# Enrico Nardelli Logic Circuits and Computer Architecture

Appendix A

Digital Logic Circuits

Part 2: Combinational and Sequential Circuits

#### **Combinational circuits**



- Each of the *m* outputs can be expressed as function of *n* input variables
- Truth table has:
  - *n* input columns
  - *m* output columns
  - 2<sup>n</sup> rows (all possible input combinations)

# Multiplexer (Mux)

- 2<sup>n</sup> data inputs -- 1 output
- n controls, to select one of the inputs to be "sent" to the output

Example: 4-to-1 mux

D<sub>0</sub> D<sub>1</sub> D<sub>2</sub> D<sub>3</sub> Logic symbol Truth table

| $S_1$ | $S_0$ | F     |
|-------|-------|-------|
| 0     | 0     | $D_0$ |
| 0     | 1     | $D_1$ |
| 1     | 0     | $D_2$ |
| 1     | 1     | $D_3$ |

# Logic circuit for a 4-to-1 Mux



Rev. 4.1 (2006-07) by Enrico Nardelli

#### **Exercise**

- Consider a 2-to-1 multiplexer:
  - 2 data inputs: D<sub>0</sub> and D<sub>1</sub>
  - 1 control input: S<sub>0</sub>
  - 1 data output: F
- Write
  - Truth table
  - Logic circuits which implements it
- Extend it to deal with 4 bits at a time

# **Quadruple 2-to-1 mux**



# **De-multiplexer (Demux)**

• 1 input -- 2" data outputs --

n controls, to select exactly one of the outputs

to "receive" the input

Example: 1-to-4 demux

input: E, controls: S<sub>0</sub>, S<sub>1</sub>

outputs:  $D_0$ ,  $D_1$ ,  $D_2$ ,  $D_3$ 

| $S_0$ | $S_1$ | $D_0$ | $D_1$ | $D_2$ | $D_3$ |
|-------|-------|-------|-------|-------|-------|
| 0     | 0     | Ш     |       |       |       |
| 1     | 0     |       | Е     |       |       |
| 0     | 1     |       |       | Е     |       |
| 1     | 1     |       |       |       | Е     |

Truth table

# Logic circuit for a 1-to-4 Demux



#### Decoder

- Convert *n* inputs to exactly one of 2<sup>n</sup> outputs i.e., given an *n*-bit value *i* in input the decoder activates only the *i*-th output line
- Example: a 3-to-8 decoder
  - A 3-bit value in input
  - 8 output lines
  - Write the truth table and the logic circuit

### A 3-to-8 decoder



# Read Only Memories (ROMs)

- They are just a combinational circuits!
- A simple example for a 8-cell ROM with 3 bits per cell

| $A_0$ | $A_1$ | $A_2$ | $D_0$ | $D_1$ | $D_2$ |
|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     | 0     |
| 0     | 0     | 1     | 1     | 0     | 0     |
| 0     | 1     | 0     | 1     | 0     | 0     |
| 0     | 1     | 1     | 1     | 1     | 0     |
| 1     | 0     | 0     | 1     | 0     | 0     |
| 1     | 0     | 1     | 1     | 1     | 0     |
| 1     | 1     | 0     | 1     | 1     | 0     |
| 1     | 1     | 1     | 1     | 0     | 1     |

# The implementation



#### **Exercise**

- Build a ROM-based combinatorial circuit with
  - INPUT: 3 boolean variables
  - OUTPUT: the number of the 1s in the input

### **Solution: Truth Table**

| $A_0$ | $A_1$ | $A_2$ | $D_1$ | $D_0$ |
|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     |
| 0     | 0     | 1     | 0     | 1     |
| 0     | 1     | 0     | 0     | 1     |
| 0     | 1     | 1     | 1     | 0     |
| 1     | 0     | 0     | 0     | 1     |
| 1     | 0     | 1     | 1     | 0     |
| 1     | 1     | 0     | 1     | 0     |
| 1     | 1     | 1     | 1     | 1     |

# Solution: the implementation



### **Binary sum**

| Addend-1 | 0+ | 0+ | 1+ | 1+ |
|----------|----|----|----|----|
| Addend-2 | 0= | 1= | 0= | 1+ |
| Sum      | 0  | 1  | 1  | 0  |
| Carry    | 0  | 0  | 0  | 1  |

It's just a 2-input, 2-output boolean function!
Called **half sum** since it ignores the carry-in

