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Finding similar items

Locality-Sensitive Hashing

reference
(Chapter 3)



The problem

Given N items, find pairs of them whose similarity is above a give threshold

main challenge: N is huge and a (N2)-time solution is infeasible

additional challenge: high multidimensionality of each item 
(obvious representation does not fit in main memory)



Finding similar documents:
- plagiarism: no simple process of comparing documents character by 

character will detect a sophisticated plagiarism;
- mirror pages: duplicated pages quite similar but rarely identical. Do not 

show them as a result of a search engine query;
- articles from the same source: essentially same article published in 

different web sites;
- documents about the same topic: content-based notion of similarity.

Matching fingerprints: find duplicates in a database.

Entity resolution: find different data records that refer to the same real-
world entity. 

Finding similar customers: detecting customers whose set of purchased 
products are similar.

keep this application in 
mind for the sake of 

concreteness 



Each item is a set of elements of a given universe

e.g., each item is a customer, and the set represents the products he/she bought

when two sets A and B are similar?

Jaccard Similarity:

JS(A,B)=
|AB|

|AB|

A B

JS(A,B)=3/5

goal: find pairs of sets whose JS is at least a give threshold.



Two ingredients:
- a randomized representation of items that preserves similarity

(it depends on the specific similarity measure you deal with)
- clever use of hash functions/tables allowing to map similar items to the 

same slot/bucket
(locality-sensitive hashing, banding technique)
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products - convenient to “visualize” 

the problem
- not the actual way sets 

are maintained in 
memory (matrix usually 
sparse)



JS preserving 
representation for sets

minhashing and signatures



Minhashing
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choose a random permutation  of the matrix rows

a column S is represented as:

h(S)= first row index (according to ) in which S has a 1





Lemma
For any two columns S and S’,  Pr(h(S)= h(S’)) = JS(S,S’).

proof

let i be the first index according to  in which S has a 1 or S’ has a 1.

i belongs to  SS’

for uniformly random , 
Pr( i=“specific element of SS’ ”)=1/|SS’|

h(S)= h(S’) iff i belongs to SS’

Pr(h(S)=h(S’)) = |SS’|/|SS’|=JS(S,S’).
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Minhash signature

0101

0101

1010

1010

1010

1001

0101 

S1 S2 S3 S4

5

7

6

3

1

2

4 1412

choose n random permutations 1,...,n of the matrix rows

given S, hi(S)= first row index (according to i) in which S has a 1

1

a column S is represented as a (column) vector [h1(S),..., hn(S)]
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minhash signature of S

Notice:
- usually much smaller representation 

(bunch of integers) 
- expected fraction of minhash

values where S,S’ agree=JS(S,S’)



Locality-Sensitive 
Hashing

banding technique



Idea:
- group the n minhash values into b bands of r rows each  (n=br)
- declare two columns candidate (to be similar) if they agree on 1 band
- to discover candidates: use the bands as keys for a hash table with the 

purpose to map columns agreeing on 1 band to the same slot of the 
table.

b bands

r rows 
per band

signature 
of S

SS’



Idea:
- use the value of a band as key for a hash table of size m
- two columns with the same value for that band are mapped to the same 

slot
- also columns with different values for the band might be mapped to the 

same slot
- choose m as large as possible to minimize accidental collisions

b bands

r rows 
per band

signature 
of S

hash 
table of 
size m



Analysis

assumption: two columns are mapped to the same slot iff they have the 
same band value

- simplifies the analysis 
- almost met in practice if you choose m large enough and use a good 

enough hash function

fix two columns S and S’ and let s=JS(S,S’)

probability that the signatures disagree 
in at last one row of a particular band

1-sr

probability that the signatures disagree 
in at last one row of each of the bands

(1-sr)b

probability that the signatures agree in 
all rows of at last one band
(and hence become S and S’ candidates)

1-(1-sr)
b



f(s)= 1-(1-sr)
b

is an S-curve

Jaccard 
similarity s

probability of 
becoming 

candidates

0 1

1

threshold : value of s such that f(s)=1/2  (1/b)1/r



b=20  r=5

  0.509

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

s f(s)



some implementation 
tricks



notice: picking a random permutation of the k rows is time-consuming

idea: pick a (random) hash function h:{1,...,k}        {1,...,k} instead 
- h “permutes” row r to position h(r) in the permuted order 

notice: two rows can be mapped to the same slot/position
- not so important as long as k is large and not too many collisions 
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SIG[i,c]= min  hi(r) 
r s.t 

M[r,c]=1



one-pass algorithm

1. SIG[i,c]= for each i and c
2. for each row r

1. compute h1(r),..., hn(r)
2. for each column c with M[r,c]=1
3. for each i do

SIG[i,c]=min{SIG[i,c], hi(r)}

an additional trick:
- not compute hi(r) for all r
- divide the k rows into k/m groups of m rows (for some parameter m)
- compute hi(r) only for the i-th group

notice: some entry SIG[i,c] might be 
(thus be careful when comparing two columns c and c’)

a more detailed discussion 
on this and other tricks 
can be found here



similarity-preserving 
representations for other 

notions of similarity



Hamming distance

- each item is a vector of size k
- two vectors are similar if the hamming distance between them is small

hamming distance between S and S’:

S = [G G C T A A T C G G T T A]

dist(S,S’)= number of entries in which S and S’ differ

S’= [G G C T T A T C G C A T A]

dist(S,S’) = 3

pick a random i {1,2,...,k}, 

hi(S)=S[i] Pr(hi(S)=hi(S’))= 1 - dist(S,S’)/k



cosine similarity

- each item is a vector in a certain space 
(e.g., a document is a vector in the space of the terms) 

- two vectors are similar if they have high cosine similarity

cosine similarity between S and S’:

CS(S,S’)= cosine of the angle between S and S’

pick a random vector R, 

hR(S)=1 if  S  R  0,    -1 otherwise

dot 
product

S

S’

R

+1
+1
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Euclidean distance

- each item is a point in a Euclidean space
- two points are similar if their Euclidean distance is small

pick a random line R, and divide it into segments (buckets) of length a

hR(S)= the bucket in which S falls orthogonally to R

hR(S) hR(S’)
S

S’

R

a
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