

Advanced topics on Algorithms

Luciano Gualà

www.mat.uniroma2.it/~guala/

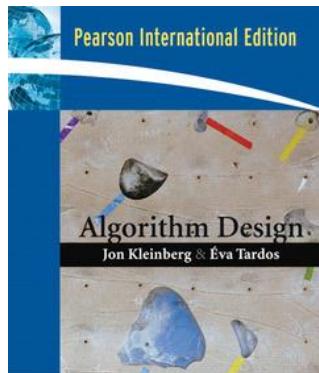
Algorithms for Big Data

Episode I

Hash tables

A randomized implementation of
dictionaries

reference
(Chapter 13.6)



Design and Analysis of Algorithms
(MIT opencourseware)
Lecture 8

+

<https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-algorithms-spring-2015/resources/lecture-8-randomization-universal-perfect-hashing/>

The dictionary problem:

Given a universe U of possible elements, maintain a subset $S \subseteq U$ subject to the following operations:

- `make-dictionary()`: Initialize an empty dictionary.
- `insert(u)`: Add element $u \in U$ to S .
- `delete(u)`: Delete u from S , if u is currently in S .
- `look-up(u)`: Determine whether u is in S .

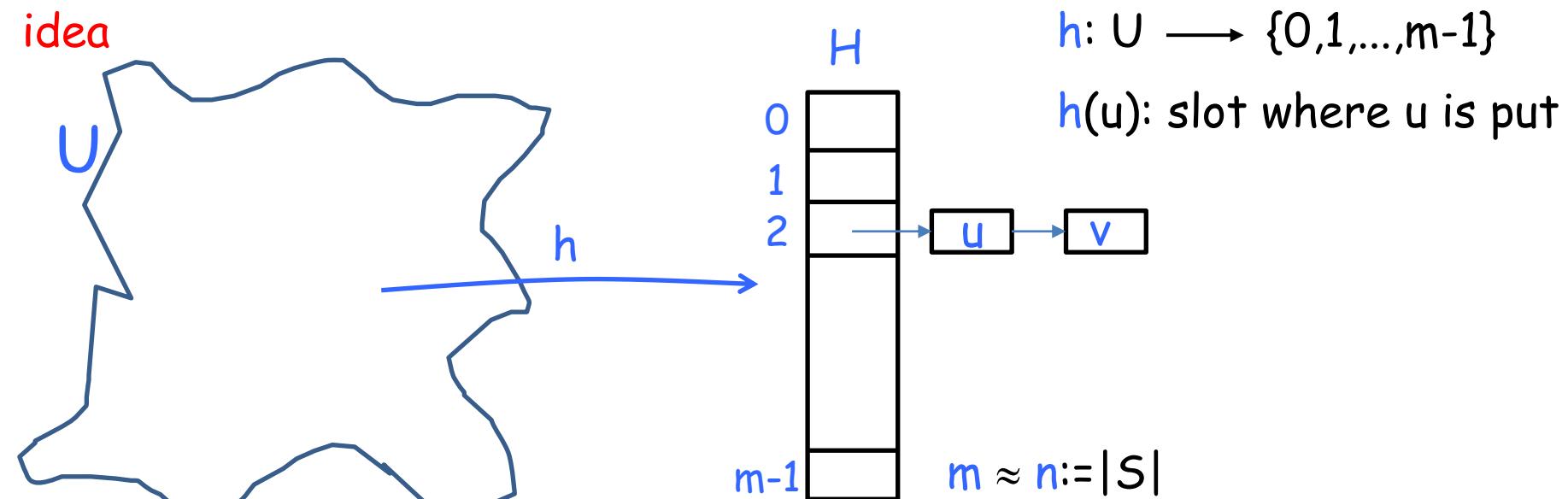
Challenge: Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

A solution: balanced (e.g. AVL) trees

- $O(|S|)$ space
- $O(\log |S|)$ time per operation

hash tables:

- $O(|S|)$ space
- $O(1)$ expected time per operation



collision: when $h(u) = h(v)$ but $u \neq v$.