#### The half adder

Sum two binary inputs without the carry-in
 Truth table
 Logic Circuit

| X | Υ | S | С |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |



### The complete addition

Has to be able to deal with the carry-in

It's called **full adder** 

Z represents the carry-in

#### Truth table

| X | Y | Z | S   | С |
|---|---|---|-----|---|
| 0 | 0 | 0 | 0   | 0 |
| 0 | 0 | 1 | 1 1 |   |
| 0 | 1 | 0 | 1   | 0 |
| 0 | 1 | 1 | 0   | 1 |
| 1 | 0 | 0 | 1   | 0 |
| 1 | 0 | 1 | 0   | 1 |
| 1 | 1 | 0 | 0   | 1 |
| 1 | 1 | 1 | 1   | 1 |

### Karnaugh's maps for full adder



$$S = X'Y'Z+X'YZ'+XY'Z'+XYZ$$
$$= X \oplus Y \oplus Z$$



$$C = XY + XZ + YZ$$

$$= XY + XY'Z + X'YZ$$

$$= XY + Z.(XY'+X'Y)$$

$$= XY + Z.(X \oplus Y)$$

# The logic circuit of a full adder



### **Binary adder**

- Has to be able to deal with more bits
- An n-bit adder can be built chaining n full adders
- It's called **ripple-carry** adder



Rev. 4.1 (2006-07) by Enrico Nardelli

#### Ideal behaviour of circuits

Consider an inverter (NOT gate)





#### The real behaviour

- Propagation delay: time needed for a change in the input to affect the output (gate delay)
- Fall time: time taken for the signal to fall from high level to low level
- Rise time: time taken to rise from low to high



### **Carry Propagation**

- Signals must propagate from inputs for output to be valid
- Carry and sum outputs of a single full-adder are valid c "gate-delays" after inputs are stable
- Value of c depends on the used technology
- In a binary adder of n bits the last carry is valid c·n "gate-delays" after inputs are stable
- For n large it may be unacceptable!

#### Solution

- Pre-compute all carry-ins:
  - carry look-ahead adder
- Write a general expression for a carry
  - When does an input carry propagates to the output?
  - When is a carry generated in the output?

| X | Y | Z | S | С |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

### **General expression**

- General expression for the (i+1)-th carry
  - $\mathbf{c}_{i+1} = x_i y_i + c_i (x_i + y_i) = g_i + c_i p_i$
  - g<sub>i</sub> → generate carry
  - p<sub>i</sub> → propagate carry
  - Iterate the expression for c<sub>i+1</sub>

# General expression (2)

$$\begin{split} c_{i+1} &= g_i + p_i(g_{i-1} + c_{i-1}p_{i-1}) = g_i + p_ig_{i-1} + p_ip_{i-1}c_{i-1} = \\ &= g_i + p_ig_{i-1} + p_ip_{i-1}(g_{i-2} + c_{i-2}p_{i-2}) \\ &= g_i + p_ig_{i-1} + p_ip_{i-1}g_{i-2} + p_ip_{i-1}p_{i-2}c_{i-2} \\ &= g_i + p_ig_{i-1} + p_ip_{i-1}g_{i-2} + p_ip_{i-1}p_{i-2}g_{i-3} + p_ip_{i-1}p_{i-2}p_{i-3}g_{i-4} + \dots \end{split}$$

- It could be developed until the least significant input bits
- Every c<sub>i</sub> depends only on c<sub>0</sub>, p<sub>j</sub>, g<sub>j</sub> (j<i)</li>

### Carry expressions for a 4-bit adder

• 
$$c_1 = g_0 + p_0 c_0$$

• 
$$c_2 = g_1 + p_1g_0 + p_1p_0c_0$$

• 
$$c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$$

• 
$$c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$$

### **Carry Look-Ahead: the architecture**



# A pratical problem

• 
$$c_1 = g_0 + p_0 c_0$$

• 
$$c_2 = g_1 + p_1g_0 + p_1p_0c_0$$

• 
$$c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$$

• 
$$c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$$

there is a limit due to circuit **fan-in**: the maximum number of inputs

#### Practical solution for *n* bits

- Use carry look-ahead adders for just m consecutive bits (4-8 is typical)
- Each of these is a stage
- Use n/m stages connected by means of the ripple-carry technique
- The overall delay is now only c·n/m "gate delays"

#### A mixed solution



### **Sequential circuits**

- More difficult to analyze since there is **feedback**: output is *fed back* to input
- Need to introduce a concept of state
  - Current state and next state
- Asynchronous: change of state of an element is fed into other elements without any coordination
- **Synchronous**: change of state of each element is fed into other elements only at a given instant, the same for all elements

### **Initial examples**

What does this circuit do ?



