Local Connection Game

Motivations

often built and maintained by self-interested agents



Introduction

- Introduced in [FLMPS'03]
- A LCG is a game that models the creation of networks
- two competing issues: players want
 - to minimize the cost they incur in building the network
 - to ensure that the network provides them with a high quality of service
- Players are nodes that:
 - pay for the links
 - benefit from short paths

[FLMPS'03]:

A. Fabrikant, A. Luthra, E. Maneva, C.H. Papadimitriou, S. Shenker, On a network creation game, PODC'03

The model

- n players: nodes in a graph to be built
- Strategy for player u: a set of undirected edges that u will build (all incident to u)
- Given a strategy vector S, the constructed network will be G(S)
 - there is the undirected edge (u,v) if it is bought by u or v (or both)
- player u's goal:
 - to make the distance to other nodes small
 - to pay as little as possible

The model

- Each edge costs α
- $dist_{G(S)}(u,v)$: length of a shortest path (in terms of number of edges) between u and v
- Player u aims to minimize its cost:

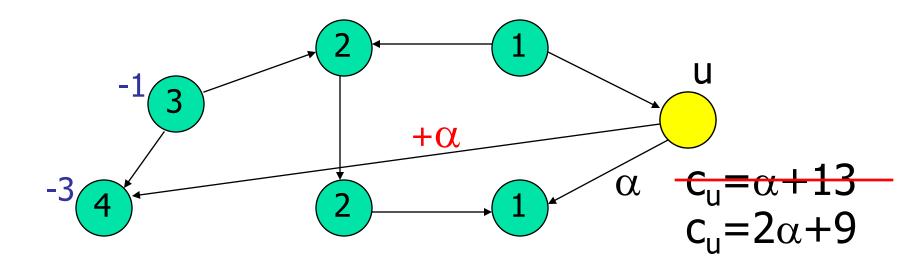
$$cost_u(S) = \alpha n_u + \sum_{v} dist_{G(S)}(u,v)$$
building cost usage cost

n_u: number of edges bought by node u

Remind

- We use Nash equilibrium (NE) as the solution concept
- To evaluate the overall quality of a network, we consider the social cost, i.e. the sum of all players' costs
- a network is optimal or socially efficient if it minimizes the social cost
- A graph G=(V,E) is stable (for a value α) if there exists a strategy vector S such that:
 - S is a NE
 - S forms G

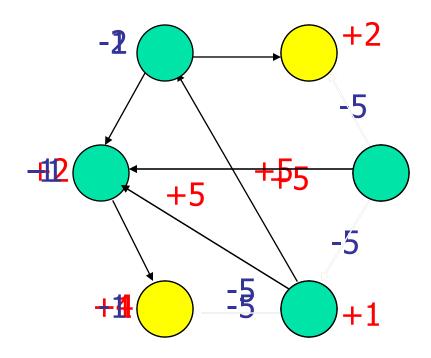
Example



(Convention: arrow from the node buying the link)

Example

• Set α =5, and consider:



That's a stable network!

Some simple observations

- In SC(S) each term $dist_{G(S)}(u,v)$ contributes to the overall quality twice
- In a stable network each edge (u,v) is bough at most by one player
- Any stable network must be connected
 - Since the distance dist(u,v) is infinite whenever u and v are not connected

Social cost of a stable network
$$G(S)=(V,E)$$
:
 $SC(S)=\alpha|E| + \Sigma_{u,v} dist_{G(S)}(u,v)$

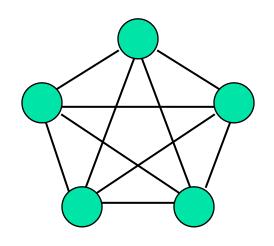
Our goal

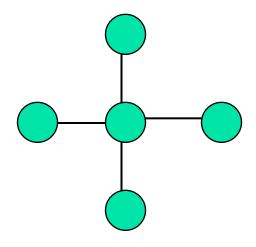
- to bound the efficiency loss resulting from stability
- In particular:
 - To bound the Price of Stability (PoS)
 - To bound the Price of Anarchy (PoA)

How does an optimal network look like?