$H[i]$: linked list of all elements that h maps to slot i
 (hashing with chaining)

Insert/Delete/Lookup of u :

- compute $h(u)$
- insert/delete/search u by scanning list $H[h(u)]$

goal: find a function h that "spreads out" elements

choosing a good hash function

obs: for any deterministic hash function one can find a set S where all elements of S are mapped to the same slot

→ $\Theta(n)$ time per operation

idea: use randomization

obvious approach: for each u , choose $h(u)$ uniformly at random

look-up(u): ...where did we put u ?

we have to maintain the set of pairs $\{(u, h(u)): u \in S\}$

that's the
dictionary
problem!

maybe I
can use a
hash table

universal hashing

A family \mathcal{H} of hash functions is universal if

for each distinct $u, v \in U$ $\Pr_{h \in \mathcal{H}}(h(u) = h(v)) \leq 1/m$

Theorem

Let \mathcal{H} be a family of universal hash functions. Let $S \subseteq U$ of n elements. Let $u \in S$. Pick a random function h from \mathcal{H} , and let X be the random variable counting the number of elements of S mapped to $h(u)$. Then $E[X] \leq 1 + n/m$

proof

for each $s \in S$ X_s r. v. =
$$\begin{cases} 1 & \text{if } h(s)=h(u) \\ 0 & \text{otherwise} \end{cases}$$
 $X = \sum_{s \in S} X_s$

$$\begin{aligned} E[X] &= E\left[\sum_{s \in S} X_s\right] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr(h(s)=h(u)) \\ &= 1 + \sum_{s \in S \setminus \{u\}} \Pr(h(s)=h(u)) \leq 1 + n/m \end{aligned}$$

notice: $m = \Theta(n)$ expected $O(1)$ time per operation

designing a universal family of hash functions

always exists
[Chebyshev 1850]

Table size: choose m as a prime number such that $n \leq m \leq 2n$

Integer encoding: Identify each element $x \in U$ with a base- m integer of r digits: $x = (x_1, x_2, \dots, x_r)$.

Hash function:

given $a \in U$, $a = (a_1, a_2, \dots, a_r)$

$$h_a(x) = \left[\sum_{i=1}^r a_i x_i \right] \bmod m$$

hash function family: $\mathcal{H} = \{h_a : a \in U\}$

word RAM model:

- manipulating $O(1)$ machine words takes $O(1)$ time
- every object of interest fits in a machine word

- storing $h_a(x)$ requires just storing a single value, a (1 machine word)
- computing $h_a(x)$ takes $O(1)$ time

Theorem

$\mathcal{H} = \{h_a : a \in U\}$ is universal

proof

Let $x = (x_1, x_2, \dots, x_r)$ and $y = (y_1, y_2, \dots, y_r)$ be two distinct elements of U . We need to show that $\Pr[h_a(x) = h_a(y)] \leq 1/m$.

since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.

we have $h_a(x) = h_a(y)$ iff

$$a_j \underbrace{(y_j - x_j)}_z = \underbrace{\sum_{i \neq j} a_i(x_i - y_i)}_{\alpha} \pmod{m}$$

we can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$.

since m is prime & $z \neq 0$, z has a multiplicative inverse z^{-1} , i.e. $z z^{-1} = 1 \pmod{m}$

Theorem

$\mathcal{H} = \{h_a : a \in U\}$ is universal

proof

Let $x = (x_1, x_2, \dots, x_r)$ and $y = (y_1, y_2, \dots, y_r)$ be two distinct elements of U . We need to show that $\Pr[h_a(x) = h_a(y)] \leq 1/m$.

since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.

we have $h_a(x) = h_a(y)$ iff

$$a_j = z^{-1} \underbrace{\sum_{i \neq j} a_i(x_i - y_i)}_{\alpha} \pmod{m}$$

we can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$.

since m is prime & $z \neq 0$, z has a multiplicative inverse z^{-1} , i.e. $z z^{-1} = 1 \pmod{m}$

→ $\Pr[h_a(x) = h_a(y)] \leq 1/m$.

another universal hash family

choose a prime $p \geq |U|$ (once)