What about this one ?



Replace inverters with NOR gates

#### **SR-Latch**

Analyze this circuit (write truth table)



### **Analysis of SR-Latch**

- Two kinds of analysis
- COMBINATIONAL
  - Consider all possible configurations of S,R,Q and check their feasibility
- SEQUENTIAL
  - Consider all possible configurations of S,R,Q at a generic step k and check what happens for Q at step k+1

# **SR-Latch Truth Table: Combinational View**

8 possible combinations (Q= NOT Q')

| # | S | R | Q | Q′ | name                   |
|---|---|---|---|----|------------------------|
| 0 | 0 | 0 | 0 | 1  | Keep                   |
| 1 | 0 | 0 | 1 | 0  | Keep                   |
| 2 | 0 | 1 | 0 | 1  | Reset                  |
| 5 | 1 | 0 | 1 | 0  | Set                    |
| 7 | 1 | 1 | 1 | 0  | Unfeasible combination |
| 3 | 0 | 1 | 1 | 0  | Unfeasible combination |
| 4 | 1 | 0 | 0 | 1  | Unfeasible combination |
| 6 | 1 | 1 | 0 | 1  | Unfeasible combination |

# SR-Latch Truth Table: Sequential View

Next state as a function of current state

| # | S | R | Q(k) | Q(k+1) | Q'(k+1) | name                         |
|---|---|---|------|--------|---------|------------------------------|
| 0 | 0 | 0 | 0    | 0      | 1       | Keep (stable)                |
| 1 | 0 | 0 | 1    | 1      | 0       | Keep (stable)                |
| 2 | 0 | 1 | 0    | 0      | 1       | Reset (stable)               |
| 3 | 0 | 1 | 1    | 0      | 1       | Reset (transient)            |
| 5 | 1 | 0 | 1    | 1      | 0       | Set (stable)                 |
| 4 | 1 | 0 | 0    | 1      | 0       | Set ( <i>transient</i> )     |
| 6 | 1 | 1 | 0    | 0      | 0       | Transient but unacceptable ! |
| 7 | 1 | 1 | 1    | 0      | 0       | Transient but unacceptable!  |

#### First reason to avoid S=R=1

- When both inputs go from 1 to 0:
  - a race condition happens
- Both outputs are driven from 0 to 1
- Due to unpredictable physical differences one of the NOR gates may commute earlier from 0 to 1
- Then it will prevent the commutation of the other gate
- Conclusion: output value is unpredictable!

#### Second reason to avoid S=R=1

- When both inputs go from 1 to 0:
  - a race condition happens
- Both outputs are driven from 0 to 1
- Both the NOR gates commute from 0 to 1 almost at the same time
  - This drives both outputs from 1 to 0
  - Both gates are again forced to commute
  - This repeats again and again
- Conclusion: output values oscillate!

## **Temporal evolution of SR-latch**



## Adding a clock to SR-latch

 An additional input (the clock) is used to ensure the latch commutes only when required pulses of a clock

The latch senses S and R only when Clock=1



#### The role of the clock

- A clock ensures commutation is propagated from the input to the output only when required
- But the general system clock is running continuously: how can it be used to control a circuit only when needed?



## Circuit clock from system clock



#### A more subtle problem

- Even if the circuit is clocked, inputs to the internal NOR gates receiving S and R may arrive with different delays
- In a commutation from (S=1,R=0) to (S=0,R=1) the SR-latch outputs may be (for some time) in the unacceptable state where both are 0

#### **Example**

 The NOR gate receiving the R:0-to-1 input may commute earlier than the other gate and now outputs of the SR-latch are in an unacceptable state

|    | Initial<br>state | Input<br>change | Transient<br>state | Stable<br>state |
|----|------------------|-----------------|--------------------|-----------------|
| S  | 1                | 0               | 0                  | 0               |
| R  | 0                | 1               | 1                  | 1               |
| Q  | 1                | 1               | 0                  | 0               |
| Q' | 0                | 0               | 0                  | 1               |

