

Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

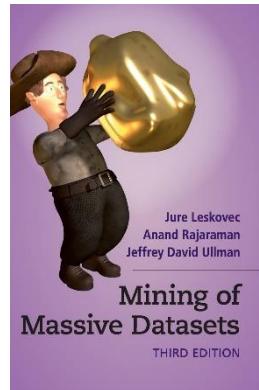
Algorithms for Big Data

Episode IV

Finding similar items

Locality-Sensitive Hashing

reference
(Chapter 3)



The problem

Given N items, find pairs of them whose similarity is above a give threshold

main challenge: N is huge and a $\Theta(N^2)$ -time solution is infeasible

additional challenge: high multidimensionality of each item
(obvious representation does not fit in main memory)

Finding similar documents:

- plagiarism: no simple process of comparing documents character by character will detect a sophisticated plagiarism;
- mirror pages: duplicated pages quite similar but rarely identical. Do not show them as a result of a search engine query;
- articles from the same source: essentially same article published in different web sites;
- documents about the same topic: content-based notion of similarity.

Matching fingerprints: find duplicates in a database.

Entity resolution: find different data records that refer to the same real-world entity.

Finding similar customers: detecting customers whose set of purchased products are similar.

keep this application in
mind for the sake of
concreteness

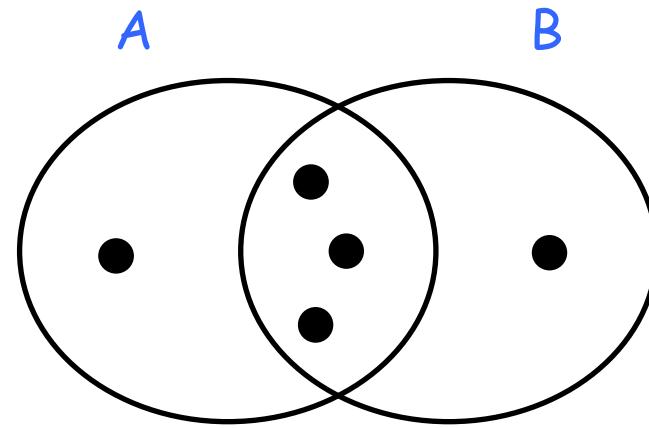
Each item is a set of elements of a given universe

e.g., each item is a customer, and the set represents the products he/she bought

when two sets A and B are similar?

Jaccard Similarity:

$$JS(A, B) = \frac{|A \cap B|}{|A \cup B|}$$



$$JS(A, B) = 3/5$$

goal: find pairs of sets whose JS is at least a give threshold.

Two ingredients:

- a randomized representation of items that preserves similarity
(it depends on the specific similarity measure you deal with)
- clever use of hash functions/tables allowing to map similar items to the same slot/bucket
(locality-sensitive hashing, banding technique)

Matrix representation of sets

elements/
products

sets/customers

	S_1	S_2	S_3	S_4
a	1	0	1	0
b	1	0	0	1
c	0	1	0	1
d	0	1	0	1
e	0	1	0	1
f	1	0	1	0
g	1	0	1	0

- convenient to "visualize" the problem
- not the actual way sets are maintained in memory (matrix usually sparse)

JS preserving
representation for sets

minhashing and signatures

Minhashing

choose a random permutation π of the matrix rows

a column S is represented as:

$h_{\pi}(S)$ = first row index (according to π) in which S has a 1

π	S_1	S_2	S_3	S_4
4	1	0	1	0
2	1	0	0	1
1	0	1	0	1
3	0	1	0	1
6	0	1	0	1
7	1	0	1	0
5	1	0	1	0

2 | 1 | 4 | 1

Lemma

For any two columns S and S' , $\Pr(h_\pi(S) = h_\pi(S')) = JS(S, S')$.

proof

let i be the first index according to π in which S has a 1 or S' has a 1.

i belongs to $S \cup S'$

π	S	S'
4	1	0
2	0	0
1	0	0
3	1	1
6	1	1
7	0	0
5	0	1

for uniformly random π ,

$\Pr(i = \text{"specific element of } S \cup S') = 1/|S \cup S'|$

$h_\pi(S) = h_\pi(S')$ iff i belongs to $S \cap S'$

$\Pr(h_\pi(S) = h_\pi(S')) = |S \cap S'| / |S \cup S'| = JS(S, S')$.