Hash function:

given $a, b \in U$,

$$h_{ab}(x) = [(ax+b) \bmod p] \bmod m$$

hash function family: $\mathcal{H} = \{h_{ab} : a, b \in U\}$

how to (dynamically) choose the table size

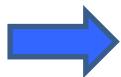
notice: S changes over time and we want to use $O(|S|)$ space

parameters:

- n : # of elements currently in the table, i.e. $n=|S|$;
- N : virtual size of the table
- m : actual size of the table (a prime number between N and $2N$)

doubling/halving technique:

- init $n=N=1$;
- whenever $n>N$:
 - $N:=2N$
 - choose a new m
 - re-hash all items (in $O(n)$ time)
- whenever $n<N/4$:
 - $N:=N/2$
 - choose a new m
 - re-hash all items (in $O(n)$ time)



$O(1)$ amortized time per insertion/deletion

perfect hashing

optimal static dictionary

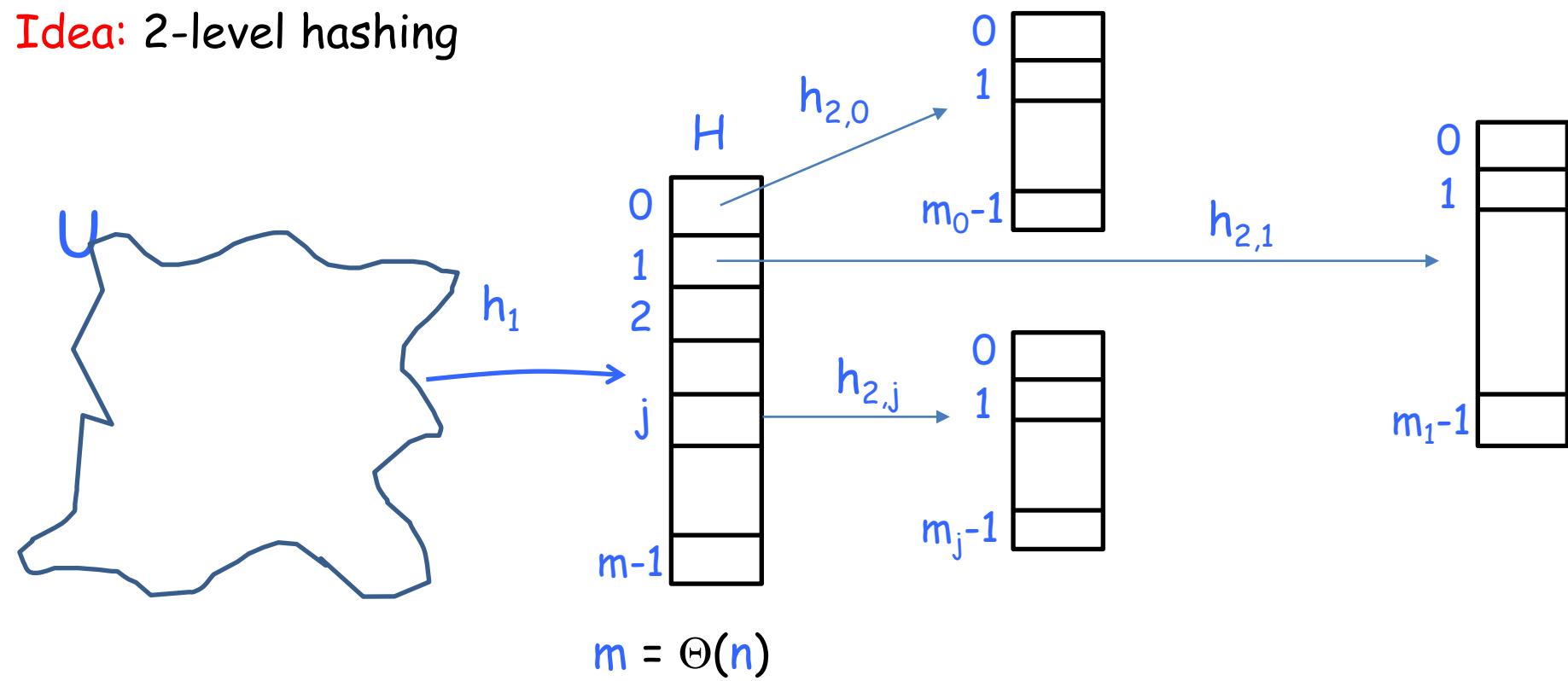
The static dictionary problem:

given a set S of n elements (keys), build a data structure supporting search operations.