 If Q and Q' are in input to a further circuit, this receives wrong input values, hence its computed output may differ from the required one

## The solution: a Flip-Flop circuit

- A 2-stage (*master* and *slave*) circuit
- First the master stage (connected to circuit's inputs only) changes its state (flip) when clock commutes to 1
- Then the slave stage (connected to circuit's outputs only) reads master's outputs after they have stabilized, when clock commutes to 0, and changes its state (**flop**)
- The next circuit will read slave's outputs in the next clock commutation to 1, when they have stabilized
- Outputs from the i-th circuit are read in input to the (i+1)-th circuit only after the transient unacceptable phase is ended, since adjacent stages are "active" only during different half periods of the clock
- In a chain of circuits this allows to control exactly when the (commuted) output of the *i*-th circuit acts on the input of the (*i*+1)-th circuit

# **SR flip-flop**



## How SR flip-flop solve the problem

 Temporal evolution (both stages have a transient phase, but its effect on the next stage are hidden):

|    | In. | s↑ | C↑ | c1 | C↓ | c2 | SR | C↑ | Tr. | c1 | C↓ | Tr. | c2 |
|----|-----|----|----|----|----|----|----|----|-----|----|----|-----|----|
| S  | 0   | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0   | 0  | 0  | 0   | 0  |
| R  | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1   | 1  | 1  | 1   | 1  |
| С  | 0   | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 1   | 1  | 0  | 0   | 0  |
| C′ | 1   | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0   | 0  | 1  | 1   | 1  |
| Υ  | 0   | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 0   | 0  | 0  | 0   | 0  |
| Y' | 1   | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 0   | 1  |
| Q  | 0   | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 0   | 0  |
| Q' | 1   | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0   | 1  |

## D flip-flop: a secure SR flip-flop

 Forcing R to always be NOT(S) the critical condition S=R=1 is avoided



## **Use of D flip-flop**

 A D flip-flop is a memory cell, since it stores what is presented at its input

**Symbol** 

Truth table



| D | $Q_{n+1}$ |
|---|-----------|
| 0 | 0         |
| 1 | 1         |

- Read-Enable (RE) and Write-Enable (WE) signals to store and read values
- Additional Preset (writes 1) and Clear (writes 0) signals to prepare the gate

# 4 bit register



Rev. 4.1 (2006-07) by Enrico Nardelli

# Use of D flip-flop (2)

- A D flip-flop is a delay unit, since it replicates at the output - one propagation delay later - what is presented at its input (delay flip-flop)
- A chain of n D flip-flops can be used to delay a bit value for n clock pulses

# 4 bit delay unit



## 4 bit shift register



Rev. 4.1 (2006-07) by Enrico Nardelli

## **Register Control Signals**

- WE (Write Enable): needed since many registers are attached to (i.e., receive data from) the same data bus
- SE (Shift Enable): allows a register output to drive next register input
- RE (Read Enable): needed since many registers are attached to (i.e., put data on) the same data bus

# JK flip-flop: using also S=R=1



# JK flip-flop: temporal evolution (1)

|       |   | J↑ | C↑      | C↓         | J↓         | C↑ | C↓ | Κ↑         | C↑         | C↓         | J↑ | C↑         | C↓         | C↑      | C↓         |
|-------|---|----|---------|------------|------------|----|----|------------|------------|------------|----|------------|------------|---------|------------|
| J     | 0 | 1> | 1       | 1          | <b>(0)</b> | 0  | 0  | 0          | 0          | 0          | 1> | 1          | 1          | 1       | 1          |
| K     | 0 | 0  | 0       | 0          | 0          | 0  | 0  | <b>1</b>   | 1          | 1          | 1  | 1          | 1          | 1       | 1          |
| Q     | 0 | 0  | 0       | (1)>       | 1          | 1  | 1  | 1          | 1          | <b>(0)</b> | 0  | 0          | 1>         | 1       | <u></u>    |
| Q′    | 1 | 1  | 1       | <b></b>    | 0          | 0  | 0  | 0          | 0          | 1>         | 1  | 1          | <b>(0)</b> | 0       | 1>         |
| JQ'=S | 0 | 1> | 1       | <b>(0)</b> | 0          | 0  | 0  | 0          | 0          | 0          | 1> | 1          | <b>(0)</b> | 0       | $\bigcirc$ |
| KQ=R  | 0 | 0  | 0       | 0          | 0          | 0  | 0  | $\bigcirc$ | 1          | <u></u>    | 0  | 0          | 1>         | 1       | <u></u>    |
| Υ     | 0 | 0  | (1)     | 1          | 1          | 1  | 1  | 1          | <b>(0)</b> | 0          | 0  | <u>(1)</u> | 1          | <u></u> | 0          |
| Y'    | 1 | 1  | <u></u> | 0          | 0          | 0  | 0  | 0          | <u>(1)</u> | 1          | 1  | <u></u>    | 0          | 1>      | 1          |