Minhash signature

choose n random permutations π_1, \dots, π_n of the matrix rows

given S , $h_i(S)$ = first row index (according to π_i) in which S has a 1

a column S is represented as a (column) vector $[h_1(S), \dots, h_n(S)]$

π_1	π_2	π_3	S_1	S_2	S_3	S_4
4	2	3	1	0	1	0
2	3	4	1	0	0	1
1	7	7	0	1	0	1
3	6	2	0	1	0	1
6	1	6	0	1	0	1
7	5	1	1	0	1	0
5	4	5	1	0	1	0

minhash signature of S

2	1	4	1
2	1	2	1
1	2	1	2

Notice:

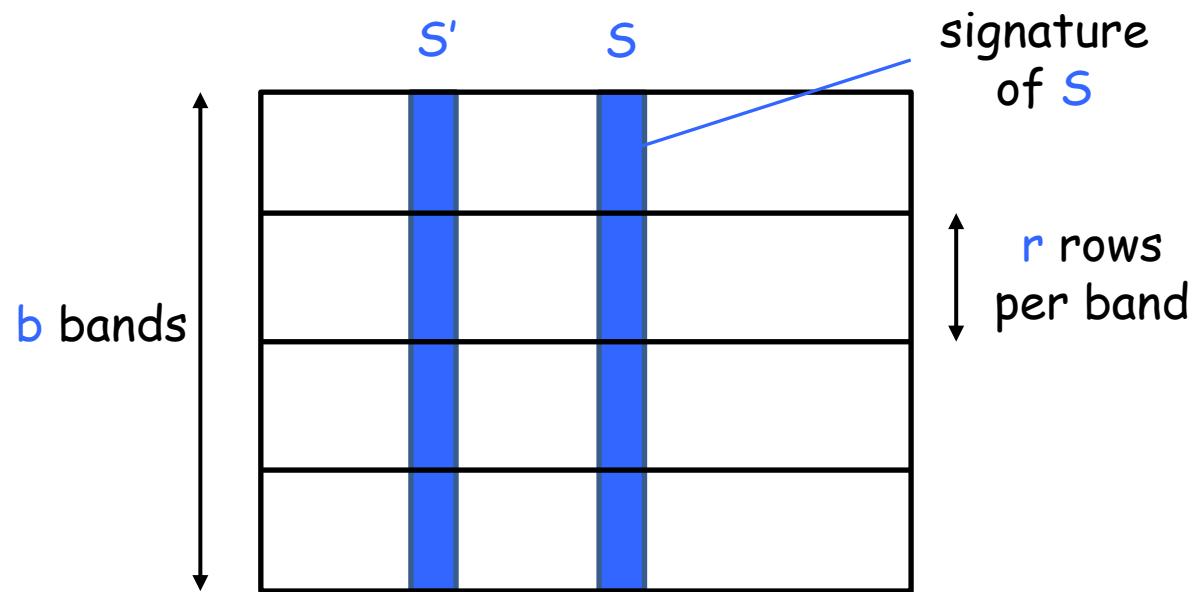
- usually much smaller representation (bunch of integers)
- expected fraction of minhash values where S, S' agree = $JS(S, S')$

