Local Connection Game



Motivations

often built and maintained by

self-interested agents




Introduction

Introduced in [FLMPS'03]

A LCG is a game that models the creation of
networks

two competing issues: players want

= to minimize the cost they incur in building the network

= to ensure that the network provides them with a high
quality of service

Players are nodes that:

= pay for the links
= benefit from short paths

[FLMPS'03]:
A. Fabrikant, A. Luthra, E. Maneva, C.H. Papadimitriou, S. Shenker,
On a network creation game, PODC'03



The model

n players: nodes in a graph to be built

Strategy for player u: a set of undirected
edges that u will build (all incident to u)

Given a strategy vector S, the constructed
network will be G(S)

= there is the undirected edge (u,v) if it is bought by
u or v (or both)

player u's goal:
= to make the distance to other nodes small
= to pay as little as possible



The model

Each edge costs

distgsy(u,v): length of a shortest path (in
terms of number of edges) between u and v

Player u aims to minimize its cost:

COSTU(S) -an, + ZV diSTG(S)(U,V)

building cost usage cost

n, number of edges bought by node u



Remind

We use Nash equilibrium (NE) as the solution concept

To evaluate the overall quality of a network, we
consider the social cost, i.e. the sum of all players'’
costs

a network is optimal or socially efficient if it
minimizes the social cost

A graph G=(V,E) is stable (for a value a) if there
exists a strategy vector S such that:

m SlSC(NE
= SformsG



c,=2a+9

(Convention: arrow from the node buying the link)



Example

= Set a=5, and consider:
+2

+]I\Q 2

That's a stable network!



Some simple observations

= In SC(S) each term distg ) (u,v) contributes to the
overall quality twice

= Inastable network each edge (u,v) is bough at
most by one player

= Any stable network must be connected

= Since the distance dist(u,v) is infinite whenever u and v
are not connected

Social cost of a (stable) network G(S)=(V ,E):
SC(S):OtlEl + Zu,vdiSTg(S)(U,V)



Our goal

= to bound the efficiency loss resulting from
stability

= In particular:
= To bound the Price of Stability (PoS)
= To bound the Price of Anarchy (PoA)



How does an optimal
network look like?



Some notation

K,: complete graph
with n nodes

H—‘ A star is a tree

with height at most 1
‘ (when rooted at its
center)




Lemma

Il ac2 then the complete graph is an optimal solution,
while if a22 then any star is an optimal solution.

proof
Let 6=(V,E) be a network with |E|=m edges

SC(G) 2 aom + 2m + 2(n(n-1) -2m) =€0c—2)m + 2n(n- 1/)
LQ(m)

Notice: LB(m) is equal to SC(K,) when m=n(n-1)/2
and to SC of any star when m=n-1




proof G=(V,E): optimal solution;
SC(6)=0PT

LB(m)=(a-2)m + 2n(n-1)

LB(n-1) = SC of any star

o> 2
min m

OPT> mni1n LB(m) 2

ag 2
h LB(n(n-1)/2) = SC(K,)




Are the complete graph
and stars stable?



Lemma

If acl the complete graph is stable, while if a1 then
any star is stable.

proof

sl R

a hode v cannot improve
by saving k edges

o2l
¢ has no interest to deviate

v buys k more edges... /

..pays ak more... v@®—( >C :
..saves (w.r.t O Q
distances) k... \Cg




Theorem

For o<l and 22 the PoS is 1. For 1<a<2 the PoS is at
most 4/3

proof
o<l and 22 ..triviall

1<a<2 ..K, is an optimal solution, any star T is stable...

o maximized when o > 1

-1(n-1) + 2n(n-1)
n(n-1)/2 + n(n-1)




What about price of
Anarchy?

..for a<1 the complete graph is the
only stable network,

(try to prove that formally)

hence PoA=1...

..for larger value of a?