Sequence of events



# JK flip-flop: temporal evolution (2)

|       |   | J↓<br>K↓   | C↑ | C↓ | K↑ | C↑ | C↓ | J↑<br>K↓ | C↑       | C↓         | K↑ | C↑      | C↓         | C↑      | C↓      |
|-------|---|------------|----|----|----|----|----|----------|----------|------------|----|---------|------------|---------|---------|
| J     | 1 | <b>(0)</b> | 0  | 0  | 0  | 0  | 0  | 1>       | 1        | 1          | 1  | 1       | 1          | 1       | 1       |
| K     | 1 | <u></u>    | 0  | 0  | 1> | 1  | 1  | <u></u>  | 0        | 0          | 1> | 1       | 1          | 1       | 1       |
| Q     | 0 | 0          | 0  | 0  | 0  | 0  | 0  | 0        | 0        | 1>         | 1  | 1       | <b></b>    | 0       | 1>      |
| Q'    | 1 | 1          | 1  | 1  | 1  | 1  | 1  | 1        | 1        | <u></u>    | 0  | 0       | 1>         | 1       | <u></u> |
| JQ'=S | 1 | <u></u>    | 0  | 0  | 0  | 0  | 0  | 1>       | 1        | <b>(0)</b> | 0  | 0       | 1>         | 1       | <u></u> |
| KQ=R  | 0 | 0          | 0  | 0  | 0  | 0  | 0  | 0        | 0        | 0          | 1> | 1       | <b>(0)</b> | 0       | 1>      |
| Υ     | 0 | 0          | 0  | 0  | 0  | 0  | 0  | 0        | 1>       | 1          | 1  | <u></u> | 0          | 1>      | 1       |
| Υ'    | 1 | 1          | 1  | 1  | 1  | 1  | 1  | 1        | <u> </u> | 0          | 0  | 1>      | 1          | <u></u> | 0       |

Sequence of events



## **Tabular description for JK-FF**

• Input: J, K; State: Q; Output: Q

| J | K | $Q_n$ | $Q_n$ |
|---|---|-------|-------|
| 0 | 0 | 0     | 0     |
| 0 | 1 | 0     | 0     |
| 1 | 0 | 0     | 0     |
| 1 | 1 | 0     | 0     |
| 0 | 0 | 1     | 1     |
| 0 | 1 | 1     | 1     |
| 1 | 0 | 1     | 1     |
| 1 | 1 | 1     | 1     |

| J | K | Q <sub>n</sub> | $Q_{n+1}$ |
|---|---|----------------|-----------|
| 0 | 0 | 0              | 0         |
| 0 | 1 | 0              | 0         |
| 1 | 0 | 0              | 1         |
| 1 | 1 | 0              | 1         |
| 0 | 0 | 1              | 1         |
| 0 | 1 | 1              | 0         |
| 1 | 0 | 1              | 1         |
| 1 | 1 | 1              | 0         |

#### **Transition Tables**

Synthetic description of flip-flop dynamics

| S | R | $Q_{n+1}$      |
|---|---|----------------|
| 0 | 0 | Q <sub>n</sub> |
| 0 | 1 | 0              |
| 1 | 0 | 1              |
| 1 | 1 |                |

| J | K | $Q_{n+1}$       |
|---|---|-----------------|
| 0 | 0 | Q <sub>n</sub>  |
| 0 | 1 | 0               |
| 1 | 0 | 1               |
| 1 | 1 | Q' <sub>n</sub> |

#### **Counters**

- IDEA: A single JK-FF
  with a periodic input
  commutes its output
  with twice the period of
  its input
- Use a chain of JK-FF each time doubling the period of the input
- A counter modulo 2<sup>4</sup> is shown