Some notation

K_n: complete graph with n nodes





A star is a tree with height at most 1 (when rooted at its center)

Lemma

Il $\alpha \le 2$ then the complete graph is an optimal solution, while if $\alpha \ge 2$ then any star is an optimal solution.

proof

Let G=(V,E) be a network with |E|=m edges

$$SC(G) \ge \alpha m + 2m + 2(n(n-1) - 2m) = (\alpha - 2)m + 2n(n-1)$$

LB(m)

Notice: LB(m) is equal to $SC(K_n)$ when m=n(n-1)/2 and to SC of any star when m=n-1

G=(V,E): optimal solution;
SC(G)=OPT
LB(m)=(
$$\alpha$$
-2)m + 2n(n-1)

$$A \ge 2$$
 $A \ge 2$
 $A \le 3$
 $A \le 3$
 $A \le 4$
 $A \le$

Are the complete graph and stars stable?

Lemma

If $\alpha \le 1$ the complete graph is stable, while if $\alpha \ge 1$ then any star is stable.

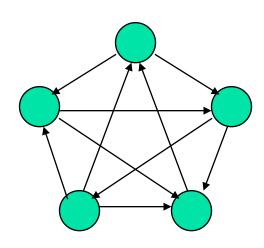
```
proof α≤1
```

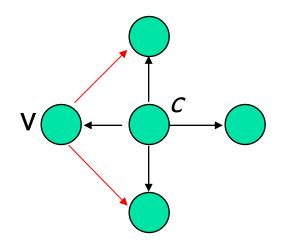
a node v cannot improve by saving k edges

α≥1

- c has no interest to deviate
- v buys k more edges...

...pays αk more... ...saves (w.r.t distances) k...





Theorem

For $\alpha \le 1$ and $\alpha \ge 2$ the PoS is 1. For $1 < \alpha < 2$ the PoS is at most 4/3

proof

 $\alpha \le 1$ and $\alpha \ge 2$... trivial!

 $1<\alpha<2$... K_n is an optimal solution, any star T is stable...

maximized when $\alpha \rightarrow 1$

$$PoS \le \frac{SC(T)}{SC(K_n)} = \frac{(\alpha-2)(n-1) + 2n(n-1)}{\alpha n(n-1)/2 + n(n-1)} \le \frac{-1(n-1) + 2n(n-1)}{n(n-1)/2 + n(n-1)}$$

$$=\frac{2n-1}{(3/2)n}=\frac{4n-2}{3n} < 4/3$$

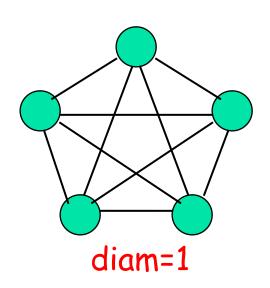
What about price of Anarchy?

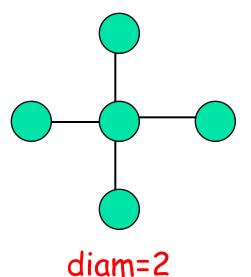
...for α <1 the complete graph is the only stable network, (try to prove that formally) hence PoA=1...

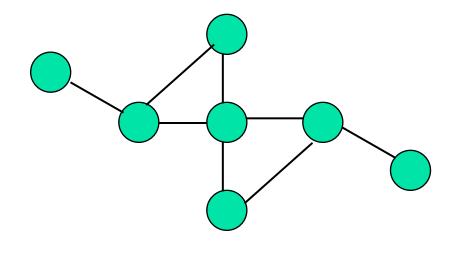
...for larger value of α ?