Some more notation

The diameter of a graph 6
is The maximum distance
between any two nodes

5 o

diam=2 diam=4

diam=1




Some more notation

An edge e is a cut edge of a
graph G6=(VE) if

G-e is disconnected
G-e=(V,E\{e}) O AN :§ >_O\©
A simple property: Q/

Any graph has at
most n-1 cut
edges




Theorem

The PoA is at most O(Na ).

proof
It follows from the following lemmas:
Lemma 1

The diameter of any stable network is at most 2vVo +1 .

Lemma 2

The SC of any stable network with diameter d is at most
O(d) times the optimum SC.




proof of Lemma 1

G: stable network
Consider a shortest path in G between two nodes u and v

u
\'/
Q Q O O O O k vertices reduce
\ Vs % their distance
N — - from u
2ks distg(u,v) < 2k+l
for some k from 22k to 1 > > 2k-1
— from22k-1t02 > > 2k-3

..since G is stable:
=) o>k? =) k< Vo

— from2>k+ltok > 1

k-1
E)(Ziﬂ):kz
‘ dist,(u,v) < 2 Vo + 1

[ ]




Lemma 2

The SC of any stable network 6=(V E) with diameter d is
at most O(d) times the optimum SC.

idea of the proof (we'll formally prove it later)
OPTs>a (n-1)+n(n-1) wmp OPT20a(n-1)

OPT = Q(n?)
SC(6)= %, ,dg(u,v) + a [E|
<OPT O(d) OPT
A
(
T deU)+ alBl ¢ alEesl  =O(d) OPT
—— - ——

O(dn?)= O(d) OPT  <(n-1) O(n2d/a) that's the

tricky
bound




Proposition 1

Let G be a network with diameter d, and let e=(u,v) be a
non-cut edge. Then in G-e, every node w increases its
distance from u by at most 2d

proof
U BFS tree

from u




Proposition 1

Let G be a network with diameter d, and let e=(u,v) be a
non-cut edge. Then in G-e, every node w increases its
distance from u by at most 2d

proof
u BFS tree

from u (xy)
any edge crossing

the cut induced
by the removal of e




Proposition 1

Let G be a network with diameter d, and let e=(u,v) be a
non-cut edge. Then in G-e, every node w increases its
distance from u by at most 2d

proof
U BFS free _
from u (xy)
any edge crossing
the cut induced
by the removal of e
w

dg(uw) <dg(ux)+1 +\d6(y,v)}+ \dG(v,w)jg dg(u,w) +2d

Y Y
<d <d - dG(U,W)‘l




Proposition 2

Let G be a stable network, and let F be the set of
Non-cut edges paid for by a node u. Then |F|<(n-1)2d/a

pmof (part of the) k= | F|

u BFS tree
from u

if uremoves (u,v,) saves
o and its distance cost
increses by at most 2d n,
(Prop. 1)

since G is stable:

by summing up for all i

k
ko< 2d2n; < 2d (n-1) > k< (n-1) 2d/a




Lemma 2

The SC of any stable network 6=(V E) with diameter d is
at most O(d) times the optimum SC.

proof
OPT > a (n-1) + n(n-1)

SC(6)-= é‘u,vdG(u/V) + o |E| ¢«d OPT+2d OPT= 3d OPT
Y
<dn(n-1) <d OPT

Ot|E|=Ot!Ecu+' + aI\Enon_CUflj <a(n-1)+n(n-1)2d < 2d OPT

Y
<(n-1) <n(n-1)2d/a
Prop. 2




Theorem

I't is NP-hard, given the strategies of the other agents,
to compute the best response of a given player.

proof

Reduction from dominating set problem




Dominating Set (DS) problem

= Input:

= a graph 6=(V,E)
= Solution:

= UcV, such that for l

N

X
O—

every veV-U, there
s ueU with (u,v)eE

= Measure:
= Cardinality of U



L2 the reduction
player i O

6=(V.E) = 6(S.)

%!

