
Computing a Nash Equilibrium
of a Congestion Game:

PLS-completeness

based on Chapters 19 & 20 of
Twenty Lectures on Algorithmic Game Theory,

Tim Roughgarden

Global Connection Game
◼ G=(V,E): directed graph

◼ ce: non-negative cost of the edge e E

◼ player i has a source node si and a sink node ti

◼ Strategy for player i: a path Pi from si to ti

◼ Given a strategy vector S, the cost of player i

costi(S) = ce/ke(S)
ePi

ke(S): number of players whose path contains e

2
6 4s1=s2

t1

t2
1

8

8

G

N(S)

cost1=7
cost2=6

◼ Global Connection Game
◼ potential game

◼ a NE always exists

◼ better-response dynamics always converge to a NE

◼ Facts
◼ no one knows how to define a dynamic converging to a NE in

poly-time

◼ no one knows how to compute a NE in poly-time

◼ question:
◼ can we derive an evidence that the probem is hard?

◼ (tricky) answer:
◼ theory of PLS-completeness

Congestion Game
◼ E: set of resources

◼ k players

◼ player i picks a strategy Si from an explicit set of
strategies Si 2E

◼ each resource eE has possible costs ce(1), ce(2),…,
ce(k)

◼ Given a strategy vector S, the cost of player i is:

costi(S) = ce(ke(S))
eSi

ke(S): number of players whose chosen strategy contains e

properties of CG
◼ Congestion Game is a potential game

◼ Rosenthal potential function:

eE
(S) = ce(i)i=0

ke(S)

a NE always exists (any local minimum of is a NE)

better response dynamic converges to a NE

Given an instance of Congestion Game, find any NE

CG-NE problem

can we prove that CG-NE is NP-hard?

….if yes, this would yield to quite surprising consequences.

Addressing a typechecking error

◼ an NP problem is a decision problem admitting short
(polynomial size) witnesses for YES-instances and
poly-time verifier
◼ inputs accepted by the verifier are called witnesses

◼ CG-NE is not a decision problem

◼ class FNP (Functional NP): problem just like NP
probems except that, for YES-instances, a witness
must be provided
◼ also called search problems

◼ An algorithm for an FNP problem:
◼ takes as input an instance

◼ outputs a witness for a YES-instance or say “No”.

Reduction from one search problem L1 to onother one L2

Two polynomial-time algorithms:

- A1 mapping instances xL1 to instances A1(x) of L2

- A2 mapping witnesses of A1(x) to witnesses of x
(and “no” to “no”)

Notice: if L2 is solvable in poly-time then L1 is solvable in poly-
time as well.

CG-NE is not FNP-complete unless NP=coNP

Theorem

proof

Assume we have two poly-time algs

- A1 that maps every SAT formula to instances of CG-NE A1()

- A2 that maps every NE S of A1() to a satisfying assignment A2(S) of ,
if one exists, or to the string “no” otherwise.

Then NP=CoNP.

Let be unsatisfiable SAT formula, S be a NE of A1().

S is a short, efficiently verifiable proof of the unsatisfiability of

A poly-time verifier:
-compute A1()
-verify that S is a NE of A1()
-verify that A2(S) returns “no”

Note: we’re using only the fact that every instance of CG has a NE

TFNP (total FNP): problems in FNP for which every instance
has at least one witness.

If a TFNP problem is FNP-complete then NP=coNP.

Theorem

FNP

TFNP

-CG-NE
-problem of finding a mixed-strategy NE
for a finite game
-factoring
-…

can we prove that CG-NE is TFNP-complete?

no: no complete problem is known for TFNP
(and people think no one can exist)

Syntactic
classes

Semantic
classes

vs

FNP

TFNP

-CG-NE
-problem of finding a mixed-strategy NE
for a finite game
-factoring
-…

no: no complete problem is known for TFNP
(and people think no one can exist)

which is the right class for CG-NE?

PLS: abstract local search problems

PLS

can we prove that CG-NE is TFNP-complete?

Maximum Cut problem

◼ Input:
◼ an undirected graph

G=(V,E,w) with non-
negative edge weights

◼ Solution:
◼ a cut (X,Y), where X and Y

are a partition of V

◼ Measure (to maximize):
◼ the weight of the cut,

∑ w(x,y)
(x,y)E:
xX,yY

4

8

4

10

1

3

X Y

It is NP-hard

A natural heuristic: Local search algorithm

improving local move:
move a single vertex v from one side of the cut to the other
side, if this improves the weight of the current cut.

- initialize with an arbitrary cut (X,Y)

- while there is an improving local move do
take an arbitrary such move

local optimum: cut with no improving local move available.

local optimum vs global optimum

1

3

4 2
5 6

YX

local opt of weight 15

local optimum vs global optimum

1

3

4 2
5 6

Y

X

global opt of weight 17

local optimum vs global optimum

is finding a local opt easier than finding a global opt?

sometimes strictly easier: unweighted graphs

- max cut is still NP-hard for unweighted graphs

- local search algorithm converges in poly-time

facts:

- no known poly-time local search alg for finding local opt
for general weights

- no known poly-time alg for computing a local opt for
general weights

Given an instance of Max Cut, find any local opt.

local Max-Cut problem

….this problem is PLS-complete.

Ingredients of an Abstract Local Search Problem

The first polynomial-time algorithm takes as input an
instance and outputs an arbitrary feasible solution.

The second polynomial-time algorithm takes as input an
instance and a feasible solution, and returns the
objective function value of the solution.

The third polynomial-time algorithm takes as input an
instance and a feasible solution, and either reports
“locally optimal” or produces a solution with better
objective function value.

1.

2.

3.

A PLS reduction from L1 to L2

Two polynomial-time algorithms:

- A1 mapping instances xL1 to instances A1(x) of L2

-A2 mapping every local optimum of A1(x) to local optimum of x

Notice: if L2 is solvable in poly-time then L1 is solvable in poly-
time as well.

Definition.
A problem L is PLS-complete if LPLS and every problem in PLS reduces
to it.

Computing a local maximum of a maximum cut instance with general
non-negative edge weights is a PLS-complete problem.

Theorem (Johnson, Papadimitriou, Yannakakis ’85, Schaffer, Yannakakis 91)

Computing a local maximum of a maximum cut instance with general
non-negative edge weights using local search can require an exponential
(in |V|) number of iterations, no matter how an improving local move is
chosen in each iteration.

Theorem (Johnson, Papadimitriou, Yannakakis, ’85, Schaffer, Yannakakis 91)

CG-NE is PLS-complete.

Theorem (Fabrikant, Papadimitriou, Talwar 2004)

proof

CG-NE PLS

3 algorithms of the formal definition:

Alg 1: given the instance, returns any strategy profile S

Alg 2: given a strategy profile S, compute (S)

Alg 3: given a strategy profile S, computes a better
response for any player, if any, or report “S is a NE”.

completeness: reduction from local MaxCut

proof
a player for each vertex v

two resources re and re for each edge e
two strategies for player v: Sv = {re : e (v)}

Sv = {re : e (v)}

cost of a resource r {re , re}:
cr(0)=cr(1)=0 and cr(2)=w(e)

bijection between 2|V| strategy profiles and cuts of the graph

cut corresponding to strategy profile S:

(XS:={v : v plays Sv in S}, YS:=V\XS)

rR
(S) = cr(i)i=0

kr(S)

=W-W(XS,YS)

eE
W = w(e)

(XS,YS) is a local maximum cut iff S local minimum for (S)

what about the problem
of computing mixed Nash Equilibria?

Given an instance of a 2-player game in normal
form (bimatrix game), find any mixed NE

MNE problem

Nash’s theorem guarantees that a mixed NE always exists

MNE TFNP

no polynomial time algorithm is known for MNE

what is the right class for MNE problem?

PLS: abstract local search problems

nodes: feasible solutions

edges: improving moves

witnesses

generic reason of membership:
solvable by local search, i.e. by
following a directed path to a
sink vertex.

PPAD

in- & out-degree
at most 1

witnesses

generic reason of membership:
solvable by following a directed
path from the source to the
sink vertex.

canonical
source

s

PPAD: polynomial parity argument in a directed graph

in- & out-degree
at most 1

witnesses

generic reason of membership:
solvable by following a directed
path from the source to the
sink vertex.

canonical
source

s

class PPAD introduced in 94
by Christos H. Papadimitriou

FNP

TFNP

PLS PPAD

Computing any MNE of a bimatrix game is PPAD-
complete

Theorem (Daskalakis, Godberg, Papadimitriou 06, Chen,Deng,Teng 06)

	Slide 1: Computing a Nash Equilibrium of a Congestion Game: PLS-completeness
	Slide 2: Global Connection Game
	Slide 3
	Slide 4: Congestion Game
	Slide 5: properties of CG
	Slide 6
	Slide 7: Addressing a typechecking error
	Slide 8: Reduction from one search problem L1 to onother one L2
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Maximum Cut problem
	Slide 14: A natural heuristic: Local search algorithm
	Slide 15: local optimum vs global optimum
	Slide 16: local optimum vs global optimum
	Slide 17: local optimum vs global optimum
	Slide 18
	Slide 19
	Slide 20: A PLS reduction from L1 to L2
	Slide 21
	Slide 22
	Slide 23
	Slide 24: what about the problem of computing mixed Nash Equilibria?
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