# **Temporal behaviour (1)**



# Temporal behaviour (2)



# Temporal behaviour (3)



# **Temporal behaviour (4)**



## **Temporal behaviour (5)**



# Finite State Machines (FSM)

Called also Finite State Automata (FSA)

Current

state

- Described by a table of transitions between states as a consequence of inputs
- If an input is true in a given state, a transition changes the state and may produce an output
- Graphical representation (states are circles, transition are arrows, input and output are arrow labels):

Rev. 4.1 (2006-07) by Enrico Nardelli

Next

state

## A very simple example of FSM

• When the tank of my car is *full*, if it is an *holiday* I *make a trip*, but if it is a *week-day* I *go to work* by bus. After the trip, the tank is *empty* and when I find a *gas station* I *fill* the tank



## **Tabular description for this FSM**

 Next state as a function of current state and input

| <b>Current state</b> | Input       | Next state |  |  |
|----------------------|-------------|------------|--|--|
| Tank full            | Holiday     | Tank empty |  |  |
| Tank full            | Week-day    | Tank full  |  |  |
| Tank empty           | Gas station | Tank full  |  |  |

 Output as a function of current state and input

| <b>Current state</b> | Input       | Output        |
|----------------------|-------------|---------------|
| Tank full            | Holiday     | Make a trip   |
| Tank full            | Week-day    | Go to work    |
| Tank empty           | Gas station | Fill the tank |

#### **Abstraction process**

- FSM **describe** sequential networks (SN)
- SN realizes Finite State Machines
- The analysis of a SN allows to write the corresponding FSM
- From a FSM a SN is obtain through a synthesis process
- Similar to boolean functions and logical circuits
  - Boolean Functions (BF) describe logical circuits (LC)
  - LC realize Boolean Functions
  - The analisys of a LC produces a BF
  - LC are combinational networks (memoryless) synthesizing BF

## FSA for D flip-flop

- Use Q as state descriptor (state variable)
- Use D as input
- Use Q as output
- Check for completeness



## Its tabular description

- Output values as a function of input and current state values
- Next state values as a function of input and state value
  - D flip-flop

Output:

 $\begin{array}{c|cccc} D & Q_n & Q_n \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$ 

 $\begin{array}{c|cccc} D & Q_n & Q_{n+1} \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$ 

State:

### **FSA for SR flip-flop**

- Use Q as state variable
- Use S and R as input
- Use Q as output
- Transitions with multiple conditions



Unacceptable input configurations are NOT represented

### FSA for JK flip-flop

- Just add condition 11 to existing transitions
- Note stability and instability of states according to input values



## Synthesis of a SN from a FSA

- Identify input, output and state variables
- Build (and minimize) truth tables for ouput variables as a function of input and state values
- Build (and minimize) transition tables for state variables as a function of input and state values
- Decide which FF to use to store state values
  - a D-FF is the simplest choice
  - to store 0 present 0 at the input
  - to store 1 present 1 at the input

#### Generic architecture of a SN





# **Example 1: a given FSA**



# **Example 1: variables**



#### **Example 1: transition tables**

Transition table for output and state variables

| $A_n$ | $B_n$ | Χ | Υ | $A_{n+1}$ | B <sub>n+1</sub> |  |
|-------|-------|---|---|-----------|------------------|--|
| 0     | 0     | 0 | 0 | 1         | 1                |  |
| 0     | 0     | 1 | ı | -         | _                |  |
| 0     | 1     | 0 | 0 | 1         | 1                |  |
| 0     | 1     | 1 | 1 | 0         | 0                |  |
| 1     | 0     | 0 | 1 | 0         | 1                |  |
| 1     | 0     | 1 | 1 | 0         | 0                |  |
| 1     | 1     | 0 | 1 | 1         | 0                |  |
| 1     | 1     | 1 | 0 | 0         | 1                |  |

#### **Example 1: minimization**



| $A_{n+1}$ |    | X |   |  |  |  |
|-----------|----|---|---|--|--|--|
|           |    | 0 | 1 |  |  |  |
| AB        | 11 | 1 | 0 |  |  |  |
|           | 01 | 1 | 0 |  |  |  |
|           | 00 | 1 |   |  |  |  |
|           | 10 | 0 | 0 |  |  |  |



#### Output

| Υ  |    | Х |   |
|----|----|---|---|
|    |    | 0 | 1 |
| AB | 00 | 0 |   |
|    | 01 | 0 | 1 |
|    | 11 | 1 | 0 |
|    | 10 | 1 | 1 |
|    |    |   |   |

 NOTE: Unspecified inputs cannot be used for minimization, otherwise a different FSM might be synthesized, i.e. an FSM with more transitions than in the initial specification!

# **Example 1: wrong minimization**

 Using unspecified inputs for minimization means that we choose value 1 for those we take and 0 for the others ...

|   |                  |    | Sta | ate v | ariables |           |    | _ |   | Outp | ut |    | _ |    |
|---|------------------|----|-----|-------|----------|-----------|----|---|---|------|----|----|---|----|
| A | \ <sub>n+1</sub> |    | Х   |       |          | $B_{n+1}$ |    | Х | _ |      | Υ  |    | Х | _  |
|   |                  |    | 0   | 1     |          |           |    | 0 | 1 |      |    |    | 0 | 1  |
| 7 | λB               | 11 | 1   | 0     | _        | AB        | 11 | 0 | 1 |      | AB | 00 | 0 | [] |
|   |                  | 01 | 1   | 0     |          |           | 01 | 1 | 0 |      |    | 01 | 0 | 1  |
|   |                  | 00 | 1   |       | -        |           | 00 | 1 |   |      |    | 11 | 1 | 0  |
|   | •                | 10 | 0   | 0     | -        |           | 10 | 1 | 0 |      |    | 10 | 1 | 1  |

... hence we would implement ...

#### **Example 1: the corresponding FSA**

 ...this FSA which has a different behavior from the original correct one!



Rev. 4.1 (2006-07) by Enrico Nardelli

#### **Example 1: one more comment...**

 By not using unspecified inputs during minimization we are synthesizing this FSA, but this is an acceptable completion of the incompletely specified initial FSA!



Rev. 4.1 (2006-07) by Enrico Nardelli

# **Example 1: circuits**



Rev. 4.1 (2006-07) by Enrico Nardelli

## **Example 2: specification**

- Two input values are presented together
- Recognize with output 10 and 01, respectively, when a couple 00 or a couple 11 is presented
- Recognize with output 11 when two consecutive couples of identical values are presented
- Example:

| INPUT  | 01 | 01 | 00 | 00 | 00 | 11 | 11 | 10 | 11 | 11 | 11 | 11 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|
| OUTPUT | 00 | 00 | 10 | 11 | 10 | 01 | 11 | 00 | 01 | 11 | 01 | 11 |

## **Example 2: corresponding FSA**

Show also the initial state (double circle)



Rev. 4.1 (2006-07) by Enrico Nardelli

# **Example 2: variables**



# **Example 2: transition tables**

| $A_n$ | $B_n$ | X          | Υ                   | W     | Z        | $A_{n+1}$ | B <sub>n+1</sub> |
|-------|-------|------------|---------------------|-------|----------|-----------|------------------|
| 0     | 0     | 0          | 0                   | 1     | 0        | 1         | 0                |
| 0     | 0     | 0          | 1                   | 0     | 0        | 0         | 0                |
| 0     | 0     | 1          | 0                   | 0     | 0        | 0         | 0                |
| 0     | 0     | 1          | 1                   | 0     | 1        | 0         | 1                |
| 0     | 1     | 0          | 0                   | 1     | 0        | 1         | 0                |
| 0     | 1     | 0          | 1                   | 0     | 0        | 0         | 0                |
| 0     | 1     | 1          | 0                   | 0     | 0        | 0         | 0                |
| 0     | 1     | 1          | 1                   | 1     | 1        | 0         | 0                |
| 1     | 0     | 0          | 0                   | 1     | 1        | 0         | 0                |
| 1     | 0     | 0          | 1                   | 0     | 0        | 0         | 0                |
| 1     | 0     | 1          | 0                   | 0     | 0        | 0         | 0                |
| 1     | 0     | 1          | 1                   | 0     | 1        | 0         | 1                |
| 1     | 1     | 0          | 0                   |       |          |           |                  |
| 1     | 1     | 0          | 1                   |       |          |           |                  |
| 1     | 1     | 1          | 0                   |       |          |           |                  |
| 1     | 1     | <b>1</b> F | <b>1</b><br>Rev. 4. | (2006 | 3-07) by | Enrico I  | Nardelli         |

# **Example 2: circuits**



Rev. 4.1 (2006-07) by Enrico Nardelli