Some more notation

The diameter of a graph G is the maximum distance between any two nodes







diam=4

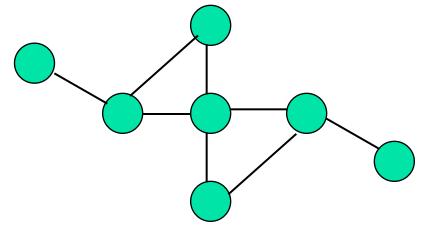
Some more notation

An edge e is a cut edge of a graph G=(V,E) if G-e is disconnected

$$G-e=(V,E\setminus\{e\})$$

A simple property:

Any graph has at most n-1 cut edges



Theorem

The PoA is at most $O(\sqrt{\alpha})$.

proof

It follows from the following lemmas:

Lemma 1

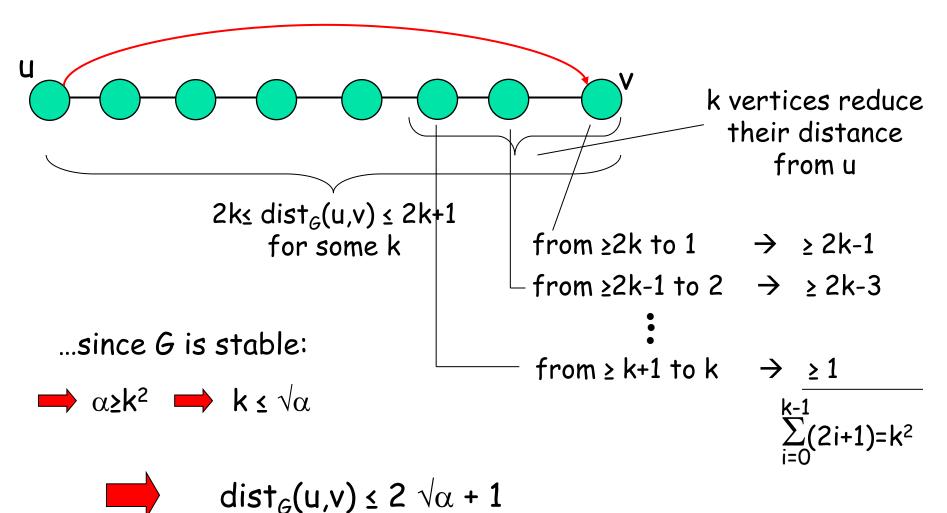
The diameter of any stable network is at most $2\sqrt{\alpha}$ +1.

Lemma 2

The SC of any stable network with diameter d is at most O(d) times the optimum SC.

proof of Lemma 1

G: stable network Consider a shortest path in G between two nodes u and v



Lemma 2

The SC of any stable network G=(V,E) with diameter d is at most O(d) times the optimum SC.

idea of the proof (we'll formally prove it later)

$$OPT \ge \alpha \ (n-1) + n(n-1)$$

$$OPT \ge \alpha \ (n-1)$$

$$OPT \ge \alpha \ (n-1)$$

$$OPT = \Omega(n^2)$$

$$SC(G) = \sum_{u,v} d_G(u,v) + \alpha |E|$$

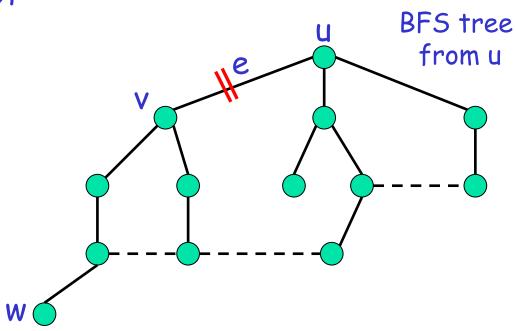
$$= \sum_{u,v} d_G(u,v) + \alpha |E_{cut}| + \alpha |E_{non-cut}| = O(d) \ OPT$$

