Advanced topics on Algorithms

Luciano Guala
www.mat.uniroma?2.it/~guala/

Algorithms for Big Data
Episode T

Hash tables

A randomized implementation of
dictionaries

% Design and Analysis of Algorithms
3 Pearson International Edition (MIT Opencourseware)

Lecture 8
reference

(Chapter 13.6) https://ocw.mit.edu/courses/6-046 j-design-and-
analysis-of-algorithms-spring-
2015/resources/lecture-8-randomization-

universal-perfect-hashing/

The dictionary problem:

Given a universe U of possible elements, maintain a subset S c U subject
to the following operations:

- make-dictionary(): Initialize an empty dictionary.

- insert(u): Add elementu e U to S.

- delete(u): Delete u from S, if u is currently in S.

- look-up(u): Determine whether uis in S.

Challenge: Universe U can be extremely large so defining an array of size
|U| is infeasible.

balanced (e.g. AVL) trees
- O(|S]) space
- O(log |S|) time per operation

- O(]S]) space
- O(1) expected time per operation

idea H h: U — {0,1,... m-1}

0 h(u): slot where u is put
U 1
h 2 u Y
‘>
m-1 m~ n:=|S|

collision: when h(u) = h(v) but u = v.

H[i]: linked list of all elements that h maps to slot i
(hashing with chaining)

of u:
- compute h(u)
- insert/delete/search u by scanning list H[h(u)]

find a function h that "spreads out” elements

choosing a good hash function

for any defterministic hash function one can find a set S where all
elements of S are mapped to the same slot

®(n) time per operation

idea: use randomization

obvious approach: for each u, choose h(u) uniformly at random

look-up(u): ...where did we put u?

we have to maintain the set of pairs {(u,h(u)): ueS}

- that's the — maybe I
@ dictionary Q\? °00 can use a
problem! A hash table

universal hashing

A family F€ of hash functions is universal if

for each distinct u,veU hPrg'e(h(u)zl'\(v)) < 1/m

Theorem
Let F€ be a family of universal hash functions. Let ScU of n elements.

Let ueS. Pick a random function h from #€, and let X be the random

variable counting the number of elements of S mapped to h(u).
Then E[X] < 1+n/m

proof "1 if h(s)=h(u)
foreachs eS X .r.v.= = X:ZXS
0 otherwise S€S5

E[X] =E[ZXS] = 2 E[X]= Y Pr(h(s)=h(u))

seS seS seS

=1+ ZPr‘(h(s):h(u)) <1l+n/m
seS\{u}

m=0(n) mm) expected O(1) time per operation

designing a universal family of hash functions always exists
S [Chebyshev 1850]

Table size: choose m as a prime number such that n <m < 2n

Integer encoding: Identify each element xeU with a base-m integer of
r digits: x = (X, X5, ..., X,.).

Hash function:
givenacVU, a = (a;, a,, ..., a.)

\

(r
h, (x)= 2 ax; | mod m
i=1

~ o

hash function family: # ={h; aeU }

word RAM model:
- manipulating O(1)

machine words takes - storing h (x) requires just storing a
O(1) time # single value, a (1 machine word)
- every object of interest - computing h,(x) takes O(1) time

fits in a machine word

Theorem
F€ ={h: acU } is universal
proof

Let x = (x4, X5, ..., X.) and y = (Y;, Y2, ... ¥,) be two distinct elements of U.
We need to show that Pr[h (x) = h(y)] < 1/m.

since x #y, there exists an integer j such that x; = y;.

we have h(x) = h,(y) iff

a; (yy-x;) = Zai(xi'Yi) mod m
_'_I ‘I#—'J ' |

Z

0

we can assume a was chosen uniformly at random by first selecting all
coordinates a; where i # j, then selecting a; at random. Thus, we can
assume q; is fixed for all coordinates i = j.

since m is prime & z #0, z has a multiplicative inverse z1,i.e. z z! =1 mod m

Theorem
F€ ={h: acU } is universal
proof

Let x = (x4, X5, ..., X.) and y = (Y;, Y2, ... ¥,) be two distinct elements of U.
We need to show that Pr[h (x) = h(y)] < 1/m.

since x #y, there exists an integer j such that x; = y;.

we have h(x) = h,(y) iff
a; = z'! Zai(xi'Yi) mod m

ll;/:J |
1
(00

we can assume a was chosen uniformly at random by first selecting all
coordinates a; where i # j, then selecting a; at random. Thus, we can
assume q; is fixed for all coordinates i = j.

since m is prime & z #0, z has a multiplicative inverse z1,i.e. z z! =1 mod m

m) Pr[h,(x) = hy(y)] < 1/m. »

another universal hash family

choose a prime p > |U| (once)

Hash function:
given a,beU,

hy, (X)= [(ax+b) mod p] mod m

hash function family: € ={h: a,beU}

how to (dynamically) choose the table size

S changes over time and we want to use O(|S|) space

parameters:

- n: # of elements currently in the table, i.e. n=|S|;

- Nt virtual size of the table

- m: actual size of the table (a prime number between N and 2N)

doubling/halving technique:
- init n=N=1;
- whenever n>N:

- N:=2N

- choose a new m

]) . : : O(1) amortized time
re-hash all |Tems (in O(n) time) # per insertion/deletion
- whenever n<N/4:

- N:=N/2
- choose a new m
- re-hash all items (in O(n) time)

perfect hashing

optimal static dictionary

The static dictionary problem:
given a set S of n elements (keys), build a data structure supporting
search operations.

Perfect Hashing:

- O(1) worst-case time per search

- space O(n)

- build time: almost linear with high probability

Idea: 2-level hashing 0
hoo .1
H ’ 0
/ 1
ol mo-1 h,
1 >
hy 2 0
— %J hZJ 1 1
m;-
m.-1
m-1 !

Building the dictionary

Step 1

- pickh;: U— {0.,1,... m-1} u.a.r. from a universal hash family,
with m=@(n) (e.g. nearby prime)

- hash all items with chaining using h,

Step 2:

for each je {0/1,... m-1}

- n;: # of elements mapped to j by h,

- puck h,;:U— {01,.., m;-1} ua.r. from a universal hash family,
with n? <m; < O(n)

- r'eplace Imked list for slot j with a hash table of size m;using h, ;.

Building the dictionary

Step 1
- pickh;: U— {0.,1,... m-1} u.a.r. from a universal hash family,
with m=@(n) (e.g. nearby prime)
- hash all items with chaining using h,
m-1
Step 1.5: if an >cn for some c (chosen later) redo Step 1
J=0
Step 2:
for each je {0.,1,... m-1}
- n;: # of elements mapped to j by h,
- pickh,;:U— {0 1,..., m; -1} u.a.r. from a universal hash family,
with n <m; <O(n*)
- replace linked list for slot j with a hash table of size m;using h, ;.

Step 2.5:
while h; ;(u) =h, ;(v) for some uzv with hy(u)=hy(v)
- repick h, ; and re-hash all those n; elements

ho collision at second level
q & linear size

Building time
Step 142 take O(n) time

Step 2.5

Pr {h;;(u) = h;;(v), for some uzv} <
h, ;

ZSPr{hZJ(u) hoiM)} < $ni(n-1) 1/ng< 1/2
uve
UV <1/n

with h,(u) = hy(v)

for each j:

- E[# trials]<2

- O(log n) trials w.h.p.

- each trial takes O(n;) time

time for Step 2.5:

£ yrial Y Ofn O(n log n)
%: (# frials for j) O(n)) mmp with high probability

Building time (Step 1.5) |

TIdea: we show that E

m-1
207
J=0

7

(1 if l;l(u)zhl(v)

| O otherwise

=@®(n) and then we use Markov's inequality

fm-l)
E iZ| - Z Z S z Z Pr{hy(u)=hy(v)} <n+n2/m<2n
J=0 ueS veS ueS veS
E T 2 by suitably
m-1 i] ~ choosing ¢
J=0 2n
Pr{an2>cn}< > 2 < <1/2
J:O cn cn

- O(log n) trials w.h.p.
- each trial takes O(n)

=

with high probability

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