Locality-Sensitive Hashing

banding technique

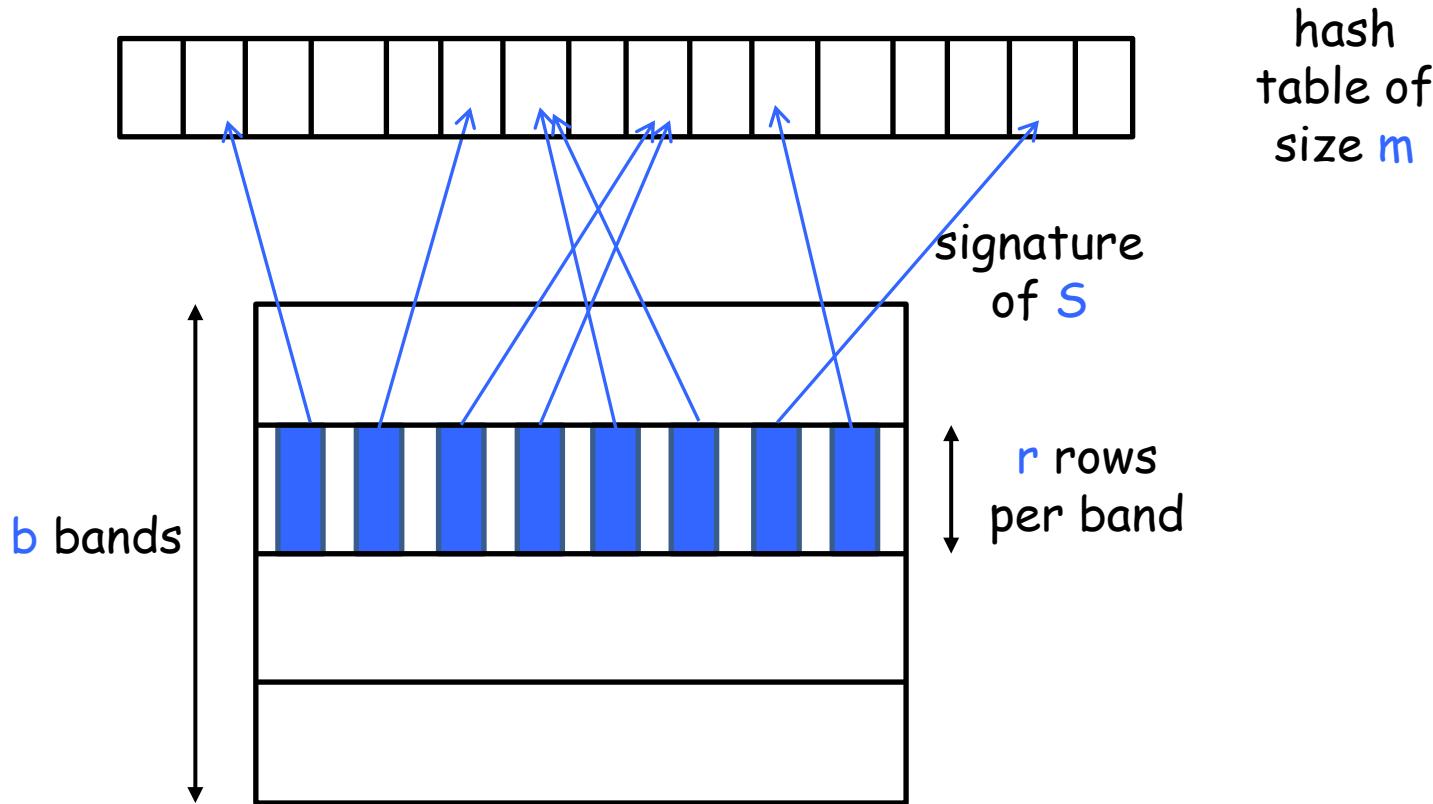
Idea:

- group the n minhash values into b bands of r rows each ($n=b \cdot r$)
- declare two columns **candidate** (to be similar) if they agree on ≥ 1 band
- to discover candidates: use the bands as keys for a hash table with the purpose to map columns agreeing on ≥ 1 band to the same slot of the table.



Idea:

- use the value of a band as key for a hash table of size m
- two columns with the same value for that band are mapped to the same slot
- also columns with different values for the band might be mapped to the same slot
 - choose m as large as possible to minimize accidental collisions



Analysis

assumption: two columns are mapped to the same slot iff they have the same band value