$$O(d \ n^2) = O(d) \ OPT$$

$$O(n^2d/\alpha) \ that's the tricky bound$$

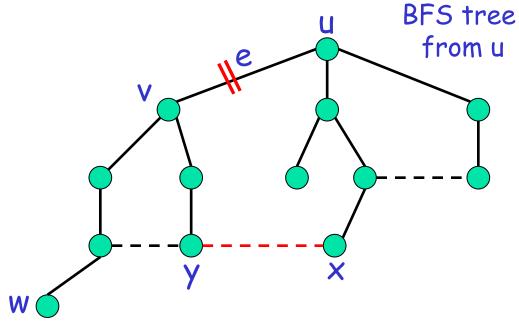
Let G be a network with diameter d, and let e=(u,v) be a non-cut edge. Then in G-e, every node w increases its distance from u by at most 2d

proof



Let G be a network with diameter d, and let e=(u,v) be a non-cut edge. Then in G-e, every node w increases its distance from u by at most 2d

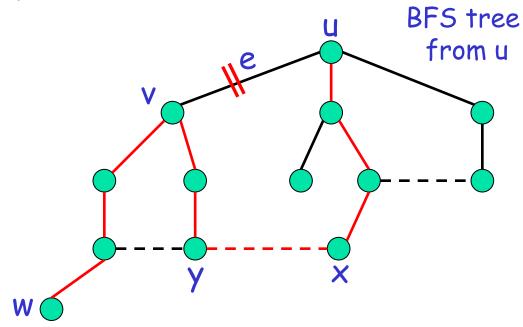
proof



(x,y):
any edge crossing
the cut induced
by the removal of e

Let G be a network with diameter d, and let e=(u,v) be a non-cut edge. Then in G-e, every node w increases its distance from u by at most 2d

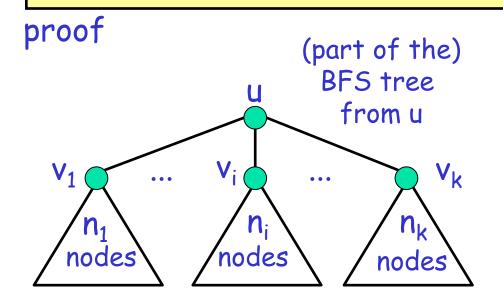
proof



(x,y):
any edge crossing
the cut induced
by the removal of e

$$d_{G-e}(u,w) \le d_G(u,x) + 1 + d_G(y,v) + d_G(v,w) \le d_G(u,w) + 2d$$
 $\le d = d_G(u,w) - 1$

Let G be a stable network, and let F be the set of Non-cut edges paid for by a node u. Then $|F| \le (n-1)2d/\alpha$



by summing up for all i

$$k \alpha \leq 2d\sum_{i=1}^{k} n_i \leq 2d (n-1)$$

if u removes (u,v_i) saves α and its distance cost increses by at most 2d n_i (Prop. 1)

since G is stable: $\alpha \le 2d n_i$

$$k \le (n-1) 2d/\alpha$$

Lemma 2

The SC of any stable network G=(V,E) with diameter d is at most O(d) times the optimum SC.

proof

OPT
$$\geq \alpha$$
 (n-1) + n(n-1)

$$SC(G) = \sum_{u,v} d_G(u,v) + \alpha |E| \le d OPT + 2d OPT = 3d OPT$$

 $\le dn(n-1) \le d OPT$

$$\alpha |E| = \alpha |E_{cut}| + \alpha |E_{non-cut}| \le \alpha (n-1) + n(n-1)2d \le 2d OPT$$
 $\le (n-1)$
 $\le n(n-1)2d/\alpha$
Prop. 2

Theorem

It is NP-hard, given the strategies of the other agents, to compute the best response of a given player.

proof

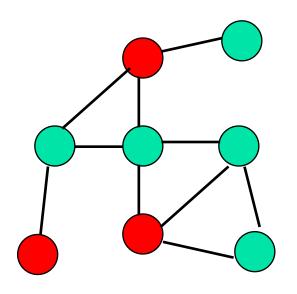
Reduction from dominating set problem

Dominating Set (DS) problem

Input:

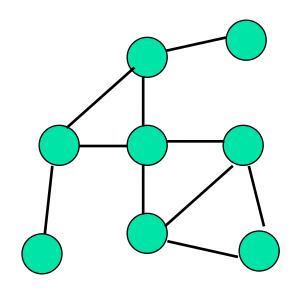
- a graph G=(V,E)
- Solution:
 - $U\subseteq V$, such that for every $v\in V-U$, there is $u\in U$ with $(u,v)\in E$

Cardinality of U



the reduction

player i

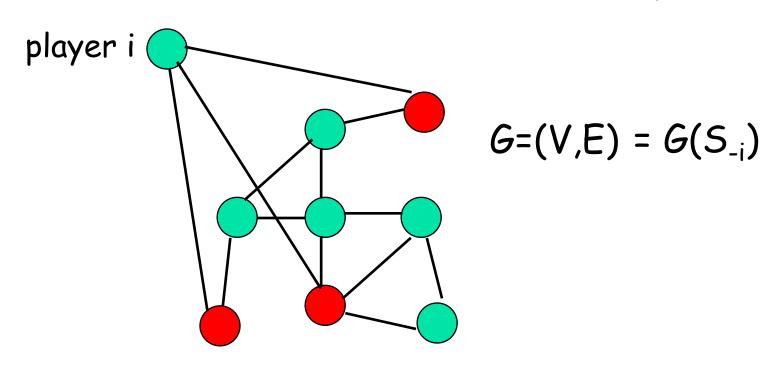


$$G=(V,E)=G(S_{-i})$$

Player i has a strategy yielding a cost $\leq \alpha k + 2n - k$ if and only if there is a DS of size $\leq k$

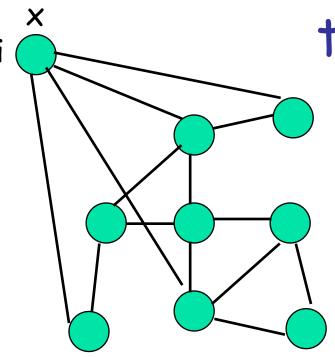
the reduction

1<α<2



easy: given a dominating set U of size k, player i buys edges incident to the nodes in U

Cost for i is $\alpha k+2(n-k)+k=\alpha k+2n-k$



the reduction

$$G=(V,E) = G(S_{-i})$$

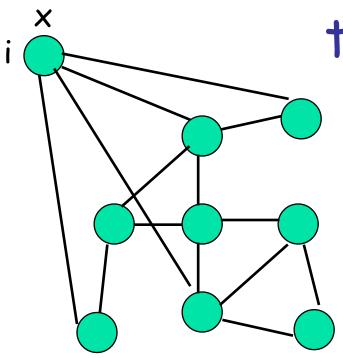
 (\Rightarrow)

Let S_i be a strategy giving a cost $\leq \alpha k+2n-k$

Modify S_i as follows:

repeat:

if there is a node v with distance ≥ 3 from x in G(S), then add edge (x,v) to S_i (this decreases the cost)



the reduction

$$G=(V,E) = G(S_{-i})$$

(⇒)

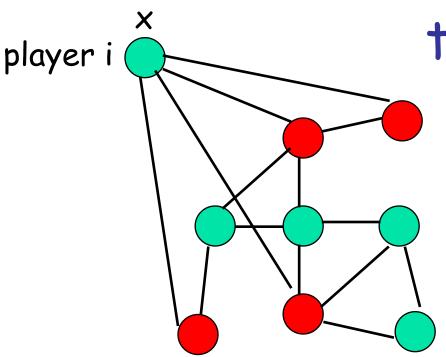
Let S_i be a strategy giving a cost $\leq \alpha k+2n-k$

Modify S_i as follows:

repeat:

if there is a node v with distance ≥ 3 from x in G(S), then add edge (x,v) to S_i (this decreases the cost)

