrong minimization

e Using unspecified inputs for minimization means that we

choose value 1 for those we take and 0 for the others .

State variables Output
A1 X B X Y X
0|1 0|1 0|1
AB 11 |(1]] © AB 11| 0 AB 00| O |[-]
o1 [la)| o o1 [(1]] o o1| o ||z
00 |1 [- 00 11 | 1] o
1000 10| 1] o 10 [(D] 1

... hence we would implement ...

Rev. 4.1 (2006-07) by Enrico Nardelli A -

82

Example 1: the corresponding FSA

e ...this FSA which has a different behavior from

the original correct one!
1/1

0/1

Rev. 4.1 (2006-07) by Enrico Nardelli A- 83

Example 1: one more comment...

e By not using unspecified inputs during minimization we are
synthesizing this FSA, but this is an acceptable completion of the
incompletely specified initial FSA!

0/1

Rev. 4.1 (2006-07) by Enrico Nardelli A- 84

Example 1: circuits

D
XI

‘Y

—>{o 5.,

Ck

Ck

O
>
5
+
—
Xmr>> XW X X

Tw‘:z
]
\J

\J

——
> @—Y
}

Rev. 4.1 (2006-07) by Enrico Nardelli A- 85

AI
B
X
A
BI
A
XI

Example 2: specification

e Two input values are presented together

e Recognize with output 10 and 01, respectively,
when a couple 00 or a couple 11 is presented

e Recognize with output 11 when two consecutive
couples of identical values are presented

e Example:

INPUT | 01 | 01| 00|00 00| 11|11 |10]12 1111|112
OUTPUT | 00 | 00 | 10 | 11|10 |01 | 11|00 |01 |11 |01 |11

Rev. 4.1 (2006-07) by Enrico Nardelli A- 86

Example 2: corresponding FSA

e Show also the initial state (double circle)

Rev. 4.1 (2006-07) by Enrico Nardelli A -

87

Example 2: variables

< X

> » W
Combinational > Z
S circuit
An; An+1
Bn Bn+1
Bn Bn+1<
An An+1<
Storage
elements

Rev. 4.1 (2006-07) by Enrico Nardelli A- 88

tables

ion

transi

Example 2

Bn+1

1
0

0
0

1

89

An+1

0
1

0
0

0

Z

1
0

1
1

1

Y| W

1
0

1
0

1

0

erv].'4. | (2006-07) by Enrico Nardelli

X

1
0

1
0

1

0

1

0
1

1
0

0

1

1

0

0
0 1

1

0 1
1

1 0

1

1

Example 2: circuits

<X

<xX>

A
' N
é, | D ﬁﬂ
Ck
B) D>— W
= >
—1))
B |
B
é —1 D &H
Ck

Rev. 4.1 (2006-07) by Enrico Nardelli

- 90