Player i has a strategy yielding a cost < ak+2n-k if and
only if there is a DS of size <k



L2 the reduction
player i

6=(V.E) = 6(S.)
—O

\
—0

(=)
easy: given a dominating set U of size k, player i buys
edges incident to the nodes in U

) Cost for i is ak+2(n-k)+k =ak+2n-k



1<o<2

player i the reduction

6=(V.E) = 6(S.,)

=)
Let S, be a strategy giving a cost < ak+2n-k

Modify S; as follows:
repeat:
if there is a node v with distance 23 from x in 6(S),
then add edge (x,v) to S; (this decreases the
cost)



1<o<2

player i the reduction

6=(V.E) = 6(S.,)

=)
Let S, be a strategy giving a cost < ak+2n-k

Modify S; as follows:

repeat:
if there is a hode v with distance 23 from x in 6(S),
then add edge (x,v) to S; (this decreases the

cost)
Finally, every node has distance either 1 or 2 from x



I<a<2 :
. player i - the reduction

6=(V.E) = 6(S.,)

—O
(=) .<(\>

Let S, be a strategy giving a cost < ak+2n-k

Modify S; as follows:
repeat:
if there is a hode v with distance 23 from x in 6(S),

then add edge (x,v) to S; (this decreases the

cost)
Finally, every node has distance either 1 or 2 from x

Let U be the set of nodes at distance 1 from x...



1<o<2 X

player i the reduction

6=(V.E) = 6(S.,)
—@

(=) .<(\>

..U is a dominating set of the original graph G

We have cost(S)= a|U|+2n-|U| < ak+2n-k

) Ul <k




PoA as function of o
state of the art

NEs are trees > O(1) [Bilo et al,18]
|
NEs are trees > O(1) [Alvarez et al,17]

|
NEs are trees > O(1)[Mamageishvili et al,15]
|

|
NEs are trees > O(1)[Mihalak et al,10]

O(1) [Demaine et al,07] NEs are trees > O(1) [Alberts et al,06]
| | | |
— - : : : — >
% o@(n) O(nts) 4 n 17n 65n 273n 12n logn n3/2
| |
O(Va) O(nl/3) o(n?)
[FLMPS, 03] [Alberts et al,06] [Demaine et al,07]
L | L |

O(1)[Lin,03]: O(1)[Lin,03]:



Colleague,
remember to
mention that the
right bound is
4n-13

PoA as function of o
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mention that the
right bound is
4n-13

PoA as function of o
state of the art

NEs are trees > O(1) [Bilo et al,18]
|
NEs are trees > O(1) [Alvarez et al,17]

|
NEs are trees > O(1)[Mamageishvili et al,15]
| |

NEs are trees > O(1)[Mihalak et al,10]

O(1) [Demaine et al,07] NEs are trees > O(1) [Alberts et al,06]
| | | |
— - : : : — >
a O(Vn) O(nt-?) 4 n-1317n 65n  273n 12n logn n3/2
| |
O(Wo) O(n/3) o(n?)
[FLMPS, 03] [Alberts et al,06] [Demaine et al,07]
I I
O(1)[Lin,03]: O(1)[Lin,03]:

[Bilo et al,18]:
D. Bilo, P. Lenzner, On the Tree Conjecture for the Network Creation Game, STACS'18




PoA as function of a.:
state of the art
O(1) [Alvarez et al,19]

| |
NEs are trees > O(1) [Bilo et al,18]

|
NEs are trees > O(1) [Alvarez et al,17]

|
NEs are trees > O(1)[Mamageishvili et al,15]
|

|
NEs are trees > O(1)[Mihalak et al,10]

O(1) [Demaine et al,07] NEs are trees > O(1) [Alberts et al,06]
| ] ! (1#8) n . ] ] ] ! ] |>
< o(\'/ (n1-5) 4 n-13 17 ' ' 12n logn N2
n) O(n ) n 7n 65n 273 n niogn n
| |
O(Va) O(nl/3) o(n?)
[FLMPS, 03] [Alberts et al,06] [Demaine et al,07]
L | L |

O(1)[Lin,03]: O(1)[Lin,03]:



PoA as function of o
state of the art

o(n?)
e

Olt O(n'- 5;) (||1+s) n

o) o(1)




PoA as function of o
state of the art

CTCEL Y

o) o(1)

Open: is POA always constant?
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