Finally, every node has distance either 1 or 2 from x



the reduction

$$G=(V,E) = G(S_{-i})$$

(⇒)

Let S_i be a strategy giving a cost $\leq \alpha k+2n-k$

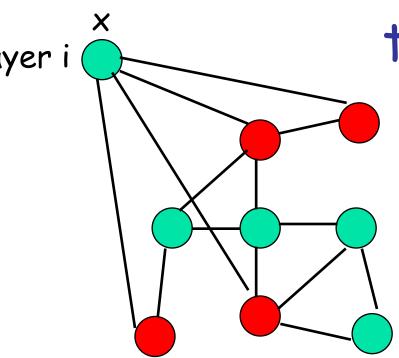
Modify S_i as follows:

repeat:

if there is a node v with distance ≥ 3 from x in G(S), then add edge (x,v) to S_i (this decreases the cost)

Finally, every node has distance either 1 or 2 from x

Let \bigcup be the set of nodes at distance 1 from x...



the reduction

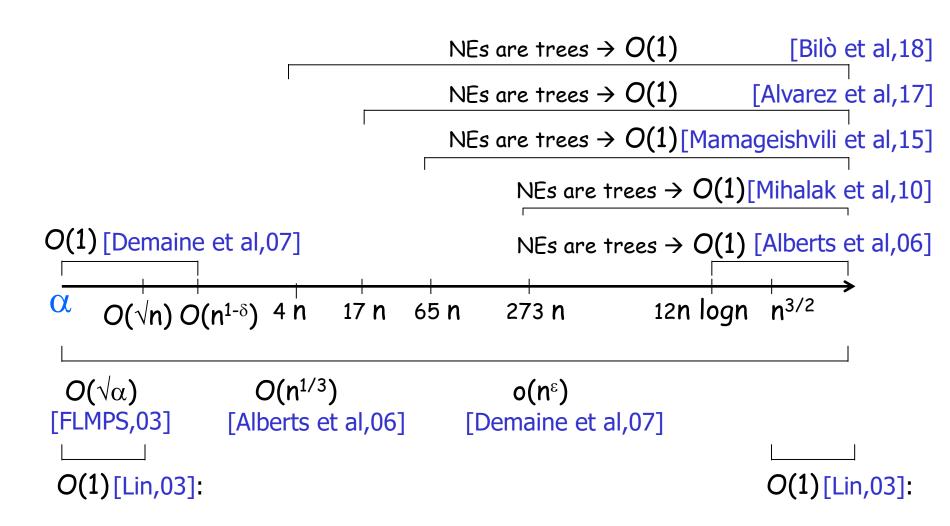
$$G=(V,E)=G(S_{-i})$$

(⇒)

... is a dominating set of the original graph G

We have $cost_i(S) = \alpha |U| + 2n - |U| \le \alpha k + 2n - k$

$$|U| \le k$$



O(1) [Demaine et al,07]

 $O(\sqrt{\alpha})$

[FLMPS,03]

O(1)[Lin,03]:

 $O(\sqrt{n}) O(n^{1-\delta}) 4 n$

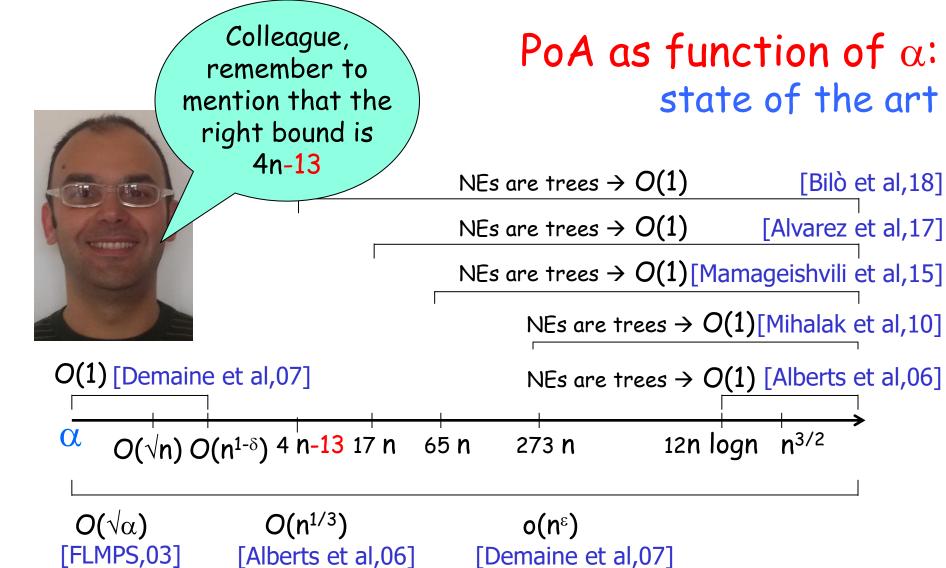
17 n

 $O(n^{1/3})$

[Alberts et al,06]

PoA as function of α : state of the art

NEs are trees $\rightarrow O(1)$ [Bilò et al,18] NEs are trees $\rightarrow O(1)$ [Alvarez et al,17] NEs are trees $\rightarrow O(1)$ [Mamageishvili et al,15] NEs are trees $\rightarrow O(1)$ [Mihalak et al,10] NEs are trees \rightarrow O(1) [Alberts et al,06] $n^{3/2}$ 12n logn 65 n 273 n $o(n^{\varepsilon})$ [Demaine et al,07] O(1)[Lin,03]:

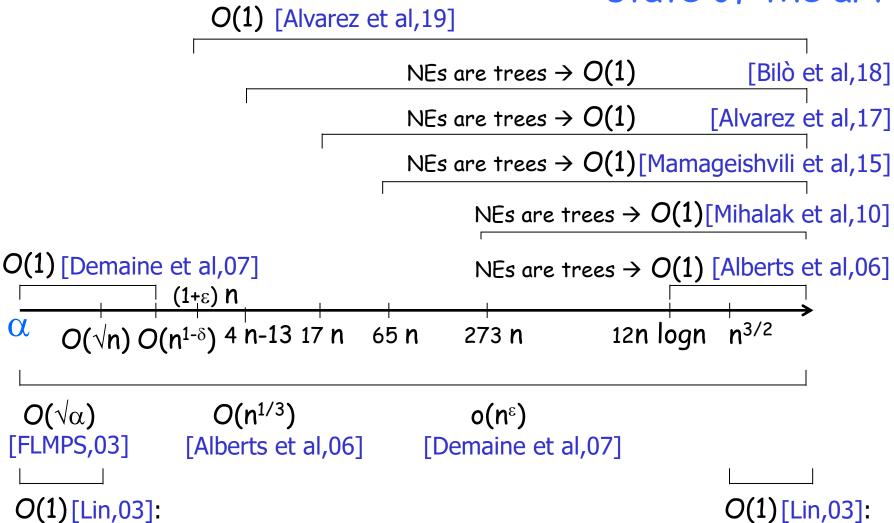


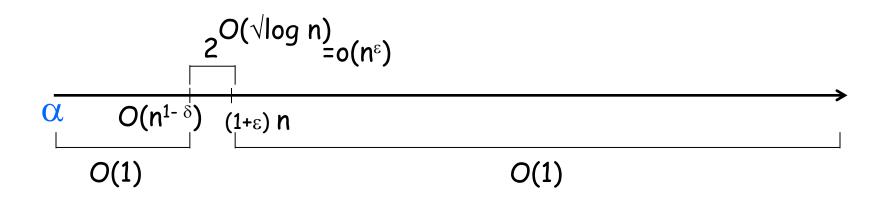
[Bilò et al,18]:

O(1)[Lin,03]:

D. Bilò, P. Lenzner, On the Tree Conjecture for the Network Creation Game, STACS'18

O(1) [Lin,03]:





Open: is POA always constant?