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Global Connection Game
◼ G=(V,E): directed graph

◼ ce: non-negative cost of the edge e  E

◼ player i has a source node si and a sink node ti

◼ Strategy for player i: a path Pi from si to ti

◼ Given a strategy vector S, the cost of player i

costi(S) =  ce/ke(S)
ePi

ke(S): number of players whose path contains e
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◼ Global Connection Game
◼ potential game

◼ a NE always exists

◼ better-response dynamics always converge to a NE

◼ Facts
◼ no one knows how to define a dynamic converging to a NE in 

poly-time

◼ no one knows how to compute a NE in poly-time

◼ question: 
◼ can we derive an evidence that the probem is hard?

◼ (tricky) answer: 
◼ theory of PLS-completeness



Congestion Game
◼ E: set of resources

◼ k players

◼ player i picks a strategy Si from an explicit set of 
strategies Si  2E

◼ each resource eE has possible costs ce(1), ce(2),…, 
ce(k)  

◼ Given a strategy vector S, the cost of player i is:

costi(S) =  ce(ke(S))
eSi

ke(S): number of players whose chosen strategy contains e



properties of CG
◼ Congestion Game is a potential game

◼ Rosenthal potential function:

eE
(S) =   ce(i)i=0

ke(S)

a NE always exists (any local minimum of  is a NE)

better response dynamic converges to a NE



Given an instance of Congestion Game, find any NE

CG-NE problem

can we prove that CG-NE is NP-hard?

….if yes, this would yield to quite surprising consequences.



Addressing a typechecking error

◼ an NP problem is a decision problem admitting short 
(polynomial size) witnesses for YES-instances and 
poly-time verifier
◼ inputs accepted by the verifier are called witnesses

◼ CG-NE is not a decision problem

◼ class FNP (Functional NP): problem just like NP 
probems except that, for YES-instances, a witness 
must be provided 
◼ also called search problems

◼ An algorithm for an FNP problem: 
◼ takes as input an instance 

◼ outputs a witness for a YES-instance or say “No”.



Reduction from one search problem L1 to onother one L2

Two polynomial-time algorithms: 

- A1 mapping instances xL1 to instances A1(x) of L2

- A2 mapping witnesses of A1(x) to witnesses of x 
(and “no” to “no”)

Notice: if L2 is solvable in poly-time then L1 is solvable in poly-
time as well.



CG-NE is not FNP-complete unless NP=coNP

Theorem

proof

Assume we have two poly-time algs

- A1 that maps every SAT formula  to instances of CG-NE A1()

- A2 that maps every NE S of A1() to a satisfying assignment A2(S) of ,   
if one exists, or to the string “no” otherwise. 

Then NP=CoNP. 

Let  be unsatisfiable SAT formula, S be a NE of A1().

S is a short, efficiently verifiable proof of the unsatisfiability of 

A poly-time verifier:
-compute A1() 
-verify that S is a NE of A1()
-verify that A2(S) returns “no”

Note: we’re using only the fact that every instance of CG has a NE



TFNP (total FNP): problems in FNP for which every instance 
has at least one witness.

If a TFNP problem is FNP-complete then NP=coNP.

Theorem



FNP

TFNP

-CG-NE
-problem of finding a mixed-strategy NE 
for a finite game
-factoring
-…

can we prove that CG-NE is TFNP-complete?

no: no complete problem is known for TFNP 
(and people think no one can exist)

Syntactic 
classes

Semantic 
classes

vs



FNP

TFNP

-CG-NE
-problem of finding a mixed-strategy NE 
for a finite game
-factoring
-…

no: no complete problem is known for TFNP 
(and people think no one can exist)

which is the right class for CG-NE?

PLS: abstract local search problems

PLS

can we prove that CG-NE is TFNP-complete?



Maximum Cut problem

◼ Input: 
◼ an undirected graph 

G=(V,E,w) with non-
negative edge weights

◼ Solution: 
◼ a cut (X,Y), where X and Y 

are a partition of V

◼ Measure (to maximize): 
◼ the weight of the cut,     

∑ w(x,y)
(x,y)E:
xX,yY
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A natural heuristic: Local search algorithm

improving local move:
move a single vertex v from one side of the cut to the other 
side, if this improves the weight of the current cut.  

