
Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

Algorithms for Big Data

Episode IV

Finding similar items

Locality-Sensitive Hashing

reference
(Chapter 3)

The problem

Given N items, find pairs of them whose similarity is above a give threshold

main challenge: N is huge and a (N2)-time solution is infeasible

additional challenge: high multidimensionality of each item
(obvious representation does not fit in main memory)

Finding similar documents:
- plagiarism: no simple process of comparing documents character by

character will detect a sophisticated plagiarism;
- mirror pages: duplicated pages quite similar but rarely identical. Do not

show them as a result of a search engine query;
- articles from the same source: essentially same article published in

different web sites;
- documents about the same topic: content-based notion of similarity.

Matching fingerprints: find duplicates in a database.

Entity resolution: find different data records that refer to the same real-
world entity.

Finding similar customers: detecting customers whose set of purchased
products are similar.

keep this application in
mind for the sake of

concreteness

Each item is a set of elements of a given universe

e.g., each item is a customer, and the set represents the products he/she bought

when two sets A and B are similar?

Jaccard Similarity:

JS(A,B)=
|AB|

|AB|

A B

JS(A,B)=3/5

goal: find pairs of sets whose JS is at least a give threshold.

Two ingredients:
- a randomized representation of items that preserves similarity

(it depends on the specific similarity measure you deal with)
- clever use of hash functions/tables allowing to map similar items to the

same slot/bucket
(locality-sensitive hashing, banding technique)

0101

0101

1010

1010

1010

1001

0101

Matrix representation of sets

S1 S2 S3 S4

a

b

c

d

e

f

g

sets/customers

elements/
products - convenient to “visualize”

the problem
- not the actual way sets

are maintained in
memory (matrix usually
sparse)

JS preserving
representation for sets

minhashing and signatures

Minhashing

0101

0101

1010

1010

1010

1001

0101

S1 S2 S3 S4

5

7

6

3

1

2

4 1412

choose a random permutation  of the matrix rows

a column S is represented as:

h(S)= first row index (according to ) in which S has a 1



Lemma
For any two columns S and S’, Pr(h(S)= h(S’)) = JS(S,S’).

proof

let i be the first index according to  in which S has a 1 or S’ has a 1.

i belongs to SS’

for uniformly random ,
Pr(i=“specific element of SS’ ”)=1/|SS’|

h(S)= h(S’) iff i belongs to SS’

Pr(h(S)=h(S’)) = |SS’|/|SS’|=JS(S,S’).

10

00

11

11

00

00

01

5

7

6

3

1

2

4

 S S’

Minhash signature

0101

0101

1010

1010

1010

1001

0101

S1 S2 S3 S4

5

7

6

3

1

2

4 1412

choose n random permutations 1,...,n of the matrix rows

given S, hi(S)= first row index (according to i) in which S has a 1

1

a column S is represented as a (column) vector [h1(S),..., hn(S)]

4

5

1

6

7

3

2

2

1212

5

1

6

2

7

4

3

2121

3
minhash signature of S

Notice:
- usually much smaller representation

(bunch of integers)
- expected fraction of minhash

values where S,S’ agree=JS(S,S’)

Locality-Sensitive
Hashing

banding technique

Idea:
- group the n minhash values into b bands of r rows each (n=br)
- declare two columns candidate (to be similar) if they agree on 1 band
- to discover candidates: use the bands as keys for a hash table with the

purpose to map columns agreeing on 1 band to the same slot of the
table.

b bands

r rows
per band

signature
of S

SS’

Idea:
- use the value of a band as key for a hash table of size m
- two columns with the same value for that band are mapped to the same

slot
- also columns with different values for the band might be mapped to the

same slot
- choose m as large as possible to minimize accidental collisions

b bands

r rows
per band

signature
of S

hash
table of
size m

Analysis

assumption: two columns are mapped to the same slot iff they have the
same band value

- simplifies the analysis
- almost met in practice if you choose m large enough and use a good

enough hash function

fix two columns S and S’ and let s=JS(S,S’)

probability that the signatures disagree
in at last one row of a particular band

1-sr

probability that the signatures disagree
in at last one row of each of the bands

(1-sr)b

probability that the signatures agree in
all rows of at last one band
(and hence become S and S’ candidates)