- simplifies the analysis
- almost met in practice if you choose m large enough and use a good enough hash function

fix two columns S and S' and let $s = JS(S, S')$

probability that the signatures disagree
in at last one row of a particular band

$$1 - s^r$$

probability that the signatures disagree
in at last one row of each of the bands

$$(1 - s^r)^b$$

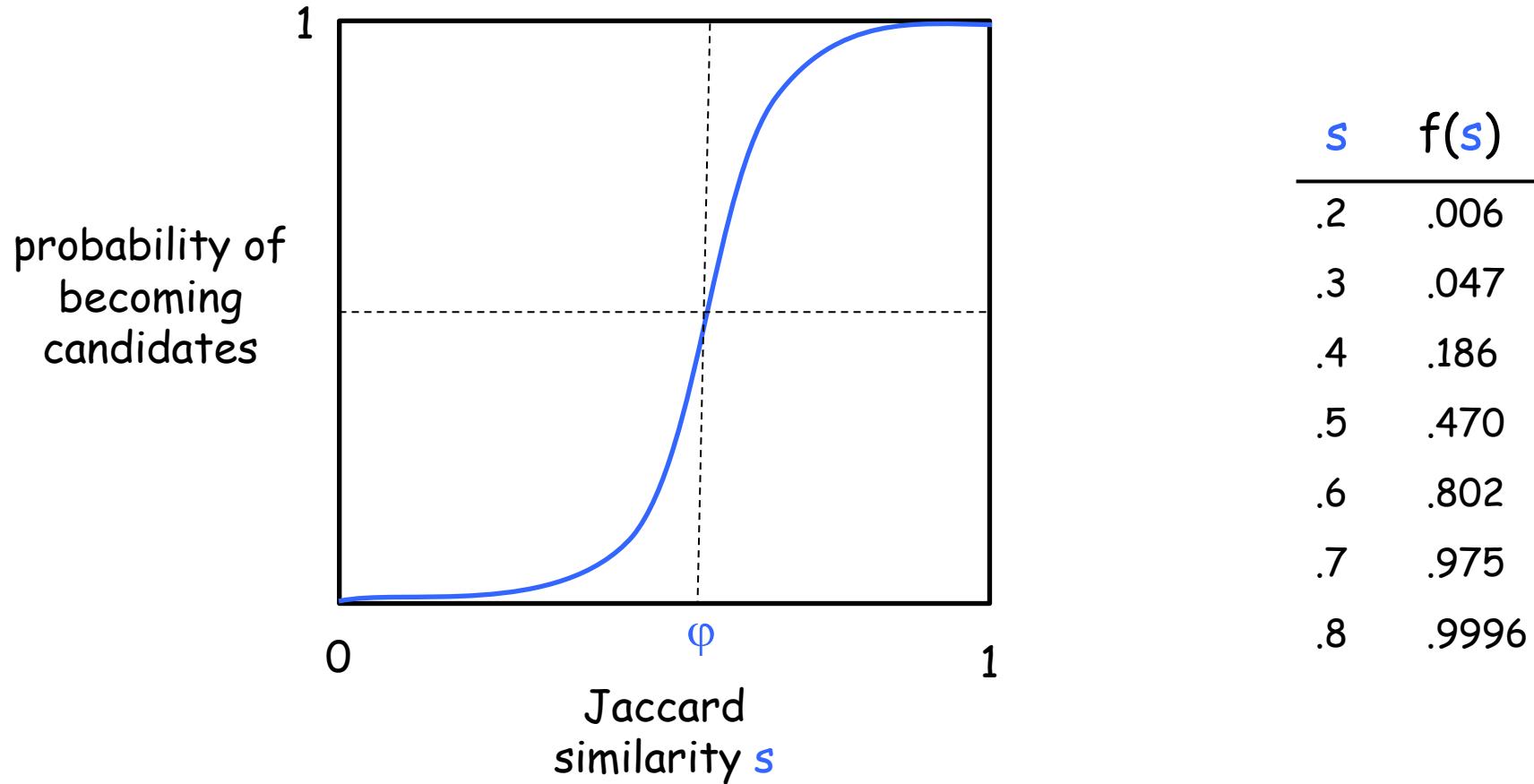
probability that the signatures agree in
all rows of at last one band
(and hence become S and S' candidates)

$$1 - (1 - s^r)^b$$

$f(s) = 1 - (1-s^r)^b$ is an S-curve

$$b=20 \quad r=5$$

$$\varphi \approx 0.509$$



threshold φ : value of s such that $f(s)=1/2 \approx (1/b)^{1/r}$

some implementation
tricks

notice: picking a random permutation of the k rows is time-consuming

idea: pick a (random) hash function $h: \{1, \dots, k\} \rightarrow \{1, \dots, k\}$ instead
- h "permutes" row r to position $h(r)$ in the permuted order

notice: two rows can be mapped to the same slot/position
- not so important as long as k is large and not too many collisions

h_1	h_2	h_3	S_1	S_2	S_3	S_4
4	2	3	1	0	1	0
2	4	4	1	0	0	1
1	7	7	0	1	0	1
3	6	2	0	1	0	1
6	1	6	0	1	0	1
7	5	1	1	0	1	0
6	4	5	1	0	1	0

i c

2	1	4	1
2	1	2	1
1	2	1	2

$$SIG[i, c] = \min_{\substack{r \text{ s.t} \\ M[r, c] = 1}} h_i(r)$$

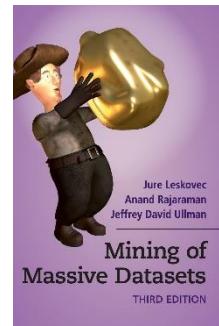
one-pass algorithm

1. $SIG[i, c] = \infty$ for each i and c
2. for each row r
 1. compute $h_1(r), \dots, h_n(r)$
 2. for each column c with $M[r, c] = 1$
 3. for each i do
 $SIG[i, c] = \min\{SIG[i, c], h_i(r)\}$

an additional trick:

- not compute $h_i(r)$ for all r
- divide the k rows into k/m groups of m rows (for some parameter m)
- compute $h_i(r)$ only for the i -th group

notice: some entry $SIG[i, c]$ might be ∞
(thus be careful when comparing two columns c and c')



a more detailed discussion
on this and other tricks
can be found [here](#)

similarity-preserving
representations for other
notions of similarity

Hamming distance

- each item is a vector of size k
- two vectors are similar if the hamming distance between them is small

hamming distance between S and S' :

$\text{dist}(S, S') =$ number of entries in which S and S' differ

pick a random $i \in \{1, 2, \dots, k\}$,

$$h_i(S) = S[i]$$

$$\Pr(h_i(S) = h_i(S')) = 1 - \text{dist}(S, S')/k$$

$$S = [G G C T A A T C G G T T A]$$

$$S' = [G G C T T A T C G C A T A]$$

$$\text{dist}(S, S') = 3$$

cosine similarity

- each item is a vector in a certain space (e.g., a document is a vector in the space of the terms)
- two vectors are similar if they have high cosine similarity

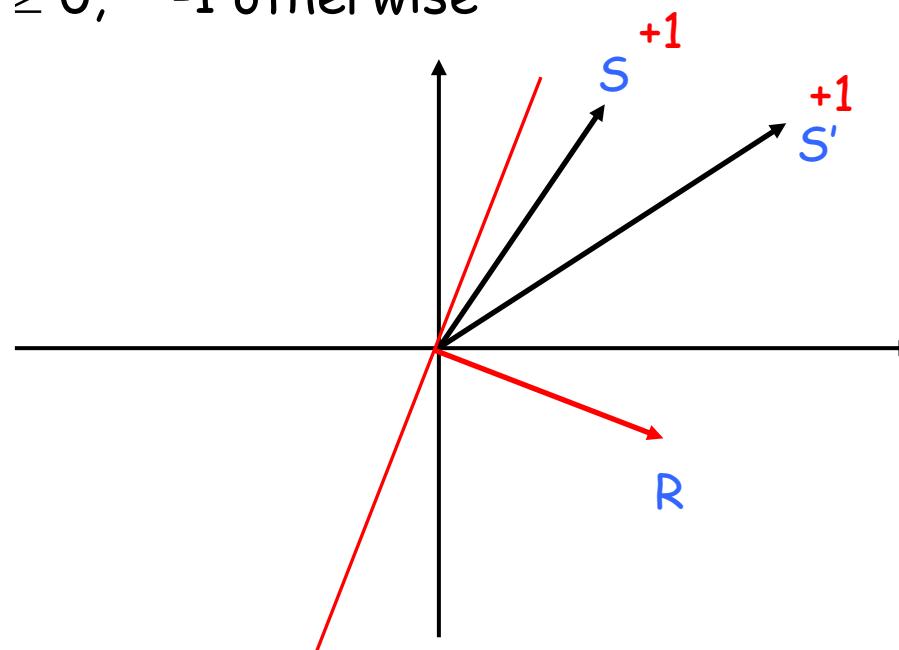
cosine similarity between S and S' :

$CS(S, S') = \text{cosine of the angle between } S \text{ and } S'$

pick a random vector R ,

$h_R(S) = 1 \text{ if } S \cdot R \geq 0, \quad -1 \text{ otherwise}$

dot
product



cosine similarity

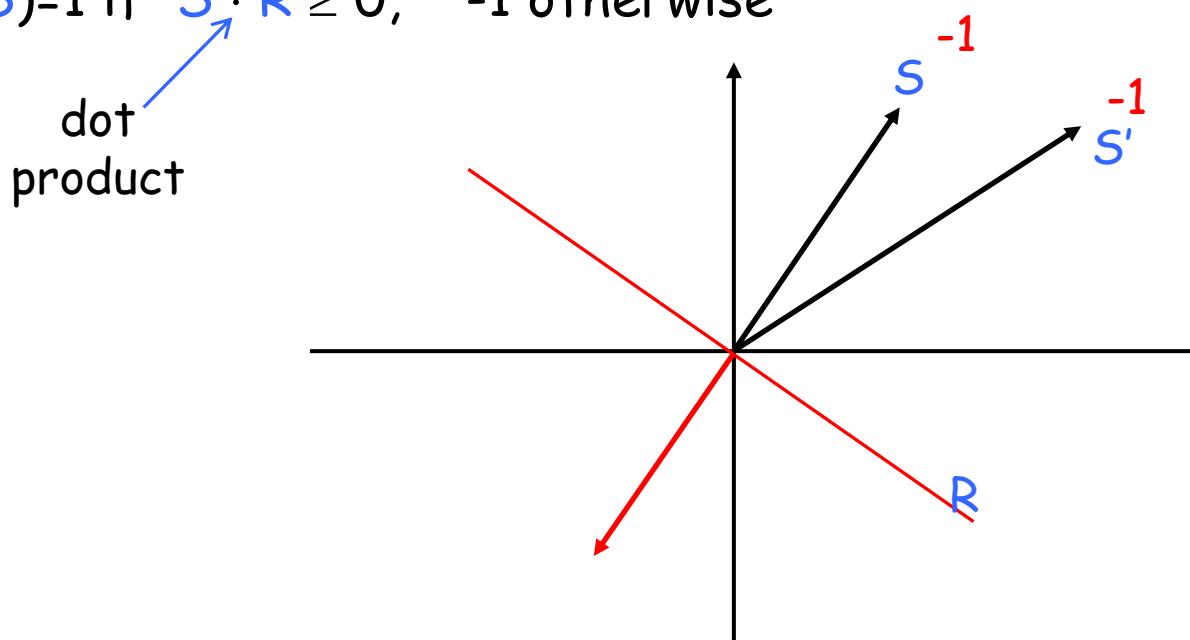
- each item is a vector in a certain space (e.g., a document is a vector in the space of the terms)
- two vectors are similar if they have high cosine similarity

cosine similarity between S and S' :

$CS(S, S') = \text{cosine of the angle between } S \text{ and } S'$

pick a random vector R ,

$h_R(S) = 1 \text{ if } S \cdot R \geq 0, \quad -1 \text{ otherwise}$



cosine similarity

- each item is a vector in a certain space (e.g., a document is a vector in the space of the terms)
- two vectors are similar if they have high cosine similarity

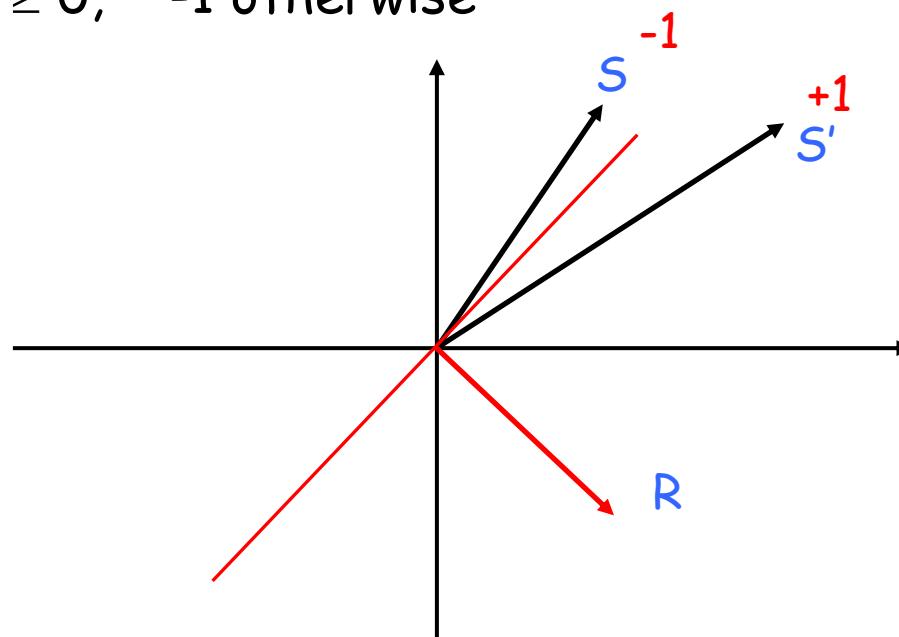
cosine similarity between S and S' :

$CS(S, S') = \text{cosine of the angle between } S \text{ and } S'$

pick a random vector R ,

$h_R(S) = 1 \text{ if } S \cdot R \geq 0, \quad -1 \text{ otherwise}$

dot
product

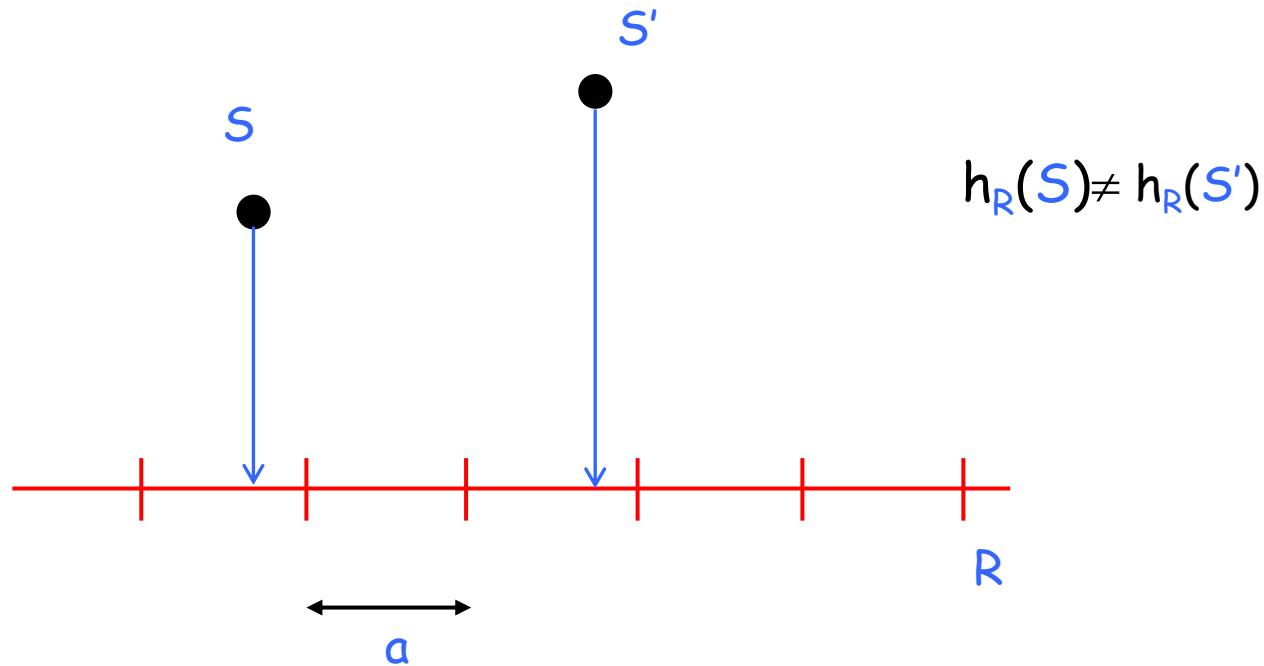


Euclidean distance

- each item is a point in a Euclidean space
- two points are similar if their Euclidean distance is small

pick a random line R , and divide it into segments (**buckets**) of length a

$h_R(S) =$ the bucket in which S falls orthogonally to R

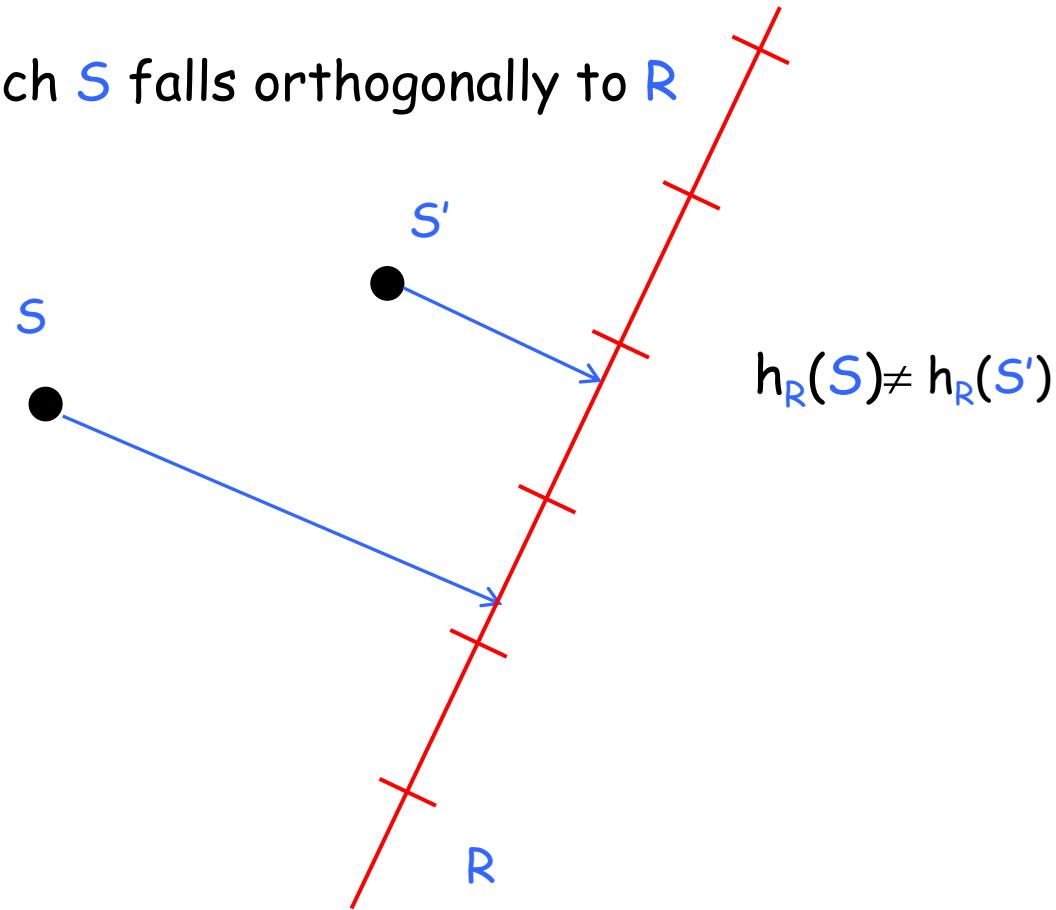


Euclidean distance

- each item is a point in a Euclidean space
- two points are similar if their Euclidean distance is small

pick a random line R , and divide it into segments (*buckets*) of length a

$h_R(S)$ = the bucket in which S falls orthogonally to R



Euclidean distance

- each item is a point in a Euclidean space
- two points are similar if their Euclidean distance is small

pick a random line R , and divide it into segments (**buckets**) of length a

$h_R(S) =$ the bucket in which S falls orthogonally to R