Perfect Hashing:

- $O(1)$ worst-case time per search
- space $O(n)$
- build time: almost linear with high probability

Idea: 2-level hashing



Building the dictionary

Step 1:

- pick $h_1: U \rightarrow \{0, 1, \dots, m-1\}$ u.a.r. from a universal hash family, with $m = \Theta(n)$ (e.g. nearby prime)
- hash all items with chaining using h_1

Step 2:

for each $j \in \{0, 1, \dots, m-1\}$

- n_j : # of elements mapped to j by h_1
- pick $h_{2,j}: U \rightarrow \{0, 1, \dots, m_j-1\}$ u.a.r. from a universal hash family, with $n_j^2 \leq m_j \leq O(n_j^2)$
- replace linked list for slot j with a hash table of size m_j using $h_{2,j}$.

Building the dictionary

Step 1:

- pick $h_1: U \rightarrow \{0, 1, \dots, m-1\}$ u.a.r. from a universal hash family, with $m = \Theta(n)$ (e.g. nearby prime)
- hash all items with chaining using h_1

Step 1.5: if $\sum_{j=0}^{m-1} n_j^2 > c n$ for some c (chosen later) redo Step 1

Step 2:

for each $j \in \{0, 1, \dots, m-1\}$

- n_j : # of elements mapped to j by h_1
- pick $h_{2,j}: U \rightarrow \{0, 1, \dots, m_j - 1\}$ u.a.r. from a universal hash family, with $n_j^2 \leq m_j \leq O(n_j^2)$
- replace linked list for slot j with a hash table of size m_j using $h_{2,j}$.

Step 2.5:

while $h_{2,j}(u) = h_{2,j}(v)$ for some $u \neq v$ with $h_1(u) = h_1(v)$

- repick $h_{2,j}$ and re-hash all those n_j elements

no collision at second level
& linear size

Building time

Step 1&2 take $O(n)$ time

Step 2.5

$\Pr_{h_{2,j}} \{ h_{2,j}(u) = h_{2,j}(v), \text{ for some } u \neq v \} \leq$

$$\sum_{\substack{u,v \in S \\ u \neq v}} \Pr \{ h_{2,j}(u) = h_{2,j}(v) \} \leq \frac{1}{2} n_j (n_j - 1) \cdot \frac{1}{n_j^2} < \frac{1}{2}$$

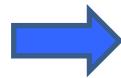
with $h_1(u) = h_1(v)$

for each j :

- $E[\# \text{ trials}] \leq 2$
- $O(\log n)$ trials w.h.p.
- each trial takes $O(n_j)$ time

time for Step 2.5:

$$\sum_j (\# \text{ trials for } j) O(n_j)$$



$O(n \log n)$
with high probability

Building time (Step 15)

Idea: we show that $E\left[\sum_{j=0}^{m-1} n_j^2\right] = \Theta(n)$ and then we use Markov's inequality

$$X_{u,v} \text{ r. v.} = \begin{cases} 1 & \text{if } h_1(u)=h_1(v) \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{j=0}^{m-1} n_j^2 = \sum_{u \in S} \sum_{v \in S} X_{u,v}$$

$$E\left[\sum_{j=0}^{m-1} n_j^2\right] = \sum_{u \in S} \sum_{v \in S} E[X_{u,v}] = \sum_{u \in S} \sum_{v \in S} \Pr\{h_1(u)=h_1(v)\} \leq n + n^2/m \leq 2n$$

$$\Pr\left\{\sum_{j=0}^{m-1} n_j^2 > c n\right\} \leq \frac{E\left[\sum_{j=0}^{m-1} n_j^2\right]}{c n} \leq \frac{2n}{c n} \leq 1/2$$

by suitably choosing c

- $E[\# \text{ trials}] \leq 2$
- $O(\log n)$ trials w.h.p.
- each trial takes $O(n)$

$O(n \log n)$
with high probability