- initialize with  an arbitrary cut (X,Y)

- while there is an improving local move do
take an arbitrary such move

local optimum: cut with no improving local move available.



local optimum vs global optimum
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local optimum vs global optimum
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local optimum vs global optimum

is finding a local opt easier than finding a global opt?

sometimes strictly easier: unweighted graphs

- max cut is still NP-hard for unweighted graphs

- local search algorithm converges in poly-time

facts:

- no known poly-time local search alg for finding local opt
for general weights

- no known poly-time alg for computing a local opt for  
general weights



Given an instance of Max Cut, find any local opt.

local Max-Cut problem

….this problem is PLS-complete.



Ingredients of an Abstract Local Search Problem

The first polynomial-time algorithm takes as input an 
instance and outputs an arbitrary feasible solution.

The second polynomial-time algorithm takes as input an 
instance and a feasible solution, and returns the 
objective function value of the solution.

The third polynomial-time algorithm takes as input an 
instance and a feasible solution, and either reports  
“locally optimal” or produces a solution with better 
objective function value.

1.

2.

3.



A PLS reduction from L1 to L2

Two polynomial-time algorithms: 

- A1 mapping instances xL1 to instances A1(x) of L2

-A2 mapping every local optimum of A1(x) to local optimum of x

Notice: if L2 is solvable in poly-time then L1 is solvable in poly-
time as well.



Definition.
A problem L is PLS-complete if LPLS and every problem in PLS reduces 
to it.

Computing a local maximum of a maximum cut instance with general 
non-negative edge weights is a PLS-complete problem.

Theorem (Johnson, Papadimitriou, Yannakakis ’85, Schaffer, Yannakakis 91)

Computing a local maximum of a maximum cut instance with general 
non-negative edge weights using local search can require an exponential 
(in |V|) number of iterations, no matter how an improving local move is 
chosen in each iteration.

Theorem (Johnson, Papadimitriou, Yannakakis, ’85, Schaffer, Yannakakis 91)



CG-NE is PLS-complete.

Theorem (Fabrikant, Papadimitriou, Talwar 2004)

proof

CG-NE  PLS

3 algorithms of the formal definition:

Alg 1: given the instance, returns any strategy profile S

Alg 2: given a strategy profile S, compute (S)

Alg 3: given a strategy profile S, computes a better   
response for any player, if any, or report “S is a NE”. 

completeness: reduction from local MaxCut



proof
a player for each vertex v

two resources re and re for each edge e
two strategies for player v: Sv = {re : e (v)}

Sv = {re : e (v)}

cost of a resource r  {re , re}:
cr(0)=cr(1)=0   and cr(2)=w(e)

bijection between 2|V| strategy profiles and cuts of the graph

cut corresponding to strategy profile S:

(XS:={v : v plays Sv in S}, YS:=V\XS)

rR
(S) =   cr(i)i=0

kr(S)

=W-W(XS,YS)

eE
W =  w(e)

(XS,YS) is a local maximum cut iff S local minimum for (S)



what about the problem 
of computing mixed Nash Equilibria?



Given an instance of a 2-player game in normal 
form (bimatrix game), find any mixed NE

MNE problem

Nash’s theorem guarantees that a mixed NE always exists

MNE TFNP

no polynomial time algorithm is known for MNE

what is the right class for MNE problem?



PLS: abstract local search problems

nodes: feasible solutions

edges: improving moves

witnesses

generic reason of membership:
solvable by local search, i.e. by 
following a directed path to a 
sink vertex.



PPAD

in- & out-degree 
at most 1

witnesses

generic reason of membership:
solvable by following a directed 
path from the source to the 
sink vertex.

canonical 
source

s



PPAD: polynomial parity argument in a directed graph

in- & out-degree 
at most 1

witnesses

generic reason of membership:
solvable by following a directed 
path from the source to the 
sink vertex.

canonical 
source

s

class PPAD introduced in 94 
by Christos H. Papadimitriou



FNP

TFNP

PLS PPAD

Computing any MNE of a bimatrix game is PPAD-
complete

Theorem (Daskalakis, Godberg, Papadimitriou 06, Chen,Deng,Teng 06)
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