1-(1-sr)
b

f(s)= 1-(1-sr)
b

is an S-curve

Jaccard
similarity s

probability of
becoming

candidates

0 1

1

threshold : value of s such that f(s)=1/2  (1/b)1/r



b=20 r=5

  0.509

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

s f(s)

some implementation
tricks

notice: picking a random permutation of the k rows is time-consuming

idea: pick a (random) hash function h:{1,...,k} {1,...,k} instead
- h “permutes” row r to position h(r) in the permuted order

notice: two rows can be mapped to the same slot/position
- not so important as long as k is large and not too many collisions

0101

0101

1010

1010

1010

1001

0101

S1 S2 S3 S4

6

7

6

3

1

2

4

h1

4

5

1

6

7

4

2

h2

5

1

6

2

7

4

3

h3

1412

1212

2121

i

c

SIG[i,c]= min hi(r)
r s.t

M[r,c]=1

one-pass algorithm

1. SIG[i,c]= for each i and c
2. for each row r

1. compute h1(r),..., hn(r)
2. for each column c with M[r,c]=1
3. for each i do

SIG[i,c]=min{SIG[i,c], hi(r)}

an additional trick:
- not compute hi(r) for all r
- divide the k rows into k/m groups of m rows (for some parameter m)
- compute hi(r) only for the i-th group

notice: some entry SIG[i,c] might be 
(thus be careful when comparing two columns c and c’)

a more detailed discussion
on this and other tricks
can be found here

similarity-preserving
representations for other

notions of similarity

Hamming distance

- each item is a vector of size k
- two vectors are similar if the hamming distance between them is small

hamming distance between S and S’:

S = [G G C T A A T C G G T T A]

dist(S,S’)= number of entries in which S and S’ differ

S’= [G G C T T A T C G C A T A]

dist(S,S’) = 3

pick a random i {1,2,...,k},

hi(S)=S[i] Pr(hi(S)=hi(S’))= 1 - dist(S,S’)/k

cosine similarity

- each item is a vector in a certain space
(e.g., a document is a vector in the space of the terms)

- two vectors are similar if they have high cosine similarity

cosine similarity between S and S’:

CS(S,S’)= cosine of the angle between S and S’

pick a random vector R,

hR(S)=1 if S  R  0, -1 otherwise

dot
product

S

S’

R

+1
+1

cosine similarity

- each item is a vector in a certain space
(e.g., a document is a vector in the space of the terms)

- two vectors are similar if they have high cosine similarity

cosine similarity between S and S’:

CS(S,S’)= cosine of the angle between S and S’

pick a random vector R,

hR(S)=1 if S  R  0, -1 otherwise

dot
product

S

S’

R

-1
-1

cosine similarity

- each item is a vector in a certain space
(e.g., a document is a vector in the space of the terms)

- two vectors are similar if they have high cosine similarity

cosine similarity between S and S’:

CS(S,S’)= cosine of the angle between S and S’

pick a random vector R,

hR(S)=1 if S  R  0, -1 otherwise

dot
product

S

S’

R

-1
+1

Euclidean distance

- each item is a point in a Euclidean space
- two points are similar if their Euclidean distance is small

pick a random line R, and divide it into segments (buckets) of length a

hR(S)= the bucket in which S falls orthogonally to R

hR(S) hR(S’)
S

S’

R

a

Euclidean distance

- each item is a point in a Euclidean space
- two points are similar if their Euclidean distance is small

pick a random line R, and divide it into segments (buckets) of length a

hR(S)= the bucket in which S falls orthogonally to R

hR(S) hR(S’)
S

S’

R

Euclidean distance

- each item is a point in a Euclidean space
- two points are similar if their Euclidean distance is small

pick a random line R, and divide it into segments (buckets) of length a

hR(S)= the bucket in which S falls orthogonally to R

hR(S)= hR(S’)
S

S’

